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ARTICLE

Modeling the seismic wave equation using 
a staggered grid finite-difference method 
optimized with a genetic algorithm

Mounika Vanga1,2  and Maheswar Ojha1,2*
1CSIR – National Geophysical Research Institute, Uppal Road, Hyderabad-500007, Telangana, India
2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India

(This article belongs to the Special Issue: Full Waveform Inversion Methods and Applications for 
Seismic Data in Complex Media)

Journal of Seismic Exploration

Abstract
Simulation of seismic waves is a critical component in the imaging of subsurface 
structures using actual data, where numerical dispersion remains a challenging task. 
The finite-difference (FD) approach is popular for solving wave equations because 
it is simple to implement and requires less memory and computing time due to 
recursion. However, the staggered grid finite-difference (SGFD) methods have gained 
popularity due to their improved accuracy and stability. In this study, we introduce 
an optimization approach using a genetic algorithm (GA) to minimize numerical 
dispersion. The SGFD coefficients were optimized to reduce numerical errors and 
improve the accuracy of seismic wave simulations, considering both spatial and 
temporal domains. Numerical simulations applied to both homogeneous and 
heterogeneous velocity models demonstrate that the GA-optimized SGFD schemes 
achieve substantial reductions in dispersion, even with lower-order approximations, 
when compared to other methods. An important advantage of the proposed 
method is that it maintains high accuracy while using lower-order approximations, 
which significantly reduces computational costs. For example, the optimization of 
12th-order FD coefficients took approximately 20 s on a standard computer with 
64 GB RAM. The findings demonstrate the efficiency of the proposed approach in 
improving the accuracy and stability of seismic wave simulations, providing a reliable 
solution for high-resolution seismic imaging.

Keywords: Numerical dispersion; Seismic wavefield; Staggered grid finite-difference 
method; Genetic algorithm; Modeling; Optimization

1. Introduction
The numerical simulation of seismic waves has several applications in both applied 
seismic and seismology, and it is essential for understanding the Earth’s subsurface 
structure. The finite-difference method (FDM) is one of the most popular techniques 
used to solve wave equations.1-4 However, despite its popularity, the issue of numerical 
dispersion in simulating seismic waves remains a significant challenge. Numerical 
dispersion is a phenomenon that occurs in numerical simulations of wave propagation, 
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where the phase velocity depends on its wavelength and 
the discretization parameters of the numerical method. 
This leads to artificial distortion of the wave as it travels 
through the computational domain.

The numerical representation of a wave equation 
introduces errors that alter the phase velocity of the 
wave components. The causes of numerical dispersion 
include inadequate spatial or temporal resolution (i.e., 
large grid spacing or time steps), the choice of numerical 
scheme, and its truncation errors. Wave components with 
shorter wavelengths are more susceptible to numerical 
dispersion. The effects of dispersion may manifest as 
waves appearing to travel at incorrect speeds, smearing, 
or degraded modeling accuracy. Numerical dispersion is 
analyzed through the dispersion relation, which relates the 
numerical wavenumber to the physical wavenumber.

Alternative numerical approaches, including the Finite 
Element Method5-9 and Finite Volume Method,10-12 can 
be employed. Moreover, different grid schemes—such as 
conventional grid, staggered grid, variable grid, irregular 
grid—and various explicit and implicit formulas, offer 
further alternatives for numerical modeling. Staggered 
grid finite-difference (SGFD) methods, in particular, have 
gained prominence due to their enhanced accuracy and 
stability compared to conventional grid FDMs. The key 
distinction in SGFD methods is the utilization of first-order 
stress and strain relations instead of the direct second-
order displacement relations. This approach not only 
increases accuracy but also leads to faster convergence13 by 
reducing interpolation errors.

In general, finite-difference (FD) coefficients are 
determined through two main approaches: Taylor series 
expansion and optimization. Taylor series expansion 
involves representing functions as polynomials and 
estimating FD coefficients by comparing the coefficients 
of the polynomial dispersion relation equations.14-17 
Optimization methods18-23 seek to minimize the dispersion 
error using techniques such as least squares, simulated 
annealing, and the sampling approximation method.24 
Recent studies also explore reducing dispersion at low 
wavenumbers using Lagrange dual problems25 and explicit 
methods with optimized constant coefficients.26

Conventionally, SGFD coefficients are calculated in 
the space domain, but the dispersion relation depends 
on both space and time domains. Therefore, to achieve 
greater accuracy at designated frequencies, it is necessary 
to consider both domains.14 A recent study4 proposed an 
optimized FDM that minimizes dispersion by deriving 
explicit (conventional grid) FD coefficients using a genetic 
algorithm (GA). This method uses the combined time 
and space dispersion relation to compute FD coefficients 

adaptively based on parameters such as velocity, grid size, 
and time sampling to achieve greater accuracy.

SGFD methods have several advantages over 
conventional grid FDMs. SGFD methods can handle a 
wider range of grid geometries and boundary conditions 
than conventional grid methods. They are less constrained 
by Courant number limitations, which can significantly 
reduce computing time by allowing the use of greater 
time steps without compromising stability. In addition, 
SGFD methods are well-suited to optimization techniques. 
Improved results can be obtained by further minimizing 
numerical dispersion through the optimization of FD 
coefficients.

We implemented an approach to solve the wave 
equation using SGFD with GA, aiming to decrease 
numerical dispersion and computation time. The SGFD 
coefficients were derived from a dispersion relation by 
considering both time and space, using plane wave theory. 
The normalized phase velocity was used as the objective 
function in our optimization approach, which considers all 
pertinent variables such as velocity, grid size, and time step.

2. Methodology
2.1. FD coefficients through conventional methods

The 1D acoustic wave equation can be expressed as27:
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where ρ is the density; s(t) is the source field; and M’ 
is the P-wave modulus, given by M’ = λ+2μ = ρv2, where 
λ and μ are the lame constants, v is the velocity, and is the 
pressure field.

The 2Mth order SGFD formula for calculating the first-
order derivatives is expressed as:
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where u u x i x t j ti
j � � �� �� �, ; x and t are the spatial 

and temporal coordinates; ∆x and ∆t are the grid spacing 
and time step, respectively; i and j are the spatial and 
temporal indices, and ai is the ith FD coefficient.

The second-order FD time derivative is used as:
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where u0
0  is the pressure field at the point (x,t); u0

1  is at 
the future time step (x,t + j∆t); and u0

1− is at the past time 
step (x,t − j∆t).
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Using this second-order time derivative and the 2Mth 
order spatial derivatives, the wave equation is expressed as:
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where ai and aj are the coefficients.

By considering plane wave theory, the wave equation is 
expressed as:

u ei
j k x i x t j t� �� �� �� �� �� �( ) � (V)

where k is the wavenumber, ω is the angular frequency, 
and � � �1 .

Substituting Equation (V) into the spatial derivative 
term Equation (II), the wavenumber is written as:
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Using Taylor series expansion, the wavenumber is 
written as:
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By comparing the coefficients of on both sides of Equation 
(VIII), we obtain the SGFD coefficients a1, a2,…am.

2.2. FD coefficients using both time and space 
domains

Liu and Sen15 introduced an improved FDM by considering 
the joint time and space dispersion relation, ensuring 
better accuracy and stability. This method modifies the FD 
coefficients to satisfy the exact dispersion relation, thereby 
reducing errors in wave propagation.

By substituting Equation (V) into Equation (II), we 
obtain:
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Using the sine function expansion, the coefficients for 
wave equation modeling are derived as:
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2.3. FD coefficients through the optimization method

To minimize numerical dispersion and enhance 
accuracy, it is necessary to balance spatial and temporal 
discretization. Although refining the grid size and 
reducing the time step can improve accuracy, this 
significantly increases the computation time. An efficient 
alternative is to optimize FD coefficients by considering 
both spatial and temporal dispersion relations. Instead of 
relying solely on conventional Taylor series expansions, 
a GA can be employed to fine-tune FD coefficients. This 
approach reduces dispersion errors while maintaining 
computational efficiency, without the need for higher-order 
approximations, smaller grid sizes, or reduced time steps. 
GA, a global optimization method based on the theory of 
natural evolution, has been shown in previous studies to 
produce results that are equal to or better than those of 
simulated annealing28 and to provide improved accuracy.29 
GA maintains a population of individuals, from which new 
generations are created through crossover and mutation 
operations. As the dispersion relation depends on both 
space and time, the phase velocity ratio was used as a fitness 
function for optimization. Over successive generations, 
the population evolves toward an optimal solution. The 
workflow for optimization is shown in Figure 1, and the 
steps for obtaining optimized FD coefficients are described 
below.

Figure 1. Workflow for optimization of finite-difference (FD) coefficients.
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The sinc interpolation was used to derive the FD 
operator.16 By applying the window values derived from 
this method, FD coefficients can be determined using 
Shannon’s sampling theorem30 as:

u x x
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The first derivative on a staggered grid was evaluated at 
midpoint x x�

1
2
� , as follows:
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For a 2M-point SGFD operator approximation, 
Equation (XII) becomes:
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where wn
M  are the window values.

The SGFD coefficients (an) were then determined from 
Equation (XIII) as:
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In the optimization process, an initial population 
comprising numerous sets of random M window values 
is generated for the 2N-order approximation, within the 
range of 0–1. Any number of initial sets can be considered; 
in this study, around 100 sets were used to ensure that the 
algorithm performs a global search. The FD coefficients are 
then computed using Equation (XIV). The phase velocity 
ratio (or dispersion relation) was used as the fitness 
function in GA.

The phase velocity ratio was calculated by substituting 
Equation (V) in Equation (IV), expressed as:
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where r v t
x

�
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During each iteration process, crossover and mutation 
operations are applied to generate child populations 
of window values that better fit the fitness function. 
A  weighted function was incorporated into the fitness 
function to minimize errors more effectively at low 
wavenumbers, as described by Vanga et al.4 The final fitness 
function is given by:

fit w err w errmean std� �1 2 � (XVI)

where w1 and w2 are the weights assigned to the mean 
error (errmean) and the standard deviation of the error 
(errstd), respectively, with the condition w1+w2 = 1. The 
mean error was calculated as:

err
wg i

wg imean

i

K
i

K
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�1 1
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| |�

Where wg(i) is the weighting function over K samples, 
K is the total number of wavenumber indices.

The standard deviation of the error is calculated as:

err
err i err

Kstd
i

K

mean�
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�� 1
2[ ]

where err(i) = |(1-δi)| is the absolute error of the phase 
velocity ratio.

The weights w1 and w2 are user-defined parameters 
that determine the contribution of each error component 
to the final fitness value. In this study, different weighting 
functions were tested to identify the most suitable 
configuration.

3. Results
We tested linear, exponential, and cubic weighting 
functions by varying the weights used to calculate the 
mean dispersion error and standard deviation. After 
conducting several trials and evaluating the results, the 
linear weighting function wg(i) = (kmax−i+1) was found 
to provide the best outcomes.4 Based on this finding, we 
finalized the weight values as w1 = 0.8 and w2 = 0.2, which 
yielded optimal performance. These values are used in 
all subsequent numerical examples. We computed the 
FD coefficients derived using the GA and compared the 
resulting dispersion curves (phase velocity ratios), as shown 
in Figure  2, with those obtained using conventional and 
time-space Taylor series-derived FD coefficients.15 These 
GA-derived solutions provide broader kh coverage and 
show minimal frontal (time) dispersion, as the coefficients 
are optimized considering both space and time domains. 
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The proposed method achieves the accuracy of higher-
order conventional and time-space methods even at lower 
orders (e.g., the proposed 8th-order method is equivalent to 
the 16th-order time-space and the 12th-order conventional 
method, as shown in Figure 2). The grid spacing is 10 m, 
the time step is 1 ms, and the wave propagation velocity is 
2.5 km/s.

We also compared the results with the previously 
proposed GA-based explicit FD method,4 as shown in 
Figure 3, which shows improved performance when using 
the staggered grid FDM over the explicit FDM.

To examine how dispersion varies with velocity for 
three different methods, we calculated phase velocity ratios 
(Figure  4) for wave velocities of 1.5  km/s (Figure  4A), 
2.5  km/s (Figure  4B), and 4.5  km/s (Figure  4C), using 
4th, 8th, 12th, and 16th orders of approximation. As shown 

in Figure 4, it is observed that the new method produces 
significantly less dispersion compared to the conventional 
and time-space methods across all approximation orders 
and velocity settings.

Figure  5 shows the dispersion curves for different 
velocities using a 12th-order approximation for the 
conventional method (Figure 5A), the time-space method 
(Figure  5B), and the proposed method (Figure  5C). As 
shown in Figure  5A, it is clearly observed that, with 
increasing velocity, the conventional method exhibits high 
dispersion in both temporal and spatial components. In 
the case of the time-space method, temporal dispersion is 
eliminated; however, spatial dispersion remains significantly 
high at larger kh values compared to the proposed method. 

Figure  3. Dispersion curves versus kh for conventional, time-space, 
and new genetic algorithm (GA)-based staggered grid finite-difference 
methods (FDM) compared with the GA-based explicit FDM for a 
12th-order approximation.

Figure 2. Plot of phase velocity ratio (dispersion) versus the product of 
the wavenumber (k) and grid spacing (h) for conventional, time-space 
and new genetic algorithm-based staggered grid methods, across various 
orders (M) of approximations.

Figure 4. Dispersion versus the kh for different velocities v: (A) 1.5 km/s, 
(B) 2.5  km/s, and (C) 4.5  km/s, for various order sof approximations 
M, using conventional, time-space, and new genetic algorithm-based 
staggered grid methods. The grid spacing is 15 m, and time step is 1 ms.

B

C

A
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Although the time-space method exhibits stable dispersion 
behavior, it has limited wavenumber coverage. In contrast, 
the proposed method demonstrates greater stability and 
broader wavenumber coverage than both the conventional 
and time-space methods. The stability ratio (s) was 
calculated using the conventional eigenvalue method of 
stability analysis15:

s a
m

M

m�
�

�
�

�

�
�

�

�

�
1

1

Figure  6 shows the stability ratio as a function of 
increasing approximation order for the conventional, time-
space, and proposed methods, using a velocity of 2.5 km/s, 

a time step of 1 ms, and a grid spacing of 15 m. It is also 
evident that the staggered FDM offers greater stability than 
the explicit FDM. SGFD methods are less constrained by 
Courant number limitations, which allows for the use of 
larger time steps without compromising stability. This, in 
turn, significantly reduces computation time.

3.1. Numerical examples of 2D wave propagation

For the 2D wave simulation, we consider three models: (i) a 
single velocity medium with 2.5  km/s, (ii) a horizontal-
layered model, and (iii) the 2004 British Petroleum (BP) 
benchmark salt-dome model. We compared 2D wave 
propagation results at different simulation times using 
the conventional and time-space method for 4th, 8th, and 
12th-order approximations. A  40th-order conventional 
method was used as the reference solution. Figure  7 
presents 2D wave propagation snapshots for the 
single-velocity medium. Quarter I shows the reference 
solution using the 40th-order conventional method; 
quarter II displays results from the GA-based method; 
quarter III shows the conventional method; and quarter 
IV is the time-space method. Snapshots were taken at 0.5 
s (top panel) and 1.15 s (bottom panel). The wavefields 
were generated in a single velocity (2.5 km/s) medium 
measuring 3 km × 3 km, using a grid spacing of 15 m, 
a time step 1 ms, and a 30  Hz Ricker wavelet as the 
source. The results show that the proposed GA-based 
method exhibits significantly lower dispersion across 
all snapshot times compared to other SGFD methods.

Figure  8 shows the horizontal-layered model 
(Figure 8A) and the 2004 BP benchmark salt-dome model31 

(Figure 8B), both used to generate synthetic shot gathers. 
To reduce computational cost, we used staggered FD 
coefficients optimized for the minimum velocity in each 

Figure 5. Dispersion versus kh for varying velocities v, using a 12th-order 
approximation for: (A) conventional, (B) time-space, and (C) new genetic 
algorithm-based staggered grid methods. Grid spacing is 10 m, and time 
step is 1 ms.

B

C

A

Figure  6. Comparison of stability conditions for the proposed genetic 
algorithm (GA)-based staggered grid finite-difference method (FDM; 
green) with the GA-based explicit FDM (blue), conventional staggered 
grid FDM (red), and time-space staggered grid FDM (purple).
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model. Given that lower velocities (i.e., higher kh) are more 
dispersive and exhibit reduced wavenumber (k) coverage 
compared to higher velocities, coefficients optimized for 
the lowest velocity in the model can be applied effectively 

across the full velocity range. However, if the velocity 
range in the model is very broad, coefficients may need to 
be optimized for different velocity zones to achieve better 
accuracy. The values of the optimized coefficients for a 

Figure 7. Snapshots of 2D wave propagation in a homogeneous model for 4th, 8th, and 12th orders. Quarter I shows the reference wavefield generated using 
the 40th-order conventional method; quarter II is the new genetic algorithm-based method; quarter III is the time-space method; and quarter IV is the 
conventional method.

Figure 8. Velocity models used in the study: (A) the horizontal-layered model, and (B) the 2004 BP benchmark salt-dome model. Red stars indicate the 
source positions.

BA
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12th-order approximation, using a grid size of 10 m and a 
time step of 1 ms, are provided in Table 1.

Figure  9 shows the shot gathers computed using the 
horizontal-layered model (Figure 8A) and Figure 10 shows 
the shot gathers generated from the BP 2004 benchmark 
salt-dome model (Figure  8B). The horizontal-layered 
model was used to interpret wave propagation without 
diffraction effects. The source was placed at x = 3990  m 
and z = 2250 m. We employed the first derivative of the 
staggered scheme to discretize the wave equation and 
used a time step ∆t = 1 ms and grid spacing ∆x = 10 m. 
Shot gathers were computed using both the conventional 

and GA-based methods. The gather generated using 
the 40th-order conventional method is considered the 
reference (Figures  9I and 10I). Figures  9(II) and 10(II) 
show the results for the 12th-order conventional method. 
Figures  9(III) and 10(III) present the new GA-based 
method using FD coefficients optimized with the lowest 
velocity in the model, while Figures  9(IV) and 10(IV) 
show the new GA-based method using FD coefficients 
optimized over a range of velocities. Compared to the 
conventional method, the GA-based optimized method 
yielded improved results with reduced dispersion and 
lower computational cost by using a lower-order expansion 

Table 1. Optimized finite‑difference coefficients for 12th‑order approximation

Velocity (m/s) Coefficient 1 Coefficient 2 Coefficient 3 Coefficient 4 Coefficient 5 Coefficient 6

1,500 1.24712819 −0.11964252 0.03317386 −0.01119058 0.00340783 −0.00058573

2,000 1.23966780 −0.11480708 0.03063733 −0.00987106 0.00270170 −0.00024662

2,500 1.23345081 −0.11135320 0.02889657 −0.00883066 0.00214908 −0.00018497

3,000 1.23220741 −0.11342553 0.03262676 −0.01146971 0.00397580 −0.00101733

3,500 1.21853003 −0.10458359 0.02795159 −0.00870379 0.00224119 −0.00036994

4,000 1.21355644 −0.10444543 0.03043838 −0.01101295 0.00394510 −0.00101733

4,500 1.19863567 −0.09518902 0.02546479 −0.00804402 0.00217978 −0.00033911

Figure 9. Shot gathers (A) for the horizontal-layered model (Figure 8A). (I) Reference gather generated using the 40th-order conventional method, (II) 
12th-order conventional method, (III) new genetic algorithm (GA)-based method with finite-difference (FD) coefficients optimized for the lowest velocity 
in the model, and (IV) new GA-based method with varying FD coefficients optimized across a range of velocities. Zoomed-in views of the dashed white 
boxes (B and C) inside Figure A are shown below the corresponding gathers.
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with optimized coefficients. Two optimization approaches 
were considered: Figures 9(III) and 10(III) show that FD 
coefficients were optimized using the lowest velocity in 
the model, while Figures 9(IV) and 10(IV) show that FD 
coefficients were optimized across a range of velocities. 
Specifically, SGFD coefficients were optimized at intervals of 
every 500 m/s. Figures 9(III) and 10(III) good balance between 
computational efficiency and accuracy, making it suitable 
for applications requiring broad adaptability across varying 
velocities. In contrast, as shown in Figures 9(IV) and 10(IV), 
though slightly more computationally intensive, provide 
enhanced accuracy in regions with sharp velocity contrasts 
or complex geological features. This approach is generally 
more effective in minimizing dispersion errors under varying 
velocity conditions, thereby improving the reliability of wave 
propagation simulations in challenging environments.

Numerical modeling using 12th-order approximations 
of the GA-based, conventional and reference (40th-order 
conventional) was performed. The simulated results 
are shown in Figures  11 and 12 for the horizontal-
layered and salt-dome velocity models, respectively 
(Figure  8). Figures  11A and 12A present the reference 
wavefields generated using the 40th conventional method. 
Figures  11B and 12B correspond to the 12th-order 

conventional method. Figures 11C and 12C show results 
from the proposed SGFD method using FD coefficients 
optimized for the minimum velocity in the model, while 
Figures 11D and 12D show the SGFD method using FD 
coefficients optimized over a range of velocities. In the 
horizontal-layered model, five interfaces are present, with 
the third interface being a negative interface. In the bottom 
panel of Figure  11, the first signal in the seismic traces 
corresponds to the direct wave; the second to the first 
interface; the third to the second interface; the fourth to 
the negative interface; the fifth to the fourth interface; and 
the sixth to the fifth interface. The 12th-order conventional 
method shows more dispersion in all reflected signals 
(including direct and interface reflections), as observed 
in the seism mic traces beneath the snapshots. As shown 
in Figures  11 and 12, it is evident that the seismogram 
produced by the proposed method exhibits significantly 
less dispersion compared to the conventional method.

4. Discussion
This study focused on modeling seismic wave equations 
using the SGFD approach combined with GA optimization. 
The primary goals of seismic wave simulation are to reduce 
numerical dispersion, improve accuracy, and minimize 

Figure  10. Shot gather (A) for the BP salt-dome model (Figure  8B). (I) Reference gather generated using the 40th-order conventional method, (II) 
12th-order conventional method, (III) new genetic algorithm (GA)-based using finite-difference (FD) coefficients optimized for the lowest velocity in the 
model, and (IV) new GA-based method using varying FD coefficients optimized for a range of velocities. Zoomed-in views of the dashed white boxes (B, 
C) inside Figure A are shown below the corresponding gathers.
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Figure 11. Acoustic wave simulations in the horizontal-layered model (Figure 8A). (A) Reference wavefield generated using the 40th-order conventional 
method. Wavefields generated using the 12th-order approximation for: (B) conventional and (C) new genetic algorithm (GA)-based method using finite-
difference (FD) coefficients optimized for the minimum velocity, and (D) new GA-based staggered grid FD method with varying FD coefficients optimized 
for a range of velocities. Seismic traces shown below the wavefields correspond to the source (red stars) and receiver (blue triangles) locations.
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computational time. The staggered grid approach is 
preferred over conventional methods due to its inherent 
interpolation accuracy and stability. GA is employed to 
improve FD coefficients by considering velocity, grid spacing, 
and time step, resulting in coefficients that better satisfy 
both spatial and temporal dispersion relations. Even with 
lower-order approximations, the study demonstrates that 
GA-optimized coefficients outperform traditional and time-
space Taylor series-derived coefficients by providing broader 
wavenumber coverage and reduced frontal dispersion.

The computation times for optimizing coefficients over 
20 iterations using a standard workstation with 60 Gb 
RAM are 12.873, 21.390, 21. 993, and 22.064 s for the 4th, 
8th, 10th, and 12th  orders, respectively. The computational 
cost of optimizing FD coefficients using GA does not 
scale linearly with the order of approximation. While 

higher-order schemes, such as the 12th order, involve more 
coefficients than lower-order schemes like the 6th order, the 
increase in computation time is not directly proportional. 
This is because the solution space expands significantly 
at higher orders, providing more flexibility for GA to 
converge efficiently toward an optimal set of coefficients. 
As a result, although higher-order approximations require 
more iterations, the search benefits from a larger parameter 
space, leading to a more gradual increase in computation 
time rather than linear growth. There is some randomness 
in the values of each optimized coefficient during the 
GA process due to its stochastic nature. However, after a 
sufficient number of iterations, the overall accuracy and 
wavenumber coverage remain consistent. This ensures that 
variations in individual coefficients do not significantly 
affect the modeling outcomes.
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Figure 12. Acoustic wave simulations in the BP salt-dome model (Figure 8B). (A) Reference wavefield generated using the 40th-order conventional method. 
Wavefields generated using the 12th-order approximation for: (B) conventional, and (C) new genetic algorithm (GA)-based method using finite-difference 
(FD) coefficients optimized for the minimum velocity, and (D) new GA-based method with varying FD coefficients optimized for a range of velocities. 
Seismic traces shown below the wavefields were generated using the source and receiver locations indicated by red stars and blue triangles, respectively.
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For wavefield simulation, the computation time for 
both the horizontal-layered and salt-dome model was 
approximately 110 s, as both models used the same grid 
size and simulation time (2.4 s). However, when using 
FD coefficients optimized across a range of velocities, the 
same simulations take about 130 s due to the additional 
computation required to apply multiple velocity-
dependent stencils. These results show the adaptability 
of the method to complex structures and highlight how 
optimized FD coefficients can be reused across a range 
of velocities within a model. When modeling complex 
geological structures, velocity variations tend to increase. 
For such models, FD coefficients optimized across a range 
of velocities can be precomputed and stored them as 
stencils for future simulations, providing an efficient and 
flexible solution.

5. Conclusion
We propose an SGFD method for seismic wavefield 
simulation, in which the FD coefficients are optimized using 
a GA. Our results show improved accuracy and reduced 
numerical dispersion compared to both conventional and 
time-space methods. Although the computational cost for 
determining the optimized coefficients is higher than that 
of conventional methods, this is a 1-time expense. Once 
the algorithm is run for a set of representative velocities 
in the model and the optimal coefficients are obtained, 
the final simulation cost is reduced. This is because the 
proposed method achieves high accuracy even with lower-
order approximations. For example, the eighth-order 
approximation using the proposed method provides results 
similar to the 12th-order time-space method (Figure 2), and 
the 12th-order approximation yields results comparable to 
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the 40th-order conventional method (Figures 11 and 12). 
The results presented in this study demonstrate that the 
optimized SGFD method can be effectively used for 
seismic wave simulation and may support comparison 
with real data to obtain more accurate subsurface imaging.

Acknowledgments
The authors gratefully acknowledge the Council of 
Scientific and Industrial Research—National Geophysical 
Research Institute (CSIR-NGRI), Hyderabad, for 
providing academic guidance and research infrastructure. 
The authors also thank the Academy of Scientific and 
Innovative Research (AcSIR) for serving as the academic 
body facilitating the doctoral program and for their 
continuous support throughout this research.

Funding
This research was supported by the Ministry of Earth 
Science (MoES), New  Delhi (grant number: MoES/
OSMART/EFC2021 - OM No. 01(01)/PFC-I/2022).

Conflict of interest
The authors declare that they have no competing interests.

Author contributions
Conceptualization: Mounika Vanga, Maheswar Ojha
Formal analysis: Mounika Vanga
Investigation: Mounika Vanga
Methodology: Mounika Vanga
Software: Mounika Vanga
Writing–original draft: Mounika Vanga
Writing–review & editing: Mounika Vanga, Maheswar Ojha

Availability of data
No data is associated with this theoretical work.

References
1.	 Kelly KR, Ward RW, Treitel S, Alford R. Synthetic 

seismograms: A  finite  -difference approach. Geophysics. 
1976;41(1):2-27.

	 doi: 10.1190/1.1440605.

2.	 Zhi‐Yang W, Hong L, Xiang‐De T, Yang W. Optimized 
finite-difference operator based on chebyshev auto-
convolution combined window function. Chin J Geophys. 
2015;58(2):192-206.

	 doi: 10.1002/cjg2.20166

3.	 Jing H, Yang G, Wang J. An optimized time-space-
domain finite difference method with piecewise constant 
interpolation coefficients for scalar wave propagation. 
J Geophys Eng. 2019L;16(2):309-324.

	 doi: 10.1093/jge/gxz008

4.	 Vanga M, Barman D, Ojha M. An optimized finite difference 
method to minimize numerical dispersion of acoustic 
wave propagation using a genetic algorithm. Geophysics. 
2022;87(3):T265-T279.

	 doi: 10.1190/geo2021-0382.1

5.	 Patera AT. A  spectral element method for fluid dynamics: 
Laminar flow in a channel expansion. J  Comput Phys. 
1984;54(3):468-488.

	 doi: 10.1016/0021-9991(84)90128-1

6.	 Komatitsch D, Vilotte JP. The spectral element method: 
An efficient tool to simulate the seismic response of 
2D and 3D geological structures. Bull Seismol Soc Am. 
1998;88(2):368-392.

	 doi: 10.1785/bssa0880020368

7.	 Chaljub E, Komatitsch D, Vilotte JP, Capdeville Y, Valette B, 
Festa G. Spectral-element analysis in seismology. Adv 
Geophys. 2007;48:365-419.

	 doi: 10.1016/s0065-2687(06)48007-9

8.	 Cristini P, Komatitsch D. Some illustrative examples of 
the use of a spectral-element method in ocean acoustics. 
J Acoust Soc Am. 2012;131(3):EL229-EL235.

	 doi: 10.1121/1.3682459

9.	 Bottero A, Cristini P, Komatitsch D, Asch M. An 
axisymmetric time-domain spectral-element method for 
full-wave simulations: Application to ocean acoustics. 
J Acoust Soc Am. 2016;140(5):3520-3530.

	 doi: 10.1121/1.4965964

10.	 Dormy E, Tarantola A. Numerical simulation of elastic wave 
propagation using a finite volume method. J  Geophys Res 
Atmos. 1995;100(B2):2123-2133.

	 doi: 10.1029/94jb02648

11.	 Eymard R, Gallouët T, Herbin R. Finite volume methods. 
In: Handbook of Numerical Analysis. Amsterdam: Elsevier; 
2000. p. 713-1018.

	 doi: 10.1016/s1570-8659(00)07005-8

12.	 Komatitsch D, Erlebacher G, Göddeke D, Michéa D. 
High-order finite-element seismic wave propagation 
modeling with MPI on a large GPU cluster. J Comput Phys. 
2010;229(20):7692-7714.

	 doi: 10.1016/j.jcp.2010.06.024

13.	 Igel H, Riollet B, Mora P. Accuracy of Staggered 3‐D finite‐
Difference Grids for Anisotropic Wave Propagation. Society 
of Exploration Geophysicists. 1992. p. 1244-1246.

	 doi: 10.1190/1.1821960.

14.	 Finkelstein B, Kastner R. Finite difference time 
domain dispersion reduction schemes. J  Comput Phys. 
2006;221(1):422-438.

https://dx.doi.org/10.36922/JSE025290035
http://dx.doi.org/10.1190/1.1440605.
http://dx.doi.org/10.1002/cjg2.20166
http://dx.doi.org/10.1093/jge/gxz008
http://dx.doi.org/10.1190/geo2021-0382.1
http://dx.doi.org/10.1016/0021-9991(84)90128-1
http://dx.doi.org/10.1785/bssa0880020368
http://dx.doi.org/10.1016/s0065-2687(06)48007-9
http://dx.doi.org/10.1121/1.3682459
http://dx.doi.org/10.1121/1.4965964
http://dx.doi.org/10.1029/94jb02648
http://dx.doi.org/10.1016/s1570-8659(00)07005-8
http://dx.doi.org/10.1016/j.jcp.2010.06.024
http://dx.doi.org/10.1190/1.1821960.


Journal of Seismic Exploration Optimized staggered grid FDM

Volume 34 Issue 2 (2025)	 13� doi: 10.36922/JSE025290035 

	 doi: 10.1016/j.jcp.2006.06.016

15.	 Liu Y, Sen MK. Scalar wave equation modeling with 
time-space domain dispersion-relation-based staggered-
grid finite-difference schemes. Bull Seismol Soc Am. 
2011;101(1):141-159.

	 doi: 10.1785/0120100041

16.	 Chu C, Stoffa PL. Determination of finite-difference 
weights using scaled binomial windows. Geophysics. 
2012;77(3):W17-W26.

	 doi: 10.1190/geo2011-0336.1

17.	 Tan S, Huang L. An efficient finite-difference method 
with high-order accuracy in both time and space domains 
for modelling scalar-wave propagation. Geophys J Int. 
2014;197(2):1250-1267.

	 doi: 10.1093/gji/ggu077

18.	 Tam CK, Webb JC. Dispersion-Relation-Preserving finite 
difference schemes for computational acoustics. J  Comput 
Phys. 1993;107(2):262-281.

	 doi: 10.1006/jcph.1993.1142

19.	 Geller RJ, Takeuchi N. Optimally accurate second-order 
time-domain finite difference scheme for the elastic 
equation of motion: One-dimensional case. Geophys J Int. 
1998;135(1):48-62.

	 doi: 10.1046/j.1365-246x.1998.00596.x

20.	 Zhang JH, Yao ZX. Optimized finite-difference operator 
for broadband seismic wave modeling. Geophysics. 
2012;78(1):A13-A18.

	 doi: 10.1190/geo2012-0277.1

21.	 Zhang JH, Yao ZX. Optimized explicit finite-difference 
schemes for spatial derivatives using maximum norm. 
J Comput Phys. 2013;250:511-526.

	 doi: 10.1016/j.jcp.2013.04.029

22.	 Liu Y. Globally optimal finite-difference schemes based on 
least squares. Geophysics. 2013;78(4):T113-T132.

	 doi: 10.1190/geo2012-0480.1

23.	 Liu Y. Optimal staggered-grid finite-difference schemes 

based on least-squares for wave equation modelling. 
Geophys J Int. 2014;197(2):1033-1047.

	 doi: 10.1093/gji/ggu032

24.	 Yang L, Yan H, Liu H. Optimal implicit staggered‐grid finite‐
difference schemes based on the sampling approximation 
method for seismic modelling. Geophys Prospect. 
2015;64(3):595-610.

	 doi: 10.1111/1365-2478.12325

25.	 Miao Z, Zhang J. Simplified implicit finite-difference method 
of spatial derivative using explicit schemes with optimized 
constant coefficients based on L1 norm. Geophysics. 
2023;89(2):T47-T59.

	 doi: 10.1190/geo2023-0246.1

26.	 Peng W, Huang J, Shen Y. Reducing the low-wavenumber 
dispersion error by building the Lagrange dual problem 
with a powerful local restriction. J  Geophys Eng. 
2023;20(4):798-815.

	 doi: 10.1093/jge/gxad047

27.	 Brekhovskikh, L.M. Waves in Layered Media. Vol.  42. 
New York: Academic Press; 1960. p. 129.

28.	 Manikas TW, Cain JT. Genetic Algorithms vs. Simulated 
Annealing: A  Comparison of Approaches for Solving the 
Circuit Partitioning Problem; 1996. Available from: https://
digitalrepository.smu.edu/engineering_compsci_research/1 
[Last accessed on 2025 Apr 13].

29.	 Santos EPD, Xavier CR, Goldfeld P, Dickstein F, Santos RWD. 
Comparing genetic algorithms and Newton-Like methods 
for the solution of the history matching problem. In: 
Lecture Notes in Computer Science. Berlin: Springer; 2009. 
p. 377-386.

	 doi: 10.1007/978-3-642-01970-8_37

30.	 Smith, Julius O. Physical Audio Signal Processing. California: 
Stan Ford University: 2010. Available from: https://ci.nii.
ac.jp/ncid/bb07079768?l=en [Last accessed on 2025 Apr 13].

31.	 Billette FJ, Brandsberg-Dahl S. The 2004 BP Velocity 
Benchmark. In: 67th  EAGE Conference and Exhibition. 
Bunnik: European Association of Geoscientists and 
Engineers; 2005.

https://dx.doi.org/10.36922/JSE025290035
http://dx.doi.org/10.1016/j.jcp.2006.06.016
http://dx.doi.org/10.1785/0120100041
http://dx.doi.org/10.1190/geo2011-0336.1
http://dx.doi.org/10.1093/gji/ggu077
http://dx.doi.org/10.1006/jcph.1993.1142
http://dx.doi.org/10.1046/j.1365-246x.1998.00596.x
http://dx.doi.org/10.1190/geo2012-0277.1
http://dx.doi.org/10.1016/j.jcp.2013.04.029
http://dx.doi.org/10.1190/geo2012-0480.1
http://dx.doi.org/10.1093/gji/ggu032
http://dx.doi.org/10.1111/1365-2478.12325
http://dx.doi.org/10.1190/geo2023-0246.1
http://dx.doi.org/10.1093/jge/gxad047
http://dx.doi.org/10.1007/978-3-642-01970-8_37


Volume 34 Issue 2 (2025)	 14 doi: 10.36922/JSE025240016 

ARTICLE

An innovative method for computing static 
corrections using seismic reflection horizons 
analysis

Youcef LADJADJ1,2* , Mohamed Cherif BERGUIG1 , and Said GACI3

1Laboratory of Geophysics, Department of Geophysics, Faculty of Earth Sciences, Geography and 
Regional Planning, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
2Department of Physics, Faculty of Sciences, Ferhat Abbas University, Sétif, Algeria
3Central Directorate Research and Development, Sonatrach, Boumerdès, Algeria

Journal of Seismic Exploration

Abstract
Seismic exploration faces significant challenges due to the physical parameters 
and geometric complexity of near-surface layers, making their modeling essential 
for accurately calculating static corrections. These corrections are crucial for 
preserving the image of geological structures represented by seismic reflectors. 
However, obtaining key physical parameters, such as the replacement velocity 
of the substrate and the velocities and thicknesses of near-surface layers, remains 
challenging. This study proposes a novel approach that addresses the issue in an 
alternative way. The innovative calculation method allows the direct computation 
of static corrections, relying solely on the structural analysis of seismic horizons in 
the near-trace section. Notably, this approach does not require prior knowledge 
of the weathered zone model. The application of this method to both simulated 
and real reflection seismic data demonstrates its potential and effectiveness. The 
static corrections derived from this approach significantly improve seismic image 
quality and eliminate abnormal regional static corrections compared to calibrated 
refraction static corrections. Furthermore, this method does not require calibration 
with borehole data, simplifying the process and representing a significant advantage 
over traditional methods. In summary, this innovative approach provides an effective 
solution to the challenges of near-surface layer modeling, delivering substantial 
improvements quantitatively—through time and effort savings, and reduced error—
and qualitatively by enhancing data quality, ensuring consistency with geological 
realities, and enabling more reliable geological interpretations.

Keywords: Static corrections; Weathered zone model; Near-surface layers; Near-surface 
structures; Near-trace section; Seismic horizons; Frequency decomposition

1. Introduction
In seismic exploration, the heterogeneity and anisotropy associated with velocity 
variations, along with the geometric and lithological complexity of near-surface layers, 
significantly influence the arrival times of seismic waves. As a result, these factors affect 
imaging characteristics such as continuity, coherence, resolution, and particularly the 
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shape of seismic horizons and the geological information 
obtained.1-4

Computing static corrections is a processing operation 
that involves aligning the source and receiver points on the 
same reference plane. This is achieved by filling the gap 
between the datum plane and the bedrock of low-velocity 
layers with a replacement velocity close to or equal to that 
of the consolidated layer.1,4

The refraction statics method is the most commonly 
used approach for determining static corrections in 
seismic processing centers. It calculates statics by modeling 
near-surface layers, a process that remains challenging. 
Existing methods utilize the travel times of refracted 
waves to generate a model of the weathered zone (WZ) for 
computing static corrections. However, these refraction 
statics methods require picking the first arrivals on seismic 
reflection records, which consumes time and necessitates 
significant human intervention.5-9

Near-surface structures often coexist with low-quality 
first arrivals, particularly in scenarios involving complex 
geometries, which complicates the picking process.10 
Constructing accurate surface models requires high-
quality first arrivals; however, results from the refraction 
method based on these data are not always satisfactory. 
Therefore, calibrating static corrections with borehole 
information is essential to achieve reliable values.11 In 
regions with poor-quality refractors and terrestrial areas 
with intricate surface features, the correction process is 
often complicated, making it time-consuming. To tackle 
these challenges, automatic picking techniques for first 
arrivals have been developed.12-16 However, low-quality 
first arrivals frequently coincide with complex near-surface 
structures, further complicating the picking procedure.10,17 
In addition, surface conditions and the characteristics of 
the near-surface layer—such as heterogeneity, anisotropy, 
discontinuities, geological uplifts, velocity inversions, and 
variations in interface shape and dip—affect the recorded 
refraction waves. These factors contribute to the difficulties 
in modeling the WZ.1,4

The challenges faced when using refracted waves from 
reflection seismic acquisition underscore the limitations 
of static refraction corrections and raise the question 
of whether these first arrival waves are truly suitable for 
modeling the WZ.

In this work, we introduce a novel technique for 
computing primary static corrections from the travel 
time of reflected waves, eliminating the need for first 
arrival picking and the requirement to model the WZ. 
This technique utilizes near-trace sections to facilitate 
the rapid and straightforward identification of seismic 

horizons (reflectors) affected by static anomalies. The 
potential, performance, and effectiveness of this method 
are confirmed and validated through its application to 
simulated data, followed by real seismic data.

It is well established that one of the quality control 
procedures for static corrections involves verifying the data 
from seismic sections post-stacking.11 Using this criterion, 
the quality control was conducted on seismic profile data 
measuring 68 km, characterized by clearly variable surface 
conditions and morphology.

The seismic sections of the profile were processed using 
two static correction solutions: the proposed technique 
and the diminishing residual matrices (DRM) refraction 
statics method.18 A comparison of the results was then 
performed on both obtained seismic sections.

This comparison demonstrates that the proposed 
method significantly reduces the errors associated 
with the DRM approach. Consequently, the results 
highlight the advantages of this new technique and 
provide a comprehensive evaluation of its impact on the 
interpretation of seismic data.

2. Methodology
Sedimentary basins have generally undergone multiple 
tectonic phases, significantly altering sedimentation 
patterns and basin morphology. The impact of tectonic 
forces on the formation and evolution of geological 
layers and sedimentary environments highlights the 
geological deformations from the Paleozoic to the 
Cenozoic eras.19-26 Consequently, geological layers did 
not form simultaneously. These layers have experienced 
syn-sedimentary deformations, resulting in geological 
interfaces that are globally uncorrelated and linearly 
independent of one another. This characteristic serves 
as a valuable criterion for evaluating the accuracy of the 
structural image represented by the seismic reflection 
horizons in the near-trace section.27 Thus, in a zero-offset 
seismic section without applied static corrections, it can 
be observed that all seismic horizons, from top to bottom, 
are influenced by the same deformation. This deformation 
manifests as a common curve among the seismic horizon 
curves in the zero-offset seismic section, corresponding to 
the total static corrections. Consequently, calculating this 
common curve provides the requisite static corrections for 
accurate interpretation.28

This study aims to extract this common curve, or 
common solution, from the seismic horizons selected 
on the near-trace section. The principle of the method is 
illustrated on simulated data, corresponding to a geological 
model with three synthetic horizons, before and after 
removing the common curve (Figure 1).

https://dx.doi.org/10.36922/JSE025240016


Journal of Seismic Exploration Reflection primary static corrections

Volume 34 Issue 2 (2025)	 16� doi: 10.36922/JSE025240016 

H F CS x t
H F CS x t
H F

1 1

2 2

3 3

x t x t
x t x t
x t x

, , ( , )
, , ( , )
, ,

� � � � � �
� � � � � �
� � � tt� � �

�

�
�

�
� CS x t( , )

� (I)

In Equation I, H1, H2, and H3 refer to the horizons 
before application of static corrections (time geological 
model), F1, F2, and F3 refer to the horizons after application 
of static corrections, CS refers to the common solution 
(static corrections model), and (x, t) is the spatiotemporal 
localization.

The process applied the Fourier transform to the 
mathematical functions representing the horizon curves 
selected on the seismic section of the near-trace section 
into several frequency classes.4,27-29 Then, these frequency 
classes were constructed and used as matrix data to 
calculate the separation operator matrix and, consequently, 
the common solution curve, CS(x, t).

The computational procedure employed by the 
proposed method for calculating static corrections is 
summarized in Table 1.

3. Results
3.1. Application to simulated data

To demonstrate the potential of the suggested technique, 
it was applied to simulated data.30-33 For this purpose, 
a four-layer model was constructed and a known static 
anomaly containing high-  and medium-frequency 
components was introduced. The obtained results are 
shown in Figures  2  and 3. The separation operator was 
applied to all the decomposed selected horizons. The 
obtained curves of the common solutions were consistent 
and comparable (Figure  3). The average stack of all 

common solutions was considered to improve the solution 
accuracy.

The effectiveness of the method was further validated 
through a comparison of the original (theoretical) static 
model and the static corrections calculated post-separation. 
This comparison revealed a negligible discrepancy between 
the two curves, as illustrated by the error curve (Figure 4). 
In addition, the successful application of this method on 
simulated data confirmed its high calculation accuracy, 
highlighting its reliability and potential for application to 
real seismic data processing.

3.2. Application to real data

The shape of the time seismic horizons in the near-trace 
section indicated good geological interfaces deformed by 

Figure 1. Synthetic model of seismic horizons on the near-trace section, with and without effects of elevation and near-surface layers.
Abbreviation: CS: Common solution.

Table 1. The algorithm to calculate static correction using 
seismic reflection horizons

Input Data input and preprocessing

1 Construction of a near‑trace seismic section with no applied 
static corrections

2 Selection of significant seismic horizons

3 Spectral decomposition of selected horizons

4 Matrix computing

4.1 Construction of a binary matrix, the “separation operator,” 
by normalizing and stacking all the frequency classes

4.2 Obtaining the common matrix through outer multiplication 
of the separation operator with each decomposed horizon

4.3 The common curve is the stacking of all columns of the 
common matrix

4.4 The total statics curve is obtained by averaging stacks of all 
common curves

End Separation of source and receiver statics
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the effects of surface elevation and the properties of the 
near-surface layers (Figure 5). A near-trace seismic section 
was constructed by selecting the near-offset traces without 
applying static corrections, using data that had already 
been preprocessed (Figures 5 and 6). Five seismic horizons 
were identified and picked from top to bottom (Figure 5).

The common curve was determined based on the 
spectral decomposition of seismic horizons selected on a 

near-trace section. The elementary decomposition of each 
seismic horizon curve was performed within a common 
frequency band, established through the spectral frequency 
analysis of all horizon curves.

The curves were converted into traces with an inter-
common medium point of 12.5 m, and the sampling rate 
was set to 2 ms to adapt to the frequency range (0.1–60 Hz) 
for software processing (Figure  7). High frequencies 

Figure 2. Model of synthetic seismic horizons on near-trace section. (A) Static anomalies model at 15 Hz, summing to 90 Hz. (B) Horizons unaffected by 
statics at 5 Hz, 10 Hz, 20 Hz, and 25 Hz. (C) Horizons with static effects.

B

C

A

Figure 3. Graphical illustration of the static correction process, showing the decomposed horizons, the separation operator, and the common solution pre-
stack and post-stack curves. (A) The geological model is affected by static effects. (B) Decomposed horizons. (C) Separator operator. (D) Operator versus 
decomposed horizons. (E) Common components. (F) Computed statics model.

B C

D E F

A
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exhibited low amplitudes, which helped determine the 
maximum frequency limit for effective processing. The 
frequency analysis of each horizon revealed that high-
frequency components have low amplitudes (Figure  7E), 
aiding in determining the optimal maximum frequency 
and the overall frequency band for the subsequent 
elementary frequency decomposition (Figures 7 and 8).

Each curve was decomposed into elementary frequencies 
and sorted into frequency classes. The selected horizon curves, 
non-stationary signals, were individually decomposed using 
the short-time Fourier transform and then categorized into 
their respective frequency classes (Figure 9).

Each elementary trace was normalized, and a separation 
operator matrix was constructed. The common curve was 
then obtained by multiplying the operator matrix by each 
decomposed horizon matrix. The total statics curve was 
calculated as the average stack of all resulting curves. The 
common curve, derived from all horizons, was generated 
through element-by-element matrix multiplication of the 
normalized frequency elementary components, followed 
by summation to produce a common global solution curve 
(Figure 10).

When applied to all selected horizons, the operator 
matrix yielded consistent and comparable results with 

Figure 4. Comparison between the theoretical static model and the computed static corrections. The error curve indicates a maximum deviation of 5% 
(Emax=5%).

Figure 5. Seismic reflection horizons interpreted on the near-trace section without applying static corrections.
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Figure 6. CDP gathers traces. (A) Raw CDP gather traces compared to (B) filtered CDP gather traces, illustrating the enhancement in signal clarity 
following preprocessing.
Abbreviation: CDP: Common depth point.

BA

acceptable accuracy (Figure 10). To enhance the precision 
of the total static correction, the average of all common 
solution curves was computed (Figure 11).

An approximate calculation (Equations II–IX) 
was proposed to separate the source and receiver static 
corrections from the total static corrections using the 
elevations of the source and receiver to deduce a mean 
velocity. It considers the difference between source 
and receiver elevations, as well as the mean elevation 
of the entire seismic line (Zmean = 400  m in this case) 
(Figures 12 and 13).

δz = Zr − ZS� (II)

where δz is the difference between source and receiver 
elevations (in m), Zs is the source elevation (in m), and Zr 
is the receiver elevation (in m).

Zm = (ZS + Zr)/2� (III)

where Zm = ZCMP, in which Zm is the mean elevation 
between the source and the receiver (in m), also referred 
to as the common midpoint elevation (ZCMP). ZCMP is the 
elevation of the common medium point between the 
source and the receiver (in m).

Vm = 2 (Zm – Zmean)/CST� (IV)

Where Vm is the average velocity between the mean 
elevation Zm and the reference elevation Zmean.

� �
T

z

mV� � (V)

where δT is the time difference between the source and 
the receiver static corrections (in s).

CST = 2 (Zm – Zmean)/Vm� (VI)

where CST is the total static correction (in m), and Zmean 
is the mean elevation of the entire seismic line (400 m).

CST = CSS + CSR� (VII)

CSS = (CST − δT)/2� (VIII)

CSR = CST – CSS� (IX)

Where CSs is the source static correction, and CSR is the 
receiver static correction.

We present a novel technique for computing static 
corrections directly from the travel times of reflected 
waves. This approach calculates total static corrections by 
identifying seismic reflection horizons on the near-trace 
section. The static corrections for both the source and the 
receiver are derived from elevation values. To illustrate 
the effectiveness and efficiency of this method, the results 
were compared with those obtained from refraction statics 
based on the DRM method (Figures 14-17).

The suggested technique was applied to a 68-km seismic 
profile, and the results obtained were compared to those 
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Figure 7. Conversion and processing of horizon curves. (A) Selected horizon curves. (B) Superposition of selected horizon curves. (C) Horizon curves 
converted into traces. (D) Traces with a common frequency band. (E) Frequency spectrum of all the traces (percent power).

B

C D E

A

derived using the DRM-based refraction statics method.18 
The refraction statics solution was computed by picking 
the first arrivals in the offset range of 150–1100 m, using 
V0=800 m/s and V1=2,400 m/s (Figure 14).

The curves of the refraction static corrections and the 
proposed corrections displayed a similar global trend; however, 
notable differences were observed in the regional, medium, 
and short wavelengths (Figures 14 and 15). The differences in 
values (10–20 ms) between the static curves from the receivers 
over distances ranging from 10  km to 20  km (Figure  15) 
suggest the presence of significant errors that could result in 
misleading and erroneous structural interpretations, thereby 
distorting the overall geological interpretation.

This comparison demonstrated that the proposed 
method significantly reduced the errors associated with 
the DRM method (Figures  14 and 15). In addition, it 
enhanced the quality of seismic data and ensured accurate 

interpretation of geological structures (Figures 16 and 17). 
Consequently, the results highlighted the advantages of the 
proposed approach and offered a comprehensive evaluation 
of its impact on the interpretation of seismic data.

One quality control procedure for static corrections 
involves checking the data on the seismic section after 
stacking.11 The proposed method improved the seismic 
image and provided more precise and accurate static 
corrections. The horizons were clearer in the seismic section 
obtained. In addition, the comparison with calibrated 
refraction statics revealed significant improvements in 
seismic imaging and regional static anomalies removal 
(Figures 16 and 17).

Unlike static corrections derived from refraction 
methods, which require calibration with borehole 
data to correct regional trends, the suggested method 
eliminates the need for such calibration. This improved 
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Figure 8. Horizon curve frequency decomposition and amplitude analysis. (A) Elementary frequency decomposition and (B) corresponding frequency 
spectrum.

BA

Figure 9. Elementary frequency decomposition of the selected seismic horizons using the short-time Fourier transform.

accuracy enhances continuity, coherence, resolution, and 
the representation of geological structures, making this 
approach highly efficient for seismic data processing.

A comparison of the results showed that this method 
provided more accurate static corrections, significantly 
reducing errors and enhancing the quality of seismic 
horizons in terms of continuity, energy, resolution, and 
signal-to-noise ratio across the entire seismic section 
(Figures 16 and 17).

4. Discussion
In this study, we proposed an innovative method for 
calculating static corrections by analyzing horizons in the 
near-trace section, thereby eliminating the need for prior 
modeling of the near-surface layers.

The impact of heterogeneity and discontinuous 
structures near the surface on seismic wave velocity is 
evident in the variations observed in the travel times 
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Figure 10. Decomposed horizons matrix, the separation operator matrix, and the common solution pre-stack matrix and post-stack curve. (A) Decomposed 
horizons. (B) Separation operator. (C) Pre-stack common solution. (D) Common solution curve.

B C DA

Figure 11. All common solution curves obtained from each reflector (top). Middle: Superposed all common curves. Bottom: Average stack of the common 
curves (Total static solution).

Figure 12. Source elevations (orange) and receiver elevations (blue) along the acquisition line.
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of reflected seismic waves. The method is based on 
accurately identifying these horizons in a zero-offset 
section (before applying static corrections). The total 
static correction is derived by extracting the common 
deformation curve shared among the horizons. However, 
regardless of the complexity of the near-surface structures, 
if the seismic horizons cannot be clearly identified after 
advanced processing and filtering, the method will not 
be applicable and will be considered a limitation.34,35 The 
application of the proposed methodology to simulated 
data demonstrated its effectiveness, showing excellent 
agreement with theoretical models and thereby validating 
the robustness of the technique. This robust performance 
on simulated datasets provided a solid foundation for its 
application to real-world seismic data. However, while 
the results obtained from the real data offered valuable 
insights, they also revealed certain limitations, particularly 
under challenging conditions. These observations raise 
important considerations regarding the method’s reliability 
in less-than-ideal acquisition or geological contexts.

The results obtained from both simulated and real 
seismic data demonstrated that the proposed approach 
significantly outperformed traditional methods, 
particularly refraction statics, in terms of both accuracy 
and efficiency. When applied to real data, it yielded a 
notable enhancement in seismic image quality by effectively 
mitigating regional anomalies typically observed with 
calibrated static corrections. This improvement is critical 
for ensuring the continuity and consistency of seismic 
horizons, which are fundamental for reliable geological 
interpretation. Compared to calibrated refraction 
statics, the method produced substantial gains in image 
clarity, including enhanced structural continuity and 
resolution. Moreover, eliminating the need for borehole 
calibration streamlines the processing workflow while 
delivering clearer and more coherent seismic sections than 
conventional techniques.

Although the results are promising, it is essential to 
acknowledge certain limitations of the study. One of the 

Figure 13. Zoomed-in view of source (brown) and receiver (blue) elevation curves, highlighting elevation variations along the seismic profile.

Figure 14. Comparison of static correction curves obtained using the proposed method (purple) and the refraction method (red).
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main sources of error lies in the data quality, particularly 
when the data presents a low signal-to-noise ratio. In such 
cases, powerful filtering is required to clarify reflected 
seismic horizons, complicating their analysis and shape 
tracking.

In summary, this method demonstrated that the 
proposed method offers an efficient and reliable solution 
for calculating static corrections in seismic exploration. 
By simplifying the process and improving the quality of 
seismic images, it addresses one of the main challenges 
in seismic exploration: the modeling of complex and 
heterogeneous near-surface layers. Traditional methods, 

such as refraction statics, heavily rely on the quality of 
first arrivals, which can be problematic in challenging 
geological environments.10,11,36 The proposed method 
circumvents the need for first arrival picking and near-
surface layers modeling, which are both time-consuming 
and prone to human error.

Although this study has demonstrated the applicability 
of our methodology, it is essential to continue refining this 
approach to maximize the impact of the results in the field. 
It would be relevant to develop this method to integrate the 
study and analysis of discontinuous and segmented seismic 
horizons in the case of sedimentary basins with complex 

Figure 15. The difference between the static curves obtained from the proposed method and the refraction method, presented with smoothing (red) and 
without smoothing (blue).

Figure 16. Seismic section processed using refraction static corrections. CDP_elev refers to CDP elevation.
Abbreviation: CDP: Common depth point.
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and rugged geology. Furthermore, it is essential to further 
develop this method to be suitable for three-dimensional 
studies. These complementary avenues of research could 
strengthen the robustness of the method and broaden its 
scope of application.

5. Conclusion
The innovative method developed for calculating static 
corrections represents a significant advancement in 
seismic exploration methodologies. Based on the reality 
of geological structures, this approach utilized images of 
seismic horizons to directly estimate total static corrections 
without relying on prior information from the WZ model. 
This independence streamlined the correction process and 
enhanced the reliability of seismic interpretations.

The technique analyzes time seismic horizons 
(reflectors) selected from the near-trace section. By 
correcting for variations in surface elevation, the velocities 
of near-surface layers, and the bedrock (replacement 
velocity), the method effectively addresses the regional 
components of static corrections. This analysis prevents 
the introduction of fictitious structures, ensuring the final 
seismic images remain true to geological reality.

A comparison of the results showed that this method 
provides more accurate static corrections, and improves 
the seismic imaging and the quality of seismic horizons in 
terms of continuity, coherence, energy, resolution, signal-
to-noise ratio, while respecting the reality of geological 
structures over the entire seismic section, making 

this approach efficient for seismic data interpretation 
(Figures 16 and 17).

In addition, utilizing the near-trace section for horizon 
selection reduces the effort required for first arrival picking. 
This expedites the process and minimizes human error, 
resulting in faster execution than conventional methods. 
This advancement is achieved without needing borehole 
data surveys, increasing efficiency and accessibility, 
particularly in challenging terrains.

Overall, the results highlight the advantages of this 
method in improving seismic imaging and its impact on 
data interpretation. The proposed static corrections are 
more reliable than traditional techniques, particularly in 
complex geological settings.

The methodological advances introduced in this study 
encompass several key innovations and offer a robust 
and efficient alternative for computing static corrections 
in seismic exploration. It overcomes key limitations of 
traditional techniques. First, directly calculating static 
corrections eliminates the need for prior knowledge of the 
WZ model. In addition, the study removes the necessity for 
picking first arrivals and avoids calibration with borehole 
data, which reduces human error, simplifies the process, 
and lowers costs. The method is also independent of 
complex near-surface structures, effectively addressing 
discontinuity, heterogeneity, and anisotropy challenges 
in the near-surface layers. Moreover, it demonstrates 
efficiency in execution, achieving faster processing times 
through near-trace sections. Finally, the quality and 

Figure 17. Seismic section processed using the proposed static corrections. CDP_elev refers to CDP elevation.
Abbreviation: CDP: Common depth point.
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reliability of seismic images are enhanced by adhering to 
the structural geological reality.

Furthermore, this innovative method represents a 
substantial advancement in seismic exploration, contributing 
to more reliable and efficient geological assessments.
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Abstract
As seismic signals and artificial blasting signals exhibit high similarity in time–
frequency domain features, resulting in insufficient recognition accuracy, we 
propose a self-organizing map (SOM) neural network classification model based 
on complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) multiscale distribution entropy (MDE) feature extraction and Ant Lion 
Optimization (ALO) algorithm improvement. The multiscale decomposition of the 
original seismic and blasting signals was carried out using CEEMDAN, and the 
distribution entropy values of the obtained multiple intrinsic mode functions were 
calculated to construct multidimensional feature inputs containing complexity 
information in the time–frequency domain. The ALO algorithm optimized the key 
parameters of the SOM neural network (competing layer dimensions and number of 
training iterations), with the root mean squared error serving as the fitness function. 
The optimal solution obtained by ALO optimization replaced the hyperparameter 
values in the original model, and multiple prediction rounds were performed on 
the seismic data test set to address unstable classification performance caused by 
random initialization in the traditional SOM network. The results revealed that the 
recognition performance of the CEEMDAN–MDE combined with the ALO–SOM 
model was significantly improved compared with machine learning models, such 
as linear discriminant analysis (LDA), decision tree, support vector machine, 
probabilistic LDA, and AdaBoost. Its recognition accuracy, recall, and F1-score were 
99.3373%, 99.1479%, and 99.4557%, respectively, suggesting that this method 
can serve as a reliable approach for accurately differentiating between natural 
earthquakes and artificial blasting events, with important application value for 
seismic monitoring and blasting event exclusion.
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1. Introduction
High-precision identification of earthquakes and explosions 
is one of the major challenges in seismic observation 
data processing. Although there are essential differences 
between the two in terms of earthquake mechanisms 
and energy release modes, they exhibit high similarity 
in time-domain waveforms and spectral characteristics, 
which is of great significance for earthquake early 
warning, nuclear explosion monitoring, and engineering 
safety assessment.1-4 Traditional identification methods 
typically rely on artificial empirical features (e.g., P/S 
wave amplitude ratio, spectrum envelope shape, energy 
spectrum statistical parameters, and P-wave initial motion 
direction), and the recognition rate drops significantly in 
strong-noise environments and when the ground-motion 
energy difference is small.5-7 With the increase in seismic 
network density and the improvement of monitoring 
requirements, intelligent recognition methods based on 
machine learning have gradually become mainstream; 
however, their performance is still limited by two 
bottlenecks: insufficient feature representation capability 
and weak model generalization. Therefore, integrating 
adaptive signal decomposition, non-linear dynamic 
feature extraction, and intelligent optimization models to 
overcome the recognition accuracy limitations of existing 
technologies has become a frontier research direction in 
seismic waveform recognition.

Techniques combining spectrum analysis and machine 
learning can be used for the accurate recognition of 
seismic waves at this stage. The integration of non-linear 
signal processing methods, such as wavelet transform and 
Hilbert–Huang transform with neural networks has been 
successfully applied to seismic data processing.8-10 The 
development of adaptive signal decomposition methods 
provides a new paradigm for seismic wave feature 
extraction. Empirical mode decomposition (EMD) and 
its derivatives achieve multiscale analysis of signals by 
decomposing non-linear and non-stationary signals into 
intrinsic mode functions (IMFs).11,12 However, traditional 
EMD suffers from mode aliasing. Although ensemble 
EMD (EEMD) alleviates this defect by adding Gaussian 
white noise, it introduces residual noise interference.13,14 
To address these limitations, complete ensemble empirical 
mode decomposition with adaptive noise (CEEMDAN) 
has been developed. Its core innovation lies in the adaptive 
noise injection mechanism and residual noise isolation 
strategy: (i) signal contamination is avoided by adding 
auxiliary noise IMF components decomposed by EMD 
to the original signal (rather than adding raw white 
noise); and (ii) after each IMF extraction, integrated 
averaging is performed immediately to prevent residual 

noise transmission to low-frequency components. These 
improvements make CEEMDAN significantly superior 
to previous methods in signal completeness, modal 
separation, and computational efficiency, and particularly 
suitable for pre-processing non-stationary signals, such as 
seismic waves.15,16

At the feature quantification level, multiscale 
distribution entropy (MDE), an emerging representative 
of non-linear dynamic characteristics, effectively reveals 
the essential differences between earthquake and 
explosion signals by measuring the probability distribution 
complexity of IMF components at different time scales. 
Compared with traditional sample entropy,17 MDE has 
three major advantages:
(i)	 Multiscale analysis capability: extracts multiscale 

information of time series through a coarse-graining 
process, avoiding the one-sidedness of single-scale 
analysis.

(ii)	 Distribution sensitivity: based on probability 
distribution difference (Euclidean distance or 
Kullback–Leibler divergence) rather than mean 
quantization complexity, making it more suitable for 
non-Gaussian distribution signals.

(iii)	 Noise robustness: sensitivity to random noise is 
significantly lower than that of sample entropy. This 
feature was verified in the processing of earthquake 
data from Maduo County, Qinghai Province, China, 
in 2021.

Early recognition models were mainly based on 
statistical classifiers (e.g., support vector machines [SVMs], 
random forests, and Adaboost) and shallow neural 
networks (e.g., backpropagation, radial basis function, and 
probabilistic neural network), and their performance was 
highly dependent on artificial feature engineering.18-21 By 
extracting features, such as the number of spectral peaks 
and the short-time energy zero-crossing rate of seismic 
signals and combining them with SVM classification, 
recognition rates of up to 85% can be achieved in 
simple scenarios. However, these models face two major 
challenges:
(i)	 Feature–model decoupling: feature extraction and 

classification models are designed independently, 
resulting in information transmission loss.

(ii)	 Overfitting of small samples: seismic event samples 
are scarce and unevenly distributed, making complex 
models prone to local optimality.

In recent years, deep neural networks have shown 
great potential in seismic analysis. As an unsupervised 
competitive learning model, self-organizing map (SOM) 
networks retain the ability to reduce the dimensionality 
of high-dimensional data while preserving topological 
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structures and are adept at handling complex, non-linear, 
non-stationary data, making them an ideal choice for 
seismic signal recognition. Their core advantages are:
(i)	 Visual interpretability: mapping high-dimensional 

features to a two-dimensional grid to intuitively 
display the separation of earthquake and explosion 
clusters.

(ii)	 Small-sample adaptability: a robust mapping can be 
constructed without large-scale training data.22

However, the fixed network structure and sensitivity 
to random initialization parameters of traditional SOMs 
can affect the overall performance of earthquake and 
explosion recognition, leading to prediction results with 
large standard deviations (SDs).23-25 To address this issue, 
intelligent biomimetic algorithms are introduced to 
optimize multiple network hyperparameters of the SOM 
model, aiming to identify the optimal hyperparameters 
for the training set and thereby improve the prediction 
accuracy and output robustness of the original model. 
Ant Lion Optimization (ALO) simulates the collaborative 
hunting mechanism of antlions, balancing global 
exploration and local exploitation capabilities through 
elite individual guidance and random walk strategies. 
It is particularly suitable for weight initialization and 
topological structure adjustment in SOM models, helping 
determine appropriate competition-layer parameters 
and initial learning rates, which are then applied to the 
prediction model in this study.26,27

To address the defects of low recognition rate, poor 
robustness, and imperfect feature learning of machine 
learning models in seismic wave recognition, the present 
study employs novel spectrum analysis technology and 
an improved unsupervised learning algorithm to develop 
a hybrid model for natural earthquake and artificial 
explosion signal recognition. The key objective is to design 
a series of new multiscale spectrum feature criteria based 
on CEEMDAN with adaptive noise and distribution 
entropy (DistEn),28,29 and to propose an innovative 
CEEMDAN–MDE–ALO–SOM hybrid model optimized 
using the ALO algorithm.30 This study makes the following 
important contributions to the field of natural earthquake 
and artificial explosion signal recognition:
(i)	 Novel multiscale feature extraction framework: an 

improved signal decomposition method based on 
CEEMDAN is proposed. Across the adaptive noise 
injection mechanism and residual noise isolation 
strategy, the modal aliasing problem in the traditional 
EMD/EEMD method is effectively solved. Combined 
with the 12-dimensional feature vector constructed by 
MDE, a comprehensive quantitative characterization 
of the complexity of seismic signals in the time and 
frequency domains is achieved for the first time.

(ii)	 Intelligent optimization of neural network architecture: 
ALO is innovatively applied to parameter optimization 
of the SOM neural network, and an automatic 
parameter adjustment mechanism is established, with 
the competition-layer dimension and the number 
of training iterations as optimization variables and 
root mean squared error as the fitness function. 
This method addresses the performance instability 
problem caused by the random initialization of 
traditional SOM and reduces the SD of classification 
accuracy to 1.166.

(iii)	 Interdisciplinary method integration: for the first 
time, adaptive signal processing (CEEMDAN), 
non-linear dynamics (MDE), bionic optimization 
algorithm (ALO), and unsupervised learning (SOM) 
are systematically integrated to construct an end-to-
end intelligent recognition framework. This fusion 
model is theoretically innovative in the coordinated 
optimization of feature extraction and classification 
decision-making.

(iv)	 Large-scale empirical verification: a rigorous 
verification scheme, including hundreds of Monte 
Carlo experiments, is designed based on 414 sets of 
multi-source data from authoritative institutions, 
such as the Institute of Engineering Mechanics, China 
Earthquake Administration. The experimental results 
not only confirm the model’s 99.337% recognition 
accuracy (F1-score = 99.456%) but also quantify its 
stability advantage through statistical indicators, such 
as the coefficient of variation (CV) (CV = 0.0117).

(v)	 Engineering application value: the developed feature 
extraction and classification module is encapsulated as 
a MATLAB-callable function library, supporting real-
time signal processing. The model’s test performance 
in the 2021 Qinghai Maduo earthquake aftershock 
sequence (recall rate = 99.148%) provides a feasible 
technical solution for reducing the false alarm rate of 
earthquake monitoring systems.

This study adopts a progressive structure of “theoretical 
modeling–method innovation–experimental verification–
application discussion” to organize the full text. Section 
2 systematically explains the mathematical principles 
of the ALO–SOM model, including the elite retention 
mechanism and random walk strategy of the ALO 
algorithm, the competitive learning dynamics model of 
the SOM network, and the complete algorithm flow chart 
(Figure 1). Section 3 details the CEEMDAN–MDE feature 
extraction method, covering the adaptive noise injection 
strategy of CEEMDAN, the multiscale probability 
distribution quantization method of MDE, and the criteria 
for selecting IMF components (Figures 2 and 3). Section 
4 presents a rigorous controlled-variable experiment, 
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explaining the data sources and pre-processing procedures, 
demonstrating the ALO optimization process (Figure 4) and 
hyperparameter sensitivity analysis, and finally comparing 
six benchmark models through box plots (Figure  5) and 
statistical tables (Tables 1 and 2). Section 5 discusses three 
key issues in depth, including a comparison of spectral 
resolution with methods, such as EEMD–VMD, the 
robustness boundary in strong-noise environments, and the 
trade-off between computational efficiency and real-time 
performance. Section 6 summarizes the research results and 
future directions, including lightweight model deployment, 
cross-regional generalization testing, and the construction 
of a multimodal data fusion recognition framework.

2. ALO–SOM seismic wave identification 
model
2.1. ALO

ALO is a heuristic algorithm proposed by Mirjalili et al.31 
in 2015, inspired by the behavior of antlions hunting prey 
in nature. The algorithm imitates the habits of antlions 
setting traps, prey random walks, and antlions waiting 
to hunt. It adopts a fast convergence mechanism based 
on trap boundary search and elite retention, and applies 
roulette and random walk strategies to improve global 
search capabilities. It features strong robustness and 
simple algorithm settings. The ALO algorithm process is 
described in the following sections.

2.1.1. Ant random walk

The set of ant random walk steps is defined as Xi(t), with 
the initial step number set to 0. The ant random walk is 

constrained within a range-limited domain, and the ant 
position needs to be normalized based on Equation I:

X
X a d c

b a
ci

t i i i
t

i
t

i i
i
t�

�� �� �� �
�� �

� � (I)

where Xi
t  is the normalized result of the ant random 

walk step set Xi within the feasible domain; ai and bi are the 
minimum and maximum values of the ant position vector 
on the i-th dimension, preset by the algorithm; and ci

t  and 
di

t  are the minimum and maximum values of the ant 
position on the i-th dimension at the t-th iteration.

2.1.2. Antlion sets a trap

When an ant mistakenly enters the trap pit dug by 
the antlion, the ant’s movement is restricted, and the 
walking formulas within the trap are given in Equations 
II and III:

c A ci
t

j
t t� � � (II)

d A di
t

j
t t� � � (III)

Where ct is the minimum value of all variables at the 
t-th iteration, dt is the maximum value of all variables at the 
t-th iteration, and Aj

t  is the antlion j selected at the t-th 
iteration.

2.1.3. Antlion trapping target

When the antlion finds an ant, it throws sand to the edge 
of the sand pit to prevent the ant from escaping, causing 

Figure 1. Flowchart of the ALO–SOM model for recognizing earthquakes and blasting.
Abbreviations: ALO: Ant Lion Optimization; CEEMDAN: Complete ensemble empirical mode decomposition with adaptive noise; SOM: Self-organizing map.
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Figure 2. Comparison of complete ensemble empirical mode decomposition with adaptive noise decomposition results between single earthquake and 
blasting waveforms.
Abbreviation: IMF: Intrinsic mode function.
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Figure  3. Distribution entropy of IMF components from complete ensemble empirical mode decomposition with adaptive noise for earthquake and 
explosion waveforms.
Abbreviation: IMF: Intrinsic mode function.
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the ant to slide continuously toward the antlion at the 
bottom of the pit. The ALO algorithm uses roulette wheel 
selection to identify the appropriate antlion position 
and dynamically narrows the trap range to speed up 
the capture of ants. The relevant formulas are given in 
Equations IV–VI:

c
c t T

T c t t T
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t
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Where T is the preset upper limit of the number of 
algorithm iterations, and w is the dynamic weight factor 
related to the present number of iterations t. Equation VI 
shows a stepwise increasing trend for w.

2.1.4. Preying on ants

When the prey slides to the bottom of the pit, the antlion 
moves quickly and catches the prey. This biological 
phenomenon is modeled algorithmically by comparing 
the fitness values of the ant and the antlion. When the ant’s 
fitness value is higher than that of the antlion, the position 
of the antlion is updated to the present position of the ant. 
The relevant formula is given in Equation VII:

Antlion Ant f t f tj
t

i
t

obj
ant

obj
antlion� � � � � �, � (VII)

where Antlionj
t  is the position of the antlion at the t-th 

iteration; Anti
t  is the position of the ant at the t-th iteration; 

Figure  4. Hyperparameter results for the Ant Lion Optimization-
optimized self-organizing map across 100 discrimination subtrials.

Figure 5. Box plot of 100 identification results comparing the ALO–SOM 
model and the SOM model. Data points marked with red triangles are 
identified as outliers in the box plot.
Abbreviations: ALO: Ant Lion Optimization; SOM: Self-organizing map.

Table 1. Statistical summary of 100 comparison tests 
between the ALO–SOM and SOM models

Identification model Accuracy

Mean (%) SD Range CV IQR

SOM 96.5904 1.9303 10.8434 0.0200 2.4096

ALO–SOM 99.3373 1.1662 4.8193 0.0117 1.2048

Abbreviations: ALO: Ant Lion Optimization; CV: Coefficient of 
variation; IQR: Interquartile range; SOM: Self‑organizing map; 
SD: Standard deviation.
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and f tobj
ant ( )  and f tobj

antlion ( )  are the fitness function values of 
the ant and antlion, respectively, at the t-th iteration.

2.1.5. Elite antlion strategy

The movement of the ant is influenced by both the present 
elite antlion position and the antlion position selected 
by the roulette wheel. The ant position is defined by 
Equation VIII:

Ant
R l R l

i
t A

t
E
t

� �
� � � � �1

2
� (VIII)

where Anti
t+1  represents the position of the i-th ant in 

iteration t + 1; R lA
t ( )  is the latest position of the random 

walk steps near the antlion selected by roulette at the t-th 
iteration; and R lE

t ( )  is the position of the ant in the random 
walk of l steps near the elite antlion at iteration t (the best 
antlion position found at each iteration).

2.2. Self-organizing feature mapping neural 
network

SOM is an unsupervised machine learning method, also 
known as the Kohonen network. Its key idea is to map and 
compress high-dimensional data onto a two-dimensional 
plane while preserving the topological structure of the 
original data to obtain the feature similarity distribution 
of the output layer. It has advantages, such as effective 
processing of non-linear data, producing intuitive and visual 
results, and not requiring preset labels. The calculation steps 
of the SOM network are detailed in the following sections.

2.2.1. Competition process

The Euclidean distance between the input vector X and 
the weight vector Wj of the competition layer neuron is 
calculated based on Equation IX:

d X W x t w tj j
i

m
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�
�

1

2
� (IX)

Where X = (x1,x2,…,xm)T is the input vector; Wj is the 
weight vector of the competition layer neuron j; wij is the 
weight connecting input neuron i and competition neuron j.

The best matching unit (BMU) is defined as the neuron 
with the smallest dj:

BMU min X W
j j� �arg  � (X)

2.2.2. Cooperation process

During the cooperation process, the weights of the BMU and 
its adjacent neurons are updated. The adjacent spatial range 
is defined by the Gaussian function h, where σ decreases with 
time t, thereby dynamically adjusting the adjacent spatial 
range of the BMU. The formula is given in Equation XI:

h j BMU t distance j BMU
t

, , exp ( , )
( )

� � � �
�

�
�

�

�
�

2

22�
� (XI)

2.2.3. Adaptation process

To make the BMU approach the input vector, this process 
introduces the learning rate η and the Gaussian function 
h to update the BMU and the weights of its neighboring 
neurons. The learning rate η decreases with the number of 
iterations based on the initial learning rate η0, as defined in 
Equation XII:

� �
�

t t� � � ��

�
�

�

�
�0 exp � (XII)

where τ is the time constant that determines the decay 
rate of the learning rate.

Wj (t + 1) is the weight vector of the competition layer 
neuron j at time t + 1.

Wj (t + 1) = Wj (t) + η (t) ⋅ h (t) ⋅ (x − Wj (t))� (XIII)

2.2.4. Training process

During the training process, weights are initialized, 
samples are randomly selected to calculate the BMU, and 
the BMU, along with its neighboring weights, are updated. 
Simultaneously, the neighborhood radius and learning rate 
decrease as the number of iterations increases.

2.3. ALO–SOM model recognition principle

The classification results of SOM networks are influenced 
by multiple network hyperparameters and must be 
controlled in combination with other methods to obtain 
more accurate and stable unsupervised clustering results. 

Table 2. Statistical summary of the recognition effect of 100 
rounds of six machine learning models

Identification 
method

Mean

Accuracy (%) Recall (%) F1‑score (%)

LDA 94.4458 95.0857 96.0652

Decision tree 94.7590 96.7272 96.2864

SVM 96.7470 97.8544 97.7154

PLDA 94.7229 95.5762 96.2838

AdaBoost 94.2892 95.8346 96.0004

CNN 93.4504 94.6401 95.0182

ALO–SOM 99.3373 99.1479 99.4557

Abbreviations: ALO: Ant Lion Optimization; CNN: Convolutional 
neural network; LDA: Linear discriminant analysis; 
PLDA: Probabilistic linear discriminant analysis; SOM: Self‑organizing 
map; SVM: Support vector machine.

https://dx.doi.org/10.36922/JSE025280033


Journal of Seismic Exploration CEEMDAN-MDE & ALO-SOM for quake-blast ID

Volume 34 Issue 2 (2025)	 36� doi: 10.36922/JSE025280033 

To achieve this, the ALO algorithm, which mimics the 
antlion’s strategy of setting traps to hunt ants, is introduced to 
optimize certain SOM hyperparameters (e.g., competition 
layer dimension and network training iterations), thereby 
developing a new model capable of adaptively training 
for earthquake and explosion recognition on the training 
dataset.

Figure  1 illustrates the process of the ALO algorithm 
optimizing the SOM neural network hyperparameters and 
performing pattern recognition. The ALO algorithm uses 
two hyperparameters from the SOM—the dimension of 
the competition layer and the number of network training 
iterations—as optimization variables. It employs the root 
mean squared error between the actual prediction result 
vector 



R and the theoretical category label vector 


T
obtained from SOM recognition using the test set as the 
fitness function for ALO optimization (Equation XIV):

fitness RMSE R T� � �


, � (XIV)

Based on the training set, the optimal hyperparameter 
values that satisfy the iteration stopping criteria are 
obtained, and finally, the ALO–SOM recognition model is 
used to identify the test set.

3. CEEMDAN MDE feature extraction
An efficient and reasonable new neural network model 
does not necessarily guarantee high accuracy in effectively 
distinguishing between earthquakes and explosions; it also 
requires a reliable seismic waveform feature extraction 
process. In this section, we provide a detailed introduction 
to the basic concepts and computational process of 
CEEMDAN, which enables the extraction of seismic 
waveform features across multiple frequency scales, thereby 
enabling a more comprehensive and precise analysis of 
the time–frequency differences between earthquakes and 
explosions.

3.1. CEEMDAN

CEEMDAN is an advanced signal decomposition method 
based on EMD and EEMD techniques. It enhances signal 
decomposition by adding complementary pairs of adaptive 
white noise to the original signal, performing multiple 
EMD decompositions, and averaging the results. This process 
effectively minimizes parameter interference and suppresses 
mode aliasing by isolating residual components. CEEMDAN 
overcomes key limitations of earlier methods—including 
modal overlap, low reconstruction accuracy, reliance on 
fixed parameters, and low decomposition efficiency—thus 
significantly improving the reconstruction purity of IMFs. 
It is particularly suitable for analyzing non-linear and non-
stationary signals, such as complex seismic data.

(a)	 Step 1
	 m pairs of positive and negative Gaussian white noises 

ωi (t)(i = 1,2,…,m) with zero mean and constant SD are 
added to the original signal x(t), generating m synthetic 
noisy signals X ti

1( )  based on Equation XV:

X t x t ti
q

i
1 1( ) ( ) ( )� � � � � � �� � � (XV)

where β is the noise coefficient related to the amplitude, 
and q = 1,2.

(b)	 Step 2
	 Empirical mode decomposition is applied to the noisy 

signals to obtain the first-order components. Each 
signal X ti

1( )  is decomposed by EMD into an IMF 
component IMF ti

1( ) and a residual component r ti
1( ) , 

as expressed in Equation XVI:

X t IMF t r ti i i
1 1 1� � � � � � � � � (XVI)

The first-order IMFs IMF ti
1( )  of all m m  synthetic 

noisy signals X ti
1( )  are calculated, and their arithmetic 

average is taken to obtain the first-order IMF1(t) IMF t1( )  
of the CEEMDAN algorithm. The relevant formulas are 
given in Equations XVII and XVIII:

IMF t
m

IMF t
i

m

i
1

1

11� � � � �
�
� � (XVII)

r t x t IMF t1 1� � � � � � � � � (XVIII)

(c)	 Step 3
	 Using a similar calculation strategy as in Equations 

XV–XVIII, the next-order component IMFk−1 (t) is 
calculated step by step: for the residual rk−1 (t)(k ≥ 2) 
obtained in the previous step, positive and negative 
noise (−1)q βk−1 Ek−1 (ωi[t]) are added, respectively, to 
obtain m new signals X ti

k−1( ) , where βk−1 is the 
dynamically reduced noise coefficient, and Ek−1 (⋅) is 
the residual after the (k−1)-th order EMD 
decomposition of the white noise ωi(t). Performing 
EMD decomposition on each X ti

k−1( )  yields m 
components IMF ti

k−1( ) , as given in Equation XIX:

X t IMF t r ti
k

i
k

i
k� � �� � � � � � � �1 1 1 � (XIX)

Taking the arithmetic average yields the (k−1)-th order 
component IMFk−1(t) of the CEEMDAN algorithm. The 
relevant formulas are given in Equations XX and XXI:

IMF t
m

IMF tk

i

m

i
k�

�

�� � � � ��1

1

11 � (XX)

r t r t IMF t kk k k� � �� � � � � � � � �1 2 1 2, � (XXI)
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(d)	 Step 4
	 After the iterative calculation is completed, the original 

signal is reconstructed. The iterative calculation from 
the previous step stops when the residual component 
becomes a monotonic function or when its extreme 
points are insufficient for further EMD decomposition. 
A  total of k−1 CEEMDAN IMFs are obtained; the 
original signal x(t) can be reconstructed by summing 
the k−1 IMFs and the final residual component rk−1(t) 
as follows (Equation XXII):

x t r t IMF t k KK

k

K
k( ) ( ) ( ), ,...,� � ��

�

��1

2

1 2   � (XXII)

The hyperparameters of the CEEMDAN algorithm are 
set as follows: the SD of white noise is 0.2, the number 
of noise additions is 24, and the maximum number of 
iterations allowed is 3,600. Figure 2 shows the CEEMDAN 
decomposition results of natural earthquake signals (left) 
and artificial blasting signals (right), where rows 1–12 
correspond to the IMF1–IMF12 components obtained by 
CEEMDAN decomposition. The waveform signal length is 
L = 4,000 and the components are arranged in descending 
order of frequency or energy size.

3.2. Calculation of MDE using CEEMDAN

DistEn is a parameter used in information theory to 
measure the uncertainty of data distribution or the 
complexity of a time series.28,29 DistEn obtains the 
probability density function by directly calculating 
the Chebyshev distance and kernel density estimation 
between reconstructed vectors, thereby avoiding the 
problem of manually selecting the tolerance parameter r 
used in sample entropy. In addition, it has the advantages 
of being parameter-free and robust.

The original seismic signal is decomposed into several 
IMFs with monotonically decreasing frequencies and 
significant differences in energy distribution by using the 
adaptive noise CEEMDAN. By sequentially calculating 
the DistEn values of all IMF components obtained from 
decomposition (i.e., the DistEn of IMF1–IMF12 shown in 
Figure  3), a one-dimensional vector that describes the 
different frequency distribution characteristics of the 
original signal is formed, referred to as MDE. This method 
can effectively extract multiscale pure characteristic 
parameters that characterize different source systems 
and enables robust identification of signals generated 
by different dynamic mechanisms. The horizontal axis 
of Figure  3 represents the sequence numbers of 414 
earthquake and explosion waveforms, while the vertical 
axis shows the DistEn values of the IMF components 
obtained from CEEMDAN decomposition.

4. Data and experiments
In this study, we first organized the collected data and 
developed an experimental framework to rigorously 
evaluate the effectiveness and specific capabilities of the 
proposed method in distinguishing between earthquake 
and blasting events. A  total of 414 sets of multi-source 
strong motion observation data were utilized, as follows:
(i)	 Earthquake case data publicly shared by the National 

Earthquake Data Center (data.earthquake.cn) and 
the Institute of Engineering Mechanics of the China 
Earthquake Administration: 2021 Jiangtianning MS 
4.2 earthquake strong motion acceleration records 
(96 records); 2021 Jiangsu Dafeng MS5.0 earthquake 
strong motion acceleration records (117 records); and 
2021 Yunnan Yangbi MS6.4 main shock aftershock 
sequence acceleration records (magnitude range 
MS2.9-3.9, 84 records).

(ii)	 Controllable artificial blasting test acceleration 
waveforms (117 records) provided by the Geotechnical 
Engineering Institute, China Institute of Water 
Resources and Hydropower Research (www.geoeng.
iwhr.com).

All data pre-processing and numerical analyses were 
implemented on the MATLAB 2019a (The MathWorks, 
Inc., United States) computing platform. The formulas for 
accuracy, recall, and F1-score are as follows:

(i)	 Accuracy indicates the proportion of samples correctly 
predicted by the model to the total number of samples 
(Equation XXIII).

Accuracy TP TN
TP TN FP FN

%�
�

� � �
�100 � (XXIII)

(ii)	 Recall refers to the proportion of positive samples 
correctly identified by the model to all actual positive 
samples (Equation XXIV).

Recall TP
TP FN

%�
�

�100 � (XXIV)

(iii)	The F1-score is the harmonic mean of precision and 
recall and is an important indicator for measuring the 
overall performance of the model (Equation XXV).

F score Accuracy Recall
Accuracy Recall

%1 2 100� �
� �

�
� � (XXV)

In these formulas, TP indicates true positive, TN 
represents true negative, FP is false positive, and FN 
signifies false negative.

Considering that the randomness of the initial 
parameters of the neural network may cause fluctuations 
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in the prediction results and lead to potential large 
deviations, this study conducted a 100-cycle Monte 
Carlo test to systematically evaluate the effectiveness and 
robustness of the ALO–SOM model. By introducing key 
hyperparameter perturbations, the stability of the model’s 
earthquake identification performance under parameter 
variations was tested. The training set and test set were 
strictly split in an 8:2 ratio (i.e., 331:83  samples). The 
statistical characteristics of the repeatability test results are 
presented in Figures 4 and 5, Table 1.

Figure  5 presents a box plot comparing the 
100 identification results of the ALO–SOM and SOM 
models, which simultaneously illustrates the data 
dispersion and statistical characteristics of the multiple 
rounds of prediction results from the two neural network 
models. The upper and lower boundaries of the box in the 
figure represent the upper quartile (Q3) and lower quartile 
(Q1) of the parameter results, respectively. The solid line 
inside the box indicates the median of the parameter 
results. Data points marked with red triangles are 
identified as outliers in the box plot. The horizontal solid 
lines above and below the box represent the maximum and 
minimum values, respectively. The performance difference 
between the ALO–SOM and SOM models was analyzed 
using parameters, such as the mean, SD, range, CV, and 
interquartile range (IQR).

Based on Figure  5, the recognition curve of the SOM 
model exhibits irregular oscillations, with approximately 50% 
of the recognition results below 97%, and a small number even 
below 90%, indicating a degree of instability in earthquake and 
explosion recognition. The SOM model optimized by ALO 
demonstrates stronger adaptability to data features and can 
effectively utilize matching competition layer dimensions and 
training iterations to recognize earthquakes and explosions. 
The worst result is above 95%, and most recognition 
results exceed 99%. Its performance across multiple 
indicators—mean, SD, range, CV, and IQR (99.3373%, 1.1662, 
4.8193, 0.0117, and 1.2048, respectively)—demonstrates 
stronger robustness and accuracy.

Figure 4 presents a box plot of the calculation results for 
the ALO-optimized SOM hyperparameter values across 
100 identification sub-tests. The search domain was set 
to [1,10,] which illustrates both the data dispersion and 
statistical characteristics of the 100 optimization results 
for the two SOM hyperparameters. The upper and lower 
boundaries of the box in the figure represent the upper 
quartile (Q3) and lower quartile (Q1) of the parameter 
results, respectively. The solid line within the box represents 
the median of the parameter results. The horizontal solid 
lines above and below the box indicate the maximum and 
minimum values, respectively. As shown in Figure 4, the 

SOM competition layer dimension and SOM training 
iterations optimized by ALO exhibit a certain degree of 
randomness and are not consistently stable values. This 
variability is related to the random division of the training 
set and the early termination of ALO iterations.

Table  1 presents the statistical results of the 
100 comparison tests between the ALO–SOM model 
and the traditional SOM model. The results indicate that 
the ALO–SOM model outperforms the SOM model in 
all indicators, exhibiting higher accuracy and stability. 
Specifically, the average accuracy of the ALO–SOM model 
over 100 prediction rounds was 99.3373%, significantly 
higher than that of the SOM model (96.5904%), suggesting 
that the ALO–SOM model can provide more accurate 
results in earthquake identification tasks, with an accuracy 
improvement of 2.7469%.

In addition, the SD of the 100-round prediction accuracy 
for the ALO–SOM model was 1.1662, significantly lower 
than that of the SOM model (SD = 1.9303), indicating that 
its prediction results exhibit lower variability and higher 
stability, making it suitable for processing earthquake 
monitoring data that requires highly reliable results. 
Furthermore, the IQR of the ALO–SOM model’s 100-round 
prediction accuracy was 4.8193, which is also significantly 
smaller than that of the SOM model (IQR = 10.8434), 
further suggesting that the ALO–SOM model’s prediction 
results are more concentrated and less influenced by 
extreme values, thereby demonstrating better robustness. 
The CV and IQR of the ALO–SOM model highlight its 
superiority in prediction result consistency, with a CV of 
0.0117 for ALO–SOM and 0.0200 for SOM, and an IQR of 
1.2048 for ALO–SOM and 2.4096 for SOM.

To evaluate the superior performance of the ALO–SOM 
model and the differences in performance between machine 
learning algorithms based on different principles, we 
introduced six classic models: linear discriminant analysis 
(LDA), decision tree, SVM, probabilistic LDA (PLDA), 
convolutional neural network (CNN), and AdaBoost 
ensemble learning. These models have distinct strengths 
and weaknesses. For example, SVM is effective in handling 
non-linear problems but is sensitive to noisy data and 
outliers; LDA is suitable for large-scale linear datasets 
but may encounter singularity issues in the inter-class 
covariance matrix; AdaBoost has moderate tolerance for 
noise and outliers but is prone to overfitting; and decision 
tree models are highly interpretable but are still prone to 
overfitting and sensitive to outliers. The parameters for this 
model comparison experiment were kept constant, with 
100 consecutive recognition tests conducted using a fixed 
training-to-test set ratio of 8:2. The comparison results are 
presented in Table 2 and Figure 6.
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Figure 6. Comparison of seismic wave prediction performance across 100 rounds by six machine learning models.
Abbreviations: ALO: Ant Lion Optimization; CNN: Convolutional neural network; LDA: Linear discriminant analysis; PLDA: Probabilistic linear 
discriminant analysis; SOM: Self-organizing map; SVM: Support vector machine.
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As shown in Figure  6 and Table  2, the earthquake 
and explosion signal recognition performance (in terms 
of accuracy, recall rate, and F1-score) of the ALO–SOM 
model was significantly better than that of classic machine 
learning models, including LDA, decision tree, SVM, PLDA, 
CNN, and AdaBoost, with all metrics exceeding 99%. This 
demonstrates that the model has potential applicability in 
small-sample earthquake event classification and offers 
room for further research and improvement.

To calculate the recognition accuracy of the ALO–SOM 
model for small-sample events, such as blast events, 
we employed MATLAB interpolation and resampling 
techniques to increase the number of blast signals from 117 
to 351, while maintaining the number of natural signals at 
297. The sampling rate remained at 200  Hz, resulting in 
a total of 648 signals used in the subsequent recognition 
experiments. The training-to-test set ratio was set to 8:2 
(i.e., 518:130). The experimental results are illustrated in 
Figure 7.

Under resampling conditions, the average recognition 
accuracy of the ALO–SOM model over 100 prediction 
rounds was 99.2308%, with an SD of 0.6468, which was 
essentially equivalent to the recognition performance of 
the original experiment without resampling blast events. In 
addition, it was found that the mean recognition accuracy 

rates for both seismic and blast signals improved compared 
to previous results, reaching 99.5923% and 99.6385%, 
respectively. The SDs for accuracy rates were 0.5729 
and 0.5295 for seismic and blast signals, respectively, 
indicating that the ALO–SOM model demonstrates good 
recognition performance for both seismic and blast signals 
in small-sample datasets.

5. Discussion
This study proposes a new hybrid model, combining 
CEEMDAN–MDE and ALO–SOM, for high-precision 
discrimination of seismic and blast signals. Experimental 
results showed that the model achieved excellent 
performance, with an accuracy of 99.337%, a recall of 
99.148%, and an F1-score of 99.456%—significantly better 
than those of traditional machine learning methods, 
such as LDA, decision tree, SVM, PLDA, and AdaBoost. 
The combination of MDE feature extraction based on 
CEEMDAN and the SOM neural network optimized by 
ALO effectively addresses the problems of insufficient 
feature expression and insufficient model stability in 
seismic signal classification.

The practical significance of this study is that the 
CEEMDAN–MDE feature set provides a standardized 
framework for quantifying the complexity of seismic signals, 

Figure 7. Seismic identification results of the Ant Lion Optimization–self-organizing map model under resampling conditions.
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which can be extended to other waveform classification 
tasks (e.g., volcanic earthquakes, industrial vibrations). The 
stability and interpretability of the ALO–SOM model make 
it suitable for deployment in seismic monitoring systems, 
especially in scenarios requiring rapid discrimination 
between natural and man-made events (e.g., nuclear test 
monitoring, mine safety assessment). The high recall of the 
model (99.148%) is particularly important for reducing 
false negatives in early warning systems.

Despite the strengths of this study, several limitations 
remain. First, the dataset, although carefully curated, 
comprises 414 samples from specific regions (e.g., Jiangsu, 
Yunnan), which may limit the generalizability of the 
model in different geological environments. Second, 
environmental noise (e.g., wind, traffic) is not explicitly 
simulated, which may affect the model’s performance in 
noisy, real-world environments. Third, the computational 
cost of CEEMDAN–MDE feature extraction and ALO 
optimization, while justified by improved accuracy, may 
hinder real-time applications on low-power edge devices. 
Finally, the model relies on all 12 initial functions (IMFs), 
and no feature selection was performed, which may 
introduce redundancy—methods, such as wrapper-based 
selection could simplify this process.

Future research should focus on: (i) expanding the 
dataset to cover global earthquake events and diverse noise 
conditions to enhance model robustness; (ii)  exploring 
lightweight variants of CEEMDAN (e.g.,  online 
CEEMDAN) and entropy metrics (e.g., fuzzy entropy) to 
enable real-time deployment; (iii) integrating attention 
mechanisms or Transformer architectures to enhance 
feature learning; (iv) studying hybrid models that combine 
ALO–SOM with ensemble techniques (e.g., stacking) 
to address the class imbalance problem in rare event 
detection. In addition, applying this framework to other 
geophysical signal classification tasks (e.g., landslide 
vibration, structural health monitoring) would help verify 
its broader practicality.

In summary, the CEEMDAN–MDE–ALO–SOM 
model represents a significant advancement in the field of 
earthquake signal recognition, providing both theoretical 
innovation and practical value. Addressing its limitations 
through collaborative data sharing and algorithmic 
improvements will be key to advancing earthquake 
monitoring technology.

6. Conclusion
The accurate distinction between natural earthquake 
signals and artificial explosion signals is crucial to 
ensuring the reliability of earthquake early warning 
information release and advancing artificial intelligence-

based seismology research. Based on small-sample data 
from multiple seismic stations across the country, this 
study extracted MDE features from the 12-dimensional 
CEEMDAN spectrum decomposition of normalized 
seismic wave signal, employed the SOM self-organizing 
feature mapping network as the basic learner, and combined 
the ALO algorithm to optimally tune its competition layer 
dimensions and training iterations, thereby improving 
the recognition accuracy and operational stability of the 
original model. Accordingly, the following conclusions are 
drawn:
(i)	 Compared with the standard SOM neural network 

model, LDA, decision tree, SVM, PLDA, AdaBoost 
ensemble learning, and other commonly used 
machine learning models, the ALO–SOM model 
achieved significantly higher earthquake and 
explosion recognition accuracy, with a recognition 
rate of 99.3373% and an SD of only 1.1662.

(ii)	 The multiscale spectrum feature set CEEMDAN–DisEn, 
which contains the IMF component DistEn values of 
different frequency bands, demonstrated a stronger 
capability for subdividing seismic wave features.

(iii)	Several limitations remain in this study. First, a large 
amount of environmental noise may mask the effective 
components of seismic waves, thereby affecting the 
accuracy of waveform spectrum feature extraction. 
Second, this study used all 12-dimensional IMF 
components obtained by CEEMDAN decomposition 
for feature extraction without applying feature 
selection or high-dimensional data compression, 
which could reduce prediction efficiency and 
cause some loss of accuracy. If feature selection 
methods, such as filtering, encapsulation, and 
embedding, or dimension reduction methods—such 
as principal component analysis and low-variance 
filtering—were applied for feature processing, the 
accuracy of distinguishing between earthquakes 
and explosions could be further improved, while 
moderately reducing algorithm redundancy 
and iteration time. Therefore, future studies are 
encouraged to integrate principal component analysis 
to perform feature engineering compression on 
all IMF components from CEEMDAN, producing 
2–3 new features that best represent the multiscale 
characteristics of seismic waveforms. This would 
reduce the complexity of the input matrix for the 
prediction model, thereby improving model training 
speed and prediction efficiency. Finally, due to 
the model’s outstanding unsupervised clustering 
performance, it could be applied to the fault diagnosis 
of seismic instrument systems in the future, accurately 
distinguishing between data acquisition faults, power 
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supply faults, electromagnetic interference, and 
other abnormal signals, thus ensuring the effective 
recording and observation of environmental noise 
data and seismic event signals by seismic instruments.
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Abstract
Effectively recovering signals buried in noise remains a challenging topic in seismic 
data denoising. Many conventional methods often fail to accurately capture 
the characteristics of seismic signals. To address this issue, this study proposed 
an effective method called variational mode decomposition (VMD)–denoising 
convolutional neural network (DnCNN). The method first applies VMD to decompose 
the originally noisy signal into multiple intrinsic mode functions (IMFs) with band-
pass characteristics, thereby achieving effective decoupling of different frequency 
components and noise separation. Selected IMFs are then combined into a multi-
channel input and fed into the DnCNN for end-to-end modeling and denoising 
reconstruction. By decomposing the noisy signal into IMFs corresponding to specific 
frequency bands and learning them through DnCNN, the network can better extract 
features within each frequency band. Serving as a front-end filter, the VMD module 
enhances the network’s ability to represent effective frequency components, 
suppresses high-frequency random noise, and improves the resolution of weak 
signals. Experimental results demonstrated that the proposed method effectively 
captures signal characteristics and recovers signals from both real and synthetic 
seismic data. In conclusion, the proposed VMD–DnCNN method provides a robust 
and efficient solution for seismic signal denoising.

Keywords: Variational mode decomposition; Denoising convolutional neural network; 
Intrinsic mode functions; Recover weak signals; Seismic denoising

1. Introduction
Seismic signals are often characterized by non-stationary properties and are susceptible 
to various external interferences during acquisition, such as complex mixed noise caused 
by exploration instruments, wind, and transportation activities.1,2 These types of noise 
can significantly degrade the quality of subsequent imaging and interpretation processes. 
To better extract geological information from seismic data, it is crucial to effectively 
isolate signals from noise. Moreover, the accurate recovery of weak signals can further 
enhance geological exploration efforts.3-5 Therefore, many researchers have investigated 
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effective seismic signal recovery under low signal-to-noise 
ratio (SNR) conditions.6 Currently, denoising methods can 
be broadly categorized into four groups: Time–frequency 
analysis methods, decomposition-based methods, low-
rank-based methods, and deep learning methods.

Time–frequency analysis methods aim to exploit the 
differences in time–frequency distributions between useful 
seismic reflections and noise. By applying time–frequency 
transformations, seismic data can be represented in a joint 
time–frequency domain, enabling the separation and 
suppression of noise from signal components. For example, 
the wavelet transform7 achieves denoising by decomposing 
the signal into different frequency bands, retaining the 
dominant frequency components associated with the signal 
while removing high-frequency components typically 
attributed to noise. The short-time Fourier transform8 
utilizes its localized time–frequency resolution to expand 
non-stationary seismic signals in the time–frequency 
domain, allowing for clearer distinction between signal 
and noise. Likewise, the S-transform9 constructs a two-
dimensional time–frequency representation and leverages 
the seismic signal’s concentration and continuity in local 
frequency content to facilitate signal–noise separation. 
However, these methods often suffer from difficulties 
in identifying optimal basis functions and are highly 
sensitive to thresholding strategies. The performance of 
these approaches is strongly dependent on the threshold 
level and the specific selection scheme, where improper 
thresholds may lead to significant degradation in denoising 
quality and signal preservation. These limitations are 
not unique to the aforementioned methods, but are also 
observed in other time–frequency analysis techniques, 
such as the  seislet transform,10 curvelet transform,11 and 
contourlet transform.12

Decomposition-based methods aim to extract intrinsic 
structures from noisy signals by separating effective 
components from noise interference and subsequently 
reconstructing the denoised seismic signal. For example, 
empirical mode decomposition13,14 is an adaptive and data-
driven technique for processing non-stationary signals. 
It decomposes the original signal into a set of intrinsic 
mode functions (IMFs) with localized time-frequency 
characteristics. By analyzing the frequency and energy 
features of each component, noise-dominated modes can be 
identified and discarded, followed by signal reconstruction 
for denoising. Variational mode decomposition (VMD)15 
formulates a variational optimization problem to 
decompose the original signal into a set of band-limited 
sub-signals (mode components). Noise-dominated 
components are recognized and removed based on 
their frequency and energy characteristics, achieving 
efficient denoising. On the other hand, singular value 

decomposition16 decomposes the seismic data matrix into 
ordered components according to their energy. Principal 
components represent the effective signal, while low-
energy components correspond to noise, and denoising is 
performed through reconstruction. The major challenge 
of decomposition-based methods lies in the mode mixing 
phenomenon, where certain modes contain both noise and 
signal components, complicating their separation.

Low-rank-based methods exploit the strong structural 
properties of seismic noise signals in time and space 
domains. When arranged as matrices or tensors, seismic 
signals typically exhibit low-rank characteristics, whereas 
noise is random and high-rank. Low-rank decomposition 
techniques can therefore extract the structured signal 
components while suppressing high-rank noise. For 
example, principal component analysis17 projects seismic 
data onto a set of principal components, retaining the 
first few components that contain the main information 
and discarding the subsequent minor components, thus 
achieving denoising. Cadzow filtering18 constructs a 
Hankel matrix from the signal and iteratively applies 
singular value decomposition, low-rank approximation, 
and Hankel structure reconstruction to preserve the 
primary signal components while suppressing noise. 
Both methods treat the effective signal as a low-rank 
structure and extract meaningful cycles by reducing the 
rank. However, a notable limitation of these approaches 
is that their performance heavily depends on the prior 
assumptions regarding the rank.

Deep learning methods19,20 essentially construct end-
to-end mapping functions that automatically learn the 
relationship between noisy and clean signals, thereby 
achieving noise suppression and signal recovery. Previous 
studies have systematically demonstrated how neural 
networks can be applied to seismic signal denoising, 
successfully employing deep learning for this purpose.21 
For example, edge-feature-guided wavelet U-Net22 
integrates wavelet transforms to design dual decoders 
aimed at edge detection, capturing shape and edge 
information of effective signals. Other studies introduced 
the representation of seismic data in the time–frequency 
domain as input to neural networks,23 enabling the model 
to learn the characteristics of seismic signals in the 
time–frequency space more effectively, and proposed an 
identification-based denoising approach.24 Noise locations 
are first identified, and then the network performs targeted 
denoising, thereby more accurately removing noise while 
avoiding the inadvertent removal of useful signals. Some 
transformer-based methods innovatively combined sparse 
channel-wise attention transformers with diffusion models 
through a seismic prior extraction network, achieving 
efficient and high-quality seismic data interpolation.25 
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In addition, a transformer-based seismic data denoising 
model has been introduced, incorporating a novel self-
supervised pretraining strategy to effectively capture 
long-range dependencies and improve noise attenuation 
while preserving weak signals.5 To enhance seismic 
data denoising performance, most methods involve 
modifications to neural network architectures; however, 
these improvements often come at the cost of increased 
computational time.

In summary, traditional seismic denoising methods 
often suffer from limitations related to performance and 
parameter tuning. Whether it is time–frequency methods, 
decomposition-based methods, or low-rank methods, 
parameter adjustments are typically required according 
to the noise intensity. A  common challenge lies in how 
to properly decompose the signal in a way that removes 
noise while preserving the useful signal. This leads to 
these methods lacking adaptability to varying noise 
levels. For deep learning methods, when noise levels are 
excessively high, it is often difficult to effectively capture 
the characteristics of seismic signals. The construction of 
end-to-end mappings can introduce bias, resulting in poor 
learning of weak signals and consequently unsatisfactory 
denoising performance. Therefore, effectively addressing 
the limitations of these approaches constitutes a major 
challenge in seismic signal processing and is the central 
focus of this study.

Decomposition-based and deep learning-based 
methods each have their advantages and drawbacks. Deep 
learning methods can effectively handle non-Gaussian 
and nonlinear noise, whereas decomposition-based 
methods rely primarily on frequency decomposition 
and are less capable of adapting to complex background 
noise. Furthermore, these approaches can identify low-
amplitude reflections that decomposition methods may 
mistakenly remove as noise, especially for weak high-
frequency reflections. However, deep learning implicitly 
models frequency information and lacks explicit frequency 
band control. In contrast, decomposition-based methods 
explicitly separate different frequency bands, facilitating 
the removal of band-specific noise and improving the 
preservation of waveform structures, particularly the low-
frequency primary components.

Motivated by the strong learning capabilities of 
deep learning models and the intrinsic decomposition 
principles, this study proposed a VMD–denoising 
convolutional neural network (DnCNN) framework. This 
approach leverages the advantages of deep learning models 
to compensate for the shortcomings of traditional methods, 
while utilizing the strengths of decomposition models 
to complement deep learning models’ limitations. VMD 

effectively decomposes seismic data to extract intrinsic 
features, enabling DnCNN26 to learn the characteristics 
of different IMFs more effectively. Through training, 
DnCNN can mitigate the mode mixing problem inherent 
in VMD by continuously learning which IMFs are useful 
and which should be discarded. Experiments conducted 
on both synthetic and field seismic data demonstrated that 
this method not only effectively suppresses noise but also 
outperforms several traditional denoising techniques in 
terms of denoising performance.

2. Methods
In decomposition-based methods, mode mixing often 
occurs, resulting in decomposed modes that may contain 
noise components, which is unavoidable. Whether the 
decomposition extracts components from high frequency 
to low frequency, optimizes for band-limited signals so that 
each mode concentrates on a specific frequency band, or 
employs other decomposition techniques, it is essentially 
impossible to prevent noise from being introduced into 
the decomposed components. However, deep learning 
networks possess strong learning capabilities and can 
progressively distinguish between noise and useful signals 
through continuous training. Therefore, deep learning 
networks were combined with traditional methods to form 
a VMD–DnCNN denoising architecture.

Seismic signals are often represented as seismic profiles. 
Let the function c(x, y) denotes the ideal noise-free signal 
and n(x, y) represents the noise component, where x is the 
sampling time and y is the trace number. The observed 
noisy data can then be expressed as:

f x y c x y n x y( , ) ( , ) ( , )� � � (I)

The 2D VMD method was applied to decompose the 
noisy seismic data. The formulation of 2D VMD is as 
follows:
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where, uk(x, y) denotes the K decomposed mode, ωk is 
its center frequency along the x direction, and ∇ represents 
the two-dimensional gradient operator, which measures 
the smoothness or bandwidth of the mode in the frequency 
domain. The term e j xk� �  performs a frequency shift of the 
mode to concentrate it around the low-frequency baseband, 
facilitating a unified calculation of the mode’s bandwidth.

After decomposing the signal into three modes based 
on bandwidth, these modes were combined with the 
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original signal as a four-channel data input to the network, 
allowing the deep learning model to learn the process of 
reconstructing the original signal from the three modes 
during training. By decomposing the data through VMD, 
different band-limited signal components were formed, 
significantly reducing the learning burden on the deep 
learning network. Compared to the original single-channel 
structure, where only noisy data are input to the network, 
this approach alleviates the heavy learning load and makes 
it easier for the network to capture features of both the 
seismic signal and noise.

When inputting the decomposed modes into the 
network, the model first learns the characteristics of 
different frequency bands. Furthermore, since the primary 
noise frequency bands have already been separated 
through decomposition, the network can more readily 
identify the main noise components during training. Even 
when non-noise dominant frequency bands are mixed 
with some noise, the network can leverage the features 
learned from the noise-dominant bands to recognize and 
denoise these components effectively. Moreover, effective 
signal information may also be present within the primary 
noise frequency bands. In this case, the useful signal 
features learned from the non-noise-dominant bands help 
the network capture and preserve valid signal components 
within the noise-dominant bands.

As a denoising network, DnCNN has been widely 
used for processing seismic signals. The architecture 
of DnCNN is illustrated in Figure  1. The network first 
passes the input through a convolutional layer, followed 
by a rectified linear unit (ReLU) activation function. 
Sixty-four convolutional kernels are used to extract 
preliminary low-level seismic features, including local 
waveform shapes, edges, and frequency components. The 
ReLU activation enhances the nonlinear representation 
capability, helping to distinguish seismic signal structures 
from high-frequency noise. The middle part of the 
network consists of 18 repeated blocks, each comprising 
a convolutional layer, batch normalization, and a 
ReLU activation. Batch normalization balances feature 
distributions across different batches, suppressing outliers. 
Through these 18 repeated operations, the network 

progressively extracts abstract seismic features, enabling it 
to ignore unstructured noise while preserving waveforms 
with reflective patterns. Finally, the output passes through 
a convolutional layer that compresses the 64 deep feature 
channels back to the original channel number, yielding 
the final denoised result.

The input structure of DnCNN was modified to better 
enable it to learn seismic signal information. By applying 
VMD to decompose noisy signals, the noise is separated 
into three modal components: High-frequency IMF, 
mid-frequency IMF, and low-frequency IMF. These 
three modes approximately correspond to high-, mid-, 
and low-frequency seismic phases and noise structures, 
facilitating the network’s ability to distinguish and 
process noise in different frequency bands. Each of the 
three IMFs from VMD concentrates around a certain 
center frequency, which is dynamically adjusted during 
iterations to ensure each mode focuses on a specific 
frequency band.

In practice, IMF1 captures high-frequency details, 
often containing seismic noise and sharp reflections; 
IMF2 captures mid-frequency seismic phases, which 
include seismic signals but may also contain noise; 
IMF3 corresponds to low-frequency main structures, 
encompassing the primary seismic phases and reflection 
interfaces. Thus, decomposing the seismic signal into 
these three frequency bands effectively separates high-
frequency disturbances, mid-frequency seismic phases, and 
low-frequency structural components.

The overall denoising process is illustrated in Figure 2. 
The VMD–DnCNN denoising procedure consists of two 
steps: The first step is model training, and the second step 
is seismic data denoising. In the first step, the selected 
synthetic data are segmented by time windows, followed 
by data selection using a Monte Carlo strategy. This 
produces the training labels for the network. Gaussian 
noise is then added to the labels to generate the noisy 
samples. These samples are decomposed using 2D VMD 
into three IMFs, which serve as the channels of the input 
samples. Subsequently, the time-domain channels of 
the labels are concatenated with the IMF channels of the 

Figure 1. Structure of a denoising convolutional neural network.
Abbreviations: BN: Batch normalization; Conv: Convolutional layer; ReLU: Rectified linear unit.
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samples to form the final time–frequency training samples 
required by VMD–DnCNN. By training the network with 
these labels and samples, the final model is obtained. In 
the second step, the seismic data to be denoised are first 
processed by 2D VMD to obtain pseudo-labels and seismic 
data decomposed into three IMF modes. The pseudo-label’s 
time-domain data and the three IMF modes are combined 
to form a four-channel seismic input. Finally, these data are 
denoised by the trained VMD–DnCNN model.

3. Network training

The performance of neural network models is highly 
dependent on the quality of the training dataset; therefore, 
constructing a high-quality dataset and applying proper 
preprocessing are particularly critical. Given that the 
recordings before the onset of direct waves primarily consist 
of background noise without useful seismic information, 
this study removed certain non-informative data during 

Figure 2. Main workflow of the proposed method.
Abbreviations: DnCNN: Denoising convolutional neural network; IMF: Intrinsic mode function; VMD: Variational mode decomposition.
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the preprocessing stage to enhance training efficiency. The 
overall data generation process is illustrated in Figure  3. 
A Monte Carlo strategy27 was adopted to eliminate invalid 
synthetic data, incorporating non-zero label filtering and 
effective fluctuation filtering mechanisms. Specifically, 
silent segments before the arrival of direct waves, smooth 
sections, and other training-irrelevant samples were 
excluded. Samples with zero-valued amplitudes were 
directly discarded, and samples with a standard deviation 
<10−3 were also removed. After filtering, the data underwent 
Max–Abs normalization to standardize the seismic signal 
amplitude range to the interval [−1,1]. This normalization 
accelerates model convergence during training and ensures 
amplitude consistency across different traces and samples, 
thereby reducing model bias. The training parameters for 
all models are listed in Table 1. All models used the ADAM 
optimizer.28 The sample length was set to 256 points, with 
one sample selected every 128 points. When the remaining 
trace length was less than 256 points, it was padded 
forward to meet the required length. The initial learning 
rate was set to 10−4 and decayed by a factor of 10 every 40 
epochs. The total number of training epochs was set to 200.

The synthetic seismic data used for training was 
derived from the 2007 British Petroleum (BP) Anisotropic 
Velocity Benchmark, a two-dimensional synthetic dataset 
released by BP. The dataset consists of 1,641 shot gathers, 
each containing 800 seismic traces. Each trace has 1,151 
sampling points, with a sampling rate of 125  Hz and a 
sampling interval of 8 ms, resulting in a trace duration of 
9.208 s. Due to the similarity between adjacent shot gathers, 
a subset of 20 gathers was selected for training by sampling 
five consecutive shots every 500 gathers. Specifically, the 
selected training gathers were 1–5, 501–505, 1,001–1,005, 
and 1,501–1,505. Shot gathers 10, 510, 1,010, and 1,510 
were used for denoising evaluation. This sampling strategy, 

which spans different and dispersed seismic environments, 
facilitates the model to learn more representative and 
generalizable feature representations. Gaussian noise with 
a mean of 0 and a standard deviation of 0.3921 was added to 
the synthetic data to simulate noisy conditions. According 
to the characteristics of the Gaussian distribution, 99.7% 
of the SNR values of the added noise lie within the range 
[−3,3]. A total of 98,900 samples were generated from the 
20 shot gathers. For all models, 80% of the samples were 
used for training and the remaining 20% for validation.

4. Synthetic experiment
In this section, the denoising performance of the proposed 
VMD–DnCNN model was evaluated using synthetic 
seismic data. As shown in Figure  4, Gaussian noise was 
added to shot gathers 10, 510, 1,010, and 1,510 to achieve 
SNRs of 6 dB, 0 dB, −5 dB, and −10 dB, respectively. To 
better assess the denoising effectiveness of VMD–DnCNN, 
comparative analyses were conducted with several typical 
seismic denoising methods, including both conventional 
and deep learning-based approaches. It was observed that 
when the noise level corresponded to an SNR of 6 dB, some 

Figure 3. Training dataset generation process.

Table 1. Training parameters of convolutional neural 
network‑based methods

Hyperparameter DnCNN U‑Net VMD–DnCNN

Optimizer ADAM ADAM ADAM

Patch size 256 256 256

Batch size 100 100 100

Epoch 200 200 200

Learning rate range [10−4, 10−7] [10−4, 10−7] [10−4, 10−7]

Input channels 1 1 4

Abbreviations: DnCNN: Denoising convolutional neural network; 
VMD: Variational mode decomposition.
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seismic reflections were still barely visible. However, as the 
noise increased to 0 dB, most of the seismic signals were 
overwhelmed by noise, and only a small portion remained 
observable. At −5 dB, only the strong direct wave energy 
was distinguishable. When the noise level reached −10 dB, 
almost no valid seismic information was visually identified.

To evaluate the denoising performance of the proposed 
VMD–DnCNN model, it was compared with several 
widely used seismic denoising methods, including 
traditional techniques, such as the wavelet transform and 
VMD, as well as deep learning-based approaches, such as 
the DnCNN and U-Net model.29 For parameter settings, 
the number of IMFs in the VMD was set to three, and a six-
level Daubechies-4 (db4) wavelet was used for the wavelet 
transform. Thresholds in both the VMD and wavelet 
methods were adaptively adjusted based on the complexity 
of the noise in the seismic data. To ensure experimental 
fairness, all denoising methods were implemented and 
tested on an Nvidia GeForce RTX 4060 Ti GPU with 16 GB 
of video memory. In addition, to quantitatively assess the 
denoising performance of each method, four commonly 
used evaluation metrics for seismic signal quality were 

adopted: SNR, root mean square error (RMSE), peak SNR 
(PSNR), and structural similarity index measure (SSIM). 
The specific formulations of these two metrics are defined 
as follows:
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where X represents the original seismic signal; Ŷ  
represents either the noisy seismic data or the denoised 
seismic data, which are used to calculate the SNR and 

Figure 4. Noise-free data and the corresponding data with added Gaussian noise under varying conditions: (A) 6 dB, (B) 0 dB, (C) –5 dB, and (D) −10 dB.
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RMSE for the original signal or the denoised result, 
respectively; M and N represent the number of receivers 
(traces) and the number of sampling points per receiver, 
respectively; µX and µY are the mean amplitudes of X and Y, 
respectively; σ X

2  and σY
2  are the variances; σXY is the 

covariance between X and Y; the constants C1 and C2 are 
small positive numbers introduced to avoid division by 
zero; MAXX

2  is the squared maximum amplitude of the 
reference signal; and MSE is the mean squared error 
between X and Y. The SSIM ranges from −1 to 1, with 
higher values indicating greater structural similarity 
between the two signals. The PSNR is expressed in decibels 
(dB), and higher values indicate better reconstruction 
quality with smaller differences from the reference signal.

A comparative analysis of denoising performance 
was conducted using the synthetic seismic data with 
added Gaussian noise (Figure 4). The denoising results 
of various methods are presented under different SNRs. 
To better illustrate the robustness of each method under 
varying noise levels, a performance comparison curve 
was additionally generated by adding Gaussian noise 
ranging from −10  dB to 6  dB in 1  dB increments to 
shot gather 1,510. This allows for the evaluation of how 
effectively each method performs against different noise 
intensities.

First, the visual denoising results of each method across 
different synthetic shot gathers were examined (Figure 5). 
When the noise level was 0 dB, traditional methods such as 
the wavelet and VMD models left noticeable background 
noise, and much of the noise remained entangled with the 
seismic signals. In contrast, deep learning methods like 
DnCNN and U-Net effectively suppressed background 
noise, although some seismic signals were inadvertently 
removed. Nevertheless, continuous signals across traces 
were better preserved. At −5 dB and −10 dB noise levels, 
the VMD method showed even more background 
noise residue, while the wavelet method exhibited 
increasingly severe artifacts. Under these conditions, 
DnCNN and U-Net also struggled to remove background 
noise effectively, and the retained signals were heavily 
contaminated by residual noise. In particular, at −10 dB, 
it became nearly impossible to identify any valid seismic 
information using these methods. In contrast, the 
VMD–DnCNN model demonstrated superior denoising 
performance. At 0 dB, although some background noise 
remained, it preserved more continuous and weak signals 
than other methods, maintaining better signal continuity. 
At −5  dB, it successfully removed most background 
noise while retaining the underlying seismic signals, 
achieving a near-complete recovery. Even at −10 dB, the 
VMD–DnCNN model was still capable of recovering 
meaningful signals; although some noise remained, the 

overall clarity of the signal was significantly better than 
with other methods. From this comparison, it is evident 
that VMD–DnCNN consistently outperformed other 
methods under both strong and weak noise conditions. 
Notably, in scenarios with severe noise contamination 
where other methods failed to recover seismic signals 
effectively, VMD–DnCNN retained finer details of the 
signal. Within the red rectangles in Figure  5, it can be 
seen that both the strong direct arrivals and the weaker 
reflections following the direct waves were better restored 
using VMD–DnCNN compared to other methods. Even 
under strong noise conditions, the proposed method 
was able to improve SNR to over 20  dB, whereas the 
performance of other methods—especially deep learning 
models—declined under such noisy scenarios. As 
shown in Table  2, the quantitative results also confirm 
that VMD–DnCNN achieved the highest improvements 
in both SNR and RMSE metrics compared to the other 
benchmark methods.

The importance of computational efficiency in seismic 
signal processing should not be overstated. Therefore, 
the computational performance of different denoising 
methods was analyzed by evaluating their performance 
under various noise levels. The SNR improvements 
achieved by each method across different noise intensities 
are illustrated in Figure  6, and the detailed performance 
metrics are summarized in Table  3. All methods were 
evaluated under identical denoising environments with 
consistent hyperparameter settings, including the number 
of training epochs, sample length, and learning rate. The 
training times required for VMD–DnCNN, DnCNN, and 
U-Net were 0.504 h, 0.498 h, and 2.144 h, respectively, while 
the traditional methods did not require any pretraining. 
In terms of average inference time per denoising task, 
the VMD–DnCNN, DnCNN, U-Net, VMD, and wavelet 
models required 2.178 s, 2.1012 s, 3.343  s, 66.26 s, and 
1.291 s, respectively. Their corresponding average SNR 
improvements were 29.05 dB, 11.53 dB, 12.83 dB, 9.34 dB, 
and 8.95 dB. Both VMD–DnCNN and DnCNN consisted 
of 20 convolutional layers, while U-Net contained 19 
convolutional layers along with four downsampling 
and four upsampling operations. Although U-Net 
slightly outperformed DnCNN in terms of denoising 
results, it required nearly four times the training time of 
DnCNN. While VMD achieved slightly better denoising 
results than the wavelet method, its time and memory 
consumption were significantly higher compared to the 
other methods, making it less practical for large-scale 
applications. Furthermore, DnCNN and VMD–DnCNN 
exhibited similar inference speeds and were slightly faster 
than U-Net. Although their inference times were longer 
than those of the wavelet method, they remained within 
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an acceptable range for practical use. Although deep 
learning methods required a one-time model pretraining 
phase, the training time was relatively acceptable. Once 
trained, the model could be reused without retraining, 
making the cost of pretraining negligible in the long 
term.

The robustness of each method across 17 different SNR 
levels was also analyzed using the performance curves, 
as shown in Figure  6. While all methods demonstrated 
a generally linear increase in SNR with decreasing noise, 
VMD–DnCNN achieved optimal denoising performance 
within the noise levels that were close to those used during 

Figure 5. Denoising performance of different methods under different SNR conditions. Panels A–F display, from top to bottom, the denoised results 
corresponding to varying SNR levels for each respective method: (A) VMD, (B) wavelet, (C) DnCNN, (D) U-Net, and (E) VMD–DnCNN.
Abbreviations: DnCNN: Denoising convolutional neural network; SNR: Signal-to-noise ratio; VMD: Variational mode decomposition.
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training. Even outside that range, although it did not always 
yield the highest SNR, it still consistently outperformed 
the other methods in denoising effectiveness. This 
phenomenon occurs because, outside the training interval, 

the frequencies of the high-, mid-, and low-frequency 
modes decomposed by 2D-VMD vary in response to 
differing noise intensities. Consequently, the network 
applies denoising based on signal feature frequencies 
learned during training, which may not accurately 
correspond to the characteristics of the input data.

As a frequency-domain analysis can better highlight 
seismic signal characteristics, this section further analyzes 
the denoising results using frequency–wavenumber (F–K) 
spectra, as shown in Figure 7. The denoising results of shot 
gather 510 were used as an example for detailed analysis. 
As shown in Figure 7A, the left panel shows the noise-free 
data, while the right panel demonstrates the data after 
adding Gaussian noise. Figure 7B–F displays the denoised 
results from different methods on the left, and the 
corresponding removed noise components on the right. 
As shown in Figure  7A, the dominant frequency of the 
original seismic signal lay in the range from 20–50 Hz. After 
adding noise, the frequency content shifted significantly 
into the 70–80  Hz range, completely overwhelming the 
original signal. By examining the denoising results, both 
the VMD and wavelet methods were found to remove 
portions of the strong direct wave signals. Specifically, 
VMD tended to misclassify parts of the original signal 
as noise, and its output was centered around 50 Hz. The 
wavelet method partially restored the original 20–50 Hz 
range in some regions, but also retained components in 
the higher-frequency band, indicating inconsistency 
in noise suppression. Among deep learning-based 
approaches, both U-Net and DnCNN exhibited better 
overall denoising performance. However, they tended to 
suppress certain high-  and low-frequency components 

Table 2. Result of processing at different SNRs by deep 
learning methods

Noisy 
record 
(dB)

Parameter VMD Wavelet DnCNN U‑Net VMD–
DnCNN

6 SNR 12.40 12.87 19.45 19.77 23.07

RMSE 0.6166 0.5842 0.2736 0.2639 0.1806

PSNR 54.54 55.22 61.73 62.32 65.41

SSIM 0.9992 0.9990 0.9998 0.9998 0.9999

0 SNR 7.85 9.14 17.90 18.15 27.03

RMSE 1.0524 0.9072 0.3307 0.3216 0.1156

PSNR 51.28 51.40 60.08 48.38 69.29

SSIM 0.9981 0.9977 0.9997 0.9943 0.9999

−5 SNR 5.67 5.23 4.19 5.81 24.95

RMSE 1.4332 1.5068 1.6990 1.4099 0.1556

PSNR 47.87 46.99 45.76 48.38 66.71

SSIM 0.9944 0.9939 0.9920 0.9943 0.9999

−10 SNR 0.80 2.25 −5.73 −3.47 23.23

RMSE 2.8440 2.4054 6.0296 4.6496 0.2148

PSNR 42.05 42.93 35.39 37.23 63.91

SSIM 0.9817 0.9851 0.9173 0.9238 0.9998

Abbreviations: DnCNN: Denoising convolutional neural network; 
PSNR: Peak signal‑to‑noise ratio; RMSE: Root mean square error; 
SNR: Signal‑to‑noise ratio; SSIM: Structural similarity index measure; 
VMD: Variational mode decomposition.

Figure 6. Denoising performance curves of the VMD, wavelet, DnCNN, U-Net, FFT, and VMD–DnCNN methods under different SNR conditions.
Abbreviations: DnCNN: Denoising convolutional neural network; FFT: Fast Fourier transform; SNR: Signal-to-noise ratio; VMD: Variational mode 
decomposition.
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of the original signal, resulting in the recovered signals 
being mainly concentrated around the 30–40  Hz range. 
In contrast, the VMD–DnCNN method demonstrated 
superior performance by preserving both high-  and 
low-frequency information. Within the red rectangular 
regions in Figure  7, VMD–DnCNN was observed to 
more effectively restore the seismic signal in areas with 
wider frequency separation, retaining more detailed 
seismic features. Overall, the VMD–DnCNN method 
demonstrated superior capability in restoring the signal’s 
frequency content to its original distribution, thus offering 

Table 3. Computer performance analysis

Hyperparameter VMD Wavelet DnCNN U‑Net VMD–
DnCNN

Average processing 
time (s)

66.260 1.291 2.012 3.343 2.178

Training time (h) 0 0 0.498 2.144 0.501

Average improved 
SNR (dB)

9.34 8.95 11.53 12.83 29.05

Memory cost (MB) 125.73 7.63 0.89 22.52 0.89

Abbreviations: DnCNN: Denoising convolutional neural network; 
SNR: Signal‑to‑noise ratio; VMD: Variational mode decomposition.

Figure 7. Frequency–wavenumber (F–K) spectrum analysis of noisy shot gathers 510 under different denoising methods: (A) clean F–K spectra, (B) VMD, 
(C) wavelet, (D) DnCNN, (E) U-Net, and (F) VMD–DnCNN.
Abbreviations: DnCNN: Denoising convolutional neural network; VMD: Variational mode decomposition.
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a more accurate and comprehensive reconstruction in the 
frequency domain.

Subsequently, how the VMD–DnCNN network learns 
seismic signal features was analyzed by examining feature 
activation heatmaps at different network layers. The 
denoising results of shot 1,510 were used as the case study. 
As illustrated in Figure 8, the heatmaps correspond to the 
1st, 4th, 10th, and 16th  layers of the network, displayed 
from left to right. It can be observed that the network 
predominantly focused on low-frequency components 
of the seismic signals, with these features being 
highlighted from the initial layer, albeit in a relatively 
simplistic form. By the fourth layer, the network 
began to learn features at even lower frequencies while 
simultaneously capturing high-frequency components 
associated with direct arrivals. At the 10th  layer, the 
features remained primarily low-frequency; however, 
by the 16th  layer, the learned features shifted toward 
higher frequencies, incorporating both low-  and high-
frequency information. Given that seismic signals 
primarily consisted of low-frequency components, 
decomposing the signals into low-, mid-, and high-
frequency bands through 2D VMD facilitated more 
effective feature learning by the network, surpassing the 
limitations of single time-domain feature extraction.

5. Field data experiment
In this section, the denoising performance of the 
proposed VMD–DnCNN model was evaluated using 
real seismic data, specifically marine seismic records. The 
real seismic data used in this experiment are shown in 
Figure 9A. By processing the field data, the effectiveness of 
VMD–DnCNN was demonstrated in real-world scenarios. 
For comparative analysis, the same baseline methods used 

in the synthetic data experiments were adopted. The real 
marine dataset used for evaluation was the 2D Mobil AVO 
Viking Graben Line 12 dataset. This dataset consists of 
1,011 shot gathers, each containing approximately 119 
seismic traces with 1,500 sampling points per trace. The 
sampling interval is 4,000 µs (i.e., 250 Hz sampling rate), 
resulting in a trace duration of 6 s. Shot gather 1 was 
selected for denoising analysis in this study. The denoising 
results of different methods applied to the real marine 
seismic data are shown in Figure 9.

Among the traditional methods, VMD effectively 
removed a significant amount of background noise and 
successfully separated weak signals from noise; however, 
some residual artifacts remained, and small portions of 
continuous strong signals were mistakenly removed as 
noise. Overall, the performance was relatively good. The 
wavelet method, on the other hand, tended to remove 
weak signals during denoising, produce residual artifacts 
around continuous strong signals, and leave some noise 
behind. For deep learning methods, both DnCNN 
and U-Net successfully suppressed background noise. 
However, the denoising effect of U-Net was inferior to that 
of DnCNN, as U-Net did not preserve weak signals well 
and exhibited residual artifacts in regions of continuous 
strong signals. In contrast, DnCNN showed relatively 
better overall denoising performance. Although some 
continuous strong signals were erroneously treated as 
noise, the continuity of the signals was largely preserved. 
In terms of weak signal processing, while residual noise 
still existed, a portion of the weak signals was retained, 
resulting in comparatively good denoising performance. In 
the case of VMD–DnCNN, although residual artifacts and 
incomplete removal of background noise remained, the 
method achieved a clear separation between weak signals 

Figure 8. The VMD–DnCNN feature activation heatmap.
Abbreviation: Variational mode decomposition–denoising convolutional neural network.
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Figure  9. Denoising results on real marine seismic data by different methods: (A) noisy data, (B) VMD, (C) wavelet, (D) DnCNN, (E) U-Net, and 
(F) VMD–DnCNN.
Abbreviations: DnCNN: Denoising convolutional neural network; VMD: Variational mode decomposition.
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and noise while preserving more weak signals overall. By 
examining the red-highlighted regions of the denoised 
results in Figure 10, as shown in the enlarged views of areas 
I and II, the VMD and wavelet methods left most of the 
noise residuals; U-Net recovered only a small fraction of 

the signals; DnCNN recovered some components, but with 
residual noise; and VMD recovered signals well. However, 
when these results were compared to VMD–DnCNN, 
the recovered signals by VMD–DnCNN were noticeably 
clearer.
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Figure 10. Crimson rectangular areas in Figure 9. From top to bottom are the zoomed-in views of regions I and II from different methods: (A) VMD, 
(B) wavelet, (C) DnCNN, (D) U-Net, and (E) VMD–DnCNN.
Abbreviations: DnCNN: Denoising convolutional neural network; VMD: Variational mode decomposition.
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6. Conclusion
Traditional decomposition methods for seismic signal 
processing often suffer from the problem of mode mixing, 
making them difficult to completely prevent noise 
components from being incorporated into each mode, 
thereby reducing denoising accuracy. To address this 
issue, this study proposed a novel seismic signal denoising 
method that combines VMD with DnCNN—referred 
to as VMD–DnCNN. Seismic signals are primarily low-
frequency, while noise is concentrated in high-frequency 
bands. Therefore, decomposition through VMD enables 
the network model to learn the characteristics of both 
seismic signals and noise more effectively. This method 
first applies VMD to decompose the noisy signal into 
three frequency-specific modes, corresponding to high-
frequency noise, mid-frequency seismic phases, and low-
frequency structural components. These modes, together 
with the original noisy signal, are used to construct a four-
channel input, providing the deep learning network with 
clearer and more distinguishable frequency information. 
With this decomposition, the network not only learns 
to differentiate between effective signal and noise 
features across frequency bands but also leverages the 
complementary characteristics of different modes to better 
detect and preserve weak signals, especially under high-
noise conditions. By adapting the DnCNN architecture and 
expanding the input channels, the VMD–DnCNN model is 
capable of extracting deep semantic features from seismic 
data while integrating both time-domain and frequency-
domain information. This significantly enhances the 
model’s denoising performance and generalization ability. 
Experimental results demonstrate that the proposed 
method outperforms both traditional and standalone deep 
learning approaches under various noise levels, and it 
remains effective in preserving fine signal structures even 
under low SNR conditions.

Despite its clear advantages in denoising accuracy 
and robustness, the VMD–DnCNN method has certain 
limitations in practical applications. First, it relies on a 
pre-decomposition step, where VMD must be applied to 
the input signal before feeding data into the network. This 

preprocessing not only increases the overall computational 
cost and complexity of the workflow but also makes 
performance highly sensitive to the VMD parameter 
settings. Inaccurate parameter choices may lead to 
suboptimal mode separation, which can adversely affect 
network learning. Second, as a variational optimization 
technique, VMD is computationally intensive—especially 
when dealing with large-scale 2D seismic data—and may 
significantly increase resource consumption. Moreover, 
mode mixing remains present to some extent, with noise 
potentially remaining in effective modes, interfering with 
the network’s learning process. Therefore, future research 
can explore learnable decomposition mechanisms or 
end-to-end jointly optimized frameworks that integrate 
decomposition and network training in a unified 
architecture, further enhancing the automation and 
adaptability of seismic denoising.
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Abstract
Microseismic event location plays a pivotal role in industrial applications, such as 
coal mining and hydraulic fracturing, by revealing subsurface fracture dynamics 
through the spatiotemporal analysis of seismic events. As a cornerstone of 
microseismic monitoring, accurate event localization enables critical insights 
into underground structural integrity. Traditional arrival-time-based methods 
employ optimization algorithms to minimize residuals between observed and 
theoretical arrival times. While this classical approach has proven effective, 
its accuracy is often compromised by two key limitations: suboptimal initial 
iteration values and inaccuracies in velocity parameter estimation. To address 
these challenges, we propose an innovative localization method integrating a 
grid-searching strategy with a Newton–Raphson-based optimizer. Our approach 
begins by generating initial iterative vectors—comprising event coordinates 
and velocity parameters—through a systematic grid-searching technique. 
Subsequently, the Newton–Raphson optimizer refines these estimates within a 
four-dimensional search space to achieve high-precision inversion results. The 
efficacy of the proposed method was rigorously evaluated using both synthetic 
and field datasets, with comparative analyses conducted against four established 
localization techniques. Experimental results demonstrate that our method 
significantly enhances localization accuracy and robustness, reliably inverting 
both event locations and velocity parameters. These findings provide a valuable 
technical reference for advancing microseismic monitoring systems, offering 
improved precision in industrial applications.

Keywords: Microseismic event location; Grid-searching method; Newton–Raphson-
based optimizer

1. Introduction
Microseismic monitoring has gained significant attention across multiple disciplines 
including mining engineering,1 carbon capture and utilization,2 volcanic activity 
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monitoring,3 and hydrocarbon reservoir characterization.4 
The accuracy and reliability of microseismic event 
localization are paramount in these applications, as the 
methodology must maintain robustness and stability when 
processing potentially noise-contaminated datasets.

Current localization approaches typically utilize the 
residuals between theoretical and observed P-wave arrival 
times as the primary criterion for evaluating inversion 
quality. The standard workflow involves: (i) identifying 
actual P-wave arrivals from recorded waveforms, 
(ii)  implementing optimization algorithms to iteratively 
determine the spatial coordinates that minimize the 
discrepancy between calculated and observed travel 
times.

Time-based localization methods, which rely on arrival 
time picking, ray tracing, primarily originate from the 
classical Geiger algorithm.5 These methods determine 
the source location by identifying the spatial coordinates 
that minimize the residuals between observed first-arrival 
times and theoretical travel times.6,7 However, the accuracy 
of such localization results is fundamentally constrained 
by inherent limitations in velocity model accuracy,8-11 
often leading to suboptimal positioning performance. 
To address these challenges, recent research efforts have 
focused on two key aspects: (1) developing enhanced 
optimization algorithms12,13 and (2) optimizing sensor 
array configurations.14-17

The integration of multiple optimization methods 
has proven to be an effective strategy for enhancing the 
accuracy of microseismic event localization. Several 
hybrid approaches have demonstrated promising results: 
Jiang and Pei.18 developed a combined grid search 
and Newton–Raphson iteration method; Lü et al.19 
implemented a hybrid algorithm incorporating simulated 
annealing with the simplex method; and Luo et al.20 
proposed a novel approach utilizing seagull optimization 
combined with quantile difference analysis. These hybrid 
methods have shown significant improvements in 
localization accuracy compared to conventional single-
algorithm approaches.

However, the velocity model remains a critical factor 
affecting localization precision. Dong et al.21 addressed 
this challenge by developing a velocity-independent 
localization method that eliminates the need for pre-
measured velocity parameters. While this approach 
effectively mitigates velocity related errors, it inherently 
lacks the capability to simultaneously invert for velocity 
parameters during the localization process.

We present a novel microseismic event localization 
method that combines the grid searching rule with a 

Newton-Raphson-based optimizer (GNRBO). Unlike 
conventional Newton-Raphson implementations that 
employ random initial assignments, our approach 
systematically generates initial iterative vectors (comprising 
both event coordinates and velocity parameters) through 
comprehensive grid sampling. The Newton-Raphson 
optimizer then refines these estimates within a four-
dimensional parameter space, simultaneously solving for 
both the microseismic source location and the average 
velocity model.

To evaluate the method’s performance, we conducted 
extensive testing using both synthetic and field datasets, 
assessing the algorithm’s accuracy and stability under 
various conditions. For comparative analysis, we 
implemented three established optimization techniques: 
the Hooke-Jeeves (H-J) direct search method, Genetic 
Algorithm (GA), and Particle Swarm Optimization 
(PSO). Results demonstrate that our proposed GNRBO 
method outperforms these benchmark approaches in both 
localization accuracy and computational stability.

2. Methods
2.1. Target function

Time-based microseismic localization methods utilize 
the minimization of residuals between theoretical and 
observed arrival times as their fundamental principle. 
Through optimization algorithms, these methods 
systematically search the potential source space to identify 
spatial coordinates where the travel-time residuals satisfy 
predetermined convergence criteria. The source location 
is considered accurately determined when the minimized 
residuals achieve the required inversion precision 
threshold.

The theoretical arrival time of microseismic waves 
at geophones can be expressed as a function of three key 
parameters as follows: (1) the spatial coordinates of the 
seismic source, (2) the receiver positions, and (3) the 
velocity model of underground wave propagation. This 
fundamental relationship forms the basis for time-based 
localization methods and can be mathematically described 
as follows:

T x y z v T T t x y z vP
i

P
i

0 0 0 0 0 0 0 0 0 0, , , , , , ,� � � � � � � (I)

Where TP
i  denotes the observed P-wave arrival time at 

the i-th receiver (Equation I), and T0 represents the origin 
time of the event.

tP
i  (Equation II) corresponds to the theoretical P-travel 

time from the location (x0, y0, z0) to the i-th receiver at 
(Xi, Yi, Zi) and the velocity parameter is v0:
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After eliminating the origin time T0, the inversion 
problem reduces to four unknown parameters in the 
objective function R(x,y,z,v), namely the source coordinates 
R(x,y,z) and the effective P-wave velocity (v0). This function 
quantifies the travel-time residuals between observed and 
theoretical arrivals as follows:

R x y z v
N

T x y z v T x y z vp
i

p
i

i

N

, , , , , , , , ,� � � � � � � �� �
�
�1

0 0 0 0

2

1

�(III)

T x y z vp
i , , ,� �  is the theoretical P-arrival time:

( ) ( )= +0̂, , , , , ,i i
p PT x y z v T t x y z v � (IV)

0̂T  is the estimate of the origin time of the event:

( ) ( )( )
=

= −∑0 0 0 0 0
1

1ˆ , , , , , ,
N

i i
p P

i

T T x y z v t x y z v
N

� (V)

According to Equation III, when the inversion 
unknowns approach the true value, the target function 
value is smaller. Inversions based on the location and 
velocity of the microseismic event are process in which the 
optimization algorithm is used to solve the unknowns of 
the target function, so that the target function tends to 0 
and achieves the global optimum.

As shown in Equation III, the objective function 
exhibits an inverse relationship with parameter accuracy, 
achieving its minimum value when the inverted 
parameters converge to their true values. The inversion 
process for microseismic event location and velocity 
determination constitutes an optimization problem 
where the algorithm iteratively adjusts the unknown 
parameters (x,y,z,v) to the minimization of the objective 
function toward zero.

2.2. Grid-searching method

The grid-search method systematically discretizes the 
parameter space to generate initial candidate solutions 
and establishes a set of potential solutions through a rough 
spatial sampling for the subsequent Newton-Raphson 
optimization. The searching rule is defined as:

x x i x i nx
y y j y j ny
z z

i min

j min

k mi

� � �� �
� � �� �
�

�

�

, , ,...,
, , ,...,

0 1
0 1

nn

l min

k z k nz
v v l v l nv

� �� �
� � �� �

�

�

�
�

�

�
�

�

�

, , ,...,
, , ,...,

0 1
0 1

� (VI)

Where (xmin, ymin, zmin, vmin) is the lower bounds in 
the searching space and (Δx, Δy, Δz, Δv) specifying the 
discrete interval between adjacent grid points along 
each axis. nx, ny, nz and nv are sampling numbers in 
each axis.

We define the swarms in the searching space as:

X x y z vn i j k l i j k l( , , , ) , , ,� � � � (VII)

According to Equation VII, there are N = nx × ny × 
nz × nv vectors (swarms in the searching space). The 
initial iteration vectors then are used for Newton-Raphson 
searching rule in the next section.

2.3. Newton-Raphson searching rule

The Newton-Raphson searching rule is:

NRSR randn
X X x
X X X

w b

w b n

� �
�� ��

� � � �� �
 �

2 2
� (VIII)

randn is a normally distributed random number with 
zero mean, and unit variance; Xw is the worst performing 
solution vector (maximum objective function value); Xb is 
the best performing solution vector (minimum objective 
function value); Xn is the n-th generation of the searching 
swarm population.

The iteration rule is:

X X NRSRn
IT

n
IT� �1  - � (IX)

Xn
IT  represents the n-th generation of the swarm 

population.

According to Sowmya et al.,22 the iteration rule can be 
optimized further as:

NRSR randn
y y x
y y X

y Mean Z x rr

w b

w b n

w N n

� �
�� ��
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� �
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1 2 XX X X

x rand dim X X
w b n

n n
IT

� � �� �
� � �� �

�

�

�
�
�
�
�

�

�
�
�
�
�

2

1� ,  

� (X)

Where r1 denotes a uniformly distributed random 
variable on the interval (0,1), and rand(1, dim) represents 
a dim-dimensional random vector with components 
independently drawn from U(0,1). The updated iterative 
scheme is then given by:
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Where a and b are random values in (0,1), t1 and t2 are 
random integers in the range of the number of iteration 
vector N. MAX_IT is the maximum generation number of 
the searching swarm population.

To enhance the robustness of the optimization process 
and prevent premature convergence to local optima, a Trap 
Avoidance Operator (TAO) is considered to dynamically 
evaluate and adjust the iteration vectors. This mechanism 
operates as follows:
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mean X X
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IT

n
IT

b n
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Where θ1 is a random value in (−1,1), θ2 is a random 
value in (−0.5,0.5), while μ1 and μ2 are represented by:

� � �

� � �
1

2

3 1
1

� � � � �� �
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�
�
�

��

rand
rand

� (XIII)

During the iteration, if the random number is less than 
the decision factor (DF, which is 0.6 in this paper), the 
particles are updated so that:

X Xn
IT IT

TAO
� �1 � (XIV)

According to Sowmya et al.,22  β denotes a binary 
number, either 1 or 0. If the value of a random value 
between 0 and 1 is ≥0.5, then the value of β is 0; otherwise, 
the value is 1. We assume that the optimization algorithm 
obtains the best performing solution when the iteration 
process is finished. Figure 1 illustrates the workflow of the 
proposed approach to visualize the key steps.

3. Synthetic data tests
The numerical simulation establishes a three-dimensional 
monitoring volume spanning 1000m (x-axis) × 1000m 
(y-axis) × 500m (z-axis). The sensor network consists 
of eight seismic receivers (blue rectangular markers) 

deployed underground, while 10 synthetic microseismic 
sources (red spherical markers) are distributed throughout 
the volume to test localization performance (Figure 2).

The coordinates of the sensors and events, along with 
the average velocity of the monitoring area and the origin 
times of events, are presented in Tables 1 and 2.

To evaluate the performance of the proposed method 
in terms of positioning accuracy and convergence stability, 
we conducted tests using simulated P-wave travel times. 
For comparison, three established algorithms—the H-J 

Figure 2. Sensor arrays and distribution of microseismic events.

Figure 1. The flowchart of the proposed method.
Abbreviations: NRBO: Newton–Raphson-based optimizer; 
NRSR: Newton–Raphson Search Rule.
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algorithm, GA, PSO, and NRB)—were selected and 
benchmarked against the proposed approach.

3.1. Inversion results analysis on a single event

To evaluate the localization performance, synthetic P-wave 
arrival times were used, with each positioning method 
tested 10  times under identical conditions. For the H-J 
algorithm, 10 random initial values were generated per 
trial to assess robustness. The iteration parameters for the 
GA, PSO, NRBO, and the proposed method are detailed 
in Table 3.

As shown in Table  4, the location errors and velocity 
inversion errors were evaluated based on the residual 
values of the objective function for each method. The 
results demonstrate that the PSO, NRBO, and the proposed 
method achieve higher positioning accuracy compared to 
the H-J algorithm and GA. The inversion results reveal that 
although the H-J algorithm converges close to the actual 
source location and approximates the average velocity 
in most cases, its solution often fails to reach the global 
optimum due to sensitivity to initial values, so the H-J 
method’s positioning accuracy is significantly influenced 
by the selection of initial iteration points.

Furthermore, we observed that GNRBO achieves 
the same localization accuracy as NRBO. The proposed 
method employs a grid-search strategy for initial vector 
assignment instead of the random initialization used 
in NRBO. This approach is motivated by the fact that 
completely random initialization may concentrate all 
initial individuals in an unfavorable region of the search 
space. If this region is distant from the global optimum, 
the algorithm would require more time to explore other 
promising areas. In contrast, grid search ensures a uniform 
distribution of the initial population across the entire search 
space. As a result, GNRBO maintains the location accuracy 
of NRBO while mitigating the effects of random vector 
initialization. Given the near-identical characteristics of 
the two methods, the remainder of this paper discusses the 
performance of GNRBO only.

To evaluate the inversion accuracy and stability of 
the four comparison methods, we analyzed the residual 
curves of their objective functions (Figure 3). The results 
demonstrate that both the PSO method and the proposed 
method achieve superior localization accuracy compared 
to the other two approaches. Furthermore, both the 
H-J algorithm and PSO demonstrate susceptibility to 
local optima convergence. While the GA avoids this 
pitfall, its overall convergence performance remains 
suboptimal. Consequently, all three methods exhibit 
large standard deviations in their inversion results, 
indicating unsatisfactory stability in solution quality. As 

Table 2. Microseismic event locations and average velocities

Event Event locations 
(m)

Velocity model 
(m/ms)

Origin time 
(ms)

X Y Z V T0

1 409 595 132 5 200

2 263 603 401 5 200

3 712 222 15 4.5 300

4 118 297 465 4.5 300

5 439 186 354 5.2 400

6 381 489 377 5.2 400

7 765 445 138 4.8 500

8 796 646 339 4.8 500

Table 3. Iteration parameters of three algorithms for comparison

Method The range of the searching spaces Numbers of iteration 
vectors

Maximum number of 
iterations X (m) Y (m) Z (m) Velocity (m/ms)

GA [0,1000] [0,1000] [0,500] [3,7] 1000 500

PSO [0,1300] [0,1300] [0,700] [2,7] 144 500

NRBO [0,1300] [0,1300] [0,700] [2,7] 144 500

GNRBO [−100,1300] [−100,1300] [−200,700] [2,7] 144 (nx=ny=4; nz=nv=3) 500

Abbreviations: GA: Genetic Algorithm; GNRBO: Grid searching rule with an NRBO; PSO: Particle Swarm Optimization;  
NRBO: Newton‑Raphson‑based optimizer.

Table 1. Coordinates of sensors in the monitoring area

Sensor Coordinates of the sensors (m)

X Y Z

A 0 0 0

B 0 0 500

C 1000 0 0

D 1000 0 500

E 1000 1000 0

F 1000 1000 500

G 0 1000 0

H 0 1000 500
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Table 4. Inversion results of each algorithm for No. 3 event

Method No. Inversion results

Values of target functions Errors on X‑axis (m) Errors on Y‑axis (m) Errors on Z‑axis (m) Velocity error (m/ms)

H‑J 1 1.1869 195.8000 91.4000 56.4000 1.6800 

2–3 8.2000×10‑03 5.9380×10‑01 8.3750×10‑01 5.9380×10‑01 1.2500×10‑02

4–10 5.2000×10‑03 3.7190×10‑01 5.2500×10‑01 3.7190×10‑01 7.8000×10‑03

GA 1 5.1360×10‑01 8.4152 1.2599 2.6763 1.3820×10‑01

2 2.2280×10‑01 14.3609 22.7735 15.0000 3.0720×10‑01

3 2.3600×10‑01 16.4304 24.4575 15.0000 3.4540×10‑01

4 2.4420×10‑01 2.6870 12.3826 6.6679 1.3020×10‑01

5 3.9530×10‑01 13.0293 27.4312 15.0000 2.8820×10‑01

6 1.7180×10‑01 10.1305 10.5638 7.8552 1.9130×10‑01

7 2.0160×10‑01 13.8512 17.0293 11.3937 2.7560×10‑01

8 4.9790×10‑01 24.8079 42.9948 15.0000 5.6530×10‑01

9 4.9280×10‑01 10.9521 2.8080×10‑01 5.3883 8.1000×10‑02

10 7.9480×10‑01 38.7396 64.3853 15.0000 8.5510×10‑01

PSO 1 1.7880×10‑01 11.2537 −15.7844 −15.0000 2.3200×10‑01

2 8.9595×10‑08 5.4599×10‑06 −7.8945×10‑06 −6.3069×10‑06 1.0492×10‑07

3 8.3187×10‑08 −3.6918×10‑06 6.0611×10‑06 4.7165×10‑06 −9.6966×10‑08

4 1.7880×10‑01 11.2537 −15.7844 −15.0000 2.3200×10‑01

5 9.9985×10‑08 5.8431×10‑06 −6.4691×10‑06 −7.0337e×10‑06 1.1145×10‑07

6 5.6938×10‑08 −3.6316×10‑06 3.8118×10‑06 2.8562×10‑06 −5.8678×10‑08

7 8.0253×10‑08 −3.8333×10‑06 6.8407×10‑06 4.7161×10‑06 −8.4923×10‑08

8 8.6374×10‑08 5.561×10‑06 −7.7736×10‑06 −3.8296×10‑06 1.1169×10‑07

9 8.4415×10‑08 5.6505×10‑06 −7.6209×10‑06 −4.5538×10‑06 1.0542×10‑08

10 5.8019×10‑08 3.5668×10‑06 −5.1631×10‑06 −2.4781×10‑06 7.1341×10‑07

NRBO 1 7.6025×10‑08 −4.6379×10‑06 4.9587×10‑06 3.3803×10‑06 −8.8197×10‑08

2 7.9791×10‑08 5.4871×10‑06 −7.5024×10‑06 −5.0411×10‑06 1.1702×10‑07

3 4.5000×10‑08 6.4174×10‑07 1.9462×10‑07 1.2416×10‑06 2.6760×10‑09

4 7.9854×10‑08 4.8676×10‑06 −6.5382×10‑06 −6.4612×10‑06 1.0161×10‑07

5 9.4780×10‑08 −3.5855×10‑06 6.8877×10‑06 6.4291×10‑06 −8.9947×10‑08

6 5.4590×10‑08 1.4160×10‑06 −2.6378×10‑06 −2.7416×10‑07 4.1030×10‑08

7 7.7556×10‑08 −3.5248×10‑06 4.6793×10‑06 5.2870×10‑06 −8.0933×10‑08

8 9.6337×10‑08 2.8062×10‑06 −4.5705×10‑06 −5.1877×10‑06 8.0992×10‑08

9 5.8400×10‑08 2.5450×10‑06 −2.3882×10‑06 −3.6217×10‑06 4.1128×10‑08

10 8.9179×10‑08 9.6326×10‑07 6.7787×10‑07 1.6863×10‑06 −1.3462×10‑08

GNRBO 1 7.3513×10‑08 2.7158×10‑06 −4.2334×10‑06 −4.5209×10‑06 5.0032×10‑08

2 9.2696×10‑08 8.009×10‑07 −1.7469×10‑06 −3.9857×10‑06 1.1163×10‑08

3 6.325×10‑08 1.1668×10‑06 −1.4645×10‑06 −3.254×10‑06 3.1566×10‑08

4 9.0051×10‑08 −1.1876×10‑06 −1.2955×10‑06 1.5039×10‑06 1.5501×10‑09

5 7.6197×10‑08 −2.2943×10‑06 2.9585×10‑06 1.3215×10‑06 −6.004×10‑08

6 9.9034×10‑08 2.2049×10‑06 −6.1565×10‑06 −3.8511×10‑06 7.6597×10‑08

7 9.2146×10‑08 −3.2821×10‑06 5.5135×10‑06 6.2409×10‑06 −6.9132×10‑08

8 5.795×10‑08 −3.2644×10‑06 4.9046×10‑06 4.1342×10‑06 −7.6801×10‑08

9 4.4129×10‑08 −4.2491×10‑06 −2.9997×10‑06 −2.7219×10‑06 3.5641×10‑08

10 5.1647×10‑08 2.8383×10‑06 −5.1605×10‑07 −1.2372×10‑06 9.7152×10‑09

Abbreviations: GA: Genetic Algorithm; GNRBO: Grid searching rule with an NRBO; H‑J: Hooke‑Jeeves algorithm; PSO: Particle Swarm Optimization; 
NRBO: Newton‑Raphson‑based optimizer.
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evidenced by the residual curves, the improved algorithm 
demonstrates superior performance with both the smallest 
mean error and standard deviation in inversion results. 
These metrics confirm that the enhanced method achieves 
optimal accuracy and stability among the four compared 
approaches. Figure  4 presents a comparative analysis of 
location errors between the PSO method and the proposed 
method. While PSO results affected by local optima are 
omitted from the graph, the boxplot analysis reveals that 
the proposed method achieves superior convergence and 
stability in all three coordinate directions (X,Y,Z), with 
consistently lower location errors compared to PSO.

3.2. Inversion results analysis on multiple events

Using the theoretical P-wave arrival times derived from 
Tables  1 and 2, we applied four comparative localization 
methods to determine the source locations and velocity 
parameter for the eight microseismic events shown in 
Figure  3. Table  5 presents the comparative performance 
metrics for each method, including location errors, 
velocity inversion errors, and corresponding objective 
function values.

The results demonstrate that the H-J algorithm fails 
to accurately locate No.6 event, with positioning errors 
exceeding 50 m in both the X and Z directions. Additionally, 
the method yields a wave velocity error >3 mm/s.

The GA demonstrates unsatisfactory performance in 
both event localization and velocity inversion across all 
eight source events. The method fails to converge reliably 
to true values.

The PSO method demonstrates generally robust 
inversion performance, successfully converging to 
accurate estimates for all eight source events. However, 
convergence accuracy varies significantly across events, 
with particularly degraded performance for No.1 and 6 
events compared to the other cases.

The proposed method demonstrates consistently 
accurate inversion results across all eight source events. 
The algorithm achieves unified inversion accuracy with 
the objective function converging to 10-8 magnitude. 
Spatial positioning errors in all three coordinate directions 
(X<Y, Z) converge to 10-7 magnitude, while velocity 
inversion errors stabilize at approximately magnitude.

Figure  5 presents the objective function residuals for 
all four methods, providing clear visual evidence of the 
proposed method’s superior localization accuracy and 
stability. The residual distributions demonstrate that 
our approach consistently outperforms the comparison 
methods in both convergence precision and solution 
robustness.

Figure 6 presents a comparative analysis of localization 
errors between the PSO method and the proposed 
method. The boxplot visualization demonstrates superior 
performance of our approach in all three coordinate 
directions (X, Y, Z), exhibiting both enhanced convergence 
precision and greater solution stability compared to PSO.

4. Field data tests
To validate the practical engineering performance of the 
enhanced Newton–Raphson method, we conducted field 
verification using artificial blasting test data from a coal 
mine. The experimental setup included five controlled 

Figure 4. Location error analysis No.3 event, GNRBO-X,Y,Z are location 
errors on X,Y,Z directions obtained from GNRBO, PSO-X,Y,Z are 
location errors on X,Y,Z directions obtained from PSO function.
Abbreviations: CI: Confidence interval; GNRBO: Grid searching rule 
with an NRBO; PSO: Particle Swarm Optimization; NRBO: Newton–
Raphson-based optimizer.

Figure 3. Residuals of the target functions of each location method for 
No.3 event.
Abbreviations: GA: Genetic Algorithm; H-J: Hooke-Jeeves algorithm; 
PSO: Particle Swarm Optimization.
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Table 5. Location results of each algorithm for each source

Method No. Inversion results

Values of target functions Errors on X‑axis (m) Errors on Y‑axis (m) Errors on Z‑axis (m) Velocity error (m/ms)

H‑J 1 1.5800×10‑02 3.0125 3.1500 3.8563 1.6370×10‑01 

2 1.7500×10‑02 3.6625 1.4562 2.0937 7.2500×10‑02 

3 5.2000×10‑03 3.7190×10‑01 5.2500×10‑01 3.7190×10‑01 7.8000×10‑03 

4 1.0500×10‑02 1.4187 6.5000×10‑01 5.8750×10‑01 1.4400×10‑02 

5 3.1900×10‑02 2.2000 13.2375 3.7250 1.9750×10‑01 

6 1.2450×10‑01 51.5000 4.7000 54.5000 2.2200 

7 9.7000×10‑03 3.5000 6.3750×10‑01 1.3031 5.8400×10‑02 

8 2.1400×10‑02 4.0625 1.7875 9.6250×10‑01 6.1300×10‑02 

GA 1 1.5100×10‑01 24.2526 21.5841 28.3689 1.2074 

2 2.8220×10‑01 15.6375 4.5920×10‑01 8.1980×10‑01 2.3230×10‑01 

3 1.2350×10‑01 8.6080 11.1370 6.5965 1.7040×10‑01 

4 4.4900×10‑01 46.0113 17.4678 22.8855 4.8210×10‑01 

5 2.2850×10‑01 8.4517 56.6445 13.4975 7.2600×10‑01 

6 8.8500×10‑02 16.3381 1.2082 20.0927 7.4680×10‑01 

7 2.7640×10‑01 108.8177 18.3472 41.8598 1.7117 

8 3.4350×10‑01 70.7686 28.7896 15.1159 1.0203 

PSO 1 1.7831×10‑07 −3.3764×10‑05 3.5527×10‑05 −4.3877×10‑05 1.8437×10‑06

2 9.2647×10‑08 3.7085×10‑06 −3.0127×10‑06 −5.1292×10‑06 −9.4259×10‑08

3 8.0139×10‑08 −1.0875×10‑06 2.8362×10‑06 −2.2989×10‑07 −2.0578×10‑08

4 9.3529×10‑08 −1.0386×10‑05 −4.7081×10‑06 6.3319×10‑06 1.0535×10‑07

5 9.1667×10‑08 −6.5514×10‑06 −3.6093×10‑05 1.07×10‑05 5.3501×10‑07

6 9.0373×10‑06 3.802×10‑03 3.8134×10‑04 4.005×10‑03 1.6129×10‑04

7 9.688×10‑08 3.4813×10‑05 −6.3431×10‑06 −1.3297×10‑05 5.7872×10‑07

8 9.6529×10‑08 −1.6689×10‑05 −8.0528×10‑06 −3.9844×10‑06 −2.4895×10‑07

GNRBO 1 4.327×10‑08 4.2794×10‑06 −3.3897×10‑06 5.2613×10‑06 −2.1536×10‑07

2 9.0878×10‑08 −1.4828×10‑05 5.6007×10‑06 6.2505×10‑06 2.9693×10‑07

3 9.7437×10‑08 −3.2897×10‑06 2.0745×10‑06 1.8301×10‑06 −2.9323×10‑08

4 9.5457×10‑08 −5.2046×10‑06 −6.455×10‑07 9.316×10‑07 5.0079×10‑08

5 6.9913×10‑08 −4.8094×10‑07 −2.5568×10‑05 6.3122×10‑06 3.8051×10‑07

6 7.8638×10‑08 −1.9404×10‑05 −5.3375×10‑07 2.061×10‑06 8.487×10‑07

7 6.8855×10‑08 6.8963×10‑07 −1.4791×10‑06 −7.0659×10‑07 1.2122×10‑08

8 8.4659×10‑08 −1.1105×10‑05 −4.7895×10‑06 −3.5174×10‑06 −1.8259×10‑07

Abbreviations: GA: Genetic Algorithm; GNRBO: Grid searching rule with an NRBO; H‑J: Hooke‑Jeeves algorithm; PSO: Particle Swarm Optimization; 
NRBO: Newton‑Raphson‑based optimizer.

blasts, with sensor and blast locations detailed in 
Figure 7A and Tables 6, 7. The parameters of the GNRBO 
are illustrated in Table  8. Field-acquired P-wave arrival 
times, documented in Table  9, served as input data for 
the inversion. Note that neither the velocity model nor 
the exact origin times of the blasts were known a priori, 
reflecting realistic field conditions.

The localization results are presented in Figure  7A-D 
and Table 10 presents a comparative analysis of localization 

results between the proposed method and the coal mine’s 
existing monitoring system. The P-wave arrival times used 
for both methods were selected based on signal-to-noise ratio 
criteria from the field data. The location results compared to 
the existing monitoring system, particularly in the vertical 
direction. Notably, the method achieves sub-10 m vertical 
accuracy for four out of five test events, representing a critical 
improvement for coal mine microseismic monitoring 
applications where vertical precision is paramount.
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Figure  6. Location error analysis for eight events. GNRBO-X,Y,Z are 
location errors on X,Y,Z directions obtained from GNRBO, while 
PSO-X,Y,Z are location errors on X,Y,Z directions obtained from PSO.
Abbreviations: CI: Confidence interval; GNRBO: Grid searching 
rule with an NRBO; PSO: Particle Swarm Optimization; 
NRBO: Newton–Raphson-based optimizer.

Figure 5. Residuals of the target functions of each location method for 
all events.
Abbreviations: GA: Genetic Algorithm; H-J: Hooke-Jeeves algorithm; 
PSO: Particle Swarm Optimization.

Table 6. Coordinates of sensors in the monitoring area

Sensor Coordinates of the sensors (m)

X Y Z

A 1490.0000 1939.3000 −870.0000

B 1416.3000 2172.4000 −887.2000

C 1350.3000 2381.5000 −890.6000

D 1519.3700 1847.5200 −866.2000

E 1767.6000 1972.2000 −900.1000

F 1699.6000 2188.7000 −908.1000

G 1623.4000 2428.4000 −915.2000

H 1685.0900 2233.5400 −904.0000

I 1467.2700 2011.5000 −878.0000

J 1399 2228.1800 −891.0000

K 1416 2170.4000 −908.5000

L 1454.9800 2050.4900 −875.7000

M 1758.3400 2001.6200 −905.0000

N 1668.1300 2287.6100 −912.0000

Table 7. True locations of microseismic events

Events Event locations (m)

X Y Z

1 1474.1840 1984.0200 −858.0000

2 1480.6530 1955.5570 −862.0000

3 1707.8340 2139.8480 −879.0000

4 1707.2180 2129.1720 −879.0000

5 1710.8630 2130.2520 −879.0000

5. Discussion
The current study introduces a novel approach to 
microseismic event location that integrates grid search 
principles with a Newton-Raphson-based optimizer 
(GNRBO). Unlike conventional arrival-time-based 
localization techniques, the proposed method does not 
require an a priori velocity model. Instead, it refines estimates 
within a four-dimensional search space (X, Y, Z, and velocity) 
to achieve high-precision inversion results. Given that 
accurate velocity parameters are often difficult to estimate 
or may vary during microseismic monitoring, this velocity-
independent approach enhances localization accuracy.

Existing methods, such as the original NRBO22 and PSO, 
initialize search particles randomly within the solution space, 
which may lead to convergence at local optima rather than the 
global optimum—as demonstrated by the results in Table 4. 
In contrast, GNRBO ensures robustness by systematically 
generating initial iterative vectors through uniform sampling 
of the search space. This strategy increases the likelihood 
of at least one particle being sufficiently close to the global 
optimum, thereby improving convergence reliability.

In the synthetic data tests, we first evaluated the 
inversion performance for a single microseismic event. 
As illustrated in Figures  3-5, the proposed GNRBO 
method achieves significantly higher localization accuracy 
and greater stability compared to the three benchmark 
methods (H-J, GA, and PSO). While H-J and GA yield 
suboptimal results, PSO exhibits a tendency to converge to 
local optima, compromising its reliability.

Subsequently, we extended the analysis to multiple 
events. Figure  5 demonstrates that GNRBO successfully 
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Table 9. P‑wave arrival time from the field data

Sensors Arrival times of each event (s)

No. 1 No. 2 No. 3 No. 4 No. 5

1 14.1120 6.0780 10.2340 9.7020 6.7560 

2 14.1460 6.1340 10.2340 9.7040 6.7580 

3 14.1880 / 10.2660 9.7360 6.7900 

4 14.1360 6.1000 10.2460 9.7140 /

5 / / 10.2060 / 6.7280 

6 14.1560 / 10.1780 9.6500 6.7040 

7 14.2000 / 10.2360 9.7080 6.7600 

8 14.1600 / 10.1880 9.6600 6.7140 

9 14.0960 6.0940 10.2280 9.6980 6.7520 

10 14.1520 6.1440 10.2400 9.7100 6.7640 

11 14.1360 6.1400 10.2280 9.6960 6.7500 

12 / / / / /

13 14.1740 6.1380 / 9.6740 /

14 14.1680 6.1700 / 9.6800 6.7300 

Table 8. Iteration parameters of GNRBO

Method The range of the searching spaces Numbers of iteration 
vectors

Maximum number 
of iterations X (m) Y (m) Z (m) Velocity (m/ms)

GNRBO [1000,2000] [1500,2500] [−700,−1000] [3.5] 3025 (nx=ny=11; nz=nv=5) 500
Abbreviations: GNRBO: Grid searching rule with an NRBO; NRBO: Newton‑Raphson‑based optimizer.

locates all eight events with high precision, outperforming 
the other methods. A detailed comparison of localization 
errors along the X, Y, and Z axes (Figure 6) further confirms 
the robustness of GNRBO, as evidenced by the consistently 
smaller error distributions in the boxplot visualization. 
These results conclusively demonstrate that GNRBO 
delivers reliable and accurate event localization in synthetic 
datasets, validating its superiority over benchmark method 
in this paper.

To evaluate the practical performance of GNRBO, we 
conducted field tests using artificial blasting data from a 
coal mine, comparing results against the mine’s installed 
monitoring system. As demonstrated in Figure  7 and 
Table 10, GNRBO significantly outperforms the conventional 
monitoring system in localization accuracy. Detailed analysis 
reveals that GNRBO achieves vertical accuracy within 10 m 
for 80% of test events (4 out of 5), demonstrating particular 
improvement in vertical positioning—a critical factor for 
coal mine safety monitoring. These results confirm GNRBO’s 

Figure 7. Microseismic monitoring in a coal mine. (A) Location results (X-Y-Z); (B) Location results (X-Y); (C) Location results (X-Z); (D) Location results (Y-Z).
Abbreviations: GNRBO: Grid searching rule with an NRBO; MS: Monitoring system; NRBO: Newton–Raphson-based optimizer.
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Table 10. Location results based on the field datasets

Event no. Location error (monitoring system) Location error (GNRBO)

Horizontal error (m) Vertical error (m) Horizontal error (m) Vertical error (m) Sensors used

1 45.5400 19.5000 44.5300 −17.4600 A, B, C, D, F, G, H, I, J, K, M, N

2 22.4900 13.0000 17.9900 −1.5200 A, B, D, I, J, K

3 32.7700 27.7000 31.7100 −6.9900 A, B, C, D, F, G, H, I, J, K, M, N

4 7.3300 18.4000 2.1300 0.7800 A, B, C, D, F, G, H, I, J, K, M, N

5 4.2400 14.9000 17.1800 1.3500 No. 1,2,3,5,6,7,8,9,10,11,14 A, B, C, E, F, G, H, 
I, J, K, N

superior performance in real-world applications compared 
to existing monitoring solutions.

6. Conclusion
This study presents an enhanced microseismic localization 
and velocity inversion approach that synergistically 
combines grid search methodology with the Newton-
Raphson algorithm. The hybrid method demonstrates 
significant improvements in localization accuracy and 
solution stability. Through comprehensive validation 
using both synthetic and field datasets, we comparatively 
evaluate our method against three established optimization 
techniques: the H-J algorithm, GA, and PSO. The key 
findings are summarized as follows:
(i)	 The grid search method systematically partitions the 

solution space to eliminate unreliable localization 
results caused by randomly-assigned initial vectors. By 
providing optimized initial parameters for the Newton-
Raphson algorithm, this approach maintains high 
positioning accuracy while significantly improving 
solution stability. The grid-derived initialization 
vectors effectively prevent convergence to local optima.

(ii)	 Using synthetic data, we evaluated the inversion 
performance of the Newton-Raphson method in 
comparison with three established optimization 
approaches: the H-J algorithm, GA, and PSO. Through 
comprehensive analysis of objective function values, 
localization errors, and average velocity inversion errors, 
the results demonstrate that the proposed method 
achieves superior and more stable positioning accuracy.

(iii)	 The proposed method was validated using field data 
from a coal mine microseismic monitoring system. 
Comparative analysis with the existing localization 
system demonstrates superior accuracy of our 
approach, particularly in vertical positioning. The 
results reveal consistent improvements in depth 
estimation precision, achieving sub-10-m vertical 
accuracy for of seismic events (4 out of 5 test cases), 
which represents a critical enhancement for mine 
safety applications.
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