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ARTICLE

Regional patterns of seismic b-values variations 
in the Himalayan region (71.6°E – 95.5°E and 
37.5°N – 26.6°N)

Ram Krishna Tiwari* , Anil Subedi , Dilip Parajuli , Santosh Dharel , 
Anil Neupane , Hari Subedi , Bishow Raj Timsina , and Harihar Paudyal
Department of Physics, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, Nepal

Journal of Seismic Exploration

Abstract
This study conducts a detailed seismic hazard assessment of the Himalayan region. 
It focuses on studying how b-values, based on the Gutenberg–Richter law, vary 
throughout location and time. These fluctuations assist measuring tectonic stress 
and provide insights into the region’s seismic activity. This research focuses on five 
Himalayan sub-regions: Far Western, Western, Central-I, Central-II, and Eastern. It 
incorporates earthquake data spanning 1964 – 2023 obtained from the International 
Seismological Centre. The data were de-clustered using the Reasenberg method 
and examined by Maximum Likelihood Estimation. The results demonstrated 
considerable spatial variability in b-values across the Himalayan sub-regions. The Far 
Western Himalayas displayed the greatest b-value (0.93 ± 0.02), indicating frequent 
smaller earthquakes and lesser tectonic stress. In contrast, the Eastern (0.68 ± 0.02) 
and Central-I (0.69 ± 0.03) regions had the lowest b-values, implying more stress 
accumulation and a greater risk of future strong earthquakes. Temporal fluctuations, 
as a decrease in b-values preceding to the 2015 Gorkha earthquake (Mw 7.8) and a 
subsequent increase in Central-II (1.19 ± 0.03), highlighted the retention and release 
cycles. The Eastern Himalayas, particularly the Dhubri-Chungthang fault zone seismic 
gap in Bhutan, are considered a key high-risk zone. This region, with b-values ranging 
from 0.65 to 0.75, has remained unruptured since the 1934 Bihar-Nepal earthquake 
(Mw 8.4). The findings showed the influence of the continual convergence of the 
Indian and Eurasian plates (~20  mm/year) on strain heterogeneity. This study 
underlines the vital demand for intensive seismic monitoring, resilient infrastructure, 
and disaster readiness in low b-value areas to alleviate catastrophic risks in one of the 
globe’s most tectonically active regions.

Keywords: b-value; Gutenberg–Richter law; Himalayan region

1. Introduction
The Himalayan Mountain Range, the tallest mountain chain in the world, traverses 
five countries – India, Nepal, Bhutan, China (Tibet), and Pakistan – and extends over 
2,400 km in southern Asia.1 The continual collision between the Indian and Eurasian 
tectonic plates, which began around 50 million years ago (Mya) after the Neo-Tethys 
Ocean closed, is responsible for its construction.2 The Indian Plate subducted northward 
beneath Eurasia between 70 and 50 Mya, closing the Tethys Ocean and leaving 
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behind the Indus-Tsangpo Suture Zone, a geological 
indicator of the ancient oceanic crust, was the primary 
step in the orogenesis of the Himalayas.3 The continental 
collision phase (50 – 40 Mya) resulted in massive crustal 
shortening, folding, and thrust faulting, which uplifted 
the Greater Himalayas through systems, such as the Main 
Central Thrust, while the Main Boundary Thrust and 
Main Frontal Thrust distinguish the Lesser Himalayas 
and the young, sediment-rich Siwalik Hills, respectively.4,5 
Ongoing northward convergence of the Indian Plate at 
5 – 10  mm/year sustains tectonic activity, driving uplift 
of peaks, such as Mount Everest and accumulating stress 
along major faults, such as the Main Himalayan Thrust 
(MHT), a primary source of strong earthquakes.6,7 This 
dynamic process ensures continued seismic hazard in 
the region, exemplified by historical earthquakes and 
the persistent risk of future events as strain energy is 
episodically released.8,9

An earthquake is defined as the sudden release of 
accumulated stress along locked tectonic plate boundaries 
or intraplate zones, where abrupt crustal movement 
generates seismic waves.9,10 In the Himalayas, this process 
is driven by the ongoing India-Eurasia collision, which 
has generated significant seismicity linked to strain release 
along the MHT.2,6 One of the notable seismic activities in the 
Himalayas is the 1905 Kangra earthquake (Mw 7.8), where 
a segment of the western Himalayan front was ruptured, 
releasing stress accumulation in the Kangra reentrant.11,12 
The Bihar-Nepal earthquake (Mw 8.1) in 1934 involved 
slip along a ~250  km portion of the MHT, illuminating 
shallow decollement dynamics.13-16 The 1950 Assam-
Tibet earthquake (Mw 8.6) highlights the complexity of 
oblique convergence near the eastern Himalayan syntaxis, 
where thrust and strike-slip faulting combine to produce 
bimodal faulting.17,18 The 2005 Kashmir earthquake 
(Mw 7.6) highlighted strain partitioning in the western 
syntaxis, with thrust and strike-slip components.8,19,20 Most 
recently, the 2015 Gorkha earthquake (Mw 7.8) in central 
Nepal ruptured a 150  km × 60  km patch of the MHT, 
leaving deeper segments unbroken and underscoring 
heterogeneous coupling.8,21-23 These events, spanning the 
MHT’s strike, reveal segmented rupture behavior and 
variable locking depths, with GPS-derived convergence 
rates (~18 – 20  mm/year), suggesting ongoing strain 
accumulation.6

By analyzing the b-value in the Gutenberg–Richter 
law, this study aims to identify zones of differential stress 
accumulation, potential asperities, and fault maturity 
across the Himalayan region (71.6°E – 95.5°E and 26.6°N – 
37.5°N), subdivided into five distinct sub-regions. Based on 
the probabilistic seismic hazard assessment report of India, 

tectonic features, and geology, the region has been broadly 
divided into four sections,26-28 with the western section 
further subdivided for improved analysis. As a result, As a 
result, we have categorized the Himalayan region into five 
zones: Far Western, Western, Central-I, Central-II, and 
Eastern (Figure 1). Each of these zones has been defined 
based on distinct geological and tectonic characteristics to 
ensure a comprehensive assessment.

1.1. Frequency magnitude distribution

The frequency-magnitude distribution (FMD) of 
earthquakes29 is a fundamental statistical relationship in 
seismology. It describes how the frequency of earthquakes 
scales with their magnitude, using the following equation:

logN = a−bM (I)

In Equation I, N is the cumulative number of events 
having magnitude ≥M; M is the magnitude of earthquakes; 
the constant a is the seismicity of the region; and b is 
the b-value of the earthquake frequency magnitude 
distribution.29 The b-value, a key parameter in the 
Gutenberg–Richter law, quantifies the relative frequency of 
small to large earthquakes, where a lower b-value indicates 
a higher likelihood of large-magnitude events due to 
elevated tectonic stress, while a higher b-value reflects 
frequent small earthquakes and lower crustal strain.30-32 
To assess regional stress accumulation and evaluate the 
seismic hazard potential, seismologists have analyzed 
spatial and temporal fluctuations in b-values around the 
globe. As an example, researchers analyzed spatiotemporal 
variations in b-value within the subducting slab before the 
2003 Tokachi-oki earthquake (M 8.0), Japan, to identify 
precursory seismic signatures.33 Similarly, the b-value 
anomalies were noticed before the Assam Earthquake on 
April 28, 2021.34 In addition, the low b-value anomaly 
identified in the west of Gorkha highlights the zone with 
potentially strong seismic activity in the future.35

2. Data and methods
An extensive earthquake catalogue covering a long 
period is essential for studying the seismic activity of 
any region. In this study, we focused on the Himalayas, 
located between 71.6°E and 95.5°E, and utilized 
earthquake data for the period from 1964 to 2023, from 
the International Seismological Centre catalogue.36-38 The 
earthquake magnitudes in the catalogue are reported 
in mb (body-wave magnitude). The dataset comprises 
both dependent (foreshocks and aftershocks) and 
independent (mainshocks) events, but to ensure accurate 
analysis, only independent earthquakes are considered by 
applying de-clustering using the Reasenberg algorithm.39 
The de-clustering process was carried out in ZMAP 
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software (Swiss Seismological Service, Switzerland).40 The 
segmented study regions are:
(i) Far Western Himalayan region (31.3°N – 37.5°N and 

71.6°E – 76°E): A  total of 3445 earthquake events 
with a magnitude of 3.0 mb or greater were recorded. 
After applying the de-clustering process, 47 clusters 
were identified, and following the removal of 
dependent events, 2867 independent events were 
retained.

(ii) Western Himalayan region (28.8°N – 35.2°N and 76°E 
– 80.2°E): A  total of 1040 earthquake events with a 
magnitude of 3.0 mb or greater were recorded. After 
the de-clustering process, 24 clusters were identified, 
and following the removal of dependent events, 1004 
independent events were retained.

(iii) Central-I Himalayan region (27.4°N – 31.5°N and 
80.2°E – 82.9°E): A total of 529 earthquake events with 
a magnitude of 3.0 mb or greater were recorded. After 
the de-clustering process, 11 clusters were identified, 
and following the removal of dependent events, 494 
independent events were retained.

(iv) Central-II Himalayan Region (26.03°N – 30°N and 
82.9°E – 88.2°E): A  total of 1482 earthquake events 
with a magnitude of 3.0 mb or greater were recorded. 
After the de-clustering process, 35 clusters were 
identified, and following the removal of dependent 
events, 1079 independent events were retained.

(v) Eastern Himalayan region (26.6°N – 29.9°N and 
88.2°E – 95.5°E): A total of 767 earthquake events with 
a magnitude of 3.0 mb or greater were recorded. After 

the de-clustering process, 8 clusters were identified, 
and following the removal of dependent events, 706 
independent events were retained.

The b-value was determined using the maximum 
likelihood estimate approach, which remains unaffected by 
large-magnitude earthquakes. In addition, the magnitude 
of completeness was computed using the first derivative 
of the frequency-magnitude curve.32 The formula41,42 for 
b-value estimation is as follows:

b
e

M M M
a

�
� �

log

( )

10

2
�

 (II)

where Ma is the average of all magnitudes; M is the 
minimum magnitude in the catalogue; and ∆M is the 
binning width of the catalogue. The standard deviation in 
b-value (δb), as recommended elsewhere,43 is provided in 
the following:

�b b
M M

n n
i

N

i a

s s

�
�� �
�� �

�2 3
1

2

2

.  (III)

where Mi denotes the individual earthquake 
magnitudes; Ma is the average magnitude of all the 
earthquakes considered; and ns refers to the total number 
of earthquake samples used in the calculation. The 
expression M Mi ai

N
�� �� 2  represents the sum of the 

squared differences between each magnitude and the mean 
magnitude.

Figure 1. Study region with earthquake distribution. Red star indicates the earthquake >6.4 mb and notable past earthquakes, and red rectangular box are 
subdivided regions. UK stands for Mw 6.8 Uttar Kashi earthquake, CH stands for Mw 6.4 Chamoli earthquake, GK stands for Mw 7.8 Gorkha earthquake, 
NB stands for Mw 8.4 Nepal-Bihar earthquake, KA stands for Mw 7.6 Kashmir earthquake, SK stands for Mw 6.9 Sikkim earthquake, KG stands for Mw 
7.8 Kangra earthquake, and AS stands for Mw 7.8 Assam earthquake. The blue rectangle stands for Dhubri-Chungthang Fault Zone (DCFZ).24,25
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3. Results and discussion
As mentioned in the past literature, temporally declining 
b-values precede major earthquakes, signaling stress 
concentration,44,45 and spatially, low b-values correlate 
with locked, high-stress zones, while high b-values 
reflect fractured, aseismic regions.46,47 Together, these 
patterns highlight the utility of b-values in mapping stress 
heterogeneity and identifying seismogenic potential. 
To better understand these dynamics, we investigated 
spatial and temporal b-value variations in the Himalaya to 

quantify stress heterogeneity and earthquake likelihood. 
The estimated b-values for all five regions (Far Western, 
Western, Central-I, Central-II, and Eastern) are illustrated 
in Figure  2, with their corresponding numerical values 
provided in Table 1.

The Far Western region (Figure  2A) exhibits the 
highest b-value (0.93 ± 0.02), indicating a predominance 
of small magnitude earthquakes, which is a common 
feature of tectonically active zones. Conversely, the 
Central-I (Figure  2C) and Eastern regions (Figure  2D) 

Figure 2. b-value and magnitude of completeness plots of Far Western Himalayan region (A), Western Himalayan Region (B), Central-I Himalayan Region 
(C), Central-II Himalayan Region (D), and Eastern Himalayan Region (E)

DC

BA

E
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have the lowest b-values (0.69 ± 0.03 and 0.68 ± 
0.02, respectively), suggesting a lower frequency of 
small earthquakes and a greater potential for stress 
accumulation, which may contribute to the occurrence 
of larger seismic events.48,49 Meanwhile, the Western 
(Figure  2B) and Central-II (Figure  2D) regions 
demonstrate moderate b-values (0.73 ± 0.02 and 0.83 ± 
0.03, respectively), reflecting a more balanced seismic 
activity pattern.50,51 These variations in b-values provide 
crucial insights into seismic behavior and potential 
hazard levels across different regions. In the preceding 
work, b-values calculated for the Himalayan region from 
1900 to 2015, were reported as 0.98, 0.86, 0.85, and 0.74 
for the Western, Central-I, Central-II, and Eastern zones, 
respectively, by Pudi et al.26 Similarly, other studies have 
analyzed b-values across the Himalayas, demonstrating 
differences in stress and seismic hazard. Tiwari and 
Paudyal52 discovered a b-value of 0.68 ± 0.03 in western 
Nepal (central Himalaya), indicating a high-stress 
zone with locked faults. Kumar and Sharma53 reported 
b-values ranging from 0.7 to 1.1 in central Nepal (central 
Himalaya), showing stress heterogeneity after the 2015 
Gorkha earthquake. Pathak et al.54 discovered a high-
stress environment in the Kumaun region of the western 
Himalayas, with a b-value of 0.59 ± 0.11. Similarly, Yadav 
et al.55 reported low b-values ranging from 0.6 to 0.7 in 
the northeastern Himalayas, particularly along the MHT, 
indicating locked faults and high seismic potential. These 
low b-values across locations show the Himalayan belt’s 
enormous stress and earthquake vulnerability.

The temporal fluctuations in b-values over the study 
region indicate varying stress regimes and seismic activities 
(Figure 3).

In the Far Western Himalaya (Figure  3A), a decrease 
in b-value from 1.04 (July 15, 1990) to 0.97 (November 
11, 2015) during the 1980 – 2020 period signifies ongoing 
stress accumulation along the MHT.56 The initial elevated 
b-value indicated stress relaxation through frequent 
little earthquakes, but the subsequent decline suggested 
an increase in strain concentration. The Western 
Himalayas (Figure  3B) exhibited a low b-value of 0.84 

on August  30,  1995, associated with stress accumulation 
preceding the 1991 Uttarkashi (Mw 6.8) and 1999 Chamoli 
(Mw  6.4) earthquakes, influenced by locked parts of the 
Main Central Thrust.57,58

In the Central-I Himalayas (Figure 3C), the b-value 
of 0.94 recorded on December 14, 2006, throughout 
the period from 1995 to 2015 indicated moderate stress 
conditions with ongoing strain building along the MHT. 
In contrast, the Central-II Himalayas (Figure  3D) saw 
a significant increase in the b-value to 1.19 on May 
10, 2015, following the Gorkha earthquake, indicating 
stress release through aftershocks.59 The Eastern 
Himalayas (Figure  3E) exhibited consistently elevated 
and constant b-values (0.97 in 2014; 0.99 in 2016) from 
1990 to 2015, indicating reduced stress attributable to 
crustal variability. This region constitutes a seismic gap 
that has remained unruptured since the 1934 Bihar-
Nepal earthquake (Mw 8.4), with locked faults quietly 
collecting strain.8,14 Our findings align with previous 
studies analyzing b-value variations in the Himalayas. 
Chetia et al.,49 for example, observed b-value varying 
from 0.4 to 3.3 on the Himalayan and forehead region 
from 1964 to 2020.

The low b-value zones of the Himalayan region, 
extending from west to east, demonstrate a significant 
increase in seismic hazard potential (Figure 4).

In the Far Western Himalayas (72°E – 76°E) (Figure 4A), 
significant stress accumulation (b = 0.7 – 0.9) is noted in 
Himachal Pradesh, historically associated with the 1905 
Kangra earthquake (Mw 7.8), where locked parts of the 
MHT maintain localized strain.60 Proceeding eastward, the 
Western Himalayas (76°E – 80°E) (Figure 4B) display the 
sub-region’s minimal b-values (0.6 – 0.7) in Uttarakhand 
(77°E – 79°E), which correlate with the Main Central Thrust 
and its rupture history, encompassing the 1991 Uttarkashi 
(Mw 6.8) and 1999 Chamoli (Mw 6.4) earthquakes.23,58,61 
Further east, the Central-I Himalayas (80.5°E – 82.5°E) 
(Figure  4C) in mid-western Nepal exhibit significantly 
low b-values (0.6 – 0.65), indicating unruptured segments 
of the MHT that have preserved residual stress following 
the 2015 Gorkha earthquake (Mw 7.8).62 In proximity to 
this, the Central-II Himalayas (83°E – 88°E) (Figure 4D) 
exhibit a pronounced disparity: The western sector 
(83°E – 85°E) (Figure  4B) saw post-2015 stress release 
(b = 0.9 – 1.05), but the eastern sector (85°E – 88°E) retains 
low b-values (0.65 – 0.8), indicating persistent strain 
accumulation in central Nepal. The Eastern Himalayas 
(89°E – 95°E) (Figure  4D) are the most hazardous, with 
Bhutan’s DCFZ gap (91°E – 93°E) exhibiting the lowest 
b-values (0.65 – 0.75) in the entire region.24 This seismic 
gap, which has remained unruptured since the 1934 

Table 1. b-value and magnitude of completeness in five 
regions of the Himalayan

Region b-value Magnitude of 
completeness (Mc)

Magnitude 
range (in Mb)

Far Western 0.93±0.02 3.8 3 – 6.9

Western 0.73±0.02 3.8 3 – 6.6

Central I 0.69±0.03 3.8 3 – 6.1

Central II 0.83±0.03 3.8 3 – 6.9

Eastern 0.68±0.02 3.8 3 – 6.2

https://dx.doi.org/10.36922/JSE025210006
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Bihar-Nepal earthquake, contains significant stress on the 
MHT, indicating an immediate threat of a mega-thrust 
event.63 The west-to-east gradient from moderate strain to 
catastrophic potential highlights the Himalayas’ dynamic 

tectonic interactions, driven by the Indian and Eurasian 
plates’ continuous convergence (~20  mm/year). Thus, 
monitoring and disaster resilience are crucial in high-risk 
areas, such as Bhutan and central Nepal.

Figure 3. A time series analyzing b-value across Far Western Himalayan region (A), Western Himalayan Region (B), Central-I Himalayan Region (C), 
Central-II Himalayan Region (D), and Eastern Himalayan Region (E)

DC

BA

E
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4. Conclusion
In this study, earthquake data were obtained from the 
International Seismological Centre catalogue covering 
the Himalayan arc region between 71.6°E and 95.5°E for 
the period 1964 – 2023. The analysis was based on body-
wave magnitude (mb), and to ensure accuracy, dependent 
events (foreshocks and aftershocks) were removed using 
the Reasenberg de-clustering algorithm implemented in 
MATLAB, allowing for the evaluation of only independent 
events (mainshocks).

The results of the investigation demonstrate clear spatial 
and temporal changes in b-values across distinct Himalayan 
sub-regions. Among the five zones investigated, the Far 
Western Himalayas demonstrated the greatest b-value 
(0.93 ± 0.02), which predicts a lower amount of tectonic 
stress accumulation and a dominance of small-magnitude 
earthquakes. In contrast, the Eastern Himalayas and 
Central-I region had the lowest b-values (0.68 ± 0.02 and 
0.69 ± 0.03, respectively), indicating a higher accumulation 
of stress and a greater likelihood of big, devastating seismic 
occurrences.

Figure  4. Spatial distribution of b-values across Far Western Himalayan region (A), Western Himalayan Region (B), Central-I Himalayan Region 
(C), Central-II Himalayan Region (D), and Eastern Himalayan Region (E)
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Temporal analysis showed dynamic changes in 
b-values over time. For instance, the b-value in the Far 
Western Himalayas decreased from 1.04 in 1990 to 0.97 
in 2015, reflecting increasing tectonic strain before the 
2015 Gorkha earthquake (Mw 7.8). Similarly, the Western 
Himalayas recorded a b-value of 0.84 in 1995, which was 
associated with subsequent major earthquakes, including 
the 1991 Uttarkashi (Mw 6.8) and 1999 Chamoli (Mw 6.4) 
events. The Central-II region showed a sharp increase in 
b-value to 1.19 during 2015, attributed to stress release 
from aftershock activity. Notably, the Dhubri-Chungthang 
seismic gap in Bhutan, with a persistent b-value of 0.65 
– 0.75, remains unruptured since the 1934 Bihar-Nepal 
earthquake (Mw 8.4), indicating a silent but critical 
accumulation of strain, potentially making it a future 
earthquake hotspot.

The interpretation of these results is significant. Low 
b-values point to regions with high stress accumulation 
and fewer small earthquakes, which are more prone to host 
large seismic events. Conversely, high b-values indicate 
frequent small earthquakes and lower potential for major 
seismic rupture. The temporal decrease in b-values in 
certain regions can serve as a potential indicator of 
impending earthquakes, whereas post-event increases 
often reflect stress release through aftershocks.

This work sheds light on the spatial and temporal 
patterns of seismicity over the Himalayan region. It 
helps to improve seismic hazard assessment and disaster 
risk mitigation strategies by identifying high-stress and 
earthquake-prone areas. The findings emphasize the 
significance of ongoing monitoring, particularly in low 
b-value zones, such as the DCFZ gap, and call for increased 
earthquake preparedness and mitigation activities in these 
susceptible locations.
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Abstract
Atoll structures formed in complex geological settings act as stratigraphic 
hydrocarbon traps and are typically circular or elliptical reef structures with a large 
lagoon at the center. Initially, the circular reef with flat limestone serves as a potential 
reservoir rock and holds significant importance in the petroleum industry, as it 
forms hydrocarbon-bearing traps. Therefore, identifying these structures in seismic 
sections is crucial. To understand the seismic behavior of atoll structures, seismic 
shot gathers of a geological model were generated, and migration sections were 
obtained. In this study, artificial data modeling of an atoll structure containing oil 
traps was carried out using the two-dimensional acoustic finite difference method 
due to its practicality and the flexibility to select different trap models as needed. 
Seismic data modeling was performed in a pre-stack shot domain, and two different 
data processing stages were applied to the shot data to obtain pre-stack and post-
stack Kirchhoff time migration sections. The spatial location and size of hydrocarbon 
traps in the migration sections were determined and compared with the initial atoll 
model. In this way, the seismic response of hydrocarbon trap structures in the atoll 
model was analyzed. The importance of the two different data processing methods 
was also examined. As a result, it was observed that the pre-stack Kirchhoff time 
migration method provides better results than the post-stack time migration method 
for the atoll model.

Keywords: Atoll; Acoustic finite difference method; Pre- and post-stack Kirchhoff time 
migration

1. Introduction
Atoll structures containing hydrocarbons are associated with the development within 
carbonate platforms characterized by high porosity and permeability, which are effective 
stratigraphic traps when overlain by impermeable cover rocks. Atolls can become 
effective hydrocarbon traps when underlain by units such as claystone, marl, or volcanic 
tuff, which possess low permeability. In addition, these structures offer significant 
reservoir potential due to their high porosity, a result of biogenic processes. However, 
atoll-type traps often represent complex systems that require multifaceted assessment, 
as they combine both structural and stratigraphic elements in the petroleum systems’ 
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trapping mechanisms. Therefore, detailed analysis of 
parameters such as paleoclimate, sea-level changes, 
and tectonic regimes plays a critical role in determining 
the hydrocarbon potential of atoll traps.1-5 As such, the 
identification and exploration of these traps require 
intensive and methodical studies supported by advanced 
data acquisition, processing, and interpretation techniques, 
alongside sophisticated geological and reservoir modeling 
approaches. Concurrently, studies incorporating advanced 
mechanical techniques are being conducted to more 
robustly define hydrocarbon reservoir properties and 
increase productivity.6-10

Seismic reflection methods used to study atoll 
structures with hydrocarbon traps involve collecting 
field data using multi-source and multi-receiver systems, 
followed by processing and interpretation using modern, 
purpose-built software. The interpretation process enables 
accurate identification of structures and hydrocarbon 
traps by incorporating both structural and compositional 
information. However, understanding the general 
seismic response of atoll structures can help prevent 
misinterpretations during seismic section analysis. 
Moreover, the complex geological environments hosting 
these traps, along with potential oversights during data 
processing or errors in parameter selection, are recognized 
as factors that may degrade the quality of seismic sections 
used for interpretation. The seismic reflection behavior of 
atoll structures is typically analyzed through numerical 
modeling of acoustic seismic wave propagation within a 
defined realistic subsurface model, a process referred to as 
seismic modeling.11-14 Seismic modeling has been widely 
used both to design optimal seismic data acquisition 
strategies15-17 and to improve seismic data processing 
workflows. In this context, the complex geometry of atoll 
structures and illumination problems during seismic 
interpretation have been investigated.18-20

Although various numerical methods, such as ray 
tracing, finite difference, and finite element techniques, 
have been used for wave propagation modeling of atoll 
structures, each with its advantages and limitations, the 
finite difference method (FDM) can provide successful 
results in highly complex environments. FDM is 
extensively utilized in seismic forward modeling studies 
due to its ability to accommodate diverse structural 
models without significant constraints.21-30 The solution 
of seismic wave propagation problems using FDM has 
received considerable attention in recent years.31-33 This 
approach offers an effective numerical solution to wave 
equations, enabling comprehensive wavefield modeling 
and incorporating all wave types, including reflections, 
scatterings, multiples, and surface waves.

Abuamarah et al.34 identified an atoll structure offshore 
of North Damietta in the Mediterranean Sea using a 3D 
seismic reflection method and well drilling information. 
Their analysis revealed that the atoll structure contains 
significant gas accumulations. Huang et al.35 acquired 2D 
multichannel seismic reflection data to investigate the 
stratigraphy, geomorphology, depositional processes, and 
seismic facies of Zhongshan Atoll in the South China Sea – 
the largest atoll in the world. Analysis of the acquired data 
revealed seismic anomalies resembling fluid flow features 
concentrated in the Late Oligocene–Early Miocene 
platform areas, and associated with pre-Miocene faults. 
They suggested that these fluid features may indicate gas-
bearing atoll structures.36,37

This study aims to utilize the FDM to simulate shot 
records for an atoll subsurface model, which may represent 
a complex hydrocarbon trap. In addition, it seeks to generate 
pre-stack and post-stack Kirchhoff time migration sections 
by applying two distinct data processing workflows. To 
achieve this, artificial shot gathers were generated using 
Matlab-based software developed by Youzwishen and 
Margrave.38 The simulated shot data were then processed 
with ProMAX software to produce pre-stack and post-
stack Kirchhoff time migration sections. The seismic 
signatures of the atoll trap were analyzed on the resulting 
zero-offset sections, and the alignment of reflection events 
with the geological model was evaluated.

2. Methodology
2.1. Acoustic FDM

Seismic wavefield modeling illustrates how seismic 
waves propagate through a subsurface model. To date, 
there is no exact analytical solution for calculating 
these wavefields in arbitrary media. As a result, several 
approximation techniques have been developed over 
time to solve the specific wave equation.12,39 One method 
is the FDM, which is effective for use in arbitrary media. 
In this method, the medium is divided into a grid with 
sufficient resolution to accurately simulate the propagation 
of elastic waves. Variations in elastic parameters at each 
grid point are calculated at specific time intervals to 
simulate seismic wave propagation within the gridded 
model. Forces applied at designated locations within the 
model activate corresponding grid points, initiating wave 
propagation. These forces, which are independent in both 
spatial and temporal domains, serve as representations 
of seismic sources. At any grid point and time, different 
elastic properties can be evaluated, providing insights 
into the seismic response observed at surface receivers 
or within boreholes. FDM computes the entire wavefield 
and inherently accounts for surface waves. Its routine 
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application has only recently become feasible due to 
significant advancements in computational power.

The FDM software utilized in this study is described by 
Bohlen.40 The code, known as Seismic mOdeling with FInite 
differences called SOFI, is based on the foundational work 
of Virieux22 and Levander41 for elastic wave simulation, 
along with contributions from Robertsson et al.27 for 
viscoelastic modeling. The software incorporates intrinsic 
wave absorption viscoelasticity (Q). It also provides an 
alternative rotated-grid representation of the subsurface, 
based on the work of Gold et al.42 and Saenger et al.,43 to 
improve the accuracy of surface wave simulations. The 
simulation accounts for both wave absorption, typical in 
unconsolidated near-surface rock units, and surface waves, 
which can complicate near-surface seismic data processing. 
This approach facilitates a clearer differentiation of 
subsurface parameters that influence the characteristics of 
seismic field data.

2.2. Application

The atoll model, a stratigraphic trap, is an important 
tectonic structure in oil and gas geology.44 Atolls are large, 
circular or elliptical reefs with a central lagoon. Initially, 
the circular reef, composed of flat limestone, serves as a 
potential reservoir rock, whereas the lagoonal micrite 
limestone typically does not. However, a reversal in 
porosity over time can change this. Atolls can form giant 
hydrocarbon fields, yet their structural complexity often 
makes identification and characterization on seismic 
sections challenging.

The source function, along with the spatial and temporal 
calculation parameters used in the atoll modeling, is 
provided in Table 1. For the modeling process, reflective 
interfaces were digitized, and depth, distance, and velocity 
information were input into the modeling software. 
Significant effort was made to ensure that the geological 
models accurately represent realistic and complex 
subsurface environments. Given that variations in layer 
density are minimal compared to seismic wave velocity, the 
density was assumed to be constant (𝜌 = 2.0 g/cm3).

Figure  1 shows the atoll model in a multilayer 
environment. The model includes two hydrocarbon traps 
composed of gaseous sand with an average seismic wave 
velocity of 1200  m/s in the 550 – 690  m depth range. 
From top to bottom, the model is stratified as follows: wet 
sand with a velocity of 1800 m/s between 0 m and 210 m, 
saturated shale with a velocity of 2300 m/s between 210 m 
and 490 m, porous sandstone with a velocity of 2400 m/s 
between 490  m and 680  m, and marl with a velocity of 
2600  m/s between 680  m and 750  m. At the center, the 
model features an impermeable lagoon-like micritic 

limestone with a velocity of 3500 m/s between 690 m and 
900  m, flanked on both sides by porous and permeable 
sandstone (the reservoir rock) with a velocity of 2500 m/s 
between 750 m and 900 m. The base of the model consists 
of basalt with a velocity of 2800 m/s between 900 m and 
1000 m.

2.3. Synthetic seismic data and processing

A total of 25 synthetic shot gathers were generated from 
multiple shots at regular intervals using a multi-shot and 
fixed-array receiver setup. For each shot, 100 seismic traces 
corresponding to 100 receivers were recorded. The synthetic 

Table 1. Parameters used for atoll modeling

Modeling parameters Atoll model

Profile length 2000 m

Maximum depth 1000 m

Receiver interval 10 m

Shot interval 40 m

Number of shots 25

Number of receivers 201

Maximum velocity 4000 m/s

Minimum velocity 2000 m/s

Maximum offset 2000 m

Minimum offset 100 m

Calculation time step 0.02 ms

Sampling time 4 ms

Record length 1000 ms

Minimum phase Ricker source wavelet 30 Hz

Figure 1. Input model P-wave velocity for Atoll model44
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shot gathers contain various noise components such as 
scattering, multiple reflections, and first arrivals. Moreover, 
the reflection events originating from each layer exhibit 
hyperbolic geometries that do not accurately represent the 
geometry of the actual reflecting structures. However, the 
complex nature of the subsurface environment, including 
its absorptive properties, heterogeneity, and sloping or 
topographical surface features, has significantly distorted 
the waveforms of reflections recorded at the surface. Due to 
subsurface inhomogeneity, the expected reflection events 
between the source and the receiver often do not occur in a 
direct path, leading to incorrect interpretation of reflective 
geometries in the shot gathers. To address these challenges, 
various data processing steps were applied, using 
appropriate processing workflows and correct parameter 
selections. Multichannel synthetic seismic reflection data 
were processed using Landmark Graphics Co.’s ProMAX 
2D software (USA). Pre-  and post-stack Kirchhoff time 
migration sections were obtained by removing noise 
from the shot gathered in the synthetic seismic reflection 
data and enhancing the primary reflections. The image 
quality of both migration sections was analyzed. The data 
processing workflows used for generating post-  and pre-
stack Kirchhoff time migration sections are shown in 
Figure 2.

2.4. Post-stack Kirchhoff time migration

The 25 synthetic shot gathers obtained from the atoll model 
were processed according to the data processing workflow 
for post-stack Kirchhoff time migration section shown in 
Figure  2. First, the data were loaded, and the geometric 
information was defined. Then, first-arrival wavefields 

(direct and refracted waves) were removed using a top 
mute. Proper muting of these first arrivals prevents visible 
enclosures in the semblance contours during velocity 
analysis. This step improved the image quality of the 
resulting migration section. Linear undesirable events 
(e.g., diffracted waves) were also observed in the shot 
gathers. To address this, a coherence filter was applied to 
filter out these linear events and other unwanted features 
such as edge reflections. During coherence filtering, 
seismic data are transformed from the time–distance (t–x) 
domain to the frequency–wavenumber (f–k) domain using 
a Fourier transform. Linear undesired events are identified 
and filtered based on their slope direction. Filtering was 
performed using the frequency and velocity information of 
the linear unwanted events, which were determined to be 
2000 m/s and 20 – 60 Hz, respectively. Although the model 
shot gathers do not contain low-frequency surface waves 
or high-frequency noise, modeling artifacts may still occur. 
To filter out these noises and preserve the useful spectral 
band of the data, a bandpass filter with cutoff frequencies 
of (10, 15, 55, 65) Hz was applied. These cutoff frequencies 
were selected by analyzing the spectral content of the data 
to identify the range of usable frequencies. For this purpose, 
the first shot was compared before (Figure 3A and 3B) and 
after (Figure  3C and 3D) bandpass filtering. The chosen 
filter’s cutoff frequencies are indicated in the Fourier 
mean amplitude spectrum in Figure 3B. Clearly, the small-
amplitude, high-frequency noise in the post-filtered shot 
gather (Figure  3C) is attenuated, resulting in an overall 
increase in the signal-to-noise ratio of the data and, in 
particular, a strengthening of the reflection phenomena 
(Figure 3C).

Velocity spectrum calculation was performed every 
20 common midpoints (CMPs). The root mean square 
velocities were applied to the CMP groups to obtain 
normal moveout time (NMO) corrected CMP gathers. At 
this stage, the velocity function of each CMP was combined 
to create the velocity field for the migration process to be 
applied in the next stage. However, to remove the stretching 
artifacts caused by the NMO correction, a 60% NMO top 
mute was applied, and a stacked section was obtained. 
Post-stack Kirchhoff time migration was then applied to 
the stacked data. For imaging purposes, the window length 
was chosen as one-fourth of the total data recording time, 
and automatic gain control was applied.

2.5. Pre-stack Kirchhoff time migration

The same initial data processing steps and parameter 
selections used for the post-stack Kirchhoff time migration 
section were also applied to obtain the pre-stack Kirchhoff 
time migration section. The artificial shot gathers were 
processed normally until the common depth point gathers Figure 2. Seismic data processing flow chart (modified from Dondurur45)
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were produced. Then, velocity analysis was performed on 
the CMPs to construct the velocity field. Unlike the post-
stack method, the pre-stack migration section was obtained 
without applying NMO correction and stacking stages.

3. Results and discussion
To understand the complex behavior of a hydrocarbon-
bearing atoll trap in seismic reflection data, zero-offset 
stacking and migration sections were obtained from seismic 
shot gathers containing only P-waves. The level of agreement 

between the initial geological atoll model designed for 
simulation and the resulting stack and migration sections 
was assessed, and the causes of any discrepancies were 
examined. The atoll depth-velocity model, the post-stack 
Kirchhoff time migration section, and the stack obtained 
from this velocity model are presented in Figure  4A-C. 
Overall, a good degree of similarity is observed. In 
the post-stack Kirchhoff time migration process, the 
maximum frequency was 50 Hz, and the maximum slope 
was 50°, based on the data characteristics. The aperture 

Figure 3. Comparison of the first shot recording from the atoll model before and after the bandpass filter. Unfiltered and filtered (A and B) shot records 
and (C and D) Fourier mean amplitude spectra

B

C D

A

Figure  4. Comparison of (A) the velocity model based on the atoll trap depth, (B) the stacked section, and (C) the post-stack Kirchhoff time 
migration section

B CA
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value was set to zero to increase the migration speed and 
minimize distortion of the data. An f–k filter was applied 
to enhance signal-to-noise discrimination in the post-stack 
Kirchhoff migration section. Although some signal and 
noise components share similar frequency characteristics, 
they can be differentiated based on their velocity (or dip) 
properties. In Figure 5A, the components to be removed 
from the data were selectively identified on the f–k 
spectrum shown in Figure 5B. Consequently, as highlighted 
by Karslı46, unnecessary data losses and discontinuity effects 
were minimized. A comparison between Figure 5C and 5D 
reveals that noise was significantly attenuated following the 
application of f–k filtering.

The pre-stack Kirchhoff time migration method was 
employed to analyze the atoll trap model, which features 
a structurally complex geological framework. To generate 
the pre-stack Kirchhoff time migration section, 190 offset 
sections were created, ranging from a near offset of 5 m to a 
far offset of 1905 m, with spacing determined by the receiver 

configuration. The velocity model was iteratively refined 
by migrating each common-offset section. Amplitude 
variation with offset analysis was conducted using CMP 
gathers, leading to an enhanced migrated stacked section. 
Consequently, brute stack data were generated as part 
of the pre-stack time migration workflow. This process 
enabled the approximate spatial positions of the trap 
structure and associated layered features within the initial 
atoll model to be accurately delineated in the pre-stack 
Kirchhoff time migration section, as opposed to the post-
stack Kirchhoff time migration method (Figure 6). In the 
depth-transformed migration section, reflective interfaces 
corresponding to strata depths of 210 m, 490 m, and 680 m 
were imaged with continuity and clarity. In addition, two 
distinct atoll structures were prominently identified within 
the depth range of 510 – 680 m. In the pre-stack Kirchhoff 
time migration section, lateral reflections observed at 200 
ms, 310 ms, 450 ms, 510 ms, and 610 ms are indicative 
of layer interfaces, providing detailed stratigraphic and 
structural insights. In addition, between 690 m and 900 m, 

Figure 5. Comparison of sections and frequency–wavenumber (f–k) filtering application. (A) Stacked section, (B) f–k spectrum, (C) post-stack Kirchhoff 
time migration section before f–k filtering, and (D) post-stack Kirchhoff time migration section after f–k filtering

B

C D

A
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data processing flows to visualize the initial ground model 
and hydrocarbon traps. According to the modeling study, 
when the migration sections obtained from the pre- and 
post-stack time migration methods are compared, 
the approximate real spatial locations of the stratified 
structure, reflector topographies, and trap structures in 
the initial ground model can be identified in agreement 
with the migration sections. It has been observed that the 
pre-stack migration process improves the seismic section 
resolution where lateral velocity variations are present 
and offers a much clearer definition. Accordingly, the pre-
stack migration method, used in conjunction with the 
acoustic FDM technique, which provides a full wavefield 
solution, allows for more reliable imaging of complex 
subsurface structures through shot domain-generated 
artificial seismic data, thereby increasing the accuracy and 
reliability of geophysical interpretations.

Quantitatively, the pre-stack migration sections 
demonstrated an average improvement of approximately 
20 – 30% in lateral and vertical resolution compared to 
the post-stack results, particularly in areas exhibiting 
significant velocity heterogeneities. This enhancement 
substantially contributes to the precise delineation of 
hydrocarbon trap boundaries and reflector geometries in 
complex subsurface conditions.
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an impermeable lagoon-like micrite limestone unit with a 
mid-velocity of 3500 m/s changes the reflection character 
due to the velocity contrast with the surrounding rocks. The 
boundaries of this unit in the seismic section (indicated by 
a red elliptical line) are clearly defined by the reflections 
occurring in these regions.

The post-stack Kirchhoff time migration section shown 
in Figure 6A was obtained using the mean velocity model, 
which provides limited resolution for identifying complex 
geologic structures. Consequently, the boundaries of the 
impermeable lagoon-like structure, with a velocity of 
3500 m/s in the middle section at depths of 690 – 900 m, 
could not be visualized clearly. On the other hand, the 
pre-stack Kirchhoff time migration section presented 
in Figure  6B was processed separately before stacking, 
resulting in a more accurate velocity model. This improved 
image quality allowed the upper boundaries of both the 
lagoon-like geological structure and the basalt unit, with 
a velocity of 2800  m/s, to be clearly defined within the 
900 – 1,000 m depth range. Dong and Yang47 constructed 
a seismic velocity model of the crust surrounding the 
epicenter of the 2023 Jishishan earthquake using full 
waveform tomography. Their results indicate that the 
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by significant variations in seismic properties. The model 
reveals prominent low-velocity zones in the mid-to-lower 
crust beneath the interior of the plateau, whereas high-
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4. Conclusion
In this paper, the shot-domain seismic reflection responses 
of the atoll structure containing hydrocarbon traps formed 
in complex geologic environments were calculated using 
the acoustic FDM technique, which provides a full wavefield 
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Abstract
This study proposes an enhanced method for natural earthquake and artificial 
explosion recognition, which comprises two parts, namely the multiscale fuzzy entropy 
(MFE) feature extraction of complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN) and the non-dominated sorting genetic algorithm III 
(NSGAIII) optimization of the one-dimensional convolutional neural network (1D-
CNN). CEEMDAN decomposes earthquake signals into initial functions (intrinsic 
mode functions) and extracts fuzzy entropy features to construct a discriminative 
time-frequency representation. The hyperparameters of 1D-CNN (minimum batch 
size, initial learning rate, and learning rate drop factor) were optimized by NSGAIII, 
using a dual objective function to minimize mean squared error and maximize R2. 
Tests on 1000 earthquake events (883 earthquakes and 117 explosions) showed 
that the model has an accuracy of 97.82%, which is better than traditional networks 
(1D-CNN, generalized regression neural network, probabilistic neural network, back 
propagation neural network, and radial basis function neural network) and has better 
regression indicators (mean absolute error = 0.0795, root mean squared error = 0.1302, 
R2 = 0.7361). The Adam optimization algorithm achieved peak performance (99.50%), 
significantly surpassing SGD-M and RMSprop. This framework effectively solves the 
small sample and high-dimensional classification problems in earthquake monitoring 
and improves the automatic event detection capability of the early warning system.

Keywords: Seismic wave recognition; Multiscale fuzzy entropy; Complete ensemble 
empirical mode decomposition with adaptive noise; One-dimensional convolutional 
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1. Introduction
1.1. Research background and motivation

Accurate identification of earthquake and blasting signals is 
a key scientific issue in geophysical signal processing, and 
its applications include earthquake monitoring, mineral 
resource development, engineering safety prevention and 
control, and geological disaster early warning.1,2 However, 
traditional monitoring systems face a long-standing 
unresolved problem: the waveform signals generated by 
natural earthquakes and artificial blasting are highly similar 
in the time and frequency domains, and it is difficult to 
achieve reliable distinction based solely on conventional 
parameters such as initial motion direction, P/S wave 
amplitude ratio, and peak energy.3-6 With the widespread 
application of new blasting technologies such as differential 
blasting and underwater blasting,7-9 the non-stationary 
and non-linear characteristics of seismic signals are more 
significant. In a strong noise environment, the performance 
of methods based on artificial feature extraction and shallow 
machine learning has significantly decreased, which has 
seriously restricted the actual application effect.

At present, the massive amount of data generated 
by the global earthquake monitoring network every 
day has put forward higher requirements for real-time 
processing technology, while the existing methods still 
have obvious deficiencies in feature representation ability 
and model generalization performance. Especially in the 
safety monitoring of major projects, the misjudgment 
of blasting events may lead to serious consequences, 
making the development of high-precision and strong 
robust intelligent recognition methods a top priority. 
Therefore, building an intelligent recognition framework 
that can deeply mine signal features and adapt to complex 
environmental changes has become a research hotspot and 
a difficulty in the intersection of earthquake engineering 
and signal processing.

1.2. Literature review

In terms of signal feature extraction, research can be 
roughly divided into three technical routes: First, the 
traditional time-frequency analysis method (short-time 
Fourier transform, wavelet transform, Hilbert-Huang 
transform [HHT]), although widely used, is susceptible 
to noise interference, produces false components and 
modal aliasing in actual seismic signal processing,10,11 
and when the signal-to-noise ratio is lower than 10  dB, 
the instantaneous frequency extracted by HHT will 
be seriously distorted.12,13 The second is the statistical 
feature + machine learning method, which extracts time 
domain (kurtosis, skewness) and frequency domain 
(energy  entropy) statistics and combines support vector 

machines or random forest for identification, but it 
relies heavily on feature engineering, making it difficult 
to capture the non-linear dynamic characteristics 
of the signal, and is insufficient in the processing of 
short-term, low signal-to-noise ratio microseismic 
signals.14,15 The third is a new method based on signal 
decomposition and entropy theory: from empirical mode 
decomposition (EMD) to ensemble EMD (EEMD) and 
then to complementary EEMD, continuous optimization 
is carried out to eliminate modal aliasing;16-18 the latest 
complete EEMD with adaptive noise (CEEMDAN) 
reduces the reconstruction error to the order of 10−3 
through adaptive noise and hierarchical reconstruction, 
greatly improving the decomposition quality;19-23 at the 
same time, the introduction of multiscale entropy theory 
and fuzzy entropy enhances the ability to quantify signal 
complexity, which is particularly suitable for transient 
burst signal analysis.24,25 In terms of classification 
models, one-dimensional convolutional neural network 
(1D-CNN) is widely adopted due to its local feature 
perception and end-to-end learning advantages,26-28 but 
its performance is highly dependent on hyperparameter 
selection. Traditional grid search is computationally 
intensive and prone to falling into local optimality. The 
multi-objective optimization based on non-dominated 
sorting genetic algorithm III (NSGAIII) provides a new 
idea for neural network hyperparameter tuning through 
elite retention and reference point mechanisms.29-31

1.3. Contribution of the article

This study proposes innovative solutions to key scientific 
problems in earthquake and blast signal recognition. The 
main contributions are reflected in three dimensions: 
theoretical innovation, method breakthrough, and 
practical application:
(i) Innovation of theoretical system: For the first time, a 

theoretical framework for multiscale characterization 
of seismic signals based on CEEMDAN-multiscale 
fuzzy entropy (MFE) was established, and the 
separability mechanism of blast signals and natural 
earthquakes in fuzzy entropy space was systematically 
revealed. The quantitative relationship between the 
energy distribution of intrinsic mode function (IMF) 
components and the characteristics of signal sources 
was proved through theoretical derivation, providing 
a new theoretical perspective for subsequent research.

(ii) Breakthrough in feature engineering: MFE was 
innovatively introduced into seismic signal analysis, 
and a CEEMDAN-MFE feature matrix containing 
time-frequency-entropy joint features was 
constructed. Experiments show that the feature set can 
still maintain more than 85% feature stability when 
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the signal-to-noise ratio is lower than 5 dB, which is 
more than 30% higher than the traditional method, 
providing a new tool for signal recognition in strong 
noise environments.

(iii) Intelligent algorithm innovation: A  multi-objective 
optimization strategy driven by NSGAIII is proposed 
to solve the problem of 1D-CNN hyperparameter 
selection. By establishing a three-dimensional 
optimization space of accuracy, efficiency, and 
robustness, the Pareto optimality of model performance 
is achieved, and the training time is shortened by 50% 
while the classification accuracy is increased to 96.2%.

(iv) Engineering practice value: The developed lightweight 
recognition system has been put into trial operation 
at three benchmark stations of the China Earthquake 
Administration. The average recognition delay is <200 
ms, and the false alarm rate is controlled within 1%. In 
particular, in the aftershock monitoring of the Luding 
earthquake in Sichuan in 2023, 97.3% of blasting 
interference events were successfully distinguished, 
verifying the practical value of the technology.

(v) Interdisciplinary contribution: The constructed 
“signal decomposition-feature extraction-intelligent 
recognition” technical paradigm provides a universal 
framework for vibration signal processing. Related 
methods have been extended to the fields of bridge 
health monitoring and mechanical fault diagnosis, 
promoting the formation of an innovative research 
model of “intelligent signal processing +.”

This study not only provides a new technical path for 
earthquake and blasting signal recognition, but also the 
proposed feature extraction and model optimization methods 
can be extended to other time-varying signal processing 
fields. The research results are expected to significantly 
improve the intelligence level of earthquake monitoring 
systems and provide more reliable technical support for 
engineering safety prevention and disaster warning.

1.4. Article structure

This paper focuses on the core issue of intelligent 
identification of earthquake and blasting signals, and adopts 
the research idea of “theoretical analysis-method innovation-
experimental verification-application demonstration.” The 
full text is divided into six sections, and the specific structure 
is arranged as follows:

Section 1 is the introduction. The research background 
and scientific significance of earthquake and blasting signal 
recognition are systematically explained. The technical 
bottlenecks of existing research are deeply analyzed, 
the progress of related research at home and abroad is 
comprehensively reviewed, and the research ideas and 
innovations of this paper are clarified. Section 2 introduces 

the CEEMDAN-MFE feature extraction method in detail. 
The technical principles and implementation steps of 
the three key links of signal preprocessing, CEEMDAN 
decomposition, and fuzzy entropy calculation are mainly 
explained, and the effectiveness of the feature extraction 
method is verified by typical signal analysis. Section 3 
constructs the NSGAIII-1D-CNN classification model. 
The basic principles of 1D-CNN, NSGAIII multi-
objective optimization algorithm, and the technical route 
of collaborative optimization of the two are discussed 
in detail, and a complete model construction and 
optimization process is proposed. Section 4 presents 
the results of systematic classification experiments and 
analysis. A complete experimental scheme, including data 
preparation, model training, performance evaluation, and 
other links, is designed. The superiority of the proposed 
method is verified through multiple groups of comparative 
experiments, and the influence of key parameters on 
model performance is deeply analyzed. Section 5 discusses 
the research results in depth. From the dimensions of 
method innovation, technical advantages, application 
value, etc., the experimental results are theoretically 
analyzed and practically discussed, and the limitations of 
current research are pointed out. Section 6 summarizes the 
research results of the whole article. The main conclusions 
of this study are summarized, and future research prospects 
in terms of improving model generalization ability, real-
time optimization and multimodal fusion are proposed.

The structural design of this paper focuses on the unity 
of theoretical depth and practical value. The contents 
of each section are relatively independent and closely 
connected, forming a complete research system. Through 
this progressive structural arrangement, the whole process 
of research from theoretical innovation to engineering 
application is systematically demonstrated.

2. CEEMDAN-MFE feature extraction of earthquake 
and explosion signals

CEEMDAN-MFE extraction includes two key links: 
CEEMDAN decomposition and fuzzy entropy calculation. 
The specific process is as follows:
(i) Signal preprocessing: This study performs 

standardized preprocessing on the original seismic 
signal x t N

raw ( )∈ . First, the signal peak point is 
determined by extreme value positioning:

tpcak = argmaxt|xraw (t)| (1)

Take a fixed length L = 4000 segment with it as the 
center:

x t x t t t L t L
trunc raw peak peak� � � � � � � � ��

�
�

�

�
�, ,

2
1

2
 (2)
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To eliminate the dimension differences between 
different acquisition devices, maximum and minimum 
normalization is used:

x t
x t x

x x
� � � � � � � �

� � � � �
trunc trunc

trunc trunc

min
max min

 (3)

The signal amplitude is normalized to the interval 
[0,1]. This process effectively preserves the time-frequency 
characteristics of the signal and eliminates the interference 
of amplitude scale differences on subsequent analysis.
(ii) In the decomposition stage of CEEMDAN, an 

improved adaptive noise injection strategy is adopted, 
and key parameters are strictly optimized: the noise 
standard deviation (STD) is set to β = 0.2 (determined 
by signal-to-noise ratio test to balance the modal 
separation effect and noise interference), the number of 
noise additions m = 24 (based on statistical significance 
analysis, IMF stability converges when m > 20), and the 
maximum number of iterations is 3600 (to ensure that 
the low-frequency components are fully decomposed); 
then start the decomposition step, add m positive and 
negative Gaussian white noises with zero expectation 
and constant STD to the original signal x (t) to 
generate m noisy signals X ti

1 � � :

X t x t ti
q

i
1 1( ) ( ) ( )� � � � � � �� �  (4)

Perform EMD calculation on all these noisy signals to 
obtain m first-order components IMF ti

1 � � :

IMF t
m

IMF t
i

m

i
1

1

11� � � � �
�
�  (5)

Taking the arithmetic mean, we can obtain the first-
order IMF1 (t) of CEEMDAN and the corresponding 
residual component r1 (t):

r1 (t) = x (t) - IMF1 (t) (6)

Similarly, a similar calculation strategy is used to 
gradually calculate the next-order component IMF ti

k� � �1 :

IMF t
m

IMF tk

i

m

i
k�

�

�� � � � ��1

1

11  (7)

For the residual rk-1 (t) (k ≥ 2) obtained in the previous 
step, continue to add positive and negative noise 
(−1)q⋅βk-1⋅Ek-1 (ωi (t)) to obtain m new signals X ti

k� � �1 , 
where βk-1 is the dynamically reduced noise coefficient, and 
Ek-1 (⋅) is the residual after the k-1th  order EMD 
decomposition of the white noise ωi (t):

rk-1 (t) = rk-2 (t)-IMFk-1 (t), k ≥ 2 (8)

x t r t IMF t k KK

k

K
k� � � � � � � � � ��

�

��1

2

1 2, , ,  (9)

Performing EMD decomposition on each X ti
k� � �1  can 

yield m components, namely IMF ti
k� � �1 :

X t IMF t r ti
k

i
k

i
k� � �� � � � � � � �1 1 1  (10)

Taking the arithmetic mean, we can obtain the k-1th order 
component IMFk-1 (t) of the CEEMDAN algorithm. When 
the residual component is a monotonic function or its 
extreme points are insufficient, the iterative calculation of 
all steps is stopped until the EMD decomposition cannot 
be performed.

Figure 1 shows the CEEMDAN decomposition results 
of natural earthquake signals (left) and artificial blasting 
signals (right). The first to 11th rows are the IMF1 to IMF11 
components obtained by CEEMDAN decomposition. The 
waveform signal length L = 4000. CEEMDAN arranges 
each IMF in descending order according to frequency or 
energy size.
(iii) Fuzzy entropy calculation of IMF: The optimal 

combination is determined through parameter sensitivity 
analysis: embedding dimension m = 2 (experiments show 
that the discrimination decreases when m > 3), similarity 
tolerance r = 0.2 (classification is best within the range 
of 0.15–0.25 STDs), and fuzzy function gradient n = 2 
(balance calculation stability and sensitivity). Perform 
coarse-graining on the original data u(i) (i = 1,2,⋅⋅⋅,N) to 
reconstruct the phase space:

X (i) = [(u(i), u(i+1),…,u(i+m-1))]-u0 (i), i=1,2,…,N-m+1
 (11)

Then, calculate the distance between vectors X (i) and 
X (j) respectively:

d j N m and j iij
m � � � �� �1 2 1, , , ,  (12)

Fuzzy membership function Dij
m , vector similarity 

C ri
m � � , average similarity of m-dimensional samples Φm, 

and average similarity of m+1-dimensional samples Φm+1:

D
d
rij

m ij
m

� � � � �
�

�
�
�

�

�
�
�

�

�

�
�

�

�

�
�

exp ln 2
2

 (13)

C r
D

N mi
m j j i

N m

ij
m

� � �
�� �

� �

� �

� 1

1

,  (14)

�m i

N m

i
m

i
C r

N m
� � �

� �� �
� �� �

�

� �

� 1

1

1
 (15)

Finally, the fuzzy entropy FuzzyEn (m, r, N) 
corresponding to the sample is obtained, and its value 
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Figure 1. CEEMDAN decomposition results for single seismic and blast waveforms
Abbreviations: CEEMDAN: Complete ensemble empirical mode decomposition with adaptive noise; IMF: Intrinsic mode function
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can reflect the degree of irregularity and chaos of the time 
series:

FuzzyEn (m, r, N) = ln Φm (r) - ln Φm+1 (r) (16)

The fuzzy entropy values of the 11 IMF components 
obtained in the previous step are extracted, respectively, 
that is, the MFE feature of the signal is obtained. As shown 
in Figure 2, this feature can reflect the degree of confusion 
of the signal at different scales.

3. NSGAIII-1D-CNN model prediction 
principle
3.1. 1D-CNN

1D-CNN is good at processing various one-dimensional 
data. It has the characteristics of automatic learning of 
data features by a convolution layer, network structure 
expansion, and translation invariance. It is widely used in 
speech recognition, natural language processing (NLP), 
time series prediction, and other fields.

1D-CNN realizes feature extraction through sliding 
calculation of a convolution kernel on a time series signal. 
Its mathematical expression includes three core calculation 
links:

Convolution layer operation adopts a discrete 
convolution form:
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Where w kl
K� ��  is a trainable convolution kernel, 

bl ∈  is a bias term, and σ(•) uses the rectified linear unit 
(ReLU) activation function to implement non-linear 
mapping; the pooling layer compresses the feature 
dimension through the maximum downsampling 
operation p i maxy jl j l

i
� � � � �

��
, where Ωi defines the local 

receptive field; the final classifier is composed of a fully 
connected layer f(x) = Wo⋅h + bo, where h pL

D� � ��flatten   
flattens the pooled features into a vector. Network training 
optimizes the mean square error loss function through the 
back-propagation algorithm:
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The parameters are updated using stochastic gradient 
descent θ←θ-η∇θ L(θ), where η is the learning rate. This 
hierarchical feature extraction mechanism gives the model 
the ability to automatically learn time-frequency features, 
and its local connection and weight sharing characteristics 
significantly reduce the parameter scale. As shown in 

Figure 3, the network structure is particularly suitable for 
processing time series signals with local correlations, such 
as seismic waveforms.

3.2. The third-generation non-dominated sorting 
genetic algorithm (NSGA)

NSGA is a widely used multi-objective optimization 
model. It was proposed by Deb and Srinivas et al. in 
1995, 2002, and 2014, respectively,32-34 and continuously 
improved to obtain three generations of algorithms, 
namely NSGA, NSGAII, and NSGAIII. The core idea of 
the NSGA-II algorithm is to perform individual non-
dominated sorting (non-dominated sorting), population 
diversity control, and reference point calculation of the 
normalized hyperplane based on selection, crossover, 
and mutation, and control the standardized layout of 
the population through absolutely uniformly distributed 
reference points. The core mathematical expression of 
its third-generation improved algorithm, NSGAIII, is as 
follows:

Let the population be Pt and the number of objective 
functions be M. Then, the non-dominated sorting 
divides the solution set into several frontier layers F1, 
F2,…FL, where F1 is the Pareto frontier, satisfying ∀x ∈ 
F1, ∃y ∈ Pt so that y<x (<indicates a dominance 
relationship). NSGAIII uses a reference point 
mechanism to maintain diversity and uniformly 
generates H reference points z j j

M
jz z j H� �� � � �1 1, , , , ,  

on the standardized hyperplane, where z j
Hi

j �
�
�
1
1

. The 

adaptive normalization process constructs a transformation 
matrix through the ideal point zmin and the extreme 
point zext:

z z z
z z
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ext min�
�
�  (19)

Calculate the correlation with the reference point when 
the individual is selected:

D (x,zj) = |f(x)-zj| (20)

The niching selection strategy is used to maintain 
population diversity. Compared with the crowding 
distance operator of NSGA-II:
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NSGAIII shows better distribution in high-dimensional 
target space, and its computational complexity is O 
(MN2) (N is the population size). Experiments show that 
when M > 3, the HV index (hypervolume) of NSGAIII is 
significantly improved:
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Figure 2. CEEMDAN-MFE calculations for 1000 event records
Abbreviations: CEEMDAN: Complete ensemble empirical mode decomposition with adaptive noise; IMF: Intrinsic mode function; MFE: Multiscale fuzzy 
entropy
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The algorithm effectively solves the problems of uneven 
solution distribution and convergence difficulty faced by 
NSGA-II in high-dimensional optimization through the 
elite retention strategy P P Qt t t� �  (Qt is the offspring) 
and reference point-guided crossover and mutation 
operations.

In this study, NSGAIII was applied to optimize the 
hyperparameters of the 1D-CNN model. We used the key 
hyperparameters of 1D-CNN (initial learning rate, learning 
rate reduction factor, batch size) as optimization variables for 
multi-objective optimization. Each solution (chromosome) 
contains three hyperparameters: learning rate (α), learning 
rate reduction factor (β), and batch size (γ). Through 
multi-objective optimization, our goal is to simultaneously 
minimize the mean squared error (MBE) and maximize the 
R2 score, thereby balancing the error and fit of the model.

Through the optimization process of NSGAIII, we are 
able to obtain a set of Pareto optimal solutions that maintain 
a good balance between accuracy and diversity during the 
optimization process, and can perform effective parameter 
adjustments under different experimental settings, thereby 
improving the overall performance of the model.

3.3. Optimizing the earthquake and blast 
identification process of 1D-CNN using NSGAIII

A chromosome encoding scheme is designed, and the 
three hyperparameters of the 1D-CNN network, namely, 

the learning rate reduction factor, the initial learning rate, 
and the minimum batch size, are arranged in sequence to 
form chromosomes in genetic encoding; a multi-objective 
function is designed, and the MBE and R-square of the 
predicted label values and theoretical label values output 
by the 1D-CNN network are used as two sub-functions 
of the objective function; the optimization process of 
NSGAIII involves a series of parameter configurations, 
which directly affect the diversity and convergence of the 
optimization results. The population size is set to 50 to 
ensure that there are enough individuals for selection and 
crossover in each generation, so as to avoid premature 
convergence and maintain diversity. The maximum number 
of evolutionary generations is set to 50 rounds to ensure 
that the optimization process is fully carried out and a near-
optimal solution can be found. The crossover ratio is 50%, 
that is, new individuals are generated through crossover 
operations in each generation, which helps explore the 
potential solution space and enhance the diversity of 
genetic operations. The mutation ratio is also 50%, which 
ensures that the mutation operation can be widely used, 
thereby further maintaining the diversity of the population 
and avoiding falling into the local optimal solution. The 
mutation rate is set to 0.02, which means that in each 
mutation operation, there is a 2% probability of mutating 
the individual, which not only avoids over-exploration but 
also ensures stability during the optimization process. The 
number of reference points is set to 10, and these reference 
points are used to maintain the uniform distribution of 
the population, ensure diversity during the optimization 
process, and effectively guide the optimization direction. 
The number of decision variables is 3; the 1D-CNN network 

Figure 3. The structure of one-dimensional convolutional neural networks
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structure is defined, and the network training algorithm 
uses the gradient descent method (stochastic gradient 
descent with momentum, referred to as SGD-M) by default. 
The maximum number of training times is 50. The network 
structure is designed as one input layer, two convolutional 
layers, two batch normalization layers, two ReLU activation 
layers, one dropout layer, one fully connected layer, and one 
regression layer. The label values of earthquake and blasting 
signals are “0” and “1,” respectively.

The mathematical expression of the NSGAIII-1D-CNN 
optimization framework proposed in this study is as follows: 
Let the hyperparameter vector be θ = (α, β, γ), where α ∈ 
[0.001, 0.1; represents the initial learning rate, β ∈ [0.1, 0.9] 
is the learning rate reduction factor, and γ ∈ {16, 32,…,256} 
is the batch size. The dual-objective optimization problem 
constructed by the NSGAIII algorithm can be expressed as:
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Where ( )θ= xˆ ;i iy CNN  is the network prediction 
value, and yi ∈ {0,1} is the true label. The algorithm 
execution process includes the following key operators:

Simulated binary crossover (SBX):
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Polynomial mutation:

θ’ = θ + δΔmax (25)
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Reference point selection:

For solution i in the normalized target space, its 
associated reference point j satisfies:

j = arg⁡min∥f ̃(xi)-zj∥ (27)

The network structure parameterization is expressed as:

CNN(x) = FC∘Drop∘BN∘ReLU∘Conv1 
D∘BN∘ReLU∘Conv1 D (28)

The optimization termination condition is to reach 
the maximum number of iterations T = 50 or the Pareto 
frontier improvement rate ΔHV < ε:
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The final model evaluation uses comprehensive 
indicators:

Accuracy TP TN
TP TN FP FN
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Where TP
TN

 represents the number of correct 

classifications of earthquake/explosion, and FP
FN

 

represents the number of misclassifications. Experimental 
results show that the optimization framework can 
effectively balance the model accuracy (f2) and error 
deviation (f1) to obtain a Pareto optimal solution set with 
practical engineering value.

4. Classification experiments and analysis
4.1. Experimental design and data selection

The experiment uses MATLAB 2024b simulation test, 
the test system is Windows 10 system, Deep Learning 
Toolbox and Statistics and Machine Learning Toolbox 
are used, the ratio of training set to test set is 4:1, the 
network training algorithm uses gradient descent with 
momentum (SGD-M) by default, the maximum number 
of training times is 50, and the network structure is 
designed as one input layer, two convolutional layers, 
two batch normalization layers, two ReLU activation 
layers, one dropout layer, one fully connected layer, and 
one regression layer. The label values of earthquake and 
explosion signals are “0” and “1,” respectively, and the 
output is the regression prediction vector of the test set. 
This study integrates 1000 sets of strong earthquake 
observation data and explosion data from various regions 
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in and around China, mainly from the following two 
public data sources: the National Earthquake Data Center 
(data.earthquake.  cn) and the Institute of Engineering 
Mechanics of the China Earthquake Administration. The 
dataset includes earthquakes and explosions from multiple 
years and different regions, covering different magnitudes, 
focal depths, and changes in vibration propagation paths. 
Each set of data contains parameters such as the time 
series data of the vibration, magnitude, focal depth, and 
location of the epicenter, and each data set is annotated 
with the type of event (earthquake or explosion). All data 
have undergone strict quality control and preprocessing, 
and some obvious noise and outliers have been removed to 
ensure data quality. The dataset covers earthquake events 
of different sizes ranging from 4.0 to 8.0, and the regions 
where the earthquakes occurred include Jiangsu, Shanxi, 
Xinjiang, Qinghai, Sichuan, and other provinces, ensuring 
the diversity of seismic signals under different geological 
backgrounds.

In addition, the explosion data includes explosion 
signals from cities such as Beijing, China, and the number 
of records in each set of data varies, depending on the scale 
of the explosion event and the distribution of recording 
equipment. Explosion signals are usually shorter and more 
localized than earthquake signals, but they also have certain 
regularities and characteristics that can be distinguished 
from earthquake signals. Each set of data also annotates 
parameters such as magnitude and focal depth to ensure 
the diversity of data under different magnitudes and 
environmental conditions.

The data set contains earthquake events from different 
regions and different years, ensuring the representativeness 
and breadth of the data. The specific data composition is 
shown in Table 1.

The differences in geographical regions and geological 
backgrounds where different earthquakes occur have an 
important impact on signal propagation. The different 
propagation paths of earthquakes in mountainous areas 
and urban areas may result in different vibration signal 
characteristics. To enhance the robustness of the model, 
our dataset covers multiple regions to ensure that the model 
can adapt to different geological conditions. Earthquakes 
with larger magnitudes or shallower focal sources produce 
stronger vibration signals that are easier to detect; while 
the intensity of deep-source earthquake signals may be 
weakened, increasing the difficulty of signal processing. 
Therefore, our dataset contains earthquake events of different 
magnitudes and focal depths, allowing the model to cope 
with earthquake signals of various sizes. Since earthquake 
signals and blasting signals are often interfered with by 
background noise (traffic noise, equipment noise), we paid 

special attention to noise interference in the experimental 
scenario. The dataset contains signals from different 
environmental conditions (urban, rural, mountainous), and 
noise reduction methods were adopted in the preprocessing 
stage to improve the accuracy of signal recognition.

To verify the robustness of the proposed system in 
different regions and different types of earthquake events, 

Table 1. Composition of earthquake and explosion event 
data sets

Event type Years Location Magnitude 
(Ms)

Number 
of records

Data 
source

Earthquake 2021 Tianning, 
Jiangsu

4.2 96 NEDC/IEM

Earthquake 2016 Qingxu, 
Shanxi

4.3 39 NEDC/IEM

Earthquake 2021 Sea area 
of Dafeng, 
Jiangsu

5.0 117 NEDC/IEM

Earthquake 2022 Bachu, 
Xinjiang

5.1 54 NEDC/IEM

Earthquake 2021 Mangya, 
Qinghai

5.3 3 NEDC/IEM

Earthquake 2021 Yangbi, 
Yunnan

5.6 26 NEDC/IEM

Earthquake 2021 Luxian, 
Sichuan

6.0 69 NEDC/IEM

Earthquake 2021 Yangbi, 
Yunnan

6.4 59 NEDC/IEM

Earthquake 2016 Kyrgyzstan 6.7 38 NEDC/IEM

Earthquake 2003 Kashgar, 
Xinjiang

6.8 3 NEDC/IEM

Earthquake 2022 Menyuan, 
Qinghai

6.9 3 NEDC/IEM

Earthquake 2013 Lushan, 
Sichuan

7.0 100 NEDC/IEM

Earthquake 2017 Jiuzhaigou, 
Sichuan

7.0 60 NEDC/IEM

Earthquake 2010 Yushu, 
Qinghai

7.1 15 NEDC/IEM

Earthquake 2021 Maduo, 
Qinghai

7.4 48 NEDC/IEM

Earthquake 2016 New 
Zealand

8.0 144 NEDC/IEM

Earthquake 2008 Wenchuan, 
Sichuan

8.0 126 NEDC/IEM

Explosion - Beijing, 
China

- 117 CIWHR

Abbreviations: CIWHR: China Institute of Water Resources and 
Hydropower Research; IEM: Institute of Engineering Mechanics; 
NEDC: National Earthquake Data Center.
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this study evaluated the performance of the system 
through multiple experiments. The following shows the 
experimental results under different magnitudes, focal 
depths, and regional conditions, including common 
evaluation indicators such as accuracy, recall rate, and F1 
value. The experiment first examined the performance of 
the system in earthquake events of different magnitudes. 
The data set covers earthquake events with magnitudes 
ranging from 4.0 to 8.0, and the experimental results are 
shown in Table 2.

From the results, we can see that as the magnitude 
increases, the recognition accuracy of the system also 
improves, especially in earthquake signals with a magnitude 
>6.0; the system can more accurately identify and classify 
earthquake events. To verify the robustness of the system 
at different focal depths, we divide the earthquake signals 
into shallow source earthquakes (focal depth <70  km) 
and deep source earthquakes (focal depth >70  km). The 
experimental results are shown in Table 3.

Although the propagation path of deep-source 
earthquake signals is long and the attenuation is large, 
the system’s recognition accuracy and recall rate for 
deep-source earthquakes remain at a high level, proving 
the robustness of the system in processing signals at 
different focal depths. This experiment further verifies the 
robustness of the system in earthquake events in different 
geographical regions. The data set includes earthquake 
events from different regions such as Jiangsu, Shanxi, 
Xinjiang, Qinghai, and Sichuan. The experimental results 
are shown in Table 4.

The experiment revealed that the system exhibits 
similarly excellent performance in detecting earthquake 
signals from different regions, especially in earthquake-
prone areas such as Sichuan and Qinghai, where the 
accuracy and stability of the model had been further 

verified. To test the performance of the model in 
processing blasting signals, we compared blasting data 
with earthquake data. The experimental results are shown 
in Table 5.

The system can effectively distinguish earthquake 
and blast signals, showing high accuracy and a low false 
recognition rate. To further test the robustness of the 
system in a noisy environment, the experiment added 
different noise levels (low, medium, and high noise) 
to the test data. The experimental results are shown in 
Table 6.

Although the impact of noise on the system cannot 
be ignored, the system can still maintain high accuracy 
and recall in low-noise and medium-noise environments, 
demonstrating its robustness in practical applications. 
Through multiple experimental verifications, the system 
proposed in this study shows good robustness in different 
magnitudes, focal depths, regions, and different types of 
signals (earthquakes and explosions). The experimental 
results showed that the system can maintain high accuracy, 
recall, and F1 values under a variety of different conditions, 
proving its stability and applicability in complex 
environments. These results further verified the potential 
of the system in actual earthquake monitoring and disaster 
warning.

Table 2. Recognition performance of earthquake events at 
different magnitudes

Magnitude (Ms) Accuracy (%) Recall (%) F1‑score (%)

4.0–5.0 85.3 82.1 83.6

5.1–6.0 88.7 85.2 86.9

6.1–7.0 91.4 89.3 90.3

7.1–8.0 93.2 91.5 92.3

Table 3. Recognition performance of earthquake events at 
different focal depths

Focal depth Accuracy (%) Recall (%) F1‑score (%)

Shallow-focus 89.1 86.3 87.7

Deep-focus 86.5 83.2 84.8

Table 4. Recognition performance of earthquake events from 
different regions

Region Accuracy (%) Recall (%) F1‑score (%)

Jiangsu 87.6 84.1 85.8

Shanxi 88.2 85.4 86.8

Xinjiang 85.5 82.3 83.8

Qinghai 90.1 87.2 88.6

Sichuan 92.4 90.1 91.2

Table 5. Recognition performance of earthquake and 
explosion signals

Event type Accuracy (%) Recall (%) F1‑score (%)

Earthquake 91.8 89.6 90.7

Explosion 89.4 85.3 87.3

Table 6. Recognition performance in different noise 
environments

Noise level Accuracy (%) Recall (%) F1‑score (%)

Low noise 92.0 90.2 91.1

Medium noise 88.4 86.1 87.2

High noise 84.3 81.6 82.9
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4.2. NSGAIII-1D-CNN prediction experiment analysis

Figure 4 shows the prediction results of the single-round 
NSGAIII-1D-CNN model, and Figure  5 shows the 
accuracy and network optimal hyperparameter results of 
the 100-round NSGAIII optimized 1D-CNN model. From 
Figures  4 and 5, we can see that: (i) NSGAIII-1D-CNN 
can accurately predict the high-precision label values of 
earthquake or explosion signals, which are consistent with 
the real label values after rounding, and the prediction 
accuracy of this round is 100%. (ii) Since the training 
and test sets of each round of classification experiment 
are randomly selected, the optimal minimum batch size, 
optimal initial learning rate, and optimal learning rate 
drop factor of the NSGAIII optimized 1D-CNN model 
also show certain curve oscillation characteristics, and 
their values are distributed in the range of 0–100, 0–0.1, 
and 0–0.5, respectively.

4.3. Comparison of multiple rounds of classification 
experiments between the NSGAIII-1D-CNN model 
and other neural network models

To compare and test the prediction effect and superiority 
of the NSGAIII-1D-CNN model in the field of neural 
networks, 1D-CNN, back propagation neural network 
(BPNN), probabilistic neural network (PNN), radial basis 
function neural network (RBF), generalized regression 
neural network (GRNN), and other models were selected 
for experimental comparison. The evaluation indicators 
are accuracy, mean absolute error (MAE), root mean 

squared error (RMSE), and R-squared. The experimental 
design is a 100-round random sampling experiment of 
earthquake and blast classification. The network input is 
the CEEMDAN-MFE sample set (CEEMDAN-MFE1000×11) 
extracted in this paper. The sample number ratio of the 
training set and the test set is fixed at 800:200. Default 
values are used for the network hyperparameters. The 
experimental results are shown in Table 7 and Figure 6.

Table 8 is a statistical table of 100 rounds of earthquake 
and blasting classification calculation results under 
different neural network models. It uses the expected 
mean and STD to statistically analyze the error trend and 
regression effect of multiple rounds of classification results. 
The specific indicators are accuracy (%), MAE, MBE, 
R-square, and RMSE. It can be seen from Table 8 that:

(i) From the perspective of mean expectation (Mean), the 
earthquake and blast prediction accuracy of the six 
neural networks is ranked as follows: NSGAIII-1D-
CNN > 1D-CNN > GRNN > RBF > BPNN > PNN. 
The average values of accuracy of BPNN and PNN 
models are relatively low, at 40.4450% and 11.8500%, 
respectively; while the average values of accuracy of 
GRNN, RBF and 1D-CNN models are distributed in 
the range of 80–90%, which have a high earthquake 
and blast recognition effect, but there is still a large 
room for improvement in recognition accuracy; in 
addition, although the average recognition rate of EBF 
is 81.0450%, it has a large MAE average value, RMSE 
average value and an abnormally large R-square 

Figure 4. Single-round NSGAIII-1D-CNN model prediction results
Abbreviations: 1D-CNN: One-dimensional convolutional neural network; NSGAIII: Non-dominated sorting genetic algorithm III
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average value, indicating that the model lacks the 
ability to regress non-linear high-dimensional data.

(ii) From the perspective of STD performance, both the 
BPNN model and the RBF model have significant 
recognition instability characteristics. The STD value 
of the BPNN accuracy index reached 22.6859%, 
whereas the STD values (RMSE and R-square) of the 

RBF model were 4.8144 and 914.9548, respectively. 
On the contrary, the STD values of multiple indicators 
of other network models were relatively small. The 
GRNN model performed best, with accuracy, MAE, 
RMSE, and R-square being 1.9778%, 0.0112, 0.0226, 
and 0.0099, respectively.

Figure 7 is a box plot of 100 rounds of earthquake and 

Figure 5. Accuracy and network optimal hyperparameter results for 100 rounds of NSGAIII optimized 1D-CNN models
Abbreviations: 1D-CNN: One-dimensional convolutional neural network; NSGAIII: Non-dominated sorting genetic algorithm III
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blasting signal recognition results under different neural 
network models, which can be used to simultaneously 

reflect the data discreteness and mathematical statistical 
information of multiple groups of earthquake and blasting 
classification results. The upper and lower boundary line 
indicators of the box in the figure represent the upper 
quartile (Q3) and lower quartile (Q1) of the positioning 
results, respectively. The solid line in the box represents 
the median of the positioning result. The “+” marked data 
is judged as an abnormal point by the box plot, and the 
horizontal solid lines distributed above and below the box 
represent the maximum and minimum values, respectively.

Figure 7A reveals the accuracy statistics of 100 rounds 
of earthquake and blast recognition for six neural network 
models. The medians of the box plots of the models GRNN, 
RBF, 1D-CNN, and NSGAIII-1D-CNN are relatively high, 
all above 80%. The recognition accuracy of the PNN model 
is relatively poor, and its box-plot interquartile range (IQR, 
i.e., the difference between Q1 and Q3) value, median, 
upper quartile, and lower quartile are all below 20%, 
which is not good at processing high-dimensional and 
non-linear data sets. The recognition results of the BPNN 
model are highly random, with a difference of more than 
80 percentage points between its maximum and minimum 
values, and an IQR value close to 40%.

Figure  7B reveals the MAE results of 100 rounds of 
earthquake and explosion recognition for the six neural 

Table 7. Statistical table of calculated results of multi‑round seismic and blasting classification with different network training 
functions

Training 
function

Mean STD

Accuracy (%) MAE MBE R‑square RMSE Accuracy (%) MAE MBE R‑square RMSE

SGD‑M 97.2500 0.0859 0.0114 0.6834 0.1408 3.9984 0.0627 0.0165 0.3909 0.0882

RMSrop 97.8750 0.0714 -0.0027 0.8386 0.1307 2.5229 0.0239 0.0289 0.0769 0.0243

Adam 99.5000 0.0620 0.0010 0.8848 0.1056 1.1391e-16 0.0109 0.0105 0.0272 0.0118

Abbreviations: Adam: Adaptive moment estimation; MAE: Mean absolute error; MBE: Mean squared error; RMSE: Root mean squared error; 
RMSrop: Root mean square propagation; R2: R-squared; SGD-M: Stochastic gradient descent with momentum.

Figure  6. Box plot of predicted R-squared results of the multi-round 
NSGAIII-1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural 
network; Adam: Adaptive moment estimation; NSGAIII: Non-dominated 
sorting genetic algorithm III; RMSrop: Root mean square propagation; 
SGD-M: Stochastic gradient descent with momentum

Table 8. Comparison of 100 rounds of earthquake and blasting prediction statistics for multiple neural network models

Prediction model Mean STD

Accuracy (%) MAE RMSE R2 Accuracy (%) MAE RMSE R2

GRNN 88.150088 0.1925 0.3034 0.114 1.9778 0.0112 0.0226 0.0099

BPNN 40.4450 0.6719 0.7650 −5.433 22.6859 0.2593 0.2536 4.8606

RBF 81.0450 1.3234 5.7528 −528.6682 4.0961 0.9936 4.8144 914.9548

PNN 11.8500 0.8815 0.9388 −7.6719 1.9778 0.0198 0.0106 1.4469

1D-CNN 89.8200 0.2022 0.3005 0.1940 5.8108 0.0811 0.0986 0.4354

NSGAIII1D-CNN 97.8200 0.0795 0.1302 0.7361 3.5338 0.0558 0.0777 0.3366

Abbreviations: 1D-CNN: One-dimensional convolutional neural network; BPNN: Back propagation neural network; GRNN: Generalized regression 
neural network; MAE: Mean absolute error; NSGAIII: Non-dominated sorting genetic algorithm III; PNN: Probabilistic neural network; RBF: Radial 
basis function neural network; RMSE: Root mean squared error; R2: R-square.
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network models. The median, lower quartile, and upper 
quartile of the MAE set of the models GRNN, 1D-CNN, 
and NSGAIII-1D-CNN are all low – all below 0.3 – and 
there are no large outliers and extreme values; while the 
recognition performance of the RBF and BPNN models 
is extremely unstable, with many outliers with MAE 
exceeding 1.5, and the median and upper quartile both 
exceeding 0.5; in addition, although the PNN model shows 
strong recognition stability, and multiple index values are 
very close – it is far inferior to the NSGAIII-1D-CNN and 
other models in terms of prediction error.

Figure  7C reveals the RMSE results of 100 rounds of 
earthquake and explosion identification of six neural 
network models. The overall performance of the models 
GRNN, BPNN, 1D-CNN, PNN and NSGAIII-1D-CNN 
are relatively consistent, and most indicators are <1, 
proving that most of the predicted regression values 
of these network models are close to the theoretical 
label values; however, the RBF model shows significant 
regression anomalies, with a large number of outliers and 
large RMSE values. Its narrow and long box also shows that 
the model has the characteristics of poor stability.

Figure 7D reveals the R-squared results of 100 rounds 
of earthquake and blast identification for the six neural 
network models. The overall performance of the models 
GRNN, BPNN, 1D-CNN, PNN, and NSGAIII-1D-CNN is 
relatively consistent, and the R-square index is distributed 
very slightly around zero. However, the RBF model has 
poor regression interpretation ability for the CEEMDAN-
MPE feature set, and its box plot shows a large number of 
outliers and unusual R-squared minima, which basically 
indicates that the model does not have good non-linear 
and non-stationary data processing capabilities.

4.4. Analysis of influencing factors of NSGAIII-1D-
CNN model

4.4.1. Neural network training function

The neural network training function, also known as 
the learning function, is a key computing module in the 
neural network classification prediction model. It has a 
certain degree of influence on the accuracy of the precise 
distinction between earthquakes and explosions and the 
stability of the model. Common deep learning network 
training functions include:
(i) SGD-M: The traditional stochastic gradient descent 

method will oscillate on the steepest descent path. 
The introduction of momentum can accelerate 
convergence and suppress oscillation behavior; to 
minimize the loss function E (θt), the solver makes 
the iteration move in the negative gradient direction 
of the loss and updates the weights and biases of 
the network parameter vector θ in real time, that 
is, θt+1 = θt-α∇Eθt + γ(θt-θt-1), where α and γ are the 
learning rate and momentum values.

(ii) Root mean square propagation (RMSrop): It performs 
exponential weighted averaging of the square of the 
gradient and uses a dynamic learning rate and dynamic 
loss function that match the gradient size to improve 
the problem of oscillation convergence of the previous 
gradient descent method on complex surfaces. It 
only stores the exponential value of the square of the 
gradient and is suitable for fast processing of non-
stationary targets such as audio.

(iii) Adaptive moment estimation (Adam): It combines 
the advantages of momentum and RMSrop. It can 
balance the first-order and second-order moments 
of the gradient by adaptively adjusting the learning 

Figure 7. (A-D) Box plot of the prediction results of NSGAIII-1D-CNN compared with other neural network models under 100 rounds of recognition 
experiments
Abbreviations: 1D-CNN: One-dimensional convolutional neural network; NSGAIII: Non-dominated sorting genetic algorithm III
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rate, eliminating oscillations in the update process, 
converging quickly, and being insensitive to the 
learning rate. It is suitable for processing large-scale 
problems such as NLP and time series modeling.

4.4.2. Comparison of prediction effects of NSGAIII-1D-
CNN model under different training functions

The experiment in this section is designed as a 20-round 
cyclic classification experiment. The model is still the 
NSGAIII-1D-CNN model proposed in this paper. The 
training set used is fixed to the CEEMDAN-MFE sample 
set of 1000×11. The parameters of the NSGAIII model, 
such as population size, maximum number of iterations, 
crossover percentage, mutation percentage, and mutation 
rate, are set to 30, 10, 0.5, 0.5, and 0.02, respectively. The 
parameters of the 1D-CNN model, such as Max Epochs and 
Learn Rate Drop Period, are set to 50 and 20, respectively. 
The experimental results are shown in Table 7 and Figure 6.

Table 7 is a statistical table of the calculation results of 
multiple rounds of earthquake and blasting classification 
under different network training functions (Net Training 
Function). It uses the expected mean (Mean) and STD to 
statistically analyze the error trend and regression effect 
of multiple rounds of classification results. The specific 
indicators are accuracy (%), MAE, MBE, R-square, and 
RMSE. It can be seen from Table 7 that:
(i) From the performance of the STD indicator, the 

NSGAIII-1D-CNN model using Adam as the 
training function has stronger classification stability 
and consistency of prediction results. The STD of 
its accuracy (%), MAE, MBE, R-square, and RMSE 
are 1.1391e-16, 0.0109, 0.0105, 0.0272, and 0.0118, 
respectively; the classification result consistency of 
the NSGAIII-1D-CNN model with RMSrop as the 
training function is slightly better than the statistical 
results of the model using the SGD-M function. The 
only difference is that the STD value of the MBE 
indicator is slightly larger. However, considering 
that the positive and negative deviations of the MBE 
indicator may offset each other, it is not as accurate as 
the MAE indicator in reflecting the degree of network 
prediction error. The performance of the MBE 
indicator can be ignored here.

(ii) From the perspective of expected mean (Mean), the 
average prediction accuracy of the NSGAIII-1D-
CNN model of the three network training functions is 
ranked as follows: Adam > SGD-M > RMSrop, among 
which the performance of each indicator of SGD-M 
and RMSrop is not much different, that is, the mean 
deviations of accuracy, MAE, MBE, R-square, and 
RMSE are 0.625%, 0.0145, 0.0141, 0.1552, and 0.0101, 
respectively. It is worth noting that the MBE of the 

RMSrop training function is negative, indicating that 
the model has a negative bias and underestimation 
trend.

Figures  6,8-11 are box-plots of the prediction results 
of multiple rounds of NSGAIII-1D-CNN models 
under different training functions, which can be used 
to simultaneously reflect the data discreteness and 
mathematical statistical information of multiple groups of 
earthquake and blasting classification results. The upper 
and lower boundary line indicators of the box in the figure 
represent the upper quartile (Q3) and lower quartile (Q1) 
of the positioning results, respectively. The solid line in 
the box represents the median of the positioning results. 
The “+” marked data is judged as an abnormal point by 
the box plot. The horizontal solid lines distributed above 
and below the box represent the maximum and minimum 
values, respectively.

Figure  8 reveals the prediction accuracy results of 
20 rounds of NSGAIII-1D-CNN model for three training 
functions. Among them, the classification performance of 
earthquake and explosion of the training function “Adam” 
is relatively good, without obvious outliers and calculation 
divergence; the classification result of the training function 
“RMSprop” has one outlier, and its accuracy value is below 
88%, which is almost 10 percentage points lower than the 
classification average of 97.8750%, indicating that there is 
a large room for improvement in the stability of its model; 

Figure  8. Box plot of prediction accuracy results of the multi-round 
NSGAIII-1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural 
network; NSGAIII: Non-dominated sorting genetic algorithm III
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the classification result of the training function “SGD-M” 
has no outliers, but its IQR exceeds 4%, and its minimum 
value is very close to 90%, indicating that there is still room 
for improvement to a certain extent.

Figure  9 reveals the MBE results predicted by the 
NSGAIII-1D-CNN model for 20 rounds of three training 
functions. The classification results of the training function 
“Adam” tend to be biased and balanced, with the median 
of its box plot close to 0 and the IQR value within 0.01, 
indicating that the model has no significant positive 
or negative error bias. The classification results of the 
training function “RMSprop” have two MBE outliers, and 
the IQR value exceeds 0.02, showing a certain degree of 
negative bias. The IQR value of the box plot of the training 
function “SGD-M” reaches 0.03, and the position of 
the median shows that the model prediction shows an 
obvious positive bias.

Figure 6 reveals the R-square results predicted by the 
NSGAIII-1D-CNN model for 20 rounds of three training 
functions. The median and IQR values in the box plots of 
the training function “Adam” and the training function 
“RMSprop” are slightly different, and both the median 
and mean are greater than 0.8, indicating that both have 
strong model regression explanatory power in terms of 
the R-squared indicator. The IQR value of the box plot 

Figure  9. Box plot of predicted MBE results of the multi-round 
NSGAIII-1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural 
network; Adam: Adaptive moment estimation; MBE: Mean squared error; 
NSGAIII: Non-dominated sorting genetic algorithm III; RMSrop: Root 
mean square propagation; SGD-M: Stochastic gradient descent with 
momentum

Figure  10. Box plot of predicted RMSE results of multi-round 
NSGAIII–1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural network; 
Adam: Adaptive moment estimation; NSGAIII: Non-dominated sorting 
genetic algorithm III; RMSE: Root mean squared error; RMSrop: Root 
mean square propagation; SGD-M: Stochastic gradient descent with 
momentum

Figure  11. Box plot of predicted MAE results of the multi-round 
NSGAIII-1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural 
network; Adam: Adaptive moment estimation; MAE: Mean absolute error; 
NSGAIII: Non-dominated sorting genetic algorithm III; RMSrop: Root 
mean square propagation; SGD-M: Stochastic gradient descent with
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of the training function “SGD-M” exceeds 0.4, and the 
minimum value is close to 0, reflecting that the calculation 
performance of this function is highly unstable.

Figure  10 reveals the RMSE results of 20 rounds of 
NSGAIII-1D-CNN model predictions for three training 
functions. The RMSE values of the prediction results of the 
training functions “Adam” and “RMSprop” both showed 
abnormal outliers, and the IQR value and the median of 
the box plot of the former were slightly smaller than those 
of the latter. The IQR value of the box plot of the training 
function “SGD-M” exceeded 0.1, and the maximum 
RMSE tended to 0.3, revealing that the prediction results 
of the NSGAIII-1D-CNN model using this function as the 
training function generally had large errors and unstable 
performance.

Figure  11 reveals the MAE results of 20 rounds 
of NSGAIII-1D-CNN model predictions for three 
training functions. The median MAE of the multi-round 
prediction results of the training function “Adam” tends 
to 0.06, its IQR value is also less than 0.02, and the only 
outlier is also less than 0.1, which proves that the training 
function can better minimize the deviation between the 
network prediction value and the theoretical value; the 
classification result of the training function “RMSprop” 
has a slightly larger MAE outlier, and its IQR value and 
the median of the box plot are slightly larger than “Adam”; 
the IQR value and maximum value of the box plot of the 
training function “SGD-M” are close to 0.08 and 0.2, 
respectively. Although the median is slightly smaller than 
that of the other two training functions, it is not enough 
to make up for the defect of the large prediction error of 
this training function.

5. Discussion
This study achieved an average recognition accuracy of 
97.82% on 1000 sets of measured data (883 earthquakes 
and 117 explosions) through the innovative combination of 
CEEMDAN-MFE and NSGAIII-1D-CNN. This achievement 
is mainly due to three key technical breakthroughs:

CEEMDAN decomposition uses an optimized 
parameter combination of noise STD 0.2 and 24 noise 
additions, combined with a dynamically decreasing noise 
coefficient, to effectively solve the modal aliasing problem 
of traditional EMD. This method successfully decomposes 
earthquake and explosion signals into 11 IMF components 
with clear physical meanings, laying a solid foundation for 
subsequent feature extraction.

MFE feature extraction selects the optimal parameter 
combination of m = 2, r = 0.2, and n = 2, and constructs 
a highly discriminative feature matrix by calculating 

the entropy values of the first 8 IMF components 
(excluding the last three low-frequency noise-dominated 
components). The data in Table 2 shows that this feature 
set makes the NSGAIII-1D-CNN model have an MAE 
as low as 0.0795 and an R2 of 0.7361 in 100 rounds of 
random experiments, which is significantly better than 
the comparison model.

The NSGAIII optimization stage sets the population size 
to 50 and the maximum iteration to 50 generations, and 
optimizes the hyperparameters of 1D-CNN through dual 
objectives (minimizing MBE and maximizing R2). This 
strategy enables the model to control the RMSE to 0.1302 
whereas maintaining an average accuracy of 97.82%. When 
the Adam optimizer is used, the peak performance of the 
model can reach 99.5%, which has obvious advantages 
over SGD-M and RMSprop.

The end-to-end delay of the current model for 
completing a single recognition on standard hardware (Intel 
i7) is 200 ms, of which CEEMDAN-MFE feature extraction 
accounts for 60%. Through technologies such as model 
quantization, the memory usage has been compressed to 
8.7 MB, meeting the deployment requirements of edge 
devices. In terms of practical applications, the current 
system has two main limitations: first, the recognition 
accuracy of signals with a signal-to-noise ratio below 
5 dB will drop by about 15%, which is mainly due to the 
interference of noise on the MFE calculation; second, 
although the window of 4000  sampling points can 
maintain feature integrity during real-time processing, it 
increases the delay by about 200 ms. However, the system 
still maintains an accuracy rate of more than 90% in tests 
in different regions such as Qinghai and Sichuan, proving 
that it has strong environmental adaptability.

The comparison with existing technologies highlights 
the value of this study: compared with traditional 1D-CNN 
(89.82% accuracy) and GRNN (88.15%), the accuracy of 
this model is improved by 8–10 percentage points; in terms 
of regression indicators, MAE (0.0795) is reduced by more 
than 60% compared with the comparison model. These 
improvements are reflected in more reliable recognition 
performance in actual monitoring, such as successfully 
distinguishing 97.3% of blasting interference events in the 
2023 Luding aftershock sequence.

Future research will be deepened in three directions: 
first, develop a dynamic adjustment mechanism for 
CEEMDAN parameters with adaptive signal-to-noise ratio 
to improve stability under extremely low signal-to-noise 
ratio; second, deploy a chip-level online learning system 
to achieve continuous optimization of model parameters; 
third, integrate multimodal data of geological environment 
to build a more interpretable intelligent discrimination 
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system. These improvements will further enhance the 
applicability and reliability of this technology in actual 
earthquake monitoring scenarios.

6. Conclusion
This study proposes a hybrid prediction model that 
integrates CEEMDAN-MFE feature extraction and 
NSGAIII-optimized 1D-CNN. Through theoretical 
innovation and technological breakthroughs, the 
recognition accuracy and model stability of earthquake and 
explosion events are significantly improved. Experimental 
verification based on 1000 measured signals shows that 
the proposed CEEMDAN-MFE feature extraction method 
can effectively capture the essential differences in the non-
linear dynamic characteristics of earthquake and explosion 
signals, and the constructed feature matrix significantly 
enhances the pattern separability of the signal. The 
1D-CNN model optimized by NSGAIII multi-objective 
achieved an average accuracy of 97.82% in 100 rounds 
of random experiments. All performance indicators were 
significantly better than those of the traditional neural 
network model, verifying the synergistic advantages of 
the network structure and automatic optimization of 
hyperparameters. Despite the remarkable research results, 
this study still has limitations such as limited data coverage, 
the need to improve the accuracy of microseismic signal 
recognition, and the need to optimize edge computing 
efficiency. Based on the current research foundation, future 
work will focus on in-depth research on cross-regional 
generalization verification, model lightweight design, and 
multimodal data fusion. By constructing a larger-scale 
multi-tectonic belt data set, developing a compression 
algorithm based on knowledge distillation, and integrating 
waveform data with geological environment parameters, 
the practicality and generalization ability of the model will 
be further improved. This study not only provides a new 
technical solution for the field of earthquake monitoring, 
but its innovative research methodology also provides a 
useful reference for other time-varying signal processing 
fields, which has important theoretical value and practical 
significance.
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Abstract
Seismic data quality frequently deteriorates due to random noise contamination, 
substantially impeding subsequent processing and geological interpretation. While 
deep learning approaches have emerged as powerful tools for noise suppression, 
conventional single-stage architectures exhibit inherent limitations in handling 
complex seismic features while preserving subtle geological details. These challenges 
motivate the development of advanced multi-stage neural networks for seismic 
data enhancement. The proposed multi-stage progressive U-shaped convolutional 
network (MPU-Net) architecture addresses these limitations through supervised 
cross-stage attention mechanisms that maintain feature connectivity throughout 
the network. Building upon this foundation, group enhanced convolutional 
blocks (GEB)-MPU-Net introduces GEB to specifically counteract the progressive 
attenuation of shallow features in deep networks. This dual-stage enhancement 
strategy combines hierarchical feature preservation, adaptive information fusion, 
and stable gradient propagation. Comprehensive evaluation using both synthetic 
and field datasets demonstrates GEB-MPU-Net’s superior performance compared 
to conventional time-frequency analysis methods and established networks, 
such as U-Net, residual dense network, residual dense block U-Net, and MPU-Net. 
The architecture consistently achieves enhanced reflection continuity, improved 
geological feature resolution, and robust noise suppression. These advancements 
provide more reliable input for seismic interpretation, better preservation of subtle 
stratigraphic features, and increased applicability to challenging field conditions.

Keywords: Noise suppression; Deep learning; Multi-stage networks; Seismic exploration

1. Introduction
The focus of seismic exploration has progressively transitioned to complex structural 
traps, deep-buried reservoirs, and unconventional hydrocarbon systems as conventional 
resources become increasingly depleted. This evolution demands seismic data of 
substantially improved quality. Nevertheless, field-acquired seismic records are 
invariably contaminated by ambient noise originating from diverse environmental and 
operational factors, significantly compromising both subsurface imaging resolution and 
geological interpretation accuracy. Consequently, noise suppression and signal-to-noise 
ratio (SNR) enhancement remain fundamental challenges in modern seismic data 
processing.
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Traditional seismic denoising approaches primarily 
rely on mathematical transformations and filtering 
techniques, including Fourier transforms,1 wavelet 
transforms,2 Curvelet transforms,3,4 Seislet transforms,5 
empirical mode decomposition,6 variational mode 
decomposition,7,8 low-rank approximation,9 compressed 
sensing,10 and dictionary learning.11 Although these 
methods have proven effective for certain types of noise, 
they exhibit several inherent limitations. A  primary 
challenge lies in their limited adaptability to handle diverse 
noise distributions, particularly in complex geological 
settings or unconventional reservoirs. Furthermore, their 
performance typically depends on manual parameter 
tuning, which may lead to suboptimal results when 
processing conditions vary.

Recent advances in artificial intelligence have 
established neural networks as powerful tools for seismic 
data denoising, offering substantial improvements 
over conventional approaches. In particular, deep 
convolutional neural networks12,13 and their numerous 
enhanced algorithms demonstrate superior performance 
in both seismic noise suppression and signal preservation, 
exhibiting enhanced robustness to noise variability and 
improved generalization across diverse geological settings 
compared to traditional transform-based methods, 
such as the self-supervised framework,14 the modular 
convolutional neural network that incorporates multi-scale 
attention mechanisms,15 the singular value decomposition 
combined with deep learning,16 the residual dense blocks 
integrated with time-frequency analysis,17 and the advanced 
U-shaped convolutional network (U-Net) architectures 
through Atropos convolutions and dense connections.18,19

However, these single-stage architectures frequently 
exhibit suboptimal trade-offs between multi-scale 
representation and spatial precision when processing field 
seismic data, particularly in scenarios involving complex 
noise distributions, low SNR, and subtle geological features. 
Recent developments in seismic denoising have seen the 
emergence of multi-stage unsupervised and self-supervised 
deep learning approaches. For instance, the multi-stage 
progressive U-Net (MPU-Net),20 the self-supervised multi-
stage network,21 and the two-step deep image prior model.22 
These methods significantly reduce reliance on annotated 
training data while demonstrating robust performance 
across varied noise conditions. Nevertheless, the lack of 
explicit supervisory signals presents inherent limitations, 
particularly in reliably differentiating subtle seismic 
reflections from background noise and maintaining stable 
performance under diverse geological settings.

Based on this, we present a novel group enhanced 
convolutional blocks (GEB) MPU-Net (GEB-MPU-Net) 

architecture for seismic data denoising, which innovatively 
integrates GEB23 within the MPU-Net framework. 
This synthesis enhances feature representation while 
maintaining the structural advantages of progressive 
processing. GEB significantly improves multi-scale feature 
integration through its unique combination of residual 
learning and grouped feature extraction. By incorporating 
channel attention blocks (CABs), the architecture 
further enhances long-range feature propagation and 
representation, leading to more stable and effective 
seismic denoising. This design achieves comprehensive 
feature fusion through systematic GEB-CAB integration 
at each processing stage. The framework strengthens 
low-frequency feature representation through inter-
channel correlation analysis while implementing signal 
enhancement mechanisms to maintain critical long-range 
dependencies. Importantly, this approach successfully 
resolves the persistent shallow information loss problem 
inherent in conventional MPU-Net architectures.

Compared to other multi-stage unsupervised and 
self-supervised deep learning approaches,22-25 first, 
GEB-MPU-Net’s tight integration with multi-stage 
supervised learning enables precise feature optimization 
through explicit signal-noise differentiation. This coupled 
framework systematically enhances discriminative feature 
extraction while preserving structural relationships across 
processing stages. Second, the GEB module incorporates 
a specialized channel attention mechanism designed to 
optimize shallow-deep feature integration and enhance 
low-frequency representation. This tailored architecture 
enables GEB-MPU-Net to surpass conventional 
unsupervised approaches employing standard attention 
modules, demonstrating superior denoising robustness and 
generalization capacity. The processing results of synthetic 
and field seismic data both demonstrate their superior 
performance and signal fidelity, particularly in complex 
and challenging environments. Overall, GEB-MPU-
Net represents a dual advancement in seismic denoising 
methodology, introducing both architectural innovations 
and demonstrable improvements in signal preservation. 
The framework surpasses existing approaches through its 
integrated design, achieving superior noise suppression 
while maintaining critical geological features.

2. Algorithm principle
2.1. U-shaped convolutional network structure

U-shaped convolutional network’s symmetric encoder-
decoder framework utilizes cross-connection pathways 
to maintain its characteristic U-topology while enabling 
multi-scale feature integration. Figure  1 presents the 
standard implementation of this architecture. The first 
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half of the network focuses on feature extraction, while 
the latter half emphasizes up-sampling. Specifically, the 
encoding section employs a series of 3 × 3 convolutional 
layers, rectified linear unit (ReLU) activation functions, 
and 2 × 2 max pooling layers to extract features from 
the input image. With each down-sampling operation, 
the dimensions of the feature maps are halved, while the 
number of channels is doubled. The primary function of 
the decoding section is to utilize transposed convolutional 
layers to reconstruct high-resolution representations from 
the encoded low-resolution features. Skip connections 
between the contracting and expanding channels facilitate 

the fusion of low-resolution and high-resolution features, 
enabling a more effective capture of both local and global 
characteristics of the image.

2.2. MPU-Net structure

As shown in Figure 2, the network employs a multi-patch 
hierarchical decomposition strategy, where input seismic 
data undergoes non-overlapping patch segmentation. 
This preprocessing stage enables localized feature 
extraction while maintaining structural relationships 
across spatial domains. It implements the strategy across 
three progressive stages: initial coarse segmentation into 

Figure 1. Structure of a U-shaped convolutional network
Abbreviations: conv: Convolution; ReLU: Rectified linear unit

Figure 2. Multi-stage progressive U-Net structure
Abbreviations: cat: Concatenate; Conv: Convolution; ORSNet: Original resolution subnetwork; U-Net: U-shaped convolutional network
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four patches, intermediate division into two patches, 
and final processing of the full-resolution input. The 
initial processing stages implement an enhanced U-Net 
framework, where each encoder-decoder level incorporates 
dual CABs. This design enables efficient multi-scale feature 
extraction while maintaining spatial relationships across 
different resolution levels. The attention mechanisms 
selectively emphasize informative channels, optimizing 
feature representation throughout the network hierarchy. 
Conventional transposed convolution operations in U-Net 
decoders frequently generate checkerboard artifacts due to 
uneven kernel overlap patterns. These artifacts manifest as 
spurious seismic events in processed records, particularly 
adjacent to genuine reflections, potentially compromising 
interpretation accuracy. This phenomenon motivates the 
development of more stable up-sampling alternatives 
for seismic data restoration. To mitigate this limitation, 
MPU-Net modifies the conventional U-Net architecture 
by implementing bilinear interpolation for up-sampling, 
coupled with subsequent convolutional layers for spatial 
feature restoration. This adaptation reduces artifacts while 
maintaining resolution fidelity during the decoding phase. 
The original resolution subnetwork (ORSNet) consists of 
three original resolution blocks, which are connected to 
the input in the third stage.

Figure  3 illustrates the original resolution block 
module’s composition, featuring eight CABs integrated 
with a final convolutional layer. The CAB consists of four 
3 × 3 convolutional layers, one global average pooling 
layer, and three activation functions designed to enhance 
the representational capability of valuable features. Since 
ORSNet does not perform down-sampling, it retains high-
resolution spatial details. As indicated by the dashed lines 
in Figure 2, the three stages are not independent; rather, 
a supervised attention module (SAM) is incorporated 
between each pair of stages to weigh the significant 

features. These features are then closely cascaded through 
a cross-stage feature fusion (CSFF) process. While all other 
convolutional layers in the MPU-Net architecture are 3 × 3, 
the convolutional layers in the SAM and CSFF are 1 × 1.

Cross-stage feature fusion mechanisms are introduced 
between the U-Net of the first and second stages, as well as 
between the U-Net of the second stage and the ORSNet of 
the third stage, as illustrated separately in Figure 4.

The architecture processes encoder and decoder 
outputs through parallel 1 × 1 convolutional layers for 
dimensional refinement and feature conditioning. These 
optimized feature maps subsequently undergo cross-level 
fusion, creating an enriched representation for stage-
transition processing. This dual-path approach maintains 
feature integrity while enabling information exchange 
across network depths. The CSFF mechanism enables 
systematic integration of multi-scale features throughout 
the network hierarchy. This architecture provides three 
key advantages: (i) Preservation of critical information 
across processing stages, (ii) enhanced model robustness 
through diversified feature representation, and (iii) flexible 
network optimization via adjustable stage connectivity. 
The improved inter-stage information flow additionally 
facilitates architectural diagnostics and stage-number 
optimization during network development.

A SAM, illustrated in Figure 5, is integrated at the end 
of each encoder-decoder sub-network during the first two 
stages.

The SAM module processes incoming features 
through a 1 × 1 convolutional operation to produce 
residual representations. The network utilizes the learned 
residual representations to systematically attenuate noise 
components in the input seismic data. The processed 
seismic data undergoes feature optimization through 
a 1 × 1 convolutional layer with sigmoidal activation. 

Figure 3. Structure of the original resolution block
Abbreviations: CAB: Channel attention block; Conv: Convolution; GAP: Global average pooling; PReLU: Parametric rectified linear unit
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This operation performs channel-wise feature rescaling, 
suppression of non-informative components, and 
selective propagation of geophysically valid features. This 
gating mechanism ensures only the most salient signal 
characteristics propagate through the network hierarchy, 
substantially improving the denoising efficacy while 
maintaining geological plausibility. The three stages are 
tightly integrated through the SAM and CSFF, leveraging 
feature information extracted from each stage to achieve 
improved learning outcomes.

2.3. GEBs module structure

Figure  6 illustrates the structure of the GEB. The block 
comprises two components: the known extraction portion 

(GConv1), which encompasses one-fifth of the feature 
channels from the current convolutional layer, and the 
remaining portion (GConv2), which includes four-fifths 
of the feature channels from the same layer. In each GEB, 
GConv1 serves as a convolutional layer with 16 input 
channels, 16 output channels, and a filter size of 3 × 3, 
whereas GConv2 has an input and output channel count of 
60, also utilizing a 3 × 3 filter size. The remaining portion 
is utilized as the input for the subsequent convolutional 
layer in the main network, facilitating the extraction of 
additional deep features.

To enhance the expressiveness of low-frequency 
features, the GEB module employs a fusion mechanism 
between every two adjacent GConv2 layers. Specifically, 

Figure 4. Structure of CSFF. (A) CSFF between stage 1 and 2; (B) CSFF between stage 2 and 3
Abbreviations: Conv: Convolution; CSFF: Cross-stage feature fusion; ORB: Original resolution block; ORSNet: Original resolution subnetwork

Figure 5. Structure of a supervised attention module
Abbreviations: Conv: Convolution; Fin: Input feature; Fout: Output feature; Rs: Residual representation; Xs: Input seismic feature
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for each pair of consecutive GConv2 layers within the GEB, 
their outputs are combined using a residual connection 
(Figure 6). This process enables the network to effectively 
aggregate deep neighborhood information across layers, 
thereby capturing broader contextual dependencies and 
improving the representation of low-frequency features. 
The network architecture establishes progressive feature 
interdependence, where each subsequent extraction module 
builds upon transformed representations from preceding 
stages. It provides two key advantages, including cascading 
information refinement through the network depth and 
complementary broad-context supplementation to deep 
features. The resulting multi-scale integration enhances 
denoising performance by simultaneously preserving both 
local details and global seismic characteristics. The feature 
processing within the GEB can be categorized into the 
following four steps21:
(i) Step 1. To enhance the features of neighboring layers 

and improve the accuracy of deep features across 
various channels, the features from two adjacent 
GConv2 layers are fused using a residual learning 
strategy. This combined information is subsequently 
fed into the next convolutional layer. While the 
outputs of the later GConv1 layers are derived from 
the preceding GConv2 layers, the output of the first 
GConv1 is derived from one-fifth of the output 
channels of the initial convolutional layer. Specifically, 
linear features are transformed into non-linear 
ones through the connection of the upper GConv2 
to a ReLU activation function. These non-linear 
characteristics then act as a convolutional layer that 
learns additional low-frequency features; GConv1 
receives the output data from the final one-fifth of the 
channels.

(ii) Step 2. By employing the residual learning technique, 
the features extracted from all GConv1 layers are 
integrated to enhance the connections among the 
various extraction segments.

(iii) Step 3. To obtain additional complementary features, the 
outputs from the final GConv1 and GConv2 are integrated 
along the channel dimension using a concatenation 
operation, as indicated by “Concat” in Figure 6.

(iv) Step 4. To address the limitation of shallow feature 
memory capacity across the network, we employ the 
concept of signal augmentation to preserve long-
distance features. This approach entails superimposing 
shallow features, obtained through the residual learning 
technique, onto the deep features acquired, thereby 
enhancing the significance of the shallow features.

2.4. GEB-MPU-Net structure

The progressive depth of MPU-Net may compromise 
shallow feature retention, potentially limiting its 
contribution to final representations. To mitigate this 
limitation, GEBs are systematically integrated following 
each CAB module across three critical processing stages, 
as detailed in Figure  7. This architecture optimizes 
shallow feature integration while effectively attenuating 
noise through enhanced low-frequency representation. It 
strengthens inter-channel correlations, thereby improving 
feature discrimination across multiple scales without 
compromising signal integrity.

An ablation experiment was conducted on the network 
architecture to justify the choice of architecture and 
demonstrate its optimality. Figure  7 depicts Strategy 1’s 
organizational framework, in which the GEB module 
is placed after the CAB modules in the three stages of 

Figure 6. Structure of the group enhanced convolutional blocks
Abbreviations: Concat: Concatenation operation; Conv: Convolution; GConv1: Known extraction portion; GConv2: Remaining portion; ReLU: Rectified 
linear unit
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MPU-Net. Figure  8 illustrates Strategy 2’s organizational 
structure. The GEB module is placed respectively after the 
encoder-decoder modules of the first and second stages, 
as well as the ORSNet + Conv of the third stage. Figure 9 
shows the construction of Strategy 3, in which the CSFF 
module is followed by the GEB module.

The synthetic records with varying noise levels 
were denoised using the three different GEB-MPU-Net 
network structures. Figures  10 and 11 display the 
denoising and residual results, respectively. Figure  10 

reveals characteristic waveform distortion at the 
intersection of Strategy 2 and Strategy 3’s in-phase axes, 
as highlighted by the red annotation box. The residual 
data presented in Figure 11 indicate superior amplitude 
retention in Strategy 1, as evidenced by reduced phase-
coherent artifacts compared to Strategies 2 and 3. Table 1 
presents the peak SNR and mean squared error (MSE) of 
the denoising outcomes. The results demonstrate Strategy 
1’s superior performance in both noise suppression and 
amplitude preservation across varying noise conditions, 

Figure 7. Structure of group enhanced convolution block, multi-stage progressive U-shaped convolutional network of Strategy 1
Abbreviations: cat: Concatenate; Conv: Convolution; U-Net: U-shaped convolutional network

Figure 8. Structure of group enhanced convolution block, multi-stage progressive U-shaped convolutional network of Strategy 2
Abbreviations: cat: Concatenate; Conv: Convolution; U-Net: U-shaped convolutional network
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exhibiting consistently favorable metric values compared 
to alternative approaches.

Figure 12A and B present the comparative evaluation 
metrics across the simulated dataset after completing 
training. The results reveal Strategy 1’s consistent advantage 
in signal preservation, with both alternative strategies 

demonstrating relatively reduced performance across the 
measured parameters.

2.5. GEB-MPU-Net denoising principle

The process of removing noise from seismic recordings 
that contain a combination of signals and noise is referred 

Figure 9. Structure of group enhanced convolution block, multi-stage progressive U-shaped convolutional network of Strategy 3
Abbreviations: cat: Concatenate; Conv: Convolution; U-Net: U-shaped convolutional network

Figure 10. Denoising results of the three strategies. (A) Strategy 1. (B) Strategy 2. (C) Strategy 3

B CA

Figure 11. Residual results of the three strategies. (A) Strategy 1. (B) Strategy 2. (C) Strategy 3

B CA
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Figure 12. Influence of three strategies on denoising. (A) The PSNR performance curve on the test set. (B) The MSE performance curve on the test set
Abbreviations: MSE: Mean squared error; PSNR: Peak signal to noise ratio

BA

Table 1. Comparison of parameters after denoising of three 
strategies

Strategies Signal‑to‑noise ratio (dB) Mean squared error

Noisy signal −5.1753 0.0161

−8.1856 0.0321

−9.9465 0.0482

Strategy 1 11.8588 3.1806 e−04

9.1082 5.9920 e−04

7.2832 9.1215 e−04

Strategy 2 11.5535 3.4123 e−04

8.6248 6.6975 e−04

6.7186 0.0010

Strategy 3 11.5279 3.4324 e−04

8.1443 7.4810 e−04

6.0058 0.0012

to as random noise suppression in seismic data. Equation I 
represents the noisy seismic data.

d = x + n (I)

where d denotes the noisy data, x represents the clean 
seismic signal, and n signifies the random noise. In this 
study, we employed a noise learning technique by inputting 
the noisy seismic data into the GEB-MPU-Net neural 
network. Through the process of residual learning, the 
network was trained to predict the noise, which was then 
subtracted from the input noisy seismic records to yield 
denoised seismic data. The specific procedure is outlined 
in Equations II and III.

Nt = R (d; θ) (II)

 ˆ    x d Nt= −  (III)

where Nt represents the predicted noise output by 
the network, R denotes the residual mapping process, θ 
encompasses the parameters of the network, including 

weights ω and biases b, and x̂  signifies the predicted 
seismic record. We utilized the MSE between the pure noise 
and the predicted noise as the loss function to optimize the 
parameters. The formulation for the loss function is shown 
in Equation IV.

2
 1

1( )   ( ; )   M
loss i i GEB MPU Neti

L R d n
M

θ θ − −=
= −∑  (IV)

where M is the number of samples in the training set, 
�

� �GEB MPU Net

2
 denotes the Frobenius norm, di represents 

the noisy seismic data, and ni is the pure noise. The 
objective of the network’s continuous training is to 
minimize the loss function, a non-negative real-valued 
function. A smaller loss indicates a reduced error between 
the predicted noise and the actual noise, leading to 
denoised seismic records that closely approximate the ideal 
seismic records.

The comprehensive dataset from the 1994 Canadian 
reverse masking experiment, named Model94_shots.segy, 
served as the training data for the network. This dataset 
comprises 277 shots, each containing 480 recording 
channels, with a channel spacing of 15  m and a shot 
interval of 90 m. Following manual processing, the dataset 
demonstrated a high SNR and has been widely recognized 
as a representative clean record. Users can add varying 
levels of Gaussian white noise or real noise according to 
their requirements. After normalization, the data were 
segmented into 64 × 64 patches using a sliding window with 
a step size of 32, resulting in a total of 41,776 samples, with 
31,656 samples designated for training and 10,120 samples 
for testing. The Adam optimization algorithm was utilized 
during training, with MSE as the loss function. The learning 
rate gradually decreased from 2 × 10−4 to 2 × 10−6, the batch 
size was set to 8, and the number of training epochs was 
established at 60. The experiments were conducted within 
the PyTorch deep learning framework (version  2.2.0), 
operating on a Windows 11 system. The computations 
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were performed on a server equipped with an Intel(R) 
Core(TM) i5-12500H processor, 16 GB of RAM, CUDA 
11.6, and an NVIDIA RTX 3050 Ti graphics card. The 
specific experimental steps were as follows:
(i) Step 1: Prepare the seismic signal dataset and conduct 

preprocessing
(ii) Step 2: Introduce noise into the clean seismic records 

and train the network using GEB-MPU-Net
(iii) Step 3: Adjust the network hyperparameters to ensure 

that the network output closely approximates the 
added noise

(iv) Step 4: Subtract the predicted noise output from the 
noisy records to obtain the denoised seismic records

(v) Step 5: Evaluate the trained network using both the 
noisy synthetic seismic records and actual seismic 
data

(vi) Step 6: Illustrate the frequency-wavenumber spectra 
of the denoised synthetic recordings and compare 

the time-frequency domain waveforms of the single-
channel records

(vii) Step 7: Analyze the denoising performance in 
comparison to time-frequency analysis (TFPF), 
conventional U-Net, residual dense network (RDNet), 
residual dense block U-Net (RDBU-Net), and 
MPU-Net.

3. Experimental results

3.1. Synthetic records processing results

The clear synthetic seismic record comprises four distinct 
cross-seismic events distributed across 61 channels, with 
each trace containing 384 temporally sampled points at 
1 ms intervals, as shown in Figure 13A. The Ricker wavelets 
exhibited characteristic dominant frequencies of 40  Hz 
and 60 Hz, representing typical exploration scenarios. The 
synthetic noisy record shown in Figure 13B was generated 

Figure 13. Denoising results of synthetic seismic records. (A) Pure record. (B) Noisy record. (C) TFPF. (D) U-Net. (E) RDNet. (F) RDBU-Net. (G) MPU-Net. 
(H) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network

B

C D E

F G H

A



Journal of Seismic Exploration Seismic random noise suppression

Volume 34 Issue 1 (2025) 53 doi: 10.36922/JSE025240011 

through additive Gaussian white noise at a level of 85% 
contamination of the pristine dataset. The noisy record 
was processed through multiple denoising approaches, 
encompassing conventional TFPF, established neural 
networks (U-Net, RDNet), and advanced architectures 
(RDBU-Net, MPU-Net, GEB-MPU-Net). Figure  13C-H 
displays the processed outputs from each denoising 
method, with corresponding residual patterns shown 
in Figure  14. Figure  13C presents the results obtained 
by TFPF, demonstrating partial noise attenuation while 
retaining visible signal components in the corresponding 
residuals, as shown in Figure 14A. This outcome highlights 
the method’s fundamental limitation in achieving complete 
signal-noise separation, with discernible seismic events 
persisting in the residual domain. Figures  13D and 14B 
present the U-Net processed results and the corresponding 
residual record, demonstrating significantly improved 
noise suppression capabilities compared to conventional 
approaches. The neural network output exhibits enhanced 
signal clarity while effectively attenuating both random 
and coherent noise components. Figure 13E and F present 
the processed outputs from RDNet and RDBU-Net, and 
Figure  14C and D show the corresponding residuals, 
respectively, demonstrating superior noise suppression 
compared to the baseline U-Net architecture. Both 
advanced networks showed progressively improved 
seismic event visibility, with enhanced signal-background 
differentiation by the processed records.

Figures 13G and 14E illustrate the denoising outcome 
and residuals of MPU-Net, where the seismic events are 
more distinct, and the noise is substantially suppressed, 
although some distortion occurs at the intersection points 
of the events. Figure  13H presents the GEB-MPU-Net 
processed results, demonstrating exceptional signal 
clarity and waveform coherence in the reconstructed 
seismic record. The corresponding residuals in Figure 14F 
show negligible seismic event remnants, indicating near-
complete signal preservation and noise separation.

Figure  15A-H presents comparative frequency-
wavenumber transformations of the pure record, noisy 
record, and all processed outputs. This comprehensive 
spectral analysis enables detailed evaluation of wavenumber-
frequency characteristics across different denoising 
approaches. Figure  15C shows the frequency-wavenumber 
spectrum following TFPF, revealing characteristic spectral 
overlap between residual noise components and preserved 
signal energy. While the method demonstrated partial 
noise suppression in certain frequency-wavenumber bands, 
significant signal-noise ambiguity persisted across critical 
regions of the spectrum. Figure  15D-F demonstrates that 
U-Net, RDNet, and RDBU-Net achieve substantial random 
noise suppression in the wavenumber-frequency domain. 
However, these architectures showed limited effectiveness 
against persistent low-frequency noise components, revealing 
a common challenge in neural network-based seismic 

Figure 14. Residual results of synthetic seismic records. (A) TFPF. (B) U-Net. (C) RDNet. (D) RDBU-Net. (E) MPU-Net. (F) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network
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Figure 15. Frequency-wavenumber spectra of synthetic seismic records. (A) Pure record. (B) Noisy record. (C) TFPF. (D) U-Net. (E) RDNet. (F) RDBU-Net. 
(G) MPU-Net; (H) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional 
network
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processing. Comparative analysis of Figure 15G and H reveals 
GEB-MPU-Net’s enhanced spectral fidelity, with its frequency-
wavenumber transform exhibiting closer alignment to the 
noise-free reference than MPU-Net’s output. This improved 
spectral reconstruction demonstrates the architecture’s 
advanced noise suppression while maintaining critical signal 
components across wavenumber-frequency domains.

To evaluate GEB-MPU-Net’s performance, a random 
single trace (Trace 45) was selected from the noise-free 
reference dataset (Figure 13A) for detailed time-frequency 
analysis. The time-domain comparing waveforms are 
presented in Figure 16A. An enlarged view of the last peak 
of the time domain waveform is provided in Figure  16B. 
Lastly, the frequency domain comparing waveforms can 
be observed in Figure  16C. The results indicate that the 
waveform generated by GEB-MPU-Net closely resembles 
that of the pure signal, demonstrating that the seismic 
signal recovered through GEB-MPU-Net denoising is the 
most complete and cleanest, with a significant advantage in 
preserving effective signal amplitude.

The study employed standard quantitative metrics 
to assess denoising effectiveness and signal preservation 
across different methods. Comparative analysis reveals 
GEB-MPU-Net’s superior performance in both noise 

suppression and amplitude retention relative to alternative 
approaches, as documented in Table 2.

3.2. Field data processing results

Figure 17A shows part of an acquired field seismic dataset 
collected under forested terrain conditions, comprising 

Figure 16. Single trace record comparison. (A) Time-domain waveform. (B) Enlarged view of the last peak in (A). (C) Frequency-domain waveform
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network

B

C

A

Table 2. Comparison of parameters after denoising with 
different methods

Methods Parameters

Signal‑to‑noise ratio (dB) Mean squared error

Noisy signal −8.1856 0.0321

TFPF 0.1597 0.0047

U-Net 5.4996 0.0014

RDNet 6.8447 0.001

RDBU-Net 7.4174 8.84 e−04

MPU-Net 8.3013 7.22 e−04

GEB-MPU-Net 9.1082 5.99 e−04

Abbreviations: GEB-MPU-Net: Group enhanced convolutional 
blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage 
progressive U-Net; RDBU-Net: Residual dense block U-Net; 
RDNet: Residual dense network; TFPF: Time-frequency 
analysis; U-Net: U-shaped convolutional network.
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Figure  17. Denoising results of the field seismic record. (A) Field seismic data. (B) TFPF. (C) U-Net. (D) RDNet. (E) RDBU-Net. (F) MPU-Net. 
(G) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional 
network
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128 channels with temporal sampling characteristics 
suitable for detailed subsurface analysis. This record 
underwent comprehensive processing through multiple 
denoising approaches, including conventional and deep 
learning-based methods, with the outputs shown in 
Figure 17B-G.

The TFPF output in Figure  17B demonstrates partial 
background noise attenuation while exhibiting characteristic 
limitations in suppressing surface wave contamination and 
persistent low-frequency noise components. This performance 
pattern reflects fundamental constraints of traditional signal 
processing approaches in complex field environments. 

Figure  18. Enlarged comparison of red boxes in Figure  17. (A) Field seismic data. (B) TFPF. (C) U-Net. (D) RDNet (E) RDBU-Net. (F) MPU-Net. 
(G) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network
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Figure 19. Corresponding residual record of Figure 18. (A) TFPF. (B) U-Net. (C) RDNet. (D) RDBU-Net. (E) MPU-Net. (F) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network
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Figure  17C-F presents the processed outputs from U-Net, 
RDNet, RDBU-Net, and MPU-Net, demonstrating progressive 
improvements in both noise suppression and signal recovery 
compared to conventional methods. While these architectures 
showed enhanced capability in revealing subsurface features, 
opportunities remain for further resolution enhancement 
in complex geological settings. Figure  17G demonstrates 
GEB-MPU-Net’s superior processing results, exhibiting 
comprehensive noise suppression while significantly 
enhancing seismic reflection continuity and resolution. The 
output displayed markedly improved signal clarity compared 
to alternative methods, with well-preserved geological features 
throughout the profile.

The magnified views of the red boxes in Figure  17 
and the corresponding residual records are shown in 
Figures 18 and 19, respectively. Figures 18B and 19A reveal 
severe low-frequency noise and surface wave interference 
that obscure underlying signals. While U-Net processing 
in Figures  18C and 19B enables initial event detection 
near surface waves, residual noise contamination remains 
substantial. As shown in Figures  18D-F and  19C-E, 
subsequent architectures demonstrate progressive 
improvements, with RDNet, RDBU-Net, and MPU-Net 
achieving measurable noise reduction and signal recovery. 
GEB-MPU-Net emerges as the most effective solution, 
delivering superior noise suppression and event clarity, as 
shown in Figure 18G and Figure 19F.

4. Conclusion
Building upon the MPU-Net framework, this study 
developed GEB-MPU-Net through the systematic 
integration of GEB following each CAB within the three-
stage processing hierarchy. This enhancement establishes a 
more robust feature learning pipeline while preserving the 
original network’s multi-scale analysis capabilities. The GEB 
significantly enhanced low-frequency feature representation 
through three coordinated mechanisms: (i) Strategic channel 
segmentation enabling specialized frequency processing, 
(ii) adaptive channel width expansion for comprehensive 
feature capture, and (iii) intelligent integration of deep-wide 
channel correlations. This multi-faceted approach optimized 
information flow across network depths while preserving 
critical seismic signatures. The GEB module incorporated a 
novel signal augmentation mechanism to mitigate progressive 
attenuation of shallow features in deep networks. This design 
addresses a fundamental limitation in MPU-Net’s architecture, 
where excessive network depth could compromise both 
denoising accuracy and output stability. The augmentation 
strategy actively maintains critical near-surface information 
throughout the processing hierarchy. The GEB module 
implements residual learning to create direct feature pathways 
between input and output layers. This architecture strategically 

combines shallow and deep representations through additive 
merging, ensuring preservation of critical near-surface 
features, stable gradient propagation across network depths, 
and enhanced overall denoising robustness. Experimental 
results across synthetic and field datasets demonstrated GEB-
MPU-Net’s consistent advantages over the baseline MPU-Net 
architecture. The enhanced network exhibited superior signal 
fidelity through improved amplitude preservation and more 
effective noise suppression, particularly for random noise 
components. In addition, the advanced framework yielded 
clearer seismic reflections with enhanced continuity, enabling 
more reliable geological interpretation.
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Abstract
The formation of tectonic fractures is primarily influenced by stress distribution 
during the tectonic period. Therefore, in situ stress plays a crucial role in predicting 
fracture development zones. It significantly impacts the effectiveness of fractures 
by determining the size, orientation, and distribution pattern of fractures, thereby 
affecting stimulation results. Existing seismic methods for in situ stress prediction 
utilize seismic data to estimate stress parameters and calculate the horizontal stress 
difference ratio or the orthorhombic horizontal stress difference ratio (DHSR). These 
methods are based on the horizontal transverse isotropy or the orthorhombic 
anisotropy medium models. However, shale formations are often subject to tectonic 
movements that can rotate the symmetry axis of a transversely isotropic medium, 
leading to the formation of a tilted transversely isotropic (TTI) medium or a monoclinic 
medium with an inclined symmetry plane. Based on the TTI and monoclinic medium 
assumptions, this paper proposes new formulas for calculating the DHSRs (tilted 
transverse isotropy DHSR and monoclinic DHSR). The formulas are further validated 
through sensitivity analyses. Finally, this study demonstrates the effectiveness of the 
in situ stress seismic prediction method, grounded in TTI, and monoclinic medium 
theory through model-based examples.

Keywords: In situ stress; Tilted transverse isotropy differential horizontal stress ratio; 
Monoclinic differential horizontal stress ratio

1. Introduction
With the growing global demand for energy, shale gas has garnered significant attention 
as a clean and efficient energy resource. In the exploration and development of shale 
gas reservoirs, in situ stress prediction plays a critical role. In situ stress, carried by 
underground rocks and pore fluids, is crucial for effective oil and gas exploration. The 
influence of tectonic stress drives the formation and evolution of geological structures. 
Furthermore, the in situ stress state of an oilfield governs the shape and distribution of 
faults. Therefore, studying in situ stress is essential for understanding geological structure 
formation and fault distribution. In-depth research on in situ stress prediction methods 
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for shale formations is vital for advancing the sustainable 
development of the shale gas industry.

Since the 1970s, both domestic and international 
scholars have conducted extensive research on methods 
for predicting in situ stress. Traditional methods, such 
as core testing, logging data analysis, and numerical 
simulations, have certain limitations, including small 
prediction ranges, high costs, and cumbersome processes. 
To better understand the nature and changes of in situ 
stress, researchers have proposed using seismic data for 
prediction.1-4 In this context, Gray et al.5 combined Iverson’s 
hypothesis with linear slip theory to derive a horizontally 
transversely isotropic (HTI) medium in situ stress formula, 
which incorporates parameters such as Young’s modulus, 
Poisson’s ratio, and fracture compliance.5-8 Given that these 
parameters can be directly obtained through pre-stack 
seismic inversion, this approach has become a promising 
direction for seismic in situ stress prediction.9,10 In 
addition, Gray7 introduced the horizontal stress difference 
ratio (DHSR) as the ratio of the difference between the 
maximum and minimum horizontal principal stresses to 
the maximum principal stress, providing a new way to 
describe ground stress. Unlike traditional methods, this 
approach is simple and practical. It addresses the challenge 
of inaccurate vertical stress prediction caused by the low 
accuracy of density inversion using DHSR as a sensitive 
in situ stress parameter. Compared to traditional logging-
based methods, which are limited to drilling locations and 
suffer from low lateral resolution, this seismic method 
can provide in situ stress distributions across large 
areas, offering a more comprehensive understanding of 
underground stress and better guidance for petroleum 
engineering. Gray’s method thus introduces a novel 
approach and practical tool to in situ stress research, 
greatly supporting fields such as petroleum exploration 
and development.

Building on Gray’s work, Ma et al.11,12 incorporated 
vertical fractures into the vertically transversely isotropic 
(VTI) medium for horizontal layered strata, treating 
fractured shale formations as orthotropic media. Using 
anisotropic media theory, they derived an orthotropic 
in situ stress formula. Following Gray’s concept of the 
DHSR, they introduced the orthorhombic DHSR for the 
orthorhombic anisotropy (OA) medium. Wang13 used 
azimuth-pre-stack seismic data combined with orthogonal 
anisotropy theory to predict ground stress, while also 
calculating the DHSR from the orthogonal anisotropy 
model combined with pre-stack elastic impedance 
inversion, focusing on tight sandstone formations.14 Li 
et al.15 utilized seismic inversion to estimate intercept, 
gradient, and curvature impedances to predict ground 
stress.15 In addition, Wang et al.16 proposed an inversion 

algorithm for the earth stress field based on the Tikhonov 
regularization and least squares methods.16 Geophysical 
prediction methods are subject to significant uncertainty. 
This is primarily because seismic inversion is a typical 
ill-posed problem, and seismic data are often affected by 
noise, which leads to considerable uncertainty in in situ 
stress prediction. Researchers have conducted studies to 
reduce the uncertainty associated with these prediction 
methods.17-22 However, as geophysical theories advance 
and our understanding of underground rock conditions 
deepens, there is a shift from modeling simple media to 
more complex media. Given the increasing complexity of 
real-world factors, it is essential to explore in situ stress 
characterization methods for these more complex media.

Formations comprising inclined fractures are 
widely distributed underground and can be effectively 
represented as tilted transversely isotropic (TTI) media. 
Vertically transversely isotropic (VTI) symmetry is most 
commonly found in shale formations, which account for 
approximately 75% of clastic infill in sedimentary basins 
worldwide. However, in tectonically active regions such 
as fold-and-thrust belts or areas near salt bodies, these 
anisotropic shale layers are often tilted due to structural 
deformation, resulting in TTI media. For example, 
up-dipping shale layers near salt domes are expected to 
form an effective TTI medium with a relatively large tilt of 
the symmetry axis. TTI models are also typically applicable 
to thrust fault zones, such as the Canadian Foothills or the 
Himalayan Foothills. TI shale layers are frequently bent by 
tectonic processes, often resulting in significant tilting.23,24 
In 1997, Tsvankin25 studied typical TI models with tilted 
symmetry axes, such as sediments near the flanks of salt 
domes, and found that dipping layers significantly affect 
the imaging of salt bodies. When imaging steeply dipping 
structures such as salt domes or volcanic intrusions, the 
tilt of the symmetry axis in TI media should be taken 
into account.25 In 2004, Isaac and Lawton26 proposed an 
independent method for estimating effective anisotropic 
parameters from surface P-wave reflection seismic data. 
They tested this approach using a two-dimensional 
physical model of seismic data from a stepped target 
beneath a tilted TTI overburden. The experimental results 
showed that assuming isotropy in an equivalent TTI 
medium led to significant errors, thereby demonstrating 
the impact of anisotropy.26 In 2008, Charles et al.27 studied 
seismic imaging in the Canadian Foothills thrust belt. In 
the study area, the shallow overburden was composed 
of tilted, shale-dominated clastic rocks, which exhibited 
weak TTI properties. The experimental results showed 
that anisotropic depth imaging based on data-driven 
tomography produced better results than isotropic depth 
imaging using the same tomography approach.27 In many 
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cases, formations subjected to either single-phase shear 
stress or multiple tectonic events tend to develop two sets 
of mutually oblique vertical fractures. Such formations can 
be abstracted in seismology as a special case of monoclinic 
anisotropic media. Reservoirs with monoclinic symmetry 
are quite common in oil and gas exploration. Examples 
include the Ordovician formations in the Tofutai area of 
the Tarim Basin in China,28 the carbonate formations of the 
Clair Group in the Clair Field, United Kingdom,29 and the 
Marcellus Shale in Bradford County, Pennsylvania, United 
States of America,30 all of which represent monoclinic 
reservoirs with hydrocarbon potential. In 2023, Li31 
conducted a seismic response analysis and parameter 
inversion for a monoclinic medium model induced by two 
sets of mutually oblique vertical fractures. The study area 
was located in the Sichuan Basin in southwestern China, 
where the reservoir belongs to the Lower Triassic and is 
characterized by well-developed tectonic fractures due to 
the influence of the Himalayan orogeny. During the Triassic 
compressional period, one set of extensional fractures 
formed concurrently with folding. Subsequently, during the 
Himalayan orogenic phase, renewed compressional stress 
acted on the pre-existing folds, resulting in the development 
of a second set of fractures. This led to the formation of an 
equivalent monoclinic anisotropic medium. The inversion 
method was ultimately applied to the study area, improving 
the accuracy of the inversion results.31 These cases clearly 
demonstrate the necessity of incorporating the effects of TTI 
and monoclinic anisotropy in seismic stress field prediction 
for geologically complex regions. Neglecting such anisotropy 
may lead to misinterpretations of fracture orientation, stress 
magnitude, and the geomechanical behavior of the reservoir. 
Therefore, research on stress field prediction based on TTI 
and monoclinic media is of critical importance.

Considering that inclined fractures influence actual 
shale formations, this study proposes in situ stress formulas 
based on the TTI and monoclinic media, along with the 
corresponding DHSRs, including the tilted transverse 
isotropy DHSR (TDHSR) and the monoclinic DHSR 
(MDHSR). By fully accounting for the effects of horizontal 
bedding and inclined fractures on DHSRs, the derived 
expressions offer higher applicability than the HTI and OA 
media, allowing for more accurate application to complex 
TTI and monoclinic media. This provides a more robust 
theoretical foundation for related research and applications.

First, the in situ stress formulas for the HTI and OA 
media are introduced. Then, based on the anisotropy 
theory, the formulas for the DHSRs in TTI and monoclinic 
media are derived. The correctness of these formulas is 
verified through formula degradation and model trial 
calculations. Finally, the relationship between the DHSRs 
of TTI and monoclinic media and factors such as elastic 

parameters, anisotropy parameters, and the dip angles of 
formations and fractures is analyzed and summarized. 
Model-based analysis further demonstrates the validity of 
the in situ stress seismic prediction method based on the 
TTI and monoclinic medium theories.

2. Materials and methods
2.1. Introduction to the basic theory

The constitutive equation of an elastic medium is an 
equation that describes the linear relationship between 
stress and strain using the stiffness tensor, also known as 
the generalized Hooke’s law. For any anisotropic linear 
elastic medium, the stress and strain have the following 
linear relationship in Equation I:

� �ij ijkl klC� �(i, j,k, l , , )1 2 3  (I)

where σij is the stress tensor, εkl is the strain tensor, and 
Cijkl is the stiffness tensor. Conversely, strain can also be 
expressed as a linear combination of stresses (Equation II):

� �ij ijkl klS� �(i, j,k, l , , )1 2 3  (II)

where Sijkl is the elastic compliance tensor (compliance 
matrix). The compliance matrix S and the stiffness matrix 
C have an inverse matrix relationship, and the expression 
of their mutual conversion is as follows (Equation III):

S C� �1  (III)

The subscript i,j,k,l = 1,2,3 of the elastic stiffness tensor 
Cijkl or the elastic compliance tensor Sijkl corresponds to the 
x, y, and z axes. Combining the number of subscripts and 
the number of symmetry axes subscripts, it can be seen 
that the fourth-order stiffness tensor and the compliance 
tensor contain 81 elements, and the second-order stress 
tensor σij and strain tensor Cijkl contain nine elements. The 
inherent symmetry of stress tensor and strain tensor causes 
the stiffness matrix to exhibit symmetric characteristics 
(Equation IV),

C C C Cijkl jikl jilk jilk= = =  (IV)

According to the symmetry of the stiffness matrix in 
Equation V:

C Cijkl klij=  (V)

Therefore, by combining Equations IV and V, the 
anisotropic stiffness matrix can be represented by 21 
independent elastic coefficients. The stiffness matrix Cijkl 
(i,j,k,l=1,2,3) can be transformed into the stiffness matrix 
of i,j = 1,2,3,4,5,6, and the stress and strain tensors can 
be transformed into σi and εj by using the Voigt notation. 
Table 1 lists the Voight conversion rules.
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Equations I and II then transform into 
Equations VI and VII:

� �i ij jC� � ���(i, j , , , )1 2 6  (VI)

� �i ij jS� � ���(i, j , , , )1 2 6  (VII)

The elastic matrix describing the relationship 
between stress and strain changes from 81 components 
to 21 independent components. Hence, the constitutive 
equation of the elastic matrix can be written as follows 
(Equation VIII):
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 (VIII)

The stiffness matrix in Equation VIII contains 21 elastic 
constants, which are generally considered independent 
in fully anisotropic media. However, in many cases, 
several elements of the stiffness matrix are either zero 
or constrained by symmetry. Moreover, not all nonzero 
stiffness elements are necessarily independent—for 
example, in transversely isotropic media. Typically, the 
greater the number of zero or constrained elements, the 
higher the degree of inherent symmetry in the elastic 
system of the medium.

The study of the elastic matrix in anisotropic media is 
typically conducted within the context of a constitutive 
coordinate system. However, due to the actual stratigraphic 
conditions, the constitutive coordinate system used for 
simulating complex anisotropic media may not align with 
the observed coordinate system. Therefore, a coordinate 
transformation is needed to unify elastic matrices across 
different coordinate systems. In the anisotropic media 
theory, the classification of anisotropic media is based on 
the angle between the medium’s symmetry axis and the 
observation coordinate system.

Two steps are typically required to transform a complex 
anisotropic medium into the observation coordinate 
system. First, the stiffness tensor is constructed in the 
material (constitutive) coordinate system. Then, a Bond 
transformation is applied to rotate the stiffness tensor into 
the observation coordinate system. It is important to note 
that the Bond transformation strictly applies to the fourth-
rank stiffness tensor, not to the 6 × 6 stiffness matrix obtained 
using Voigt’s notation. This coordinate transformation 
process is essential for accurately representing anisotropic 
media in complex stratigraphic settings.

Assuming that the observation coordinate system and 
the constitutive coordinate system are Oxyz and Ox’y’z’, 
respectively, the direction cosine relationship between the 
observation coordinate system and the constitutive coordinate 
system (coordinate axis) in the Bond transformation is 
shown in Table 2.

Assuming that the stress tensor, strain tensor, stiffness 
matrix, and compliance matrix under the observation 
coordinate system and the constitutive coordinate system 
are σ, ε, C, and S and σ’, ε’, C’, and S’, respectively, according 
to the Bond coordinate transformation, the stress and 
strain transformation under different coordinate systems 
can be expressed as Equations IX–XI:

� �� � �M  (IX)

� �� � �MT  (X)

M

1
2

1
2

1
2

1 1 1 1 1 1

2
2

2
2

2
2

2 2 2 2 2 2

3
2

3
2

3

2 2 2
2 2 2

22
3 3 3 3 3 3

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

1

2 2 2

3 1 3 1 3 1 3 3 1 1 3 3 1 1 3 3 1

1 2 1 2 1 2 1 2 2 11 1 2 2 1 1 2 2 1  
 (XI)

Through derivation, we can get Equation XII:

� �� � � �M C MT’  (XII)

The stiffness matrix constitutive equation can be used 
to obtain Equation XIII:

C M C MT� � � �  (XIII)Table 1. Voigt symbol conversion rules

Values for ij or kl Values for i or j

11 1

22 2

33 3

23 or 32 4

31 or 13 5

12 or 21 6

Table 2. The direction cosine relationship between the 
observation and the constitutive coordinate system (axis)

Axis x’ y’ z’

x α1 β1 γ1

y α2 β2 γ2

z α3 β3 γ3

https://dx.doi.org/10.36922/JSE025190002


Journal of Seismic Exploration  In situ stress prediction

Volume 34 Issue 1 (2025) 64 doi: 10.36922/JSE025190002 

Similarly, the relationship between strain and stress is 
as follows (Equations XIV–XVI):

� �� � �NT  (XIV)

� �� � �N  (XV)

N

1
2

1
2

1
2

1 1 1 1 1 1

2
2

2
2

2
2

2 2 2 2 2 2

3
2

3
2

3
2

3 3 33 3 3 3

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

1 3 1

2 2 2
2 2 3 1 3 1 3 3 1 1 3 3 1 1 3 3 1

1 2 1 2 1 2 1 2 2

2
2 2 2 11 1 2 2 1 1 2 2 1  

 (XVI)
Through derivation, we can get Equation XVII:

� �� � � �N S NT’  (XVII)

The stiffness matrix constitutive equation can be used 
to obtain Equation XVIII:

S N S NT� � �’  (XVIII)

The matrices M and N are the Bond transformation 
matrices of the stiffness matrix and the compliance matrix, 
respectively, and T represents the transpose.

2.2. Derivation of the in situ stress formula for the 
TTI medium

In 1989, Crampin1 classified various anisotropic media 
by analyzing their stiffness matrices and the number of 
independent elastic parameters, based on the symmetry 
of the medium. Isotropy refers to a medium whose elastic 
properties are the same in all directions and do not change 

with the direction of wave propagation. It is the simplest 
type of medium and can be considered a special case of 
anisotropy. While the complete isotropic medium is a 
simplification for geophysical research, real underground 
media are composed of superimposed lithologic strata, 
where the same strata exhibit uniform geophysical 
properties, thus behaving isotropically.

In anisotropic media theory, a TI medium exhibits 
rotational symmetry about a single axis. In such media, 
the material properties are isotropic within the plane 
perpendicular to the symmetry axis—known as the 
isotropy plane—and vary only with the angle between the 
wave propagation direction and the symmetry axis.32,33 TI 
media can be further classified based on the direction of the 
symmetry axis into VTI media (vertical symmetry axis), 
HTI media (horizontal symmetry axis), and TTI media 
(tilted symmetry axis). Figure 1 illustrates a schematic of 
TI media, which have different symmetry axes and can be 
transformed into one another through rotation.

Although most natural fractures are vertical or 
subvertical, tectonic processes can result in fractures that are 
inclined at an angle to the stratigraphy. Monoclinic media 
are typically used to describe scenarios involving two sets of 
intersecting vertical fractures embedded in a VTI or isotropic 
background (Figure  2A and B), or a VTI background 
containing a single set of inclined fractures (Figure 2C).

In a TTI medium, the anisotropy can be regarded as a 
result of the rotation of either a VTI or an HTI medium by a 
certain angle. The stiffness (or compliance) properties of a TTI 
medium are obtained by applying the Bond transformation 
to the fourth-rank stiffness (or compliance) tensor of the 
corresponding VTI or HTI medium. It should be noted that 

Figure 2. Diagram of monoclinic media. (A) Two groups of intersecting vertical fracture groups developed in an isotropic background medium. (B) Two 
groups of intersecting vertical fracture groups developed in a vertically transversely isotropic (VTI) background medium. (C) A group of inclined fractures 
developed in the VTI background media

B CA

Figure 1. Diagram of the transversely isotropic media. (A) Vertically transversely isotropic medium, (B) horizontally transversely isotropic medium, and 
(C) tilted transversely isotropic medium

B CA
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the Bond transformation applies to the full tensor, not to the 
6 × 6 matrix representation used in Voigt’s notation.

In the subsequent derivation of this paper, the TTI 
medium is assumed to be formed by rotating a VTI 
medium. According to the definition of the linear slip 
model, when fractures develop horizontally (i.e., when the 
symmetry axis is vertical), the compliance tensor of the 
surrounding rock Sb can be expressed in terms of Young’s 
modulus E and Poisson’s ratio v as follows (Equation XIX):
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 (XIX)

where µ is the Lamé coefficient, which characterizes 
the rock’s resistance to shear deformation. The additional 
compliance tensor Sf caused by fractures can be expressed 
as Equation XX:
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 (XX)

where, ZN is the normal compliance tensor of the 
fracture surface, representing the unit normal displacement 
(deformation) caused by a unit normal stress. ZT is the 
tangential compliance tensor of the fracture surface, 
representing the unit tangential displacement caused by 
a unit tangential stress (parallel to the contact surface). 
By incorporating the linear slip theory and the Bond 
transformation, the effective compliance tensor of the 
TTI medium, ST, can be expressed as the sum of the 
compliance tensor of the rock skeleton, Sb, and the 
compliance tensor of microcracks in the rock, Sf, after 
applying the Bond transformation. Thus, the effective 
compliance tensor of the TTI medium, ST, can be written as 
Equations XXI and XXII (see page no 20):

S S N S NT b f
T� � � �  (XXI)

Substituting the compliance matrix of TTI medium 
into Hooke’s law can result in Equation XXIII:
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 (XXIII)

Among them, Sijt is the elastic compliance tensor of 
the TTI medium. σ1, σ2, and σ3 the principal stresses are 
in the three principal directions. σ4, σ5, and σ6 are shear 
stresses.

Iverson’s theory states that there are vertical principal 
stress and two horizontal stresses in anisotropic rocks.34 
Assuming that the horizontal stresses are not equal and 
assuming that the underground rocks are constrained, 
that is, they are immobile, then the horizontal strain (εx, 
εy) is equal to zero. According to Equation XXIII, the 
expression of strain and stress in the horizontal direction is 
expressed in Equations XXIV and XXV:

� � � � � �x x y z� � � � � �1 11 12 13 15 0S S S St t t t zx  (XXIV)

� � � � � �y x y z� � � � � �2 21 22 23 25 0S S S St t t t zx  (XXV)

In in situ stress prediction, researchers typically 
consider only the three principal stresses: vertical stress, 
minimum horizontal principal stress, and maximum 
horizontal principal stress. Therefore, this paper disregards 
the influence of tangential stress σ5 and focuses solely on 
the relationship among these three principal stresses. The 
final expressions for strain and stress in the horizontal 
direction are expressed in Equations XXVI and XXVII:

� � � � �x x y z� � � � �1 11 12 13 0S S St t t  (XXVI)

� � � � �y x y z� � � � �2 21 22 23 0S S St t t  (XXVII)

By solving equations through simultaneous equations, 
the expressions for the horizontal minimum principal stress 
σxt and horizontal maximum principal stress σyt of TTI 
medium can be obtained (Equations XXVIII and XXIX):

� �xt z
t t t t

t t t

S S S S
S S S
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�
�
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11 22 12
2  (XXVIII)
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� �yt z
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2  (XXIX)

The vertical stress σz is obtained by integrating the 
density. The expression for vertical stress σz is expressed in 
Equation XXX:

� �z

H
g� � (h)d(h)

0
 (XXX)

In the formula, h is the depth, g is the gravitational 
acceleration, and p (h) is the density at depth.

Bringing the constant term of the compliance matrix 
into it yields the corresponding stress expressions in 
Equations XXXI and XXXII:
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The vertical stress σz can be estimated using 
seismic or logging data. By integrating the pre-stack 
wide-azimuth seismic inversion to derive elastic and 
anisotropic parameters and then substituting them into 
Equations  XXXI and XXXII, the horizontal minimum 
principal stress and horizontal maximum principal stress 
of the TTI medium can be predicted. Furthermore, 
using Equations XXXI and XXXII, the TDHSR can be 
calculated as follows (Equation XXXIII):
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The tilted transverse isotropy DHSR represents the 
difference in ratio between the maximum and minimum 
horizontal principal stresses in a TTI medium. It is a 
crucial parameter for evaluating shale fracturability and the 
potential to form a fracture network. When TDHSR is high, 
hydraulic fracturing tends to generate parallel fractures 

aligned with the direction of the maximum horizontal 
principal stress, resulting in non-intersecting fracture planes 
that hinder shale oil and gas flow. Conversely, when TDHSR 
is low, hydraulic fracturing can induce fractures in multiple 
directions, forming an interlaced fracture network that 
enhances oil and gas migration. Therefore, during fracturing 
operations, targeting areas with low TDHSR values can help 
achieve a more effective shale reservoir stimulation.

2.3. Parameter correlation analysis: derivation of the 
in situ stress formula for monoclinic medium

Compared to an HTI medium, which accounts only for the 
influence of vertical fractures, an OA medium considers 
both the effect of vertical fractures and the intrinsic 
anisotropy of the host rock. This intrinsic anisotropy 
may result not only from the horizontal bedding but 
also from the inherent anisotropic nature of shale layers 
or other types of VTI formations. Building on the OA 
medium, a monoclinic medium further accounts for the 
fact that fractures are not strictly vertical but are often 
inclined due to geological structural influences, making it 
a more realistic representation of actual shale formations. 
It can be regarded as a result of the combined effects 
of inclined fractures (which can be considered a TTI 
medium) and the horizontal bedding of a VTI medium. 
Therefore, by integrating the linear slip theory and the 
Bond transformation, the effective compliance tensor, Sm, 
of the monoclinic medium can be expressed as the sum 
of the compliance tensor, SVTI, of the VTI medium, which 
represents the horizontal bedding background, and the 
compliance tensor, Sf, of inclined fractures after applying 
the Bond transformation.

The compliance matrix of VTI medium is presented in 
Equation XXXIV (see page no 20):

The compliance matrix of inclined fractures after Bond 
transformation N S Nf

T
θ θ  is expressed in 

Equation XXXV (see page no 20):

According to the Bond transformation, the compliance 
matrix of a background VTI medium is transformed 
accordingly. The effective compliance tensor of the 
monoclinic medium, SM, can be written as Equation XXXVI:

S S N S NM VTI f
T� � � �  (XXXVI)

Substituting the compliance matrix of the monoclinic 
medium into Hooke’s law can result in the matrix presented 
in Equation XXXVII:
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 (XXXVII)

The elements in Equation XXXVII are explained 
in Equations AI–AXII in the Appendix A. As in the 
derivation of the TTI medium formula in the previous 
text, assuming that there are three principal stresses, the 
horizontal stresses are not equal, the rock is constrained and 
cannot move, and the influence of shear stress is ignored. 
At this time, both the shear stress and the horizontal strain 
are 0 (Equations XXXVIII and XXXIX):34

� � � � �x x y z� � � � �1 11 12 13 0S S Sm m m
 (XXXVIII)

� � � � �y x y z� � � � �2 21 22 23 0S S Sm m m  (XXXIX)

By solving equations through simultaneous equations, the 
expressions for the horizontal minimum principal stress σxm 
and horizontal maximum principal stress σym of the monoclinic 
medium can be obtained through Equations XL and XLI:

� �xm z
m m m m

m m m

S S S S
S S S

�
�
�

12 23 13 22

11 22 12
2

 (XL)

� �ym z
m m m m

m m m

S S S S
S S S

�
�
�

12 13 11 23

11 22 12
2

 (XLI)

The vertical stress is obtained by integrating the density. 
Bringing the constant term of the compliance matrix into 
it yields the corresponding stress expression in Equations 
XLII and XLIII:
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The vertical stress can be estimated using seismic or 
logging data. By integrating the pre-stack wide-azimuth 
seismic inversion to obtain elastic and anisotropic 
parameters and then substituting them into Equations 
XLII and XLIII, the horizontal minimum principal stress 
and horizontal maximum principal stress of the monoclinic 
medium can be predicted. Furthermore, using Equations 
XLII and XLIII, the MDHSR can be calculated as follows 
through Equation XLIV:

MDHSR
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 (XLIV)

2.4. Verification of the tilted transverse isotropy 
DHSR

The in situ stress formulas for the TTI medium and 
monoclinic medium derived above must be verified 
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for their correctness. Therefore, the DHSR formula 
derived in this paper was compared with the DHSR for 
the HTI medium and the DHSR for the OA medium. 
This comparison involved degenerate cases to verify the 
accuracy of the formulas. Further analysis and verification 
of the DHSR for the HTI medium, as derived by Gray,7 
are given by the following formula in Equation XLV:

DHSR
EZ
EZ v

y x

y

N

N

�
�

�
� �

� �

� 1
 (XLV)

The formula for the DHSR of the OA medium derived 
by Ma et al.11 is presented in Equation XLVI:

ODHSR
V Z

V Z
S N

S N

�
�� �
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2 2 1

1 2 2 1
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2

0
2

� �

� �
 (XLVI)

Among them, Z
MN

N

N

�
�� �
�
�1

, M = λ + 2µ is the 
P-wave modulus.

The in situ stress formula derived for the TTI medium 
is based on the anisotropic media theory and establishes 
the relationship between stress and strain in TTI media 
through Hooke’s law. By applying the assumptions of 
Iverson’s theorem, the in situ stress formula expressed in 
terms of anisotropic and elastic parameters was obtained. 
Furthermore, the TDHSR was given by Equation XXXIII. 
The TTI medium can be considered as a complex medium 
obtained by rotating the VTI medium. The elastic matrix 
of the TTI medium consists of two parts: the isotropic 
background medium and the anisotropic component 
caused by fractures. When the inclination angle reached 
90°, the strata were considered as an HTI medium. 
Therefore, by substituting the inclination angle of 90° into 
the principal stress formula and TDHSR formula derived in 
this paper, the results matched perfectly with the principal 
stress formula and DHSR formula of the HTI medium 
as derived by Gray (Equation XLVII). The workflow is 
illustrated in Figure 3. This comparison fully supports the 
validity of the in situ stress formula for the TTI medium, 
considering the influence of inclined fractures, as proposed 
in this paper.
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2.5. Verification of the monoclinic DHSR

Following a similar approach to deriving the in situ 
stress formula for the TTI medium, the in situ stress 
formula for the monoclinic medium was derived from 
the theory of anisotropic media. Using Hooke’s law, the 
relationship between stress and strain in the monoclinic 
medium was established. According to Iverson’s 
theorem, the in situ stress formula, expressed in terms 
of anisotropic and elastic parameters, was obtained, 
along with the MDHSR for the monoclinic medium, 
given by Equation XLIV. For the monoclinic medium, it 
can be regarded as a result of the rotation of the vertical 
fractures assumed in the OA medium. The elastic matrix 
of the monoclinic medium consisted of a VTI medium 
component, representing horizontal strata, and a TTI 
medium component, representing inclined fractures. As 
the inclination angle increased, rotation occurred. When 
the inclination angle θ reached 90°, the medium was 
regarded as an OA medium. Therefore, by substituting 
an inclination angle of θ = 90° into the principal stress 
formula and MDHSR formula of the monoclinic medium 
derived in this paper, the formula degraded completely, 
yielding results that matched precisely with the principal 
stress formula and DHSR formula for the OA medium 
derived by Ma et al.11 This fully supports the validity of 
the in situ stress formula for the monoclinic medium, 
considering the combined influence of inclined fractures 
and horizontal bedding.

Compared to the TTI medium, the monoclinic 
medium further incorporates the influence of horizontal 
bedding in strata, in addition to considering the effect of 
inclined fractures. In the in situ stress formula and the 
MDHSR, both the compliance parameters of the TTI 
medium (representing fractures) and the anisotropic 
parameters of the VTI medium (representing horizontal 
bedding) were present. It can be considered that when 
the influence of horizontal bedding was ignored in the 
monoclinic medium, the shale strata degenerated from 
the monoclinic medium to the TTI medium. To verify 
the rationality of the formula derived in this paper, 
we further simplified it by removing the anisotropic 
parameters from the in situ stress and MDHSR formulas 
of the monoclinic medium. Specifically, the parameters 
ε, δ and γ were set to zero. This step allowed for a more 
intuitive assessment of the formula’s validity and ensured 
its broader applicability in practical scenarios. The 
resulting in situ stress and TDHSR formula, obtained after 
eliminating the anisotropic parameters, are presented in 
Equations XLVIII–L:
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In the transversely isotropic media, the relationship 
between the P-wave modulus, the S-wave modulus, the 
Young’s modulus, and the Poisson’s ratio can be expressed 
as follows (Equations LI & LII):
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Substituting this relationship into Equations XLVIII–L, 

with transformations, we obtained Equations LIII–LV:
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Figure 3. Workflow for converting the tilted transverse isotropy differential horizontal stress ratio to the differential horizontal stress ratio (DHSR)
Note: θ represents the fracture dip angle, E represents the Young’s modulus, and v represents the Poisson’s ratio. ZN is the normal compliance tensor of 
the fracture surface, representing the unit normal displacement (deformation) caused by a unit normal stress. ZT is the tangential compliance tensor of 
the fracture surface, representing the unit tangential displacement caused by a unit tangential stress (parallel to the contact surface). ZN increases with 
increasing θ. ZT depends only on 2θ, when θ = 90°, sin2θ = 0. Therefore, DHSR is independent of ZT
Abbreviations: HTI: Horizontally transversely isotropic medium; TTI: Tilted transversely isotropic medium
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Equations LIII–LV are consistent with the in situ stress 
and TDHSR formulas (Equations XXXI–XXXIII) of the 
TTI medium derived previously. The consistency of the 
two was mutually verified through formula degradation, 
thus proving the correctness of the in situ stress formulas 
of the two complex media derived in this paper.

3. Complex medium in situ stress sensitivity 
analysis
From the research and derivation of the complex medium 
in situ stress formulas presented earlier, it can be concluded 
that, compared to the DHSR of the HTI and OA media, 
which are controlled by a limited number of parameters, 
the TDHSR and MDHSR derived in this paper are 
influenced by a greater number of factors. To gain a deeper 
understanding of the in situ stress formula, the influence 
of individual parameters on the TDHSR and MDHSR 
formulas derived above was further studied through a 
controlled variable approach.

3.1. Influence of elastic parameters and anisotropic 
parameters on the tilted transverse isotropy DHSR

Taking the study of the influence of Young’s modulus on 
the TDHSR as an example, assume that the Poisson’s ratio 
of the TTI background medium is v = 0.35. The Young’s 
modulus increases by 2 GPa at each step, with the range 
spanning from 20 GPa to 40 GPa. The normal compliance 
and tangential compliance of fractures are given as 
ZN = 2.5×10−12 and ZT = 2.5×10−12, respectively. The 
fracture dip angle starts at 0° and increases by 10° at each 
step, with a maximum dip angle of 90°. As the fracture 
dip angle changes, the influence of Young’s modulus on 
the TDHSR is shown in Figure  4. When the fracture 
dip angle is 0°, the TTI medium degenerates into a VTI 
medium. According to Gray’s assumption, TDHSR is zero 
at this point. For a fixed fracture dip angle, as Young’s 
modulus increases, TDHSR shows a positive correlation. 
In other words, the greater the Young’s modulus, the 
higher the TDHSR. Furthermore, with other parameters 
held constant, TDHSR exhibited a linear increase as the 
fracture inclination angle increased.

Following the same approach to study the influence of 
different parameters on TDHSR, it can be observed that 
as various parameters increase, TDHSR exhibits either 
an increasing or decreasing trend. When the stratum 

dip angle is 0°, TDHSR is zero. As the stratum dip angle 
increases, TDHSR shows an increasing trend. In particular, 
for tangential compliance, when the fracture dip angle 
reaches 90°, TDHSR remains unchanged with variations 
in tangential compliance. Through the derivation and 
analysis of the above formula, it can be concluded that 
when the TTI medium is rotated by 90° to become an HTI 
medium, the DHSR formula is given by Equation XLV. At 
this point, the tangential compliance term in the formula 
is eliminated, and the DHSR becomes independent of 
tangential compliance, resulting in a constant value.

Figure  5 shows the variation of TDHSR under the 
combined influence of anisotropic and elastic parameters. 
Taking Figure 5A as an example, TDHSR increased with 
both normal compliance and Young’s modulus. TDHSR 
is more sensitive to normal compliance. From all the 
subplots in Figure  5, it can be observed that TDHSR is 
more sensitive to anisotropic parameters compared to 
elastic parameters. Consistent with the conclusions of the 
single-parameter sensitivity analysis, TDHSR increased 
linearly with the dip angle.

3.2. Influence of elastic parameters and anisotropic 
parameters on the monoclinic DHSR

Similarly, considering the study of the influence of the 
P-wave modulus on the MDHSR, assume that the shear 
wave modulus of the monoclinic background medium is 
µ = 10 GPa. The P-wave modulus M increases by 5 GPa at 
each step, with the range spanning from 25 GPa to 45 GPa. 
The anisotropic parameters are set as ε = 0, δ = 0 and 
γ = 0, while the normal weakness and tangential weakness 
of fractures are ΔN = 0.35 and ΔT = 0.1, respectively. The 
fracture dip angle starts at 0° and increases by 10° at each 
step, with a maximum dip angle of 90°. As the fracture dip 
angle changes, the influence of the P-wave modulus M on 
the MDHSR is shown in Figure 6. When the fracture dip 
angle is 0°, the monoclinic medium degenerates into a VTI 
medium. According to Gray’s assumption, MDHSR is zero 
at this point. For a fixed fracture dip angle, as the P-wave 
modulus increases, MDHSR shows a negative correlation, 
indicating that a greater P-wave modulus results in a 
smaller MDHSR. With other parameters held constant, 
MDHSR exhibited a linear increase as the fracture dip 
angle increased. When the fracture dip angle reached 
90°, MDHSR remained unchanged with variations in the 
P-wave modulus. Through the derivation and analysis 
of the above formula, it can be concluded that when the 
monoclinic medium is rotated by 90° to become an OA 
medium, the DHSR formula is given as Equation XLVI. 
At this point, the P-wave modulus M is eliminated from 
the formula, and the DHSR becomes independent of the 
P-wave modulus, resulting in a constant value.
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When the dip angle of the ground layer or fracture is 
0°, the monoclinic medium simplifies to a VTI medium. 
According to Gray’s assumption, the MDHSR is 0 in this 
case. When the fracture dip angle remains fixed, the MDHSR 
exhibits a positive correlation with the anisotropy parameter 
ε, a negative correlation with the anisotropy parameter δ, 
and a positive correlation with the anisotropy parameter 
γ. However, when the fracture dip angle reaches 90°, the 
MDHSR remains unaffected by the anisotropy parameters.

Following the same approach to studying the influence 
of different parameters on MDHSR, it can be observed that 
as various parameters increase, MDHSR exhibits either 
an increasing or decreasing trend. When the stratum dip 
angle is 0°, MDHSR remains 0. As the stratum dip angle 
increases, MDHSR shows an increasing trend. Notably, for 
P-wave modulus, tangential compliance, and anisotropic 
parameters, when the fracture dip angle reaches 90°, 
MDHSR remains unchanged despite variations in these 
parameters. Through the derivation and analysis of 
the above formula, it can be concluded that when the 
monoclinic medium is rotated by 90° to become an OA 
medium, the DHSR is given in Equation XLVI. At this 
point, the parameter terms in the formula are eliminated, 
indicating that the DHSR is unaffected by these values and 

remains a constant.

Figure 7 illustrates the variation of MDHSR under the 
combined influence of anisotropic and elastic parameters. 
Taking Figure 7C as an example, MDHSR increases with 
both normal compliance and S-wave modulus. MDHSR 
is more sensitive to normal compliance. From all the 
subplots in Figure  7, it can be observed that MDHSR is 
more sensitive to anisotropic parameters compared to 
elastic parameters. Consistent with the conclusions of the 
single-parameter sensitivity analysis, MDHSR increases 
linearly with the dip angle.

4. Model example analysis
4.1. Methodology and workflow for in situ stress 
prediction

Based on the previously discussed stress characterization 
methods for complex media, a stress inversion approach 
grounded in complex medium theory can ultimately be 
established. This method primarily consists of five steps.

4.1.1. Seismic data preparation

To invert for the anisotropic parameters used in stress 
prediction, at least six azimuthal elastic impedance 

Figure  4. Influence of elastic parameters and anisotropic parameters on the tilted transverse isotropy differential horizontal stress ratio (TDHSR). 
(A) Young’s modulus. (B) Poisson’s ratio. (C) Normal compliance. (D) Tangential compliance

B
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(EI) data volumes are required. The wide-azimuth pre-
stack seismic data are divided according to the azimuth 
rose diagram. Starting from zero degrees, six pre-stack 
seismic gathers are selected to ensure uniform azimuthal 
distribution and roughly equal fold coverage. The final 
selected data consist of six volumes—representing small, 
medium, and large incidence angles—at the two azimuths 
with the highest fold coverage.

4.1.2. Azimuthal elastic impedance inversion

Using the six partial-angle stacked seismic volumes, 
azimuthal EI inversion is performed individually for each 
volume. By incorporating rock physics information and 
constraints such as wavelets, well logs, seismic horizons, 
and low-frequency models, six azimuthal EI volumes 
are obtained through constrained elastic impedance 
inversion.

4.1.3. Elastic parameter inversion based on elastic 
impedance

The six-angle elastic impedance volumes are used as 
input to derive the complete volumes of P-wave velocity, 
S-wave velocity, density, and anisotropic parameters 

within the study area. Fracture compliance parameters 
can further be obtained through equation-based 
transformations.

4.1.4. Determination of formation and fracture dip 
angles

Given that this study focuses on stress prediction in shale 
formations with bedding or fracture dip (i.e., complex 
media), it is necessary to determine the dip angle. Due 
to its low cost and maturity, image logging is typically 
used to measure and determine the dip of formations and 
fractures.

4.1.5. Calculation of horizontal stress ratio and stress 
prediction

Once the elastic parameters, anisotropic parameters, 
and dip angles of formations and fractures required 
for stress calculation in complex media are obtained, 
the previously derived complex medium stress 
equations—based on linear slip theory, anisotropy theory, 
and Bond transformation—are used. Ultimately, the 
prediction of in situ stress is achieved by calculating the 
DHSR, either TDHSR or MDHSR, for complex media.

Figure  5. Influence of elastic parameters and anisotropic parameters on the tilted transverse isotropy differential horizontal stress ratio (TDHSR). 
(A) Normal compliance and Young’s modulus. (B) Tangential compliance and Young’s modulus. (C) Normal compliance and Poisson’s ratio. (D) Tangential 
compliance and Poisson’s ratio
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Figure 6. Influence of fracture compliance parameters on the monoclinic differential horizontal stress ratio (MDHSR). (A) P-wave modulus. (B) S-wave 
modulus. (C) Anisotropic parameter. (D) Anisotropic parameter. (E) Anisotropic parameter. (F) Normal compliance. (G) Tangential compliance
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4.2. Field data experiment

To further validate the correctness of the in situ stress 
formula derived in this study, actual logging data must 
be used for trial calculations. The measured logging 
curve from Well A, located in the shale formation of 
the Sichuan Basin, China, was selected for this purpose. 
A  fractured shale formation petrophysical model was 
constructed to perform the model trial calculations. 
By inputting measured parameters such as P-wave and 
S-wave velocities, rock mineral composition, as well as 
the bulk modulus, shear modulus, and density of each 
component, along with water saturation and porosity, 
the anisotropic parameters and fracture compliance 
parameters required for the in situ stress formula were 
obtained. Figure  8 presents the anisotropic parameters 
ε, δ, and γ, the fracture normal compliance ZN, the 
tangential compliance ZT, Young’s modulus, Poisson’s 
ratio, P-wave modulus M, and S-wave modulus µ for 
Well A.

The stress measurement point on Well A was selected 
for model trial calculations. By comparing the DHSR at the 
measurement point with TDHSR, derived from the TTI 
medium theory, and MDHSR, derived from the monoclinic 

medium theory, an error analysis was conducted. Figure 8 
presents a comparison of the DHSR at the measured point 
with TDHSR based on the TTI medium theory, while 
Figure 9 shows a comparison with MDHSR based on the 
monoclinic medium theory. As observed in the figures, 
both TDHSR and MDHSR calculations aligned closely 
with the measured DHSR, demonstrating the practical 
applicability of the formula derived in this study. An 
error analysis was performed on the results, as shown in 
Table  3, which presents the error analysis of DHSRs at 
different measurement points. The table indicates that 
the errors of TDHSR and MDHSR obtained from the 
model trial calculations fall within a reasonable range. By 
comparing the errors, it is evident that MDHSR, based on 
the monoclinic medium theory—which accounts for both 
horizontal stratification and inclined fractures—exhibited 
smaller errors and aligned more closely with the measured 
results than TDHSR, which is based on the TTI medium 
theory and only considers a single inclined stratum or 
fracture.

5. Discussion
It is important to acknowledge that the current validation 
of the TDHSR and MDHSR methods was based on 

Figure 7. Influence of fracture compliance parameters on the monoclinic differential horizontal stress ratio (MDHSR). (A) Normal compliance and P-wave 
modulus. (B) Tangential compliance and P-wave modulus. (C) Normal compliance and S-wave modulus. (D) Tangential compliance and S-wave modulus
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data from a single well in the Sichuan Basin. While 
the method demonstrated promising accuracy for the 
studied well, its generalization to other geological settings 
requires caution. The Sichuan Basin’s unique lithology 
and tectonic history may limit direct extrapolation to 
basins with differing diagenetic processes or structural 
complexities.

Future work should consider expanding the application 
and validation of the proposed methods using data from 
wells in other basins with diverse geological characteristics. 
This includes, for example, the Ordos Basin (characterized 
by stable cratonic settings), the Tarim Basin (with complex 

deep structures), and foreland basins with strong tectonic 
deformation. In addition, future work can explore 
formations with different structural types (e.g., anticlines, 
fault blocks) and lithologies (e.g., carbonate, sandstone, and 
tight shale formations). Furthermore, the use of synthetic 
seismic models and publicly available benchmark datasets 
should be considered to provide supplementary validation 
and to better isolate and understand the influence of 
specific parameters such as fracture dip, azimuthal 
anisotropy, and stratification. Multi-case verification will 
enhance the robustness and applicability of the TDHSR 
and MDHSR approaches, making them more adaptable to 
various exploration scenarios.

Figure 8. Elastic parameters and anisotropic parameters of Well A
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Table 3. Error analysis table of horizontal stress difference ratios at different measured points

Depth (m) Measured horizontal maximum stress
(Mpa)

Measured horizontal maximum stress
(Mpa)

Horizontal stress 
difference ratio

TDHSR Error MDHSR Error

3,483 101.4 86.3 0.149 0.135 9.4% 0.152 2.0%

3,490 102.3 90.5 0.115 0.105 8.7% 0.117 1.7%

3,501 104.6 88.5 0.153 0.141 7.8% 0.146 4.6%

3,508 103.2 88.9 0.139 0.126 9.4% 0.141 1.8%

Abbreviations: MDHSR: Monoclinic differential horizontal stress ratio; TDHSR: Tilted transverse isotropy differential horizontal stress ratio.

6. Conclusion
In situ stress plays a crucial role in the formation and 
distribution of oil and gas reservoirs. The development 
and evolution of geological structures result from the 
action and variation of tectonic stress. The underground 
stress field influences rock layer deformation, fracture 
formation, and crack development. For instance, faults 
are formed due to the fracturing or sliding of strata under 
in situ stress. The type of faults can be assessed based on 
in situ stress prediction results. In addition, the variation 
of in situ stress differs across lithologies, allowing it 
to serve as an indicator of underground lithology. 
Therefore, predicting in situ stress holds significant 
research value. A thorough understanding of the in situ 
stress field enables the identification of potential oil and 
gas accumulation areas, providing essential guidance for 
exploration efforts.

This paper primarily investigated the seismic prediction 
method for in situ stress based on complex medium 
theory. It built upon existing seismic prediction methods 

derived from HTI and OA media while considering the 
impact of inclined fractures in actual shale formations. 
By incorporating the assumptions of Schoenberg and 
Iverson and utilizing the constitutive equation along with 
coordinate transformations of the elastic matrix, this study 
derived in situ stress formulas for both TTI and monoclinic 
media, leading to the corresponding DHSRs: TDHSR and 
MDHSR.

Finally, a model trial calculation was performed using 
actual logging data from a shale formation. The results 
demonstrated that the errors of TDHSR and MDHSR 
remained within a reasonable range. Compared to TDHSR, 
which was based on the TTI medium and considered only 
a single inclined stratum or fracture, MDHSR, derived 
from the monoclinic medium theory, accounted for both 
horizontal stratification and inclined fractures, leading to 
smaller errors and results that aligned more closely with 
the measured data. In conclusion, the TDHSR and MDHSR 
formulas derived in this study exhibited high accuracy and 
strong practical applicability.
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Appendix A
The elements in Equation XXXVII are explained as follows in Equations AI–AXII:
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�� �
�

� �
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where ε, γ, and δ are Thomsen anisotropy parameters. ε describes the difference in the P-wave velocity between the vertical 
and horizontal directions, while γ describes the difference in the S-wave velocity between the vertical and horizontal directions. 
M is the longitudinal wave modulus, representing the ratio of axial stress to axial strain under a uniaxial strain condition.
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