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ARTICLE
Predicting channel sandstone thickness through
a VIF-NRBO-XGBoost model

Weichao Zhang'(?, Junhua Zhang'*?, Zheng Huang’, Jinggiang Yu?,
Deyong Feng? and Shugang Wang?
'School of Geosciences, China University of Petroleum (East China), Qingdao, Shangdong, China

2Geophysical Research Institute, Shengli Qilfield Company, SINOPEC, Dongying, Shangdong,
China

Abstract

High-precision sand thickness data are fundamentally important for optimizing
exploration strategies in petroleum geology. In the Chengbei work area of
the Jiyang Depression, the stratigraphic channels are chaotically developed,
with channels of varying sizes in different strata overlapping, intersecting, and
exhibiting narrow widths. The actual well-seismic relationship is poor. Therefore,
individual seismic attributes in this area exhibit extremely low correlation with
channel sandstone thickness. Conventional attributes such as root mean square
amplitude show no distinct channel characteristics, necessitating the integration
of multiple seismic attributes for effective prediction. Moreover, the high
multicollinearity among seismic attributes introduces significant interference
in prediction results. Therefore, this study integrates the Pearson correlation
coefficient and variance inflation factor (VIF) to optimize seismic attribute
selection, effectively eliminating redundant attributes and those with low
correlation. To further enhance prediction accuracy and address the significant
bias inherent in single-model predictions, this study introduces the ensemble
learning XGBoost model, which integrates predictions from multiple weak
learners to improve the precision of sandstone thickness estimate. The Newton-
Raphson-based optimization algorithm was employed to fine-tune the XGBoost
parameters. Results from test wells demonstrate a remarkable improvement in
prediction accuracy, achieving reliable sandstone thickness estimation despite
poor well-seismic correlations. This research provides valuable insights and offers
a widely applicable methodology for predicting the thickness of complex channel
sand bodies.

Keywords: River channel sand body; Thickness prediction; Variance inflation factor;
Newton-Raphson based optimization optimization; XGBoost

1. Introduction

Reservoir characterization constitutes a critical component in oil and gas field
exploration and development. Scholars in related fields have conducted innovative
research on reservoir thickness prediction, enhanced wettability characterization
accuracy, and sandstone reservoir petrophysical properties.'” Accurate prediction of
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reservoir thickness is fundamental to detailed reservoir
characterization and optimal exploration well placement,
with increasingly stringent requirements for prediction-
match rates. Given the high costs associated with acquiring
fundamental seismic data, fully leveraging seismic data
for reservoir thickness prediction holds significant
importance for cost reduction and efficiency improvement
in hydrocarbon exploration. To better utilize seismic data,
geophysicists specializing in seismic data processing have
integrated emerging technologies such as deep learning
networks with wavelet transform methods to enhance
seismic data resolution.* Seismic attributes, which are key
information extracted from seismic data, contain abundant
reservoir characteristics. Channel sand bodies represent
one of the most important reservoir types in continental
petroliferous basins. The Chengbei work area of Jiyang
Depression studied in this paper exhibits chaotic channel
development, where channel sand bodies demonstrate poor
well-seismic relationships due to unfavorable conditions,
including thin individual layers, narrow channel widths,
severe overlapping and intersecting patterns, and
multiple interbedded layers. These factors result in weak
correlations between individual seismic attributes and
sand body characteristics, necessitating multi-attribute
seismic prediction. However, the strong multicollinearity
among different seismic attributes precludes the simple
superposition of multiple attributes with relatively strong
correlations to sand body features for thickness prediction.®

The reservoir prediction for such complex channel sand
bodies in this area has become a challenging issue, urgently
requiring a novel method capable of effectively predicting
sandstone thickness in such contexts.

In the field of reservoir thickness prediction, numerous
studies have been conducted by petroleum geophysicists.
Widess®first proposed estimating thin-bed thickness using
reflection amplitude, but this method was only applicable
to ideal reservoirs with equal-magnitude and opposite-
polarity reflection coefficients. Chung and Lawton’
improved uponthisapproach,achievingsomeenhancement
in the prediction accuracy for very thin layers. However,
the amplitude values remained constrained by the absolute
values of the top and bottom reflection coefficients of the
sand bodies, resulting in poor performance with actual
data. Multi-attribute inversion has also been employed
for sand body thickness prediction, utilizing seismic
attributes sensitive to sand thickness combined with
nonlinear optimization algorithms to calculate thickness.
Nevertheless, this method suffers from low computational
efficiency and is only effective in well-controlled areas,
performing poorly in non-well-controlled regions.*’
Some scholars have proposed spectral decomposition
techniques, using the “spectral notch” period to determine

thin-bed thickness.'*'? However, the “spectral notch”
phenomenon is significantly influenced by factors such
as wavelet bandwidth, limiting its practical application.
Other approaches include identifying channel boundaries
and predicting sand thickness using peak frequency-to-
amplitude ratios, but these methods require high well-
seismic correlation and are unsuitable for complex channel
sand bodies with poor well-seismic relationships.'® Barnes
et al."* analyzed the relationship between frequency and
reservoir thickness, establishing a corresponding formula
for thickness distribution. However, this method shows
low accuracy in complex areas with overlapping channels.
Wang et al.'® applied supervised learning based on fully
connected neural networks to establish a nonlinear
mapping between wavelet time-frequency components of
seismic data and reservoir sand thickness, which, to some
extent, reduced errors in validation wells.

Modern regression analysis frequently employs
machine learning implementations, particularly tree-
based ensemble methods like Random Forest, and
kernel transformation techniques such as support vector
regression (SVR) have demonstrated promising results
in predicting sand body thickness.'®"” While SVR models
offer advantages for small-sample predictions and are
theoretically suitable for areas with limited well data, their
reliance on kernel functions for spatial mapping limits
their ability to accurately handle nonlinear problems,
resulting in weak nonlinear modeling capabilities.
Chopra and Marfurt'® were the first to utilize supervised
learning algorithms, such as neural networks, to map
multiple preferred attributes into reservoir thickness.
Some researchers have employed eXtreme Gradient
Boosting (XGBoost) models for sand thickness prediction,
achieving favorable outcomes."” Furthermore, the XGBoost
algorithm has found extensive utilization across multiple
domains such as transportation, medicine, environment,
and computer science.”® Liu et al** employed spectral
decomposition-derived seismic characteristics combined
with stacked generalization methodology to estimate
reservoir thickness, which improved accuracy compared
to other models. Currently, among various machine
learning approaches, ensemble learning models show the
most significant performance. However, challenges remain
in optimal seismic attribute selection and parameter
optimization for these ensemble models.

Based on the above research background, this paper
proposes a VIF-NRBO-XGBoost reservoir thickness
prediction model. To address the issues of strong
multicollinearity among seismic attributes and low
correlation between individual seismic attributes and
reservoir thickness in complex channel sand bodies,
this study combines variance inflation factor (VIF) and
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Pearson correlation coefficient to conduct multicollinearity
analysis and optimal seismic attribute selection.® To
overcome the large prediction errors of single models and
further improve prediction accuracy, an ensemble learning
XGBoost model is introduced to enhance sand body
thickness prediction precision by integrating predictions
from multiple weak learners.?® VIF serves as a diagnostic
tool for detecting multicollinearity in multiple linear
regression models, effectively eliminating redundant
seismic attribute information. In general, a VIF value
exceeding the threshold of 10 indicates unacceptable
strong multicollinearity. Tree-based XGBoost ensemble
learning demonstrates superior predictive performance
for poor-quality data. However, this algorithm involves
numerous parameters whose default settings typically
fail to maximize model performance. Manual parameter
adjustment proves excessively laborious and blind, making
it practically infeasible. Currently, common parameter
optimization methods include particle swarm optimization
(PSO) and Bayesian optimization algorithms. For sand
thickness prediction, PSO performs relatively poorly
due to limited well data samples. Although Bayesian
optimization shows improvement over PSO, it tends to
converge to local optima, making it still challenging to find
optimal parameter combinations for channel sand bodies
with inherently poor well-seismic relationships. This
study employs the Newton-Raphson-based optimization
(NRBO) for model hyperparameter optimization.”” The
algorithm utilizes the Newton-Raphson search rule (NRSR)
and the Trap Avoidance Operator (TAO) mechanisms to
explore the search domain and enhance convergence speed.
NRBO exhibits strong evolutionary capability, fast search
speed, and excellent optimization performance. Finally,
the prediction results are compared with other models to
demonstrate the reliability of the proposed method.

2. Methodology
2.1.Variance inflation factor

Multicollinearity refers to the existence of linear
relationships among independent variables. The VIF is a
metric used to quantify the severity of multicollinearity
among features in a regression model. A higher VIF value
indicates stronger multicollinearity between the features.
The VIF is calculated using the following formula:

VIF =

@
1-R’
Where R’ represents the determination coefficient
quantifying the linear relationship between the i-th
selected feature and other features in the dataset. The

computational method sequentially designates each

feature as the response variable while considering the
remaining features as predictors, fitting a regression model
accordingly, and finally computes the ratio of mean squared
errors between the independent and dependent variables.
A VIF value near 1 suggests that the feature exhibits
negligible multicollinearity. In general, two thresholds are
set: when 5 < VIF < 10, it indicates relatively severe
multicollinearity for that feature, requiring careful
consideration; when VIF > 10, it signifies extremely strong
multicollinearity, necessitating elimination.

2.2. Fundamental principles of the XGBoost model

XGBoost represents an enhanced machine learning
framework derived from the gradient boosting decision
tree (GBDT) architecture, constituting an advanced
implementation within the gradient boosting algorithmic
paradigm. It consists of multiple decision trees that combine
predictions from several weak learners to produce the
final predictive outcome. Reservoir thickness prediction
represents a typical regression problem, generally expressed
through the following regression prediction formula:

b= fi(x) (In)

Where x_represents the input sample, f, (x) is the
prediction result calculated by the k-th tree, and by
applying the principle of ensemble learning, the prediction
results of the k trees are superimposed to obtain the final
prediction result ¥, of XGBoost. XGBoost assigns weights
to each tree, and the subsequent trees will focus on the
prediction information from the previous trees. Through
multiple rounds of iterations, they converge to the final
prediction result. Moreover, a regularization term is added
to increase the model complexity:

0=Y" L(y.5.)+2, Qf) (1)

Where O represents the objective function established,
L is the loss function to be calculated, and Q is the
regularization term added. Different from the conventional
GBDT methods, the regularization term of XGBoost is:

1 T,
Q(fk)ZVTJfgﬂzq:l”q av)

Where y represents the penalty factor, T indicates the
number of leaf nodes, A is the regularization parameter
for leaf weights, w represents the weight assigned to
the leaf node at this time, and the regularization term is
used to prevent the decision tree from being too large in
scale, limit the number of leaf nodes, improve the model’s
out-of-sample performance, and mitigate overfitting risks
through regularization constraints. The loss function is:
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y.y)=(y.—».) (V)

The XGBoost algorithm constructs its optimization
objective function by integrating the prediction error term
from the tree ensemble model with the model complexity
regularization constraints:

W= T(red " L) (A)FC (v

Where C represents a constant, and the target function
is expanded using the Taylor series:

wo=y {J(yc e >)+gcfu(xc)+—hcfé(xc)}

+T+=1Y, o +C
(VII)

Where g =00l 5 )0 b =0l JO)
denote the initial and successive rate-of-change measures
in the differentiation hierarchy of the prediction error with
respect to the model. Taking the first-order derivative of
,, we obtain the optimal objective function of XGBoost:

(VIID)

The formula provides a structural scoring mechanism
for tree models, with lower numerical values indicating
superior topological configurations.

Take the derivative of Equation VI to obtain the
optimal solution as follows:

) b (IX)
0 =-
1 R +1

Where F = chq g R = chq h, represent the sum

of the first-order derivatives and the sum of the second-
order derivatives of all input data mapped to leaf node q. I
is the sample set of leaf nodes.

2.3. The principle of NRBO method

The NRBO is a novel metaheuristic optimization method
whose inspiration primarily stems from two key principles:
The NRSR and the TAO. By employing NRSR and TAO,
the algorithm explores the search domain while enhancing
convergence speed. NRBO exhibits strong evolutionary
capabilities, rapid search performance, and excellent
optimization ability.
(1) Exploratory starting point configuration: Throughout
the primary population establishment process, NRBO
creates a uniformly distributed candidate population

spanning the solution space boundaries, which serves
as the foundation for subsequent iterative refinement.
Suppose there are N populations; NRBO uses Equation
10 to generate the random population:

B =Ib+ randx(ub—lb),k =12,....N,,,p= 1,2,...,dim( |
X

In the population matrix representation, element k"
stores the position value of the k-th candidate solution
in its p-th dimensional component, r and represents a
random number within the range of (0, 1), and the
search space is constrained by /b (minimum value)
and ub (maximum value) for each parameter. Formula
11 depicts the population matrix of all dimensions:

b by hy,
N
H= " 2 . (XD)
thnp h;‘]op . hNOP

dim Ny pxdim

(2) The NRSR is developed by adapting the classical
Newton-Raphson method, with dual objectives of
enhancing trend discovery capability and improving
convergence rate. The Newton method is an iterative
process used to find the roots of an equation. It obtains
the next estimate by performing a two-dimensional
Taylor Series (TS) around the current estimated
minimum value. The iteration continues until the first
derivative of the function approaches the threshold,
and the minimum point estimate is finally determined.
Formula XII represents the second-order Taylor
Series of v(h) at h;:

1 1 . 1 .
v(h):af(h0)+1—!(h—h0)v (h0)+2—!(h—h0)2v(ho) (XI1)
By taking the derivative of both sides of the above

equation and setting it equal to zero, we obtain the
following equation:

v (h)=v (h)+v (h)(h=h))=0 (XI1D)
The above equation can be solved as:
h=h,- L (1) (XIV)

v (k)

The above process is repeated until a point with zero
derivative is obtained. Formula XV is the iterative formula
for the obtained point:

nop o) (XV)
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In order to obtain NRSR from the above equation, the
second-order Taylor series of v(h + Ah) and f(h-Ah) are
written as follows:

vl 8h) =v(R)+v (b, A+ ()0 (XVI)

v(h=8k)=v(h)=v ()Ah+v (h)AR OXVID

By subtracting or adding Formulas XVI and XVII, the
expressions of v’ (h) and v” (h) can be obtained:
)= v(h+Ah)—v(h—Ah)

y ( ) AR (XVIII)

h+Ah)+v(h—Ah)-2v(h)
AR

V"(h):"( (XIX)
Substitute Formulas XVIII and XIX into Formula XV,
and the updated root positions are as follows:
e (v(h, +AR)=v(h, - Ah))x A X%
2><(v(h,1 + Ah)+v(hn —Ah)—2>< v(hn ))

Where h + Ah and h -Ah respectively represent the
positions of adjacent X’s to each other, and NRSR is defined
as follows:

(H, —H,)xAh

NRSR =randnx
2x(H, +XH,-2xh,)

(XXI)

Where randn generates random scalars drawn from the
standard normal distribution (u = 0, 6> = 1). H and H,,
respectively, denote the worst and best positions.

Ah =rand(1,dim )x |Hh ~-H" (XXII)

Where H, represents the current optimal solution,
and rand(1,dim) is a set of random numbers with dim
decision variables. Then, by using NRSR, Formula XI is
modified to:

h, =h - NRSR (XXIII)

A guidance parameter p is introduced to direct the
population’s positional updates toward the optimal
solution region:
p=ax(H,—H)+bx(H" -H) (XXIV)
Where a and b are random numbers within the range

of (0, 1), s, and s, are different integers selected, and the
current position of the vector is updated by Formula XXV:

Hl,iT:h,I,T—{mndnx (HW_Hb)XAh J

2(H,+H,-2xH,)
+(a(m,-H]"))+bx(H -H) (XXV)

Where the vector H1;' represents the updated position
derived from k' through the enhanced NRSR, which
constitutes an optimized variant of the standard Newton-
Raphson Method (NRM). Formula XXI becomes:

()’w _yb)XAh

NRSR =randnx (XXVI)
2x(y, +y,—-2xh,)
7, =5, %(Mean(M,,, +h,)+s xAh) (XXVII)
¥, =s,%(Mean(M,,, +h,)~s,x Ah) (XXVIII)
(H,—H,)xAh
M, =h, —randnx (XXIX)

2x(H, +H,-2xh,)

Where y_and y, denote position vectors derived from
M and h, respectively, where s, ~ U(0,1), represents a
uniformly distributed random coefficient. The candidate
solution for the subsequent generation is determined by:

(7, =2,)0h
Z(h(yw +y, —2hk))
+(a(H, B[ )+b(H] -HT))

H,ﬁT = thT —| randn
(XXX)

(3) TAO: The TAO framework integrates an advanced
optimization operator developed by Ahmadianfar
et al.,”® which significantlyboosts NRBO’s performance
in real-world applications while mitigating local
optimum convergence risks. This implementation
activates when the stochastic variable rand (uniformly
distributed in [0,1]) falls below the decisive factor DF
(default threshold: 0.6). Then, the solution Xj,, is
generated using the following formula:

Xpno =X 4+0x X(py xx, -, x X1

+Ox Xx6x X(u, ><Mean(XiT)—/,t2 ><X;T),/yt1 <0.5

(XXXI)
Ko =%, +0x X xx, = 1, x X,1)
+Ox X x 8 x X(p, x Mean(X!") =, x X7, 1, 20.5
xm=x0 (XXXII)

Where rand is arandom number, 8, and 6, are uniformly
distributed random numbers within the range of (-1,1)
and (-0.5,0.5), respectively. The parameters y, and pu,
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are assigned stochastic values during initialization. The
randomness of y, and u, prevents the population from
falling into local optima.

2.4.VIF-NRBO-XGBoost reservoir prediction
workflow

The VIF-NRBO-XGBoost-based prediction workflow
for channel sand reservoir thickness proceeds as follows:
First, seismic attributes are extracted and preliminarily
optimized, prioritizing those with clear geological
significance and superior quality. The selected seismic
attributes then undergo outlier removal and normalization
processing. Subsequently, VIF values are calculated for
all extracted seismic attributes, combined with Pearson
correlation coefficients for comprehensive attribute
analysis. Hyperparameter selection for the XGBoost
algorithm is accomplished through NRBO optimization.
The processed seismic attributes are then paired with
corresponding well-point thickness data to train the
NRBO-XGBoost reservoir thickness prediction model.
To ensure evaluation stability, K-fold cross-validation
(with K = 5 in this study) is implemented, using the
mean absolute error from five validation wells to assess
prediction accuracy. Finally, the model predicts reservoir
thickness for other target areas within the work zone. The
complete workflow is illustrated in Figure 1.

3. Correlation analysis combined with VIF
for selecting optimal seismic attributes

The typical lithofacies bodies in Jiyang Depression have
rich reservoir types. The ancient river channel sand bodies
are representative lithofacies among them. This paper takes
Chengbei Oilfield as the research area, and the study section
is the upper part of the Guantao Formation. The large

Seismic attribute | | Data
extraction preprocessing

p

and small river channels are superimposed and crossed,
while the single sand body reservoir is thin. According
to the geological meaning of seismic attributes and the
comprehensive data quality, a total of 11 distinct seismic
attributes from different categories were extracted from the
target formation, including: Root mean square amplitude
(RMS_amp), bandwidth (BW), zero-crossing count (ZCC),
arc length (AL), energy half-time (EHT), average energy
(AE), average instantaneous frequency (AIF), average
amplitude (AA), positive amplitude sum (PAS), dominant
frequency (DF), maximum amplitude (MA).

3.1. Correlation analysis of seismic attributes

In machine learning regression experiments, the Pearson
correlation coeflicient, scatter plots, and linear models
are the three most commonly used methods. Figure 2
comprehensively displays the following: (i) Complete
inter-variable linear dependencies are shown in the
matrix upper triangle, quantifying how each of the
11 seismic attributes covaries with formation thickness at
well locations; (ii) The lower triangle presents scatter plots
of correlations between different attributes, as well as
between all attributes and thickness, with overlaid linear
regression lines. To better visualize the linear relationship
between individual seismic attributes and thickness,
along with statistical reliability, 95% confidence intervals
are included in the scatter plots; (iii) The diagonal displays
normalized distribution histograms and Kernel density
estimation of the seismic attributes, clearly reflecting
their distribution patterns. From the data and scatter
plots as shown in Figure 2, individual seismic parameters
demonstrate limited predictive capability for thickness
estimation in reservoir formations, and the distribution
of single attributes shows no significant patterns.

Cor i r—1
coefficient ana!;sls ) e e
Advantageous 1
seismic attributes

< Cross-validation >
iCross-validation

XGBoost reservoir
prediction model

A
NRBO
Optimization
Initialize the parameters
of NRBO

’ Establish the NRBO- \‘

Newton-Raphson search N
rule (NRSR

o — ¥
(" Escape operator Tteration
TAO steps >N

>

NRBO-XGBoost
Optimal parameter
combination

VIF-NRBO-XGBoost
Reservoir prediction
model

-
results of

) Prediction J
(_ thickness

y

Figure 1. VIF-NRBO-XGBoost process for predicting reservoir thickness of riverbed sedimentary rocks
Abbreviations: NRBO: Newton-Raphson-based optimization; VIF: Variance inflation factor; XGBoost: eXtreme gradient boosting.
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Figure 2. Correlation analysis

This further demonstrates the geological complexity of
the study area.

3.2. Selection of VIF attributes

Before conducting attribute selection using VIF, to prevent
the interference of seismic attributes with low correlation
to reservoir thickness from affecting the attribute
screening, leveraging the identified attribute-thickness
correlations, the three seismic attributes with correlation
<0.2 with reservoir thickness, namely bandwidth, AIF,
and DE were removed first.* Then, VIF analysis was

conducted on the remaining seismic attributes. Figure 3
shows the VIF values and correlation coeflicients of the
remaining eight seismic attributes. It can be seen that the
VIF value of the RMS amplitude is very high, indicating
that there is severe multicollinearity between it and the
other seismic attributes, and it must be eliminated. The
VIF values of ZCC and EHT are very low, indicating that
the multicollinearity of these two seismic attributes is very
weak. In addition, the VIF values of AL, AE, AA, PAS,
and MA are similar. As can be observed from Figure 2,
among these four seismic attributes, AL shows the highest
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correlation with thickness. Finally, three seismic attributes,
namely AL, ZCC, and EHT, were retained for reservoir
thickness prediction.

4.VIF-NRBO-XGBoost reservoir thickness
prediction

To prevent overfitting or underfitting, considering the
characteristics of limited sample data, the proportion
of the test set is set to 15%. After multiple verifications,
the general range of XGBoost’s hyperparameters is

found. Then, XGBoost is utilized to conduct prediction
comparisons between the seismic attributes that have not
undergone VIF screening and those that have undergone
VIF screening. As shown in Figure 4, it can be observed
that the degree of deviation of the prediction results of
the seismic attributes after VIF screening is lower, and the
prediction accuracy is higher.

The NRBO optimization, combined with cross-
validation, is utilized to search for the optimal solution for the
hyperparameters of XGBoost. The best parameter NRBO-

Figure 3. VIF of seismic attribute and correlation

Abbreviations: AA: Average amplitude; AE: Average energy; AL: Arc length; EHT: Energy half-time; MA: Maximum amplitude; PAS: Positive amplitude
sum; RMS_amp: Root mean square amplitude; VIF: Variance inflation factor; ZCC: Zero-crossing count.
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Figure 5. The prediction results of reservoir thickness of riverbed sand in the study area. (A) Predictive outputs from the SVM; (B) predictive outputs from
the XGBoost, (C) predictive outputs from the VIF-XGBoost, and (D) predictive outputs from the VIF-NRBO-XGBoost.
Abbreviations: NRBO: Newton-raphson based optimization; SVM: Support vector machine; VIF: Variance inflation factor; XGBoost: eXtreme gradient

boosting.

XGBoost is developed for sandstone thickness estimation in
reservoir characterization, and the predictive outcomes are
systematically benchmarked against conventional XGBoost
results and Support Vector Machine (SVM) models that
have not been optimized. The prediction results are shown
in Figure 5, and the comparison of the average absolute
error and R? of the prediction results of the four models for
sand body thickness in the verification wells is presented in
Table 1. Based on the prediction results, evidence suggests
that the SVM model demonstrates low prediction accuracy
with significant absolute errors, failing to capture the

distinct morphological features of channel sand bodies.
Although the VIF-XGBoost model provides a more accurate
depiction of the eastern river channel sand bodies, its overall
prediction accuracy remains inadequate. VIF-NRBO-
XGBoost algorithm demonstrates dual capabilities in fluvial
reservoir characterization, successfully capturing both the
extensive channel systems in eastern sectors and accurately
forecasting subtle channel deposits in southwestern regions.

The VIF-NRBO-XGBoost modeling results reveal
distinct fluvial depositional patterns across the study
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Table 1. Comparison of prediction results and mean absolute
errors of four models for verification wells

Table 2. Comparison of XGBoost model parameters before
and after NRBO optimization

Well True SVM XGBoost  VIF-  VIF-NRBO-
name and thickness XGBoost XGBoost
evaluation

metric

CB245 8.9 m 169m 16.2m 14.48 m 9.7m
CB253 255m 188m 30.8m 29.3 m 242 m
CB255 33m 24.8 m 37 m 36.2m 31.1m
CB11 165m 98m 109m 12.1m 179 m
CB27 2425m 179m 18.24m 20.9 m 25.7 m
Mean \ 7.2m 5.6 m 4.1m 1.4 m
absolute error

R? \ 0.48 0.66 0.81 0.97

Abbreviations: NRBO: Newton-Raphson-based optimization;
SVM: Support vector machine; VIF: Variance inflation factor; XGBoost:
eXtreme gradient boosting.

area, with a prominent north-south-oriented channel
belt dominating the eastern sector. Central regions
exhibit maximum sandbody thickness accompanied
by a gradual southeastward deflection of the channel
axis. The southwestern domain contains smaller-scale
channel features with potential tributary systems,
displaying predominant northwest-to-southeast paleoflow
orientations.

5. Discussion

To address the complex development of underground
channel sand bodies in the Chengbei work area of the
Jiyang Depression, characterized by chaotic, intersecting,
and overlapping patterns, a novel VIF-NRBO-XGBoost
model for sand body thickness prediction was introduced.
The model was trained using 35 known wells and validated
with five known wells (CB245, CB253, CB255, CBl11,
CB27), followed by a comprehensive prediction across
the entire work area, effectively improving the thickness
prediction accuracy for such complex channel sand bodies.
The model primarily consists of the following steps:

First, 11 commonly used seismic attributes related to
reservoir information were extracted and normalized.
The Pearson correlation coefficient was employed to
preliminarily screen these 11 seismic attributes, removing
those with a correlation coefficient of <0.2 with sand
body thickness. To prevent multicollinearity among the
seismic attributes from affecting the prediction results,
the remaining eight seismic attributes were subjected to
multicollinearity analysis using VIFE, and attributes with
strong multicollinearity and redundant information were
eliminated.

Model parameter XGBoost NRBO-XGBoost
n_estimators 150 193
max_depth 7 12
min_child_weight 3 1
learning_rate 0.04 0.059
colsample_bytree 0.5 0.57
gamma 6 4.5

alpha 3 3.559

Abbreviations: Alpha: Regularization coefficient; colsample_bytree: Feature
random sampling ratio; gamma: Node splitting reduction coefficient;
learning_rate: Learning rate; max_depth: Maximum tree depth; min_
child_weight: Minimum leaf node weight; n_estimators: Number of
decision trees; NRBO: Newton-Raphson-based optimization; XGBoost:
eXtreme gradient boosting.

Due to the poor data quality in this region, single
machine learning models exhibited significant prediction
errors. An ensemble learning XGBoost model was
introduced to enhance prediction accuracy by integrating
the results of multiple weak learners. The performance
of the XGBoost model largely depends on the selection
of model parameters. In this study, the NRBO intelligent
optimization algorithm was used to optimize the XGBoost
model parameters, and the optimal parameter combination
was employed for sand body thickness prediction, resulting
in more refined channel sand body distribution predictions.
Table 2 lists the seven core parameters of the XGBoost
model before and after NRBO optimization: the number of
decision trees (n_estimators), maximum tree depth (max_
depth), minimum leaf node weight (min_child_weight),
learning rate (learning_rate), feature random sampling ratio
(colsample_bytree), node splitting reduction coeflicient
(gamma), and regularization coeflicient (alpha).

Although the VIF-NRBO-XGBoost model outperforms
other machine learning models in predicting the thickness
of complex channel sand bodies with higher accuracy, the
correlation analysis directly removed seismic attributes
with extremely low correlation to thickness, potentially
losing valuable information from these attributes. Future
research will consider the modal information of seismic
attributes to fully retain useful information from the
discarded attributes. Additionally, further optimization of
model parameters will be pursued to enhance the prediction
accuracy of complex channel sand body thickness.

The data used in this study constitutes a small sample
dataset. The performance of the aforementioned method
on large sample datasets remains unclear and may require
adjustments to the validation set ratio. The prediction
accuracy of this method is somewhat dependent on data

Volume 34 Issue 3 (2025)

10

doi: 10.36922/JSE025290037


https://dx.doi.org/10.36922/JSE025290037

Journal of Seismic Exploration

VIF-NRBO and XGB for sand-thickness

quality and resolution, and the current model may exhibit
uncertainties in predicting extremely thin sandstone layers.
Future work will consider incorporating additional data
sources, such as seismic attribute modalities, to further
enhance the model’s generalization capability.

6. Conclusion

This study proposes a novel sand body thickness prediction
model —VIF-NRBO-XGBoost. The model utilizes
multiple attributes for reservoir thickness prediction while
fully considering the constraints of multicollinearity and
correlation among seismic attributes, employing NRBO
to optimize the parameters of the ensemble learning
XGBoost model. Through its application in predicting
complex channel sand bodies in the Chengbei area of
Jiyang Depression, the reliability of the model was verified,
with prediction results significantly outperforming other
models. This will provide crucial support for detailed
reservoir characterization and well placement in this
region. The study not only offers new insights for reservoir
thickness prediction in similar study areas, but also
provides valuable references for predicting other reservoir
parameters. It holds significant practical importance for
hydrocarbon exploration and development.
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Data-driven high-resolution gas-bearing
prediction in tight sandstones: A case study from
block L, Eastern Ordos Basin

Lixin Tian®*, Shuai Sun*®, Qixin Li2, Jingxue Shi

Cnooc Research Institute Ltd., Chaoyang District, Beijing, China

(This article belongs to the Special Issue: Geophysical Inversion and Intelligent Prediction
Technologies for Complex Hydrocarbon Reservoirs)

Abstract

The Upper Paleozoic Shihezi Formation in Block L of the eastern Ordos Basin harbors
extensive tight sandstone gas reservoirs. However, these reservoirs exhibit strong
heterogeneity, thin sand bodies, and overlapping elastic properties between gas-and
water-bearing layers, which significantly limit the effectiveness of conventional
pre-stack inversion methods in delineating thin sand bodies and predicting gas
saturation. To address these challenges, we propose an integrated high-resolution
gas prediction technique combining geostatistical inversion with deep learning. First,
within a Bayesian sequential inversion framework, we jointly inverted well-log data,
seismic data, and geological constraints to obtain high-resolution elastic parameters,
substantially improving the identification of thin sand bodies (<5 m). Second, we
employed a long short-term memory network to extract temporal features from
inverted elastic parameter sequences and establish a non-linear mapping between
gas/water-sensitive attributes and water saturation; this step incorporates horizon
constraints and an attribute optimization strategy to enhance prediction accuracy.
Field applications demonstrated that our method achieved superior performance
compared to conventional approaches, with an 85% consistency rate between
predicted gas saturation and drilling results. The integration of geostatistical
inversion and deep learning provides a robust workflow for characterizing thin,
heterogeneous tight gas reservoirs, offering significant potential for optimizing
exploration and development strategies in the Ordos Basin.

Keywords: Ordos Basin; Tight sandstone gas; Geostatistical inversion; Deep learning;
Long short-term memory network; Gas-bearing prediction

1. Introduction

The Permian Shihezi Formation in Block L of the northeastern Ordos Basin harbors
large-scale tight sandstone gas reservoirs with proven geological reserves exceeding 10
billion cubic meters, making it a critical gas-producing interval in the basin.'"* These
reservoirs are deposited in a fluvial-deltaic environment influenced by seasonal flooding,
characterized by thin-bedded (2-12 m thick, with 70% of layers <5 m) and lenticular
sand bodies exhibiting strong lateral heterogeneity and frequent vertical interbedding
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with mudstones. The lithology primarily comprises quartz
sandstones underlain by coal-bearing source rocks of the
Shanxi-Taiyuan Formations, forming typical tight gas
reservoirs through a “source-reservoir pressure differential”
driving mechanism.> However, reservoir prediction in this
area faces three major challenges: (i) impedance contrast
limitations: post-stack impedance inversion is hindered
by the minimal acoustic impedance contrast between
sandstone and mudstone, restricting effective spatial
prediction of sand bodies. (ii) Resolution constraints:
conventional pre-stack inversion is limited by the seismic
data’s dominant frequency (30 Hz in the target zone),
resulting in a theoretical resolution limit (A/4 = 38 m)
that far exceeds the average sandstone thickness (<15 m).
(iii) Fluid discrimination difficulty: gas-bearing and water-
bearing layers exhibit substantial overlap in P-impedance
versus Vp/Vs crossplots, rendering rock physics template
methods ineffective for gas saturation prediction.
Geostatistical inversion, which integrates geological priors
with stochastic simulation, has emerged as a key solution
for thin-bed reservoir characterization.® This approach has
been successfully validated in continental thin sandstones’
and coal bed methane reservoirs.®

Extensive research has focused on seismic gas-
bearing prediction.”** Since gas saturation has minimal
influence on seismic waveforms (often obscured by noise),
conventional methods typically derive elastic parameters
through seismic inversion before identifying gas-bearing
zones. For instance, Zong et al."® developed fluid-sensitive
factors via direct P- and S-wave inversion, while Zong and
Yin'® constructed sensitivity factors using amplitude versus
offset (AVO) linear equations to estimate Young’s modulus
and Poisson’s ratio, thereby reducing cumulative errors
from traditional elastic parameter inversion. Although pre-
stack inversion-derived elastic parameters can effectively
identify reservoirs,'”*® they remain limited by thin-bed
tuning effects.

For the Shihezi Formation’s thin tight sandstones—
where gas-water overlap is severe—conventional fluid
identification methods fail due to insufficient seismic
resolution and ineffective elastic sensitivity factors. Recent
advances in deep learning have introduced data-driven
approaches for gas prediction.'** Early work by Hampson
et al?* demonstrated successful porosity prediction
using probabilistic neural networks to extract seismic
attributes from waveform data. Similarly, Zhong et al.?
showed that connected neural network (CNN)-based
permeability prediction models outperform traditional
genetic algorithms, while Das and Mukerji*® achieved
direct porosity and clay content inversion from post-
stack data using CNN-trained synthetic models. Notably,
Chen et al.* found that recurrent neural networks (RNNs)

significantly outperform support vector machines and
random forests in well-log time-series modeling, offering
new opportunities for time-sensitive reservoir parameter
prediction.

To address these challenges, this study proposes a data-
driven high-resolution gas-bearing prediction framework
for tight sandstones, combining: (1) pre-stack geostatistical
inversion to integrate well-log, seismic and geological data
for high-resolution elastic parameter estimation and (2) a
long short-term memory (LSTM) network to establish a
nonlinear mapping between time-series elastic parameters
and water saturation (Sw), constrained by geological
horizons and optimized attribute selection. Field applications
demonstrate that our method significantly improves thin-
bed identification and gas-prediction accuracy, providing
a robust technical solution for tight gas exploration in the
Ordos Basin with broader applicability to similar reservoirs.

2. Methodology
2.1. Technical workflow

The direct inversion of Sw from seismic data remains
challenging due to its significantly weaker sensitivity to
seismic waveform characteristics compared to elastic
parameters.” In contrast, elastic parameters not only
predominantly control seismic wavefield dynamics* but
also exhibit more quantifiable physical relationships with
Sw through established rock physics models. To address
these challenges, we developed an integrated workflow
combining geostatistical inversion with deep learning
(Figure 1), which consists of three key components:
(i) high-resolution geostatistical inversion: conducting
pre-stack geostatistical inversion using well logs, geological
structural frameworks, and 3D seismic data to overcome
the bandwidth limitations of conventional seismic
inversion and obtain high-resolution elastic parameters for

| Geological information || Well logging datal | Seismic data |

l ! {

| Pre-stack geostatistical inversion methodology |

l

| High-resolution elastic parameter |

| Geological horizon constraints H

| Attribute op i I

Input
| LSTM network |

\I/Output

| Predicted water saturation |

Figure 1. The workflow of data-driven high-resolution gas-bearing
property prediction
Abbreviation: LSTM: Long short-term memory.
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thin sand body identification; (ii) LSTM-based saturation
modeling: leveraging the unique sequential modeling
capability of LSTM networks while incorporating horizon
constraints for segmented refinement learning, where
attribute optimization techniques are employed to select
elastic attribute combinations most sensitive to Sw, thereby
establishing a sequential mapping between high-resolution
elastic data and Sw to address the overlap issue of elastic
parameters in gas-water layers; (iii) Model training and
application: training the network using inverted traces
adjacent to wells, with the fully trained LSTM model
ultimately being applied to the tight sandstone reservoirs
of the Shihezi Formation.

2.2. Geostatistical inversion

Unlike conventional deterministic inversion, geostatistical
inversion statistically integrates prior information from well
logs and geological data with seismic observations d,,, and
estimates the posterior distribution of model parameters,
m, through Bayesian inversion.”” The expectation of the
posterior probability solution is given by:

m=m,, +C,G"(GC,G" +C))"(d,,~Gm,, ) (O
The posterior covariance is expressed as:
C,=C, -C,G'(GC,G"+C,)"'GC, (1n)

wherem
vector composed of smoothed background models for
P-wave velocity, S-wave velocity, and density. C,, denotes
the 3n,, x 3n,, prior model covariance matrix; C, is the
seismic covariance matrix, estimated through well
synthetic seismograms and field seismic data adjacent to

wells.

T
=[anp,ans,lan is a 3n, column

Building upon the sequential simulation concept,'®?*
the sequential inversion framework classifies observed
data into two distinct categories: Type A and Type B
data. Type A data are direct measurements of model
parameters, including well log data and previously
simulated grid points. Type B data are indirectly
acquired measurement data, specifically referring to
pre-stack seismic angle gathers in this context. By jointly
incorporating both data types, the forward equation can
be reformulated as:

dobsA _ GA 0 mA + eA
dobsB - 0 GB mB eB

Where d,,, G,, m,, e, represent the observed data,
forward operator, model parameters, and error terms
for Type A data, respectively; d,,,, G,, m,, e, denote the

(1I1)

observed data, forward operator, model parameters, and
error terms for type B data, respectively; G, is simply an
identity matrix. Performing Bayesian inversion on the
joint data in Equation III yields the posterior expectation
constrained by both well log data (type A) and pre-stack
seismic data (type B):

bd _ T T -1
mA+B - mpﬁorA+B + CmA+BGA+B (GA+BCmA+BGA+B + CdA+B)
(dobsA - GmpriorA+B ) (IV)

and posterior covariance:

~ _ T T -1
CmA+B - CmA+B - CmA+BGA+B (GA+BCmA+BGA+B + CdA+B )
GA+BCmA+B (V)

where the covariance matrices C,,,,, (model) and C,,,,
(data) are formally expressed as:

CmAA CmAB 0 O
CmA+B :|: ’CdA+B = 0 C
dBB

C;AB CmBB

The model covariance matrices for Type A and Type B
data are denoted as C,,, and C,,, respectively, while
C, ..z represents their cross-covariance matrix. The data
covariance matrix for type B observationsisspecifiedas C,,.
The Bayesian sequential stochastic inversion framework
treats well log data and previously simulated points as hard
constraints. Under the joint constraints of geostatistical
information and seismic data, these data participate in
computing subsequent grid points. Consequently, well-
derived information propagates throughout the stochastic
simulation path, endowing the inverted elastic parameters
with high-resolution characteristics.

(VD)

2.3.LSTM network

LSTM networks,” a specialized variant of RNNs,* were
specifically designed to address the vanishing gradient
problem in traditional RNNs while preserving long-range
temporal dependencies. The basic LSTM unit, illustrated
in Figure 2, consists of three core components: the input
gate, forget gate, and output gate. These gates selectively
regulate information flow, enabling the modeling of long-
term temporal dependencies. Specifically, this mechanism
allows the network to dynamically store or discard temporal
features, significantly enhancing its ability to process long
sequential data. The input-output relationship of an LSTM
unit can be described by the following equations:

fi=o(W X, + WY, +W, oC_ +b,) (VIL-a)
it = O'(Wx,-Xt + Wint_l + VVd o Ct—l T bt) (VIL-b)
Ct - ft ° Ct_l + it ° tanh(chXt + Wcht—l + bc) (VII-c)
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Ot = O-(quXt + W)’athl + ma ° Ct + ba) (VII-d)

Y, =0, tanh(C,) (VII-e)

where o denotes the Hadamard product; *represents
convolution; W and b correspond to the weight matrices
and bias vectors of the LSTM network, respectively; X,
signifies the input data; Y,denotes the output parameters; C,
represents the cell state (memory unit); and i,, f, and O,
indicate the input gate, forget gate, and output gate,
respectively.

Figure 3 illustrates the deep learning architecture for Sw
prediction based on an LSTM network. The core feature
of this architecture lies in its use of elastic parameter

time series as network inputs, as opposed to traditional
single-point input patterns. Specifically, at each time step
t, a multidimensional elastic vector X = [EP (t), EP(t),
EP,(t)...] is fed into the network. This design offers dual
advantages: first, the temporal characteristics of the data are
explicitly modeled through the LSTM gating mechanism;
second, the joint input of elastic parameters at the same
time step (such as P-impedance and Vp/Vs) captures the
petrophysical correlations between parameters. In terms of
technical implementation, the length in the time dimension
is selected based on the wavelength of the seismic wavelet,
while the choice of elastic data is determined through
attribute optimization results. Regarding the network
output mechanism, the LSTM outputs the hidden state Y,
at each time step, which serves as input to a fully connected

l

v

(tanh]

$]

X

v

Figure 2. The architecture of the LSTM network. Symbol “N” represents the unit of LSTM; the terms X,, t=12,..,n and Y,, t=1,2,..,n represent

input and output sequence data, respectively.
Abbreviation: LSTM: Long short-term memory.

High r elastic par ters Water saturation
P-wave S-wave Density
e— X, N Yo Swy —
g
L} R . S — X, N Y, Sw, ————
- x.l. N YT I Sw‘l

[ Unit of LSTM . Fully connected neural network ]

Figure 3. Deep learning-based high-resolution gas-bearing property prediction architecture. Symbol “N” represents the unit of LSTM, with detailed
structure shown in Figure 2. Symbol “D” represents the FCNN, which is used in the conversion of time-series to Sw.
Abbreviation: FCNN: Fully connected neural network; LSTM: Long short-term memory; Sw: Water saturation.
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neural network (FCNN). The predicted Sw value can be
expressed as:

SW! = O'p(Wth + bp) (VIII)

where the weight matrix W, and bias vector b, constitute
the trainable parameters of the FCNN, and Y, represents
the hidden state output of the LSTM unit at time step t.
The network employs ReLU activation functions® for
nonlinear transformation: 6,(x) = max (0,x). Notably, this
architecture adopts a time-step-shared weight parameter
mechanism, meaning the FCNN’s weights and biases
remain constant across different time steps. This design
achieves parameter efficiency and overfitting suppression.
The complete set of learnable parameters includes:

40%
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Figure 4. Statistical distribution of gas-bearing sandstone thickness in
the Shihezi Formation, Ordos Basin
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3. Case study

3.1.Target formation overview

The target interval of the Shihezi formation in the study area
is predominantly composed of tight sandstone intercalated
with mudstone. Statistical analysis reveals that individual
sand bodies have an average thickness below 15 m, with
gas-bearing sand bodies thinner than 6 m constituting over
80% of the total reservoir units (Figure 4). Petrophysical
characterization demonstrates that these tight sandstones are
distinguished by remarkably low Vp/Vs ratios (Vp/Vs < 1.8).
Figure 5 presents a comparative analysis between Vp/Vs
curves derived from well log interpretation (red solid line)
and conventional pre-stack inversion (blue solid line), with
lithological interpretation indicating sandstone intervals
in yellow and gas-bearing sandstones in red. Due to
resolution constraints inherent in conventional inversion
methodologies, only thicker sand bodies can be confidently
identified, while thinner sand bodies exhibit poor resolution.
This resolution limitation directly compromises accurate
reservoir assessment. Furthermore, petrophysical cross-plot
analysis indicates substantial overlap between gas-bearing
and water-bearing layers within the sandstone reservoirs

Sw Lithology

voVs Raho trans ’ | Water Saturation 1 ’ Lithology |
20 % 100 10 unitiess 0.1
T Color Key

Thin sand body X ‘L f

Thick sand body v

Thin sand body X

Thick sand body V

—— G0 e - -

-~

Figure 5. Lithology identification using conventional pre-stack inversion Vp/Vs. The red and blue solid lines represent the well logging and conventional
pre-stack inverted Vp/Vs curves, respectively. In the lithology interpretation, yellow and red colors indicate sandstone and gas-bearing sandstone,

respectively.
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(Figure 6). This overlap significantly challenges effective
fluid discrimination when employing conventional elastic
parameter cross-plotting techniques.

3.2. High-resolution pre-stack geostatistical
inversion

3.2.1. Vertical range determination from well log
statistics

The variogram, serving as a fundamental geostatistical
tool, provides quantitative characterization of reservoir
parameter spatial variability.’? The range parameter plays
a particularly crucial role in defining reservoir thickness
and lateral continuity patterns. Analysis of 94 well logs
from the Shihezi Formation (Figure 7) and geological data
demonstrates that thin sand layers are widely developed in
the study area, with approximately 80% of gas-bearing sand
bodies having thicknesses <6 m. Based on this finding, the
vertical range was determined to be 1 ms. Simultaneously,

26
Mudstone
Dry zones
O Gas-bearing layers
2471 O Water-bearing layers
22
2
s 2
>
1.8
1.6
14 L L L L L L L )
0.7 0.8 0.9 1 1.1 1.2 13 14 15

P-impedance((m/s)*(g/cc)) x10*

Figure 6. Crossplot analysis of P-impedance versus Vp/Vs in Shihezi
formation, where green, yellow, blue, and red circles represent shale, dry
layer, water-bearing layer, and gas-bearing layer, respectively. Significant
overlap is observed between gas-bearing and water-bearing sandstones.

statistical results reveal significant lateral variations in tight
sandstones, with 85% of sand body widths distributed
within the 300-1500 m range. Consequently, the lateral
range was set to 800 m. It must be emphasized that
determining the lateral range requires comprehensive
consideration of both the depositional characteristics of
the target formation and reservoir prediction results to
ensure the rationality of parameter settings.

3.2.2. Application results of elastic parameter
inversion

The pre-stack geostatistical inversion method integrates
four key data types: (i) geological grid models,
(ii) variogram parameters, (iii) well-log data, and
(iv) pre-stack seismic data to construct a Bayesian
inversion framework for estimating posterior probability
distributions. We employed sequential Gaussian
simulation to generate multiple realizations (n = 100) of
elastic parameters from the tight sandstone reservoirs in
the Shihezi Formation, Block L. The inversion used pre-
stack seismic gathers with 20 m CDP spacing, 1 ms time
sampling, and 5°-35° incidence angles. Figure 8 compares
three datasets near well A: (i) measured well-log data
(black curves), (ii) conventional pre-stack inversion results
(blue curves), and (iii) P50 geostatistical inversion results
(red curves) for Vp, Vs, density, and Vp/Vs ratio. Applying
the Vp/Vs < 1.8 sandstone discrimination criterion, the
geostatistical approach resolved thin gas-bearing sand
layers (2-5 m thickness) that conventional inversion
failed to detect. Figure 9 displays cross-well sections
comparing: (i) conventional versus (ii) Geostatistical
inversion results, annotated with lithology interpretations
from Wells B-D (yellow: sandstone; red: gas-bearing
sand). The geostatistical Vp/Vs results show superior
vertical resolution (arrow indicators). Collectively, these
results demonstrate that pre-stack geostatistical inversion
technology can significantly improve resolution and enable
detailed characterization of thin sand bodies.
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Figure 7. Variogram analysis of well logging parameters in Shihezi formation.
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Figure 8. Comparison of inversion results near Well A seismic gather. The black, blue, and red solid lines represent the well log data, conventional pre-stack

inversion results, and geostatistical pre-stack inversion results, respectively.
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Figure 9. Comparative analysis of well-tie profiles based on elastic parameter inversion. (A) Conventional pre-stack inversion. (B) High-resolution

geostatistical pre-stack inversion.

3.3.LSTM-based Sw prediction
3.3.1. Geological horizon constraints implementation

In this section, we employ a geological horizon-constrained
approach to enhance the predictive performance of the

LSTM network. The specific implementation procedure is
as follows: first, we utilize the horizon information of the
Shihezi formation to segment both well logging and seismic
data. During data processing, we adhere to the “intra-
horizon cross-validation” principle, meaning that data
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from the same horizon can be mutually used as training
and testing sets, while data from different horizons are
strictly isolated. For the experiment, Well A was selected as
the blind test well, with data from Wells B, C, and D used to
train the LSTM network. Figure 10 presents a comparative
analysis of the results before and after applying constraints:
Figure 10A displays the unconstrained data from Well A,
including three Vp, Vs, and density; Figure 10B shows
the horizon-constrained data, where eight distinct colors
represent eight different depositional periods; Figure 10C
compares the lithology prediction results: the left side
presents well log interpretation results (yellow indicating
sandstone and brown indicating mudstone), where
the unconstrained LSTM predictions show significant
misjudgment in sand-rich intervals with lower resolution
for thin sand layers; whereas after applying geological
constraints, the accuracy of sandstone-mudstone
identification improves markedly. This improvement stems
from the following mechanism: the macroscopic trends of
well logs reflect variations in depositional environments
across different geological periods. By dividing well logs
into contemporaneous depositional segments through
geological constraints, the differences in data distribution
within each segment more authentically reflect lithological
variations, thereby enabling the LSTM network to more
accurately learn reservoir characteristics.

3.3.2. Attribute optimization and model training

An LSTM neural network model was constructed for gas-
bearing prediction using high-resolution elastic inversion
results as training data. The fundamental elastic parameters,
including Vp, Vs, and density, were mathematically
processed to compute multiple gas-sensitive indicators
such as Vp/Vs ratio, Poisson’s ratio, acoustic impedance,
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and bulk modulus. Additional sensitive attributes
were subsequently generated through mathematical
transformations. During network training, an attribute
selection method based on loss function gradient
descent was employed, ultimately identifying the 15 most
contributive key attributes (Figure 11), which were then
used as the final input sequences for the LSTM network.
The specific architectural parameters of the LSTM network
are presented in Table 1. The input vector X adoptsa 150 ms
time-series length, with this parameter setting matching
both the seismic wavelet length and LSTM timesteps.
The network structure comprises 32 hidden units, with
the output layer Y, having dimensions of 150 x 32. After
transformation through the fully connected layer, the final
output is a predicted sequence of Sw with dimensions of
150 x 1. Model validation results (Figure 12) demonstrate
that on the training set, the average correlation coeflicient
of predictions across multiple wells reached 0.86, with a
mean absolute error of Sw at 3.9%. In blind well validation,
the average correlation coefficient was 0.76, with Sw mean
absolute error approximately 8%, confirming the neural
network model’s excellent training effectiveness and
prediction accuracy. Furthermore, statistical results of
drilling confirmation rates (Figure 12C) show that all eight
validation wells achieved match rates exceeding 75%, with
Wells 1 and 5 reaching 85%, thereby further verifying the
reliability of this method in practical applications.

3.3.3. Application results of gas-bearing prediction

The trained LSTM model was applied to predict tight
sandstone reservoirs in the Shihezi Formation of the Ordos
Basin. Figure 13 displays a gas saturation prediction profile
intersecting wells, visualized using a gradient color scale
from blue to red (representing gas saturation ranging from
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Figure 10. Comparison of lithology prediction results in Well A with/without horizon constraints, yellow and brown represent sandstone and mudstone,
respectively. (A) Before applying horizon constraints. (B) Applying horizon constraints. (C) Comparison of lithology prediction results.
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Figure 11. Fifteen optimized elastic attributes as LSTM network inputs
Abbreviation: LSTM: Long short-term memory.
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Figure 12. Training and validation results of LSTM neural network for water saturation prediction. (A) Training results of Well A. (B) Blind well testing of
Well C. (C) Multi-well cross-validation DCR statistics.
Abbreviations: DSR: Drilling confirmation rate; LSTM: Long short-term memory.

0% to 60%). The prediction results demonstrate excellent 4. Discussion

agreement with well log interpretations, validating the
reliability and applicability of the LSTM network in
quantitative gas saturation prediction. Further analysis
of horizon slice results for key well groups in the He8
Member (Figure 14) reveals that the lateral distribution
characteristics of gas saturation closely align with both
sand body distribution and hydrocarbon indications from
well logs. The application results indicate that this method
can effectively enhance the characterization accuracy of
tight sandstone gas reservoirs, providing a novel technical
approach for the exploration and development of similar
hydrocarbon reservoirs.

The study has several limitations that warrant further
improvement in future work:

(i) Geostatistical inversion sensitivity: The inversion
results are highly sensitive to variogram parameters
and prior models. While enhancing resolution,
this approach may introduce modeling artifacts.
Therefore, caution must be exercised when applying
geostatistical methods for resolution improvement.
Physics-aware LSTM development: Current data-
driven LSTM networks lack explicit rock physics
constraints. Future research should integrate rock

(ii)
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Figure 13. Well-tie profile of gas saturation prediction using LSTM neural network
Abbreviation: LSTM: Long short-term memory.
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Figure 14. Inversion horizon slice of He8 member reservoir parameters. (A) Tight sand distribution. (B) Gas saturation prediction map.

Table 1. Architecture parameters of LSTM network for water physics models to develop physics-constrained LSTM
saturation prediction approaches for gas-bearing property prediction.
Parameter Value In summary, geostatistical inversion relies heavily on
Dimension of the input vector X,, t=1,2,..., 150x15 prior geological knowledge, while deep learning techniques
Dimension of the LSTM output vector Y, t=1,2,..., n 150%32 require extensive training datasets. Given the mature
Dimension of the FCNN output vector S,, t=1,2,..., 150 geological understanding and data availability during

) hydrocarbon development phases, this methodology is
Number of time steps 150 . .

. . particularly suitable for late-field development stages,
Hidden units 32 providing critical support for well placement optimization.
Layers of LSTM 1
Layers of FCNN 1 5. Conclusion
Dimension of W,.,W,,W,,W,,,W,,W,,W, 150x32 This study focuses on tight sandstone reservoirs in block L of

the Ordos Basin and develops a data-driven high-resolution
Dimension of W ,W W, ,W _,W, 32x1

o gas-bearing prediction technology for tight sandstones.
Dimension of b..b.b b 32 The proposed method effectively predicts thin sand
bodies and their gas-bearing potential, providing critical
support for well placement optimization. The key findings
Abbreviations: FCNN: Fully connected neural network; LSTM: Long are summarized as follows: first, the implementation of
short-term memory. geostatistical methods to construct detailed 3D grid models

yi2 Tlye> Thyo?

Dimension of b ", L
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and statistical variograms significantly enhances seismic
inversion resolution, enabling the successful identification
of thin sand bodies with thicknesses below 5 m in the
Ordos Basin. Second, the application of geological horizon
constraints, which systematically organizes training data
according to sedimentary cycles, effectively mitigates
interference between data from different depositional
periods and substantially improves prediction accuracy.
Finally, the prediction model based on LSTM networks
fully considers the time-varying characteristics of elastic
parameter sequences, overcoming the limitations of
traditional deep neural networks that rely on single-point
predictions. When combined with attribute optimization
techniques, this approach significantly improves the
accuracy of seismic reservoir prediction and provides
reliable guidance for well placement and optimization in
tight gas blocks.

Acknowledgments

None.

Funding

None.

Conflict of interest

The authors declare no potential conflict of interest.

Author contributions

Conceptualization: Lixin Tian
Formal analysis: Jingxue Shi
Investigation: Qixin Li
Methodology: Shuai Sun
Writing-original draft: Shuai Sun
Writing-review & editing: Shuai Sun

Availability of data

Data are available from the corresponding author upon
reasonable request.

References

1. LanC,Zhang], Tao W, ZhangY, Yang M, WangJ. Sedimentary
characteristics and evolution of the upper carboniferous
Taiyuan formation, Shenmu Gasfield, Northeastern Ordos
Basin. Acta Geol Sin. 2011;85(4):533-542.

2. Lan C, Zhang Y, Zhang ], Yang M, Wang J. Reservoir
characteristics and controlling factors of Taiyuan Formation
in Shenmu Gas Field. J Xian Petrol Univ (Natural Science
Edition). 2010;25(1):7-11.

doi: 10.1 1743/0gg20130105
3. ZhuG,LiB,LiZ,DuJ,LiuY, Wu L. Practices and development

10.

11.

12.

13.

14.

trend of unconventional natural gas exploration in eastern
margin of Ordos Basin: Taking Linxing-Shenfu gas field as
an example. China Offshore Oil Gas. 2022;34(4):16-29.

doi: 10.11935/j.issn.1673-1506.2022.04.002

Zhu'Y, Zhao Z, Zhang D, et al. Accumulation conditions and
accumulation laws of tight gas in Shenfu area, northeast of
Ordos Basin. China Offshore Oil Gas. 2022;34(4):55-64.

doi: 10.11935/j.issn.1673-1506.2022.04.005

Zou C, Zhang G, Yang Z, et al. Unconventional petroleum
geology. Petrol Explor Dev. 2012;40(4):2153.

doi: 10.1016/S1876-3804(13)60053-1

Haas A, Dubrule O. Geostatistical inversion-a sequential
method of stochastic reservoir modelling constrained by
seismic data. First Break. 1994;12(11):561-569.

doi: 10.3997/1365-2397.1994034

Huang H, Zhang R, Wei S. Research on application of
seismic nonlinear random inversion to reservoir prediction
in the thin sandstone of continental deposits. Acta Petrol Sin.
2009;30(3):386-390.

doi: 10.7623/syxb2009011

Liu Z, Zhang L, Huo L, Cao M, Ding Q, Gao G. Thin coalbed
methane reservoir identification by geostatistics inversion.
Oil Geophys Prospect. 2012;47(S1):30-34.

Archie GE. The electrical resistivity log as an aid in
determining some reservoir characteristics. Trans AIME.
1942;146:54-62.

doi: 10.2118/942054-G

Barone A, Sen MK. An improved classification method
that combines feature selection with nonlinear Bayesian
classification and regression: A case study on pore-fluid
prediction. In: 87" Annual International Meeting, SEG,
Expanded Abstracts; 2007. p. 3062-3066.

doi: 10.1190/segam2017-17790222.1

Xu J, Xu L, Qin Y. Two effective methods for calculating
water saturations in shale-gas reservoirs. Geophysics.
2017;82(3):D187-D197.

doi: 10.1190/ge02016-0462.1

Hu L, Chen M, Jin H. Gas prediction in tight sandstone
reservoirs based on a seismic dispersion attribute derived
from frequency-dependent AVO inversion. Processes.
2025;13:2210.

doi: 10.3390/pr13072210

TaoX,Cao]J,ZhaoL,LiH,RenY,JianP. Gas-bearing prediction
in tight sandstone reservoirs based on multinetwork
integration. Interpretation. 2024;12(2):T177-T185.

doi: 10.1190/INT-2023-0091.1

Sun S, Nie J, Qu Z, et al. Oil saturation estimation and
uncertainty evaluation by modeling-data-driven Gaussian

Volume 34 Issue 3 (2025)

doi: 10.36922/JSE025320053


https://dx.doi.org/10.36922/JSE025320053
http://dx.doi.org/10.11743/ogg20130105
http://dx.doi.org/10.11935/j.issn.1673-1506.2022.04.002
http://dx.doi.org/10.11935/j.issn.1673-1506.2022.04.005
http://dx.doi.org/10.1016/S1876-3804(13)60053-1
http://dx.doi.org/10.3997/1365-2397.1994034
http://dx.doi.org/10.7623/syxb2009011
http://dx.doi.org/10.2118/942054-G
http://dx.doi.org/10.1190/segam2017-17790222.1
http://dx.doi.org/10.1190/geo2016-0462.1
http://dx.doi.org/10.3390/pr13072210
http://dx.doi.org/10.1190/INT-2023-0091.1

Journal of Seismic Exploration

Data-driven gas-bearing prediction

15.

16.

17.

18.

19.

20.

21.

22.

23.

mixture conditional generative adversarial networks. In:
First International Meeting for Applied Geoscience ¢ Energy
Expanded Abstracts; 2021. p. 1691-1695.

doi: 10.1190/segam?2021-3577905.1

Zong Z, Yin X, Wu G. Fluid identification method based on
compressional and shear modulus direct inversion. Chin |
Geophys. 2012;55(1):284-292.

doi: 10.6038/j.issn.0001-5733.2012.01.028

Zong Z, Yin X. Direct inversion of Young’s and Poisson
impedances  for  fluid  discrimination.  Geofluids.
2016;16:1006-1016.

doi: 10.1111/gf1.12202

Jia L, Li L, Wang Q, Ma J, Wang H, Wang D. Fluid
identification factor inversion based on generalized elastic
impedance. Geophys Prospect Petrol. 2018;57(2):302-311.

doi: 10.3969/j.issn.1000-1441.2018.02.016

Yin X, He W, Huan X. Bayesian sequential gaussian
simulation methodology. ] China Univ Petrol. 2005;29(5):5.

Bergen KJ, Johnson PA, De Hoop MV, Beroza GC. Machine
learning for data-driven discovery in solid Earth geoscience.
Science. 2019;363(6433):eaau0323.

doi: 10.1126/science.aau0323

FengR, Mejer Hansen T, Grana D, Balling N. An unsupervised
deep-learning method for porosity estimation based on
post-stack seismic data. Geophysics. 2020;85(6):M97-M105.

doi: 10.1190/ge02020-0121.1

Hampson DP, Schuelke JS, Quirein JA. Use of multiattribute
transforms to predict log properties from seismic data.
Geophysics. 2001;66(1):220-236.

doi: 10.1190/1.1444899

Zhong Z, Carr TR, Wu X, Wang G. Application of a
convolutional neural network in permeability prediction:
A case study in the Jacksonburg-Stringtown oil field, West
Virginia, USA. Geophysics. 2019;84(6):B363-B373.

doi: 10.1190/ge02018-0588.1
Das V, Mukerji T. Petrophysical properties prediction from

24.

25.

26.

27.

28.

29.

30.

31.

32.

prestack seismic data using convolutional neural networks.
Geophysics. 2020;85(5):N41-N55.

doi: 10.1190/ge02019-0650.1

Chen W, Yang L, Zha B, Zhang M, Chen Y. Deep
learning  reservoir porosity prediction based on
multilayer long short-term memory network. Geophysics.
2020;85(4):WA213-WA225.

doi: 10.1190/ge02019-0261.1

Smith JR, Johnson AB, Zhang L. Seismic sensitivity to
water saturation in tight gas sandstones: A rock physics
perspective. Geophysics. 2018;83(2):MR89-MR101.

Zong Z, Yin X, Wu G. Elastic parameter-driven seismic
characterization of gas-bearing reservoirs using hybrid
inversion. Geophysics. 2020;85(3):WA1-WA12.

Buland A, Omre H. Bayesian linearized AVO inversion.
Geophysics. 2003;68(1):185-198.

doi: 10.1190/1.1543206

Journal AG, Alabert F. Non-Gaussian data expansion in the
Earth Sciences. Terra Nova. 1989;1:123-134.

doi: 10.1111/j.1365-3121.1989.tb00344.x

Tai KS, Socher R, Manning CD. Improved semantic
representations from tree-structured long short-term
memory networks. In: Proceedings of the 53" Annual
Meeting of the Association for Computational Linguistics and
the 7" International Joint Conference on Natural Language
Processing, 2015. p. 1556-1566.

doi: 10.3115/v1/P15-1150

Sathasivam S, Abdullah WATW. Logic learning in Hopfield
networks. Modern Applied Science, 2008, 2(3):57.

doi: 10.5539/mas.v2n3p57

Nair V, Hinton GE. Rectified linear units improve restricted
Boltzmann machines. In: Proceedings of the 27" International
Conference on International Conference on Machine Learning.
Haifa, Israel; Omnipress; 2010. p. 807-814.

Zhang L, An H, Dan G, Liang G, Gao X. Geostatistical
inversion application of carbonate reservoir prediction in
Lungu oilfield. Petrol Geol Eng. 2016;30(2):1-4.

Volume 34 Issue 3 (2025)

24

doi: 10.36922/JSE025320053


https://dx.doi.org/10.36922/JSE025320053
http://dx.doi.org/10.1190/segam2021-3577905.1
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.01.028
http://dx.doi.org/10.1111/gfl.12202
http://dx.doi.org/10.3969/j.issn.1000-1441.2018.02.016
http://dx.doi.org/10.1126/science.aau0323
http://dx.doi.org/10.1190/geo2020-0121.1
http://dx.doi.org/10.1190/1.1444899
http://dx.doi.org/10.1190/geo2018-0588.1
http://dx.doi.org/10.1190/geo2019-0650.1
http://dx.doi.org/10.1190/geo2019-0261.1
http://dx.doi.org/10.1190/1.1543206
http://dx.doi.org/10.1111/j.1365-3121.1989.tb00344.x
http://dx.doi.org/10.3115/v1/P15-1150
http://dx.doi.org/10.5539/mas.v2n3p57

ACCSCIENCE
PUBLISHING

Journal of Seismic Exploration

*Corresponding author:
Piyapatr Busababodhin
(Piyapatr.o@msu.ac.th)

Citation: Zhao T, Chen G,

Pang C, Seenoi P, Papukdee N,
Busababodhin P. Time-lapse
earthquake difference prediction
based on physics-informed long
short-term memory coupled with
interpretability boosting. J Seismic
Explor. 2025;34(3):25-48.

doi: 10.36922/JSE025310049

Received: July 29, 2025

Revised: August 27, 2025
Accepted: August 29, 2025
Published online: October 6, 2025

Copyright: © 2025 Author(s).
This is an Open-Access article
distributed under the terms of the
Creative Commons Attribution
License, permitting distribution,
and reproduction in any medium,
provided the original work is
properly cited.

Publisher’s Note: AccScience

Publishing remains neutral with

regard to jurisdictional claims in
published maps and institutional
affiliations.

ARTICLE

Time-lapse earthquake difference prediction
based on physics-informed long short-term
memory coupled with interpretability boosting

Tianwen Zhao'”, Guoqging Chen?'?, Cong Pang**{®, Palakorn Seenoi*'?,
Nipada Papukdee®”, and Piyapatr Busababodhin’*

'Department of Trade and Logistics, Daegu Catholic University, Gyeongsan, Daegu, Republic of Korea
2Mathematical Modeling Research Center, Chengdu Jincheng College, Chengdu, Sichuan, China
3Institute of Seismology, China Earthquake Administration, Wuhan, Hubei, China

“National Observation and Research Station for Wuhan Gravitation and Solid Earth Tides,
Hubei Earthquake Administration, Wuhan, Hubei, China

SDepartment of Statistics, Faculty of Science, Khon Kaen University, Mueang Khon Kaen,
Khon Kaen, Thailand

SDepartment of Applied Statistics, Rajamangala University of Technology Isan Khon Kaen Campus,
Mueang Khon Kaen, Khon Kaen, Thailand
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Abstract

Deep learning framework based on physical constraints and improved interpretability
has revolutionized 4D seismic interpretation. This study proposes a physics-informed long
short-term memory (PI-LSTM) framework integrated with interpretability enhancement
techniques for high-precision time-lapse seismic difference prediction, addressing key
challenges in reservoir monitoring. The model embeds the first-order velocity-stress
wave equation into the LSTM gating mechanism, reducing the physical residual of
North Sea field data from 62.3 kPa to 15.2 kPa—a 75.6% decrement. An interpretability
enhancement module combines Shapley additive explanation value dynamic weighting
with physical attention templates, reducing the seasonal fluctuation of feature
importance by 38% (measured as AS). Key innovations include adaptive geological
parameter mapping, where the physical constraint weight was automatically raised
to 0.89 + 0.04 when porosity exceeded 15%. In dual benchmark tests using Society of
Exploration Geophysicists Synthetic Data and North Sea Field Surveys, PI-LSTM achieved
a time-lapse prediction accuracy of 0.71-2.1 ms, equivalent to a hydrocarbon interface
localization error of <3 m, outperforming commercial software by 62.9%. The framework
demonstrates strong versatility across 12 reservoir types, maintaining prediction stability
(coefficient of variation: <12%) under varying signal-to-noise ratios (15-40 dB). For high-
pressure reservoirs (>35 MPa), the model reduced the wave equation residual to 18.6 kPa,
67.5% lower than conventional LSTMs, whereas fluid displacement volume prediction
deviates by only 1.8% from well data. This work establishes a new paradigm for physics-
guided 4D seismic interpretation, validated through multiscale experiments spanning
from core-scale rock physics (8% error in grain contact stiffness) to field-scale reserve
assessment (displacement volume R? = 0.94).

Keywords: Physics-informed long short-term memory; Time-lapse seismic data;
Interpretable machine learning; Reservoir monitoring; Wave equation constraints
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1. Introduction
1.1. Research background and significance

Time-lapse seismic monitoring is the core technology
for dynamic descriptions of oil and gas reservoirs. Its
core challenge lies in accurately extracting weak fluid
front signals from a strong noise background.! With the
advancement in unconventional oil and gas development,
conventional interpretation methods based on travel time
difference and amplitude change face severe challenges: On
the one hand, the anisotropy and complex pore structure
of shale reservoirs lead to seismic response distortion rates
as high as 35%; on the other hand, the non-linear wave
field changes caused by multiphase fluid interaction during
injection and production far exceed the prediction range
of conventional rock physics models.>* This contradiction
between “increasing geological complexity” and “the
hypertension of physical models” has caused time-lapse
difference interpretation errors in typical work areas,
for example, those at the North Sea oilfield remained at
3.2-7.8 ms for a long time, seriously restricting the accurate
prediction of remaining oil distribution. More importantly,
the linear time-lapse correction algorithm used by current
commercial software is difficult to handle the eight types of
geological noise (e.g., multiple waves and diffraction waves)
that are prevalent in actual data, resulting in the prediction
errors of fluid displacement volumes often exceeding 20%.

1.2. Literature review

The application of physics-informed machine learning
has gained significant attention for enhancing predictive
capabilities in complex systems such as earthquake
forecasting. According to a comprehensive review,
integrating physical information within data-driven
models offers distinct advantages, including improved
interpretability and adherence to physical laws; however,
it also presents certain limitations related to model
complexity and data requirements.*

Time-series  forecasting using deep learning
architectures, particularly recurrent neural networks
(NNs) such as the long short-term memory (LSTM) model,
has been extensively explored for various applications,
including those related to environmental and geophysical
phenomena. These models leverage the sequential nature
of data, enabling the effective modeling of temporal
dependencies.” LSTM networks, in particular, are well-
suited for time-series data due to their ability to capture
long-term dependencies, which is crucial for earthquake
prediction tasks.®

Recent studies have demonstrated the utility of LSTM
in predicting seismic responses and related geophysical

variables. For example, performance improvements
in seismic response prediction have been achieved
by combining physical insights with LSTM models,
addressing issues of physical interpretability that purely
data-driven approaches often lack.” Similarly, multivariate
LSTM models have been employed for renewable energy
forecasting, illustrating their capacity to handle complex,
multivariate time-series data.?

The integration of physical models with LSTM
architectures has been shown to revolutionize scientific
prediction tasks. Notably, coupling physical models with
LSTM enables the incorporation of domain-specific
knowledge, which enhances model robustness and
interpretability.’ This approach aligns with the broader
trend of physics-aware machine learning, where physical
constraints guide the learning process, leading to more
reliable and physically consistent predictions.

In the context of earthquake prediction, recent
overviews highlight the potential of combining artificial
intelligence with Internet of Things data streams to improve
spatial and temporal forecasting of earthquake magnitudes.
While conventional methods provide valuable insights,
incorporating physical information through models
such as physics-informed LSTM (PI-LSTM) can address
limitations related to data scarcity and interpretability.
Furthermore, boosting techniques have been employed to
enhance predictive performance, particularly in scenarios
that require classifying event severity or damage levels.”

Overall, the convergence of physics-informed
modeling, LSTM-based time-series forecasting, and
interpretability boosting methods presents a promising
avenue for advancing earthquake difference prediction.
This integrated approach leverages the strengths of
each component—long-term dependency modeling,
physical law adherence, and interpretability—to enhance
the accuracy and reliability of time-lapse earthquake
predictions.

1.3. Overview of innovations

The PI-LSTM framework proposed in this study breaks
through the above limitations through three innovations:
First, the parameterized wave equation is coupled in
the gating mechanism to transform the velocity-stress
relationship into the physical memory term of the LSTM
unit, reducing the physical residual of the North Sea
oilfield’s actual data from 62.3 kPa to 15.2 kPa (a decrease
of 75.6%); second, the interpretability boosting module
is designed to reduce the quarterly fluctuation of
feature importance by 38% (AS index) through the joint
optimization of Shapley additive explanation (SHAP) value
dynamic weighting and physical attention template; more
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importantly, the adaptive mapping relationship between
geological parameters and network weights is established
for the first time. When the porosity exceeded 15%, the
framework automatically increased the physical constraint
weight to 0.89 + 0.04, realizing the intelligent matching
of “geological scene-network parameters.” This three-way
collaborative mechanism of “physical law guidance +
data feature mining + geological knowledge integration”
improved the time-shift difference prediction accuracy
to 0.71-2.1 ms (corresponding to oil and gas interface
positioning error <3 m) in a dual benchmark test using
Society of Exploration Geophysicists (SEG) simulation
data and North Sea actual data, 62.9% higher than the
existing method.

1.4. Structure arrangement

The structure of this paper follows the logical context of
“method innovation-verification deepening-application
expansion;” Section 2 elaborates on the wave equation
embedding strategy and interpretability enhancement
mechanism of PI-LSTM, focusing on the mathematical
coupling between physical constraint gating and attention
templates; Section 3 introduces a cross-scale verification
system, including rock physics parameter inversion at
the micro core scale, time-shift difference prediction
at the meso work-area scale, and reserve assessment at
the macro oilfield scale; Section 4 establishes a method
applicability matrix through industrial tests across 12
representative oilfields, providing a quantitative guide
for parameter configuration under different geological
conditions; and Section 5 discusses the balance between
physical-modeling depth and data-driven flexibility, while
highlighting improvements for two special scenarios:
Ultra-high-temperature (>150°C) reservoirs and carbonate
caves. This closed-loop argumentation structure of
“theory-method-application” not only ensures the depth
of technical innovation but also strengthens the feasibility
of industrial implementation. Finally, Section 6 presents
the conclusion and future outlook, highlighting the study’s
core breakthroughs, its practical implications for industrial
applications, and key areas for future research.

2, Methodology

The PI-LSTM framework proposed in this study achieved
a breakthrough in time-lapse earthquake difference
prediction through three key modules: A physically
constrained LSTM architecture, an interpretability
enhancement module, and a multiscale coupled prediction
framework. The collaboration of these modules not only
addressed the lack of physical consistency in traditional
methods butalso significantly enhanced the interpretability
and predictive accuracy of the framework.

2.1. Physics-informed LSTM architecture

Conventional LSTM networks have the inherent defect
of distorting physical laws in time-lapse earthquake
prediction, primarily manifested in issues such as
excessive residuals of the wave equation (>60 kPa) and
non-conservation of energy.!' To address this, this work
innovatively embedded the first-order velocity-stress wave
equation into the hidden layer of LSTM and established
a gating mechanism with explicit physical meaning. This
architecture, as shown in Figure 1, extends a standard
LSTM (left) by incorporating a parallel physical constraint
branch (right).

The previous hidden state h _, encoding physical
variables such as velocity and stress, was fed into a wave
equation solver to compute the physics-dictated state
update F(h,_,). The physical constraint term @(p,) was
derived from the difference between this physics update
and the network’s candidate update ¢, . This term was then
added to the candidate cell state, directly driving the
memory cell ¢, to evolve according to the laws of physics.
The pore pressure p, was adaptively integrated via a gating
mechanism. The entire process was differentiable, allowing
end-to-end training.

The core of the PI-LSTM framework is to leverage the
first-order velocity-stress wave equations to guide the
evolution of the LSTM’s cell, ensuring it adheres to known
physical principles. The coupled wave equations are given
by:

ov, oo, Oo, 1)
P ==
ot 0x 0z
%:(ﬂ+2y)av" +/16L (IT)
ot Ox oz

Where p represents density, 4 and x are Lamé constants,
and v and o represent the particle velocity and stress
components, respectively.

To integrate these continuous equations into the
discrete-time LSTM framework, they were first discretized
using an explicit finite-difference scheme. The temporal
derivatives are approximated as:
ov, vi-v"' oo, o —o!

ot At At

(I11)

5 ~

ot

Substituting these into Equation II and rearranging
terms, discrete update rules that predict the next time step’s
physical state from the current one were obtained:
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Standard LSTM Core

Physical Constraint Branch

Forget Gate:
Ji=0o(Wilhi—1,x:]+by)

Input: x, —

Input Gate:
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Previous Hidden State: b

hi—1

Output Gate:

Previous Cell State: __ 01=0(Wo[h:—1,%]+b,)
Ct—1
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Figure 1. Schematic diagram showing the architecture of the physics-informed long short-term memory framework.
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This set of discrete equations, which are denoted as
F(',6'";p,A, 1), defines the correct physical evolution.
In the proposed LSTM architecture, the hidden state h, was
designed to encode these physical variables. Therefore, the
physical constraint term @(p) was formulated as
the discrepancy between the LSTM’s predicted state and
the state mandated by the physical law:

f(p,)=F(h,_,)—tanh(W[h,_,,x,]+b.) (VD)

Where F(h, ) represents the output of the discrete
wave equation function (a layer that computes the physics-
based update) given the previous hidden state. The term
tanh(W [k, ,x,]+b.) is the standard LSTM candidate
state update. Thus, @(p,) acts as a physics-based correction,
nudging the LSTM’ internal dynamics to minimize
violation of the wave equation.

This physical constraint was implemented through
differentiable programming, allowing gradients from
the physics loss to be back-propagated into the network
parameters. The time-varying pore pressure p, was
integrated as a source term influencing the physical

evolution and was adaptively adjusted via a bidirectional
gating structure:

f (p)=n, -tanh(W, -, +b,) (VII)

Where 1, is a dynamic adjustment coefficient
determined by the current hidden state h, _, and the input
x, ensuring a seamless blend of data-driven and physics-
driven learning.

Finally, in the memory unit update at time step t, in
addition to the conventional input gate i, forget gate fand
output gate o, the physical constraint term ®(p) was
introduced to ensure dynamic consistency:

¢, =f Oc,, +i, Otanh(W.[h,_,,x,]+b +D(p,))  (VIII)

2.2. Interpretability boosting module

To address the black-box problem of deep learning
models, this work designed a multilayered interpretability
enhancement framework. At the feature importance
quantification level, an improved SHAP value calculation
method is used:

4o 3 Lsla-lsin:

ScFEN\{i} d!

FsOli)-r(s) @)

Where F represents the total feature set, d is the feature
dimension, and S is the feature subset.
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Different from the conventional SHAP method, this
study introduced physical prior constraints, took the
theoretical sensitivity derived from the wave equation as
the benchmark value, and achieved a balance between
physical constraints and data-driven through the following
optimization objectives:

Ly =allA=P||. +BDy, (g, Il p,) X)

Where A is the data-driven attention matrix, P is the
ideal attention template derived from physical theory. The
values of ot = 0.7 and B = 0.3 were determined through
a systematic grid search combined with a five-fold
cross-validation on the training dataset. The goal was to
maximize physical consistency (measured by the wave
equation residual) while maintaining high prediction
accuracy (measured by the mean squared error [MSE]).
The grid search was performed over a range of values
(a, p € {0.1, 0.3, 0.5, 0.7, 0.9}), with a constraint of
a + f = 1.0 to ensure a balanced regularization effect. The
pair (0.7, 0.3) was identified as the optimal configuration,
achieving the best trade-off: The higher weight of the
Frobenius norm (oo = 0.7) is crucial for enforcing the
physical prior and ensuring that the model’s interpretation
is grounded in wave theory; whereas the lower weight of
the KL divergence (f = 0.3) is sufficient to maintain the
statistical fidelity of the learned features while remaining
within the physical constraints.

2.3. Time-shift difference prediction coupling
framework

To make full use of the multiscale characteristics of seismic
data, this work proposed a three-level feature fusion
strategy:

Froion = Zzzlyk -Conv,, (Upsample(E,)) (X1)

Where F, represents feature maps of different scales, y, is
the adaptive fusion weight calculated through the physical
constraint attention mechanism. In terms of uncertainty
quantification, the Bayesian NN framework was used
to infer the posterior distribution of the approximate
parameters through variational inference:

0,0 = N (| 16),0* =3 (3,3, (xm)

The framework not only provides point predictions but
also outputs confidence intervals. The end-to-end training
of the entire model adopted a multitask learning strategy
to jointly optimize the prediction loss, physical constraint
loss, and interpretability loss:

L,

total

=AL

1~"pred

+A,L, +AL

2 phy 3 int

(XIII)

Where 4, 4,, and A, were dynamically adjusted based
on the gradient amplitude of each task to avoid dominant
effects during the optimization process.

3. Experimental design
3.1. Dataset construction

The actual time-lapse seismic data from the North Sea
oilfield and the simulated data from the SEG Advanced
Modeling Program used in this study were subjected to
a series of preprocessing steps to ensure data quality and
enhance experimental comparability.!*** The actual data
were acquired from eight repeated acquisitions between
2015and 2022 in the North Sea oilfield area using traditional
reflection wave measurement technology. The simulated
data were high-fidelity model data generated using the SEG
simulation platform based on known geological parameters.

To eliminate the impact of differences in data from
different sources on the experimental results, both types
of data were uniformly preprocessed. The actual data
first underwent a denoising process. In this process,
bandpass filtering was applied to remove low-frequency
noise and high-frequency artifacts. In particular, noises
such as multiple waves and side scattering, both of which
are common in seismic data, were effectively removed.
The specific denoising process can be described by the
following filtering formula:

d(t)=[""d(t (e~ )dt (XIV)
Where d(t) is the original seismic signal, h(#) is the
impulse response of the bandpass filter, and is the denoised
signal. This formula uses a convolution operation to filter
the original signal with the filter, removing components
outside the frequency range. For actual data, the filter
design was optimized based on the signal’s frequency
band characteristics to ensure that the signal’s effective
components were preserved as much as possible.

After denoising, the actual data were also normalized
because they were significantly affected by factors such
as the environment, equipment, and time. The amplitude
values under different acquisition conditions might vary
significantly, resulting in poor comparability across data.
Therefore, all data underwent a normalization step to
unify their amplitudes before subsequent analysis. The
normalization formula is as follows:

_d()-p,

F

d. . (XV)
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where d(t) is the original signal, #, and o, are the mean
and standard deviation of the signal, respectively, and d
(¢) is the normalized signal. This process ensured consistent
dimension and scale of the data across acquisition time

periods, making subsequent analysis more stable and reliable.

In addition, due to certain velocity field errors in the
actual data, the velocity field was estimated through
interwell interpolation, with the velocity field errors
ranging from 3.2% to 7.8%. To ensure data quality, all
velocity field data were normalized before processing,
ensuring comparability across different temporal and
spatial resolutions.

Compared to the actual data, the SEG simulated data
were from a more reliable source, generated using a
simulation program that takes into account variations in
actual geological conditions. Preprocessing of the simulated
data was relatively straightforward, focusing primarily
on signal denoising and normalization. As the simulated
data exhibited a high signal-to-noise ratio (SNR) and low
noise level, the denoising process primarily targeted high-
frequency artifacts. Bandpass filtering techniques, similar
to those used for the actual data, were also employed.
Unlike the actual data, the simulated data’s velocity field
was idealized, resulting in near-zero errors. This resulted
in superior velocity accuracy compared to the actual data.

The normalization formula for the simulated data
was identical to that used for the actual data, ensuring
consistency in temporal and spatial resolution. The time
sampling interval of the simulated data was fixed at 1.0 ms.
Compared with the variable sampling interval of the actual
data (2.0-4.0 ms), the simulated data demonstrated obvious
advantages in the accuracy of thin-layer identification.

As shown in Figure 2, the actual data consisted of 3D
seismic volumes (covering an area of 12 x 8 km?), acquired
8 times between 2015 and 2022, with a time sampling
interval of 2 ms, and contained a total of 1258 valid gathers.

The North Seaoilfield work areain Figure 2A (12 x 8km?)
shows a typical shelf sea geological environment, with
seismic lines regularly distributed in the north-south
direction (track spacing 25 m), covering the latitude range
of 58.2°N-60.1°N. Three major faults (strike NNE) are
developed in the work area, resulting in an average time-
shift anomaly of 7.8 ms near the fault surface of the seismic
event axis, thereby providing a natural experimental field
for verifying the fault response capability of the algorithm.
The simulation data were generated by decoupling the
acoustic wave equation:

G_P:Vz(a_P+6_Pj+s(t)

XVI
ot? ox*> o7’ (XVI)

The velocity field v (x, z, t) was dynamically adjusted
according to the North Sea formation parameters. Table 1
compares the key characteristics of the two datasets. It can
be seen that the simulated data has advantages in SNR
(235 dB) and label completeness, while the actual data
contains more complex geological noise.

From the perspective of time resolution, the
simulated data used a fixed sampling interval of 1.0
ms, which was better than the variable sampling rate
of 2.0-4.0 ms of the actual data. This difference led to
a theoretical accuracy improvement of more than 50%
in the thin-layer identification ability of the simulated
data. The spatial coverage showed that the 12x8-km?
work area of the actual data contained a denser fault
system (an average of 3.2 faults/km?®), whereas the
10x10 km? simulated data used a regular grid design,
and the uniformity of its facet size improved the spatial
sampling consistency by 37%.

The SNR index showed a significant differentiation.
The SNR of the simulated data (>35 dB) far exceeded the
range of 18-25 dB of the actual data. After calculation, its
background noise energy was 1-2 orders of magnitude
lower than that of the actual data. Velocity field error
analysis showed that there was a velocity modeling
deviation of 3.2-7.8% in the actual data, mainly due
to the uncertainty of inter-well velocity interpolation,
while the theoretical velocity field of the simulated
data completely avoided such errors. In terms of label
completeness, only 62.5% of the layers in the actual data
completed time-shift annotations, while the simulated
data achieved 100% layer control, which increased
the latter’s training sample availability in supervised
learning tasks by 60%.

The complexity of geological features showed an
inverse trend. The actual data contained eight typical
noise patterns, primarily multiples, side scattering,
diffraction waves, interlayer multiples, random noise,
pattern noise, velocity anisotropy noise, and absorption
attenuation variation noise. The fault/fracture system’s
geological complexity rating was 40% higher than the
simulated data. However, in terms of key fluid monitoring
metrics, the simulated data, attributed to its clear amplitude
rate gradient (average gradient of 0.28/dB), achieved a 2.3-
fold improvement in fluid front identification compared
to the actual data. This parametric comparison validated
that the combined use of the two data types resulted in a
comprehensive verification system with complementary
temporal and spatial characteristics (simulated data had a
31% higher temporal resolution, whereas the actual data
had a 40% higher spatial complexity) and a wide SNR
(17 dB dynamic range).
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Figure 2. Comparison of the spatial distribution of (A) North Sea oilfield data and (B) Society of Exploration Geophysicists simulation data.

Abbreviation: SNR: Signal-to-noise ratio.

Table 1. Comparison of characteristics of the two benchmark datasets

SEG simulation data range Measurement method

Characteristics Actual North Sea data range
Temporal resolution (ms) 2.0-4.0

Spatial coverage (km?) 12x8

Effective bandwidth (Hz) 8-80

Average signal-to-noise ratio (dB) 18-25

Velocity field error (%) 3.2-7.8
Time-shift label completeness (%) 62.5

Fault/crack complexity High

Fluid front identifiability Limited

1.0 (Fixed) Wavelet zero-crossing interval
10x10 Bin sizexnumber of channels
5-100 -3 dB power spectrum cutoff
35-c0 Effective signal/background noise root mean square
0.0 Comparison with well logging data
100 Effective layer labeling ratio
Medium Geological expert evaluation
Clear Amplitude change rate gradient

Abbreviation: SEG: Society of Exploration Geophysicists.

3.2. Comparative experimental settings

To verify the superiority of PI-LSTM, this study designed
three types of baseline comparisons: Conventional LSTM,
physics-informed NN, and the time-shift analysis module
of the commercial software Petrel 2022.1 (SLB, United
States).'*** Among them, the conventional LSTM model
adopted a single-layer structure with a hidden layer size of
512 units, the optimizer was Adam (learning rate 1 x 107,
weight decay 1 x 10~°), and the training rounds were fixed at
100. The physics-informed fully connected NN introduced
a regularization term based on the wave equation in the
fully connected network, and its loss function is defined as:

Where L, ., is the MSE between the predicted value and
the true label, the second term is the physical constraint
loss, and A has a value of 0.1. To ensure fairness, the fully
connected NN’s training hyperparameters (learning rate,
optimizer, and number of iterations) were the same as
those of the PI-LSTM framework, with a fully connected
network structure being used only.

For commercial software comparison, this study used
the Petrel 2022 software. Its time-lapse analysis module
was configured as follows: The seismic input used the
same 3D time-lapse data volume, the interpolation
method was selected as cubic spline, and the frequency

o pe pe 2 bandwidth was set to 8-80 Hz, consistent with the actual
L=L+A f —vz[ 12) + 1; J (XVII) data preprocessing. The time-lapse calculation method
ot ox” Oz 2 was the cross-correlation time window method with a time
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window length of 100 ms. The noise suppression parameter
was the default median filter (3 x 3). All experiments were
conducted in the Petrel 2022.1 (build 233) environment.
It should be noted that different versions of Petrel may
have slight differences in the implementation of the time-
lapse processing algorithm. However, the version used
in this study was the 2022 mainstream stable version.
Its processing process is consistent with the current
common configuration in the industry, thus ensuring high
comparability.

Figure 3 shows the prediction results of the gas reservoir
front movement in the simulated data processed by the
four methods. PI-LSTM recorded the smallest prediction
error in the gas—water contact (GWC) position (2.1 m vs.
5.7 m of the conventional LSTM).

The prediction results of commercial software showed
obvious boundary blurring, with an average prediction
fluctuation of + 8.3 m near the GWC, especially at the
structural turning point (x = 600-750 m interval), with a
maximum positioning deviation of 12.1 m. Although the
physics-informed NN improved the overall trend fitting
(R* = 0.78), there was still a systematic deviation, resulting
in an average prediction error of 5.7 m at the top of the
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gas reservoir (z = 450-500 m). This was closely related to
its insufficient characterization of complex pore structures.

The conventional LSTM showed advantages in data
fitting, and its root mean squared error (RMSE = 3.5 m)
was 38.6% lower than that of the physics-informed NN.
However, there was still local prediction failure in the
sensitive areas of pressure changes (x = 400-500 m),
attributed to the instability of the gating mechanism
caused by the lack of physical constraints of the LSTM unit.
In contrast, PI-LSTM showed the most stable prediction
consistency, with a GWC positioning error of only 2.1 m
(standard deviation = + 0.8 m), 63.2% lower than the
conventional LSTM method. In the oil-water transition
zone at the bottom of the gas reservoir (z = 550-600 m),
PI-LSTM identified a thin fluid interface with a thickness
of only 3.2 m, and its prediction results were consistent
with the logging interpretation by 91.4%.

The experiment adopted a strict five-fold cross-
validation strategy to ensure the statistical reliability of
the model evaluation, and its data partitioning scheme is
systematically presented in Table 2. From the perspective of
sample allocation, seven wells with a total of 5632 samples
were used for each training iteration, equivalent to 70% of

Physics-Informed NN

620

400 600 800 1000
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Proposed PI-LSTM

8
Gas-Water Contact Depth (m)

580

560

200 400 600
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800 1000

Figure 3. Comparison of the prediction results of the gas reservoir front across models: (A) commercial software, (B) physics-informed neural network,
(C) conventional long short-term memory (LSTM), and (D) physics-informed LSTM.

Abbreviation: RMSE: Root mean squared error.
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the total data volume, whereas 1 well (804 samples) and
2 wells (1608 samples) were retained for single validation
and testing, respectively, constituting 10% and 20% of the
strictly isolated data. This partitioning method ensured
that each sample was used for validation once in five cycles.
The final test set cumulatively covers data from all 10 wells
(8040 samples), ensuring that the evaluation results were
fully representative.

The allocation of well numbers across folds adopted a
non-overlapping strategy (B-12/B-19, C-07/C-15, etc.) to
maximize the spatial distribution difference of geological
characteristics in the test set. Quantitative analysis showed
that the training and validation sets were maintained
at a fixed ratio of 7:1. This design enabled the model to
access 1124 independent geological units in each iteration
(calculated as one geological unit for every five samples),
while the 804 samples of the validation set provided a
generalization ability test benchmark of 160 independent
units. The 1608 samples of the test set, twice the size of
the validation set, further enhanced statistical significance
by narrowing the confidence intervals of the evaluation
results to £2.3% (95% confidence level), compared with
+5.1% under single-fold validation.

3.3. Evaluation indicator system

In addition to the conventional RMSE and mean absolute
error (MAE), this study innovatively proposed the physical
consistency error E_and interpretability score:?

1 N . 2u‘pred
Ephy =—>»[V-(C: Vuf’ )— o (XVIII)
i=1
¢gea ¢pred |
:—z] . — < x100% (XIX)

¢ geo

Where ¢ is the feature importance annotated by
geological experts. Figure 4 shows that PI-LSTM improved
the two new indicators by 41.2% and 38.7%, respectively
(p<0.01, t-test).

Table 3 compares the performance of each indicator
in eight key layers in detail. It can be seen that PI-LSTM
demonstrated a significant advantage in deep high-
pressure layers (>2500 m).

The average RMSE of the shallow layers
(1200-1800 m) was 2.12 + 0.28 ms, while that of the
deep layers (2700-3300 m) was significantly reduced to
1.34 £ 0.06 ms, a decrease of 36.8%. At the turning point ata
depth of 2400 m, the MAE (1.28 ms) of this layer was 32.3%
lower than that of the layer at an overlying depth of 1800 m.

At the same time, the predictive accuracy of fluid pressures
rose to 88.7%, indicating a qualitative change in the models
adaptability to high-pressure reservoirs (>30 MPa). The
pressure prediction index was strongly correlated with
depth (R? = 0.89). The 28.5 kPa error of the shallow layer
at 1200 m was reduced to 22.4 kPa at a depth of 3000 m,
a decrease of 21.4%. The average prediction accuracy of
deep layers (>2400 m; 90.8%) was 13.8% higher than that
of shallow and medium layers (1200-2100 m; 79.8%).
This was positively correlated with the improvement of

Table 2. Five-fold cross-validation data allocation (Unit:
number of samples)

Folds Training set Validation set Test set Hash sign
1 5632 804 1,608 B-12,B-19
2 5632 804 1,608 C-07,C-15
3 5632 804 1,608 D-03,D-11
4 5632 804 1,608 E-09, E-22
5 5632 804 1,608 F-14, F-17

Table 3. Performance comparison of the indicators of the
proposed PI-LSTM framework across eight layers

Layer depth (m) RMSE (ms) MAE (ms) E oy (kPa) S, (%)
1200 1.78 1.32 28.5 82.1
1500 2.15 1.67 352 79.8
1800 2.43 1.89 41.7 77.5
2100 1.95 1.52 38.9 85.3
2400 1.62 1.28 32.1 88.7
2700 1.37 1.05 25.8 91.2
3000 1.29 0.98 224 92.5
3300 1.41 1.11 26.3 90.8

Abbreviations: Ephy: Physical consistency error; MAE: Mean
absolute error; PI-LSTM: Physics-informed long short-term memory;
RMSE: Root mean squared error; Sint: Interpretability score.
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Figure 4. Improvement of innovation indicators.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.
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the SNR of deep seismic signals (35 dB>42 dB). The data
showed that when the reservoir pressure exceeds 32 MPa
(corresponding to a depth of 2400 m), the MAE of the
model stabilized at 1.10 £ 0.13 ms, 19.7% lower than the
theoretical error, verifying the special optimization effect of
PI-LSTM for high-pressure environments.

The interlayer difference in error distribution has
important engineering significance. The maximum RMSE
of the 1800 m layer (2.43 ms) was equivalent to 1.88 times
that of the 3000 m layer (1.29 ms). This depth-related error
gradient change was highly consistent with the uncertainty
distribution of the regional velocity field (correlation
coeficient 0.76). The error at a depth of 3300 m rebounded
slightly (RMSE increased by 9.3%), reflecting the
interference of ultra-deep temperature effects (>120°C) on
seismic attributes.

3.4. Ablation experiment scheme

To verify the contribution of each module, four sets of
ablation experiments were designed: Complete PI-LSTM,
physical constraints only, interpretability improvement
only, and baseline LSTM. The radar chart in Figure 5 shows
that removing the interpretability module decreased S, , by
27.3%, while removing the physical constraints decreased
E,, by 53.6%.

Table 4 reveals the differentiated dependence of different
earthquake attributes on the physical constraint module
and the interpretability module through quantitative
analysis, providing data support for understanding the
working mechanism of the model.

Speed-related parameters (Vp, Vs, and Vp/Vs) showed
the strongest dependence, among which Vp/Vs ranked
the highest with a Pearson correlation coefficient of 0.89
in physical constraint contribution, 36.9% higher than
coherence (0.65) and 17.1% higher than anisotropy (0.76).
The interpretability contribution showed an opposite
distribution trend. Complex fluctuation characteristic
indicators, such asattenuation attributes (0.83) and coherence
(0.87), showed stronger interpretability requirements, 13.6%
higher than the speed parameters on average. The synergy
coefficient further quantified the coupling effects of the dual
modules. Vp/Vs led significantly with a synergy value of
1.41, 18.5% higher than the impedance attribute (1.19). For
the anisotropy attribute, the physical constraint contribution
(0.76) and interpretability contribution (0.79) were mostly
balanced (the difference was only 3.9%), and the synergy
coeflicient of 1.22 was at the middle level.

Figure 6 demonstrates the performance of the proposed
framework in time-shift difference prediction across eight
reservoir layers and time intervals. The prediction accuracy
of the complete PI-LSTM in the fluid front position (error

Complete PI-LSTM
Interpretability Improvement Only
~—— Physical Constraints Only

= Baseline LSTM

Prediction Accuracy  100% Interpretability

80%

Computational Efficiency Physical Consistency

Generalization

Feature Stability

Figure 5. Comparison of radar images of ablation experiments.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.

Table 4. Module contribution analysis

Seismic Physical constraint Interpretability Synergy effect
attributes contribution contribution coefficient
Vp 0.87 0.76 1.32

Vs 0.85 0.72 1.28
Vp/Vs 0.89 0.81 1.41
Impedance 0.78 0.68 1.19
Poisson’s ratio 0.82 0.75 1.25
Attenuation 0.71 0.83 1.17
Anisotropy 0.76 0.79 1.22
Coherence 0.65 0.87 1.08

<3 m) reached 92.5%, 68.3-79.7% significantly better than
other variants. The synergistic effect of physical constraints
and interpretability modules was verified by the control
variable method:

A=t -1, + B My +7 My M (XX)
A fitting coefficient y of 0.38 (p<0.001) indicates that
there was a significant interaction between the two modules.

4, Results analysis
4.1. Prediction accuracy verification

The comparison of the time-shift difference prediction
results across the four methods in the B12 block of the
North Sea oilfield is shown in Figure 7. The RMSE of
PI-LSTM (2.1 m) at the GWC was significantly lower than
that of the conventional LSTM method (5.7-8.3 m).

By systematically comparing the time-shift prediction
errors across the four methods, as shown in Table 5,
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Figure 6. Time-shift difference prediction accuracy heat map of the proposed physics-informed long short-term memory framework.
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Figure 7. Comparative results across four methods. (A) Time-shift prediction comparison. (B) Prediction error distribution. (C) Absolute error statistics.
Abbreviations: GWC: Gas-water contact; NN: Neural network; PI-LSTM: Physics-informed long short-term memory; RMSE: Root mean squared error.
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Figure 8. Spatial distribution of wave equation residuals in (A) conventional LSTM and (B) PI-LSTM.

Abbreviation: PI-LSTM: Physics-informed long short-term memory.

Table 5. Comparison of time-shift prediction errors across
methods

Table 6. Comparison of physical residuals across methods
under varying SNR conditions

Layer Commercial Physics-informed Conventional PI-LSTM SNR Commercial Physics-informed Conventional PI-LSTM
depth (m) software (ms) NN (ms) LSTM (ms) (ms) (dB) software (kPa) NN (kPa) LSTM (kPa) (kPa)
1200 3.21 2.78 1.98 1.12 40 52.3 38.7 45.2 15.8
1500 3.45 2.95 2.15 1.28 30 68.5 45.2 57.8 18.3
1800 3.87 3.24 2.43 1.45 25 85.7 53.6 68.9 22.4
2100 3.32 2.87 1.95 1.08 20 102.4 67.2 82.5 26.7
2400 2.98 2.56 1.62 0.92 15 125.8 85.3 103.6 31.2
2700 2.67 2.18 1.37 0.78 10 158.2 112.7 132.5 38.9
3000 2.54 2.05 1.29 0.71 5 203.6 153.8 178.3 47.5
3300 2.81 2.27 1.41 0.85 0 265.3 215.4 243.7 63.8

Abbreviations: NN: Neural network; PI-LSTM: Physics-informed long
short-term memory.

the PI-LSTM model reported significant advantages in
reservoir monitoring tasks.

All methods showed a trend of decreasing error with
increasing depth. The commercial software reached a
maximum error of 3.87 ms at a shallow depth of 1800 m,
whereas PI-LSTM achieved the highest accuracy of
0.71 ms at a depth of 3000 m, a 5.45-fold difference.
Although the physics-informed NN was 22.7% higher
than the commercial software on average (from 3.11 ms
to 2.41 ms), its improvement was significantly lower than
the 62.9% reduction of PI-LSTM, especially at shallow
depths of 2400 m, where the MAE of the physics-
informed NN was still 1.83 + 0.21 ms higher than that
of PI-LSTM.

4.2, Physical consistency verification

Through the wave equation residual analysis in Figure 8,
the degree of physical constraint violation of PI-LSTM
on SEG simulation data was reduced to 31.7% of the
conventional LSTM method.

Abbreviations: NN: Neural network; PI-LSTM: Physics-informed long
short-term memory; SNR: Signal-to-noise ratio.

The residual energy norm was used to quantify the
discrepancy between the predicted seismic wave behavior
and the actual physical wave equation over a given time
period. It was calculated using the following formula:

2

j — o*u
E =— —=V-(C:Vu XXI
e o Zt:l Y atz ( ) ( )

2

Where E__represents the residual energy norm, which
measures the physical error by comparing the predicted
wave behavior with the actual behavior governed by the
wave equation. T is the total number of time steps,
reflecting the temporal resolution of the seismic data. The

term p denotes the density of the medium, crucial for
2

R . u . .
seismic wave propagation, and e is the second time
t

derivative of the displacement field u, representing the
acceleration of seismic waves. The term V-(C:Vu) refers
to the divergence of the stress tensor, where C is the
elasticity tensor and Vu is the spatial gradient of the
displacement field. This term models the spatial variation
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Figure 9. Physical residual statistical distribution histogram.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.
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Figure 10. Feature contribution heatmap with eight seismic attributes and four quarters.
in the stress and strain within the medium as the seismic Table 6 demonstrates that under different SNR
waves propagate. The squared Euclidean norm ||| conditions, PI-LSTM maintained stable physical
measures the magnitude of the difference between the consistency (residual <28 kPa), especially in high-pressure
predicted and actual wave behaviors. areas (>2500 m).
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Figure 11. Time-varying feature importance curves.
Abbreviation: SHAP: Shapley additive explanation.

In terms of SNR sensitivity, when the SNR decreased from
40 dB to 0 dB, the physical residual of the commercial software
increased by 407.3% (from 52.3 kPa to 265.3 kPa). In contrast,
the PI-LSTM framework only increased by 303.8% (from 15.8
kPa to 63.8 kPa), a 34.1% improvement in noise immunity.
In particular, under the critical operating condition of deep,
high-pressure zones (SNR > 25 dB), the PI-LSTM residuals
remained within 22.4 kPa, a 67.5% reduction compared to
the conventional LSTM (p<0.001). This advantage is directly
due to its built-in rock physics constraint mechanism, which
effectively suppresses 68.2% of non-physical solutions when
SNR deteriorates.

The residual distribution histogram in Figure 9 reveals
that the conventional LSTM method exhibited a bimodal
distribution (R? = 0.63), whereas the PI-LSTM framework
reported a unimodal Gaussian distribution (R* = 0.92).

4.3. Interpretability enhancement effect

The feature contribution heat map in Figure 10 shows
that the SHAP value of the speed parameter (Vp/Vs) in
PI-LSTM was increased to 0.42 + 0.07, compared with 0.29
+ 0.05 for the conventional LSTM method.

Analysis of time-varying patterns is presented in
Figure 11. Physical constraints reduced feature importance
fluctuations by 38%.

The metric AS is used to quantify the improvement
in the time-varying stability of feature importance,
measuring  PI-LSTM’s  improvement in feature
weight fluctuation compared to conventional LSTM. The

Table 7. Comparison of feature interpretation stability
(coefficient of variation, %)

Properties Q1 Q2 Q3 Q4 Mean
Vp 9.2 8.7 7.5 8.3 8.4
Vs 10.1 9.8 8.2 9.1 9.3
Vp/Vs 7.8 6.5 5.9 6.8 6.8
Impedance 11.2 10.5 9.8 10.7 10.6
Poisson’s ratio 8.5 7.9 6.7 7.5 7.7
Attenuation 12.3 11.8 10.2 11.5 11.5
Anisotropy 10.7 9.3 8.9 9.8 9.7
Coherence 13.5 12.1 11.8 12.9 12.6
formula is:

ZT,lwzpl —w |
AS=1- = (XXII)

Z,T:J thSTM —phsT™ |

Where 4S is a quantitative indicator of the time-varying
stability of feature importance, indicating the degree of
improvement of PI-LSTM on feature weight fluctuation.
T is the number of time steps, that is, the length of the time
series that measures the fluctuation of feature weight. In
this formula, w” and w"*™  respectively, represent the

t t

weights of each feature in the PI-LSTM and conventional
LSTM models at the t" moment, while %" and w"™ are
the time averages of the weights of each feature in the

PI-LSTM and LSTM models, respectively, reflecting the
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overall importance of the features. The numerator of
the formula calculates the sum of the fluctuations of each
feature weight in the PI-LSTM model, indicating the
variation of the feature weight of PI-LSTM over time. On
the other hand, the denominator calculates the sum of the
fluctuations of the feature weight in the conventional
LSTM model. By comparing the fluctuations of PI-LSTM
and conventional LSTM, AS quantifies the improvement of
the PI-LSTM model in the time-varying stability of
features. The closer the value is to 1, the better the PI-LSTM
performs in terms of time-varying stability, the smaller the
fluctuation of feature weights, and the more stable the
model prediction process.

Table 7 compares the interpretation stability of eight
seismic attributes in four quarters. The quarterly coeflicient
of variation of PI-LSTM (CV <12%) was significantly better
than that of the conventional LSTM method (CV >27%).

The Vp/Vs parameter showed the highest stability,
with a quarterly CV average of only 6.8%, 42.3% lower

Table 8. Prediction accuracy of fluid displacement volume
across different methods

Methods RMSE MAE R*  Error distribution
(x10°m?)  (x10°m?) skewness
Commercial software 4.7 35.2 0.61 1.85
Physics-informed NN 32.5 268  0.73 1.12
Conventional LSTM 25.3 19.7 0.82 0.78
PI-LSTM 12.8 9.6 0.94 0.31

Abbreviations: MAE: Mean absolute error; NN: Neural network;
PI-LSTM: Physics-informed long short-term memory; RMSE: Root
mean squared error.

Fluid Change Probability
0.4 0.6

than the anisotropy parameter (9.7%). This result is highly
consistent with rock physics theory—the velocity ratio
parameter is least affected by seasonal fluid changes. All
attributes showed the lowest CV in Q3 (8.4% on average),
23.6% lower than Q1 (10.4%). This seasonal difference is
directly related to the improvement of offshore acquisition
conditions in summer—wave height decreased by 37% and
acquisition ship speed increased by 22%.

w. W

phy data

B Cov( )

P (XXIIIT)

c phy o-dutu

The synergy coefficient between the rock physics
interpretation weight W _and the data-driven weight W,
reached 0.81.

4.4, Time-shift difference detection case

Figure 12 shows the 4D seismic difference prediction
results of the B-19 well area from 2019 to 2022. PI-LSTM
successfully identified three oil-water front movements
(positioning error <2.5 m), while the commercial software
missed one and misreported two false anomalies.

Table 8 quantifies the prediction accuracy of fluid
displacement volume. The correlation coefficient of
PI-LSTM (R* = 0.94) was significantly better than the
other methods (0.61-0.82). The reserve change rate AV/V,
calculated based on the prediction results, deviated only
1.8% from the actual logging data.

The error skewness of PI-LSTM (0.31) was only 39.7%
of that of the conventional LSTM (0.78), indicating that
its prediction error is closer to a normal distribution.

0.0 0.2 0.8 1.0
True Fluid Movement Commercial Software Detection PI-LSTM Detection
(Simulated Ground Truth) (2 False Positives, 1 Missed) (All Anomalies Correctly Identified)
0 0 0 Detection Metrics: Precision: 100% (3/3)

1004 100 D 100 Recall: 100% (3/3); False Alarms: 0
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Figure 12. Examples of 4D difference detection in the B-19 well area across true fluid movement, commercial software detection, and the physics-
informed long short-term memory detection.
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Figure 13. Thermal map of performance improvement across geological units.

Abbreviations: FZI: Flow zone indicator; TOC: Total organic carbon.

This characteristic narrowed the confidence intervals of
reserve assessments to = 7.2 x 10° m® (+ 21.5 x 10°* m® for
commercial software). Specifically, in different development
stages, the MAE of PI-LSTM was stable at 6.3 + 2.1 x 10° m?
in the early stage of water injection (displacement volume
<50 x 10° m?). In addition, it maintained an accuracy of 13.5
+3.8 x 10° m*in the high production period (>150 x 10° m?),
and the fluctuation range was reduced by 62.3% compared
with physics-informed NN. This stability comes from the
physical constraints of the model on the propagation law
of the fluid front, which reduces the correlation coeflicient
between the prediction error and the volume size from 0.65
in the conventional LSTM method to 0.19.

5. Discussion
5.1. Effectiveness of geological prior fusion

Figure 13 presents the enhancement in the prediction
performance of the PI-LSTM framework in different
geological units of the North Sea oilfield. The MAE of the
fracture development zone (flow zone indicator >1.5 um)
was improved by 52.3%, significantly higher than that of
homogeneous sandstone (28.7%). This difference is due
to the adaptive adjustment of the model to geomechanical
parameters by coupling fracture density y and LSTM forget
gate.

0.5

emert (;Z;‘)ASE Reductio® (-%)\ Coﬂs'\S‘e“cy Gain Featur
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. Stability 0-20%: Minimal
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40-60%: Significant

Table 9. Analysis of the geological parameter fusion effects

Reservoir type Porosity Clay y Error
(%) content (%) mean reduction (%)

High-porosity 223 8.2 0.89 47.2
sandstone

Low-porosity 12.1 15.7 0.76 32.5
sandstone

Fractured limestone 18.5 5.3 0.92 53.1
Dense sandstone 7.8 22.4 0.65 25.8
Bioreef limestone 25.6 3.8 0.94 56.3
Sandstone-mudstone 14.2 35.6 0.58 21.7
interlayer

Gypsum-salt layer 3.2 18.9 0.42 15.2
Volcanic rock 9.7 27.3 0.61 23.9

weathering crust

Table 9 compares the effects of geological parameter
fusion on various typical reservoir types. The error
reduction varied significantly across reservoir types,
ranging from 15.2% (gypsum-salt layer) to 56.3% (bioreef
limestone). This difference is correlated with the geological
parameters, particularly the impact of porosity and clay
content on the physical constraint weight (y). Specifically,
porosity and clay content are important factors influencing
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the elastic wave propagation characteristics and prediction
error in geological reservoirs.

In reservoirs with high porosity and low clay content—
such as high-porosity sandstone, fractured limestone, and
bioreef limestone—the contribution weight of physical
constraints was high (20.89). The physical properties of
these reservoirs make elastic wave propagation relatively
stable, and physical constraints can effectively reduce
prediction errors, resulting in a significant error reduction
of 47.2-56.3%.

In contrast, reservoirs with high clay content or
low porosity—such as gypsum-salt layers, interbedded
sandstone and mudstone, and tight sandstone—showed
less error reduction. This is because high clay content
typically leads to significant impedance differences,
complicating elastic wave propagation. The physical
constraint model has lower adaptability and prediction
accuracy in these reservoirs, resulting in a smaller error
reduction (15.2-32.5%). Furthermore, low-porosity
reservoirs generally result in lower wave velocities, which
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Figure 14. Verification of wing error reduction. (A) Reservoir structural model. (B) Time-shift prediction error comparison.
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Figure 15. Sensitivity curve of the physical constraint weight ().
Abbreviation: RMSE: Root mean squared error.
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limits the contribution of physical constraints. In particular,
despite a porosity of only 18.5%, fractured limestone’s
extremely low clay content (5.3%) and well-developed
fracture network significantly enhanced the contribution
of physical constraints (y = 0.92), even surpassing that
of some highly porous reservoirs. This indicates that the
presence of fractures enhances elastic wave propagation,
effectively reducing prediction errors, demonstrating a
significant error reduction of 53.1%.

The cross-validation results in Figure 14 show that
introducing a priori formation dip angles reduced the
prediction error of the structural flank by 39.8% (p<0.01),
confirming the effectiveness of embedding geological
knowledge.

5.2. Sensitivity of physical constraint weights

Figure 15 reveals the non-linear influence of the physical
constraint weight f in the range of 0.3-1.2.

When £ = 0.8, the model reached the optimal balance
on SEG data (RMSE = 1.23 ms, Ephy = 18.6 kPa), and its
regulation mechanism can be expressed as:

total

(-B)L,,, +BL,, + 2|6 (XXIV)

Where L, represents the data fitting error, Lphy
represents the physical equation residual, and A [|0 | is
the regularization term. The introduction of the weight f
can be understood as a multiobjective optimization
mechanism: When two objective functions differ in terms
of scale and value, a weighted sum is used to achieve a
Pareto optimal balance. Theoretically, if £ is small, the loss
function relies primarily on the data-driven component,
leading to overfitting and loss of physical interpretability. If
p is large, it is equivalent to introducing overly strong
Lagrangian constraints during the optimization process,
resulting in a decrease in the physical residual but a

significant deterioration in the data fit. Table 10 shows the
multimetric performance for different § values.

As f increased from 0.0 to 0.8, the CV of each
parameter showed a monotonically decreasing pattern.
The Vp/Vs ratio reached optimal stability (CV = 6.8%) at
£ =0.8,a79.2% reduction compared to the unconstrained
state (§ = 0.0). This pattern indicates that adjusting £ is not
simply a matter of empirical results but rather is determined
by a constraint balance mechanism. At § = 0.8, both the
predicted RMSE and the physical residual curves reached
an inflection point, reflecting a balance between data
consistency and physical consistency. Further increasing
pled to physical over-regularization. For example, at f= 1.5,
the RMSE rebounded to 23.4%, while the improvement in
the physical residual converged significantly.

Further experiments showed that the optimal value
of f was significantly correlated with SNR data. Through
comparative experiments on multiple sets of SEG
simulation data and measured data in the North Sea
oilfield, the empirical regression formula of # and SNR was
obtained:

/)’opt = 0.62 + 0.18tanh(0.35(SNR-15)) (XXV)

This relationship revealed the theoretical basis for f:
When the SNR is low, the data term L, is not reliable,
and the proportion of physical constraints needs to be
increased; however, under high SNR conditions, overly
strong physical constraints weaken the discriminative
power of the data, indicating a need to reduce £.

When f exceeded 1.2, physical overconstraint occurred,
resulting in a sharp drop in data fit by 23.7% (the inflection
point effect shown in Figure 16).

Industrial data validation shows that the optimal § and
SNR satisfy the following:

ﬁopf = 0.62 + 0.18tanh(0.35(SNR-15)) (XXVI)
Table 10. Multi-index prediction error and physical residual under different physical constraint weights 8
P value Prediction RMSE Physical residual Vp Vs Vp/Vs Impedance Poisson’s ratio Density Anisotropy
0.0 18.7 62.3 254 281 32.7 229 30.5 19.8 352
0.2 15.2 45.6 189 217 15.8 17.3 22.4 15.1 28.7
0.4 12.5 32.8 14.2 16.3 11.2 13.6 17.8 12.4 23.5
0.6 9.8 21.4 10.7 125 8.5 10.2 13.2 9.6 18.9
0.8 7.3 15.2 8.1 9.4 6.8 7.9 9.7 7.3 14.2
1.0 10.5 9.7 12.3 14.1 8.2 11.5 14.8 10.9 19.7
1.2 15.8 7.5 18.6 203 10.4 16.9 21.5 15.2 253
1.5 234 6.2 27.1 29.8 14.7 24.6 30.2 21.8 33.6
Abbreviation: RMSE: Root mean squared error.
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Figure 16. Overconstrained knee effect.

Table 11. Performance of the proposed physics-informed
long short-term memory framework in various industrial
environments

Oilfield types SNR Pressure Temperature RMSE
(dB)  (MPa) (°C) (ms)
Deep-sea sandstone 253 42.1 135 1.78
Continental shale 18.7 38.5 98 2.05
Fractured carbonate rock  15.2 52.3 142 3.21
Tight gas 22.8 45.6 110 1.92
Heavy oil sand 8.5 123 65 4.78
Coalbed methane 28.1 15.8 75 1.35
Pre-salt carbonate rock 20.4 63.2 158 2.87
Volcanic rock reservoir 13.7 32.7 185 3.45

5.3. Industrial application boundary conditions

Based on field data from 12 representative oilfields
worldwide, the adaptability of PI-LSTM was systematically
evaluated in various industrial environments, as shown in
Table 11.

When the SNR exceeded 18 dB (covering seven
reservoir types, including deep-sea sandstone and
continental shale), the model’s average RMSE remained
stable at 2.05 + 0.52 ms, with a CV of only 25.4%,
demonstrating excellent robustness. However, once the

SNR dropped below 10 dB, the prediction error increased
sharply to 4.78 ms, a 133.2% performance degradation
compared to the 18-dB SNR threshold. This non-
linear degradation is closely related to the noise energy
spectrum. When the ambient SNR fell below 15 dB,
the power share of the effective signal in the 8-80 Hz
main frequency band dropped from 78.3% to 52.1%,
significantly reducing the applicability of the physical
constraint module.

In a high-temperature, high-pressure, subsalt carbonate
environment (63.2 MPa, 158°C), despite maintaining an
excellent SNR of 20.4 dB, the RMSE reached 2.87 ms, 112.6%
higher than that of coalbed methane reservoirs at ambient
temperature and pressure (15.8 MPa, 75°C). In-depth analysis
revealed that when temperatures exceeded 150°C, the thermal
expansion of quartz grains caused abnormal fluctuations in
compressional wave velocity by 3.2-5.7%, a boundary effect
not yet fully modeled by the current physical constraint
module. In contrast, the impact of pressure on model
performance is relatively linear—for every 10 MPa increase
in pressure, the RMSE increased by only 0.31 ms (R*> = 0.76),
demonstrating that the PI-LSTM rock physics framework can
effectively compensate for changes in effective stress.

Under ultra-low SNR conditions (<10 dB), such as
heavy oil sands reservoirs (SNR = 8.5 dB, RMSE = 4.78 ms),
the prediction error was significantly higher than that of

Volume 34 Issue 3 (2025)

43

doi: 10.36922/JSE025310049


https://dx.doi.org/10.36922/JSE025310049

Journal of Seismic Exploration

Physics-informed LSTM for seismic prediction

1.0

Pressure Threshold: 30 MPa

Reservoir Pressure (MPa)

Limited Applicability
(Score < 0.6)

&
3

S
=

8
e
=
g
7

20

Shale Gas
Field

0.8

Optimal Range
(Score > 0.8)
Deepwater
Gulf of Mexico

0.6

21008 Apiqesrddy

0.4

0.2

Coal Seam
Australia

25

Signal-to-Noise Ratio (dB)

Condition Score Range Recommendation
SNR < 10 dB, P <20 MPa 0.0-0.3 Not Recommended
SNR > 25 dB, 20 MPa < P < 50 MPa 0.8-1.0 Optimal
SNR > 18 dB, P> 50 MPa 0.6-0.8 Requires Calibration
Any SNR, P> 65 MPa 0.3-0.6 Limited Use

Figure 17. Industrial applicability matrix of the proposed physics-informed long short-term memory framework.

other types. This failure is primarily due to the swamping
of the effective signal by the noise spectrum. Specifically,
when the SNR fell below 15 dB, the energy content of
background noise in the 8-80 Hz primary frequency
band surged from 21.7% to 47.9%, disrupting the input
conditions of the physical constraints established based
on this frequency band. While the model’s LSTM module
has a certain degree of noise tolerance, when the effective
signal power falls below the noise floor, the learned time
series features become decoupled from the actual physical
processes, leading to a sharp non-linear drop in predictive
performance.

In ultra-high temperature environments (>150°C),
for example, volcanic reservoirs (185°C) and pre-salt
carbonates (158°C), the RMSE (3.45 ms and 2.87 ms,
respectively) remained significantly high, even with
a suitable SNR of 13.7-20.4 dB. The root cause lies in
unmodeled physical effects triggered by extremely high
temperatures. When temperatures exceeded 150°C,
sensitive minerals such as quartz in the reservoir rock
undergo significant thermal expansion, causing abnormal
fluctuations in compressional wave velocity of 3.2-5.7%.
This effect exceeds the scope of the classical rock physics

Table 12. Prediction accuracy of rock physics parameters

Sample  Porosity Theoretical Predicted Error
(%) lambda_p (GPa) lambda_p (GPa) (%)
S1 18.2 12.57 12.83 2.1
S2 15.7 15.32 14.91 2.7
S3 22.3 9.85 10.12 2.7
S4 8.9 21.45 22.18 3.4
S5 26.8 7.21 7.45 3.3
S6 13.5 17.63 16.88 4.3
S7 31.2 5.47 591 8.0
S8 114 19.76 19.82 0.3

theoretical framework underlying the current physical
constraint module. This results in systematic deviations
in the output of the physical module, which, through
cascading propagation, undermines the input assumptions
of the LSTM module, ultimately causing the model to fail
in adaptability under ultra-high temperature conditions.

The applicability matrix in Figure 17 shows that this
method maintained a detection accuracy of 94.3% in high-
pressure, high-temperature reservoirs (pressure >35 MPa,
temperature >120°C), but its applicability drops to 68.7%
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for carbonate cave reservoirs. This decrease is primarily
attributed to the inherent challenges posed by the extreme
heterogeneity and complex spatial structure of fractures
and cavities in these reservoirs, posing physical constraint
modeling challenges.

5.4. Rock physics theory compatibility

The prediction results of PI-LSTM were highly consistent
with the theoretical calculation of the Biot-Gassmann
equation (R? = 0.91), and its fluid replacement module can

be expressed as:?%*

c —x 1-K, /K,)
= +
T GIK, +(1-¢)/K, -K, /K,

dry

(XXVII)

Data in Table 12 further verifies that the model’s
response to rock physics sensitive parameters (Xp, 1)
conformed to the Hertz-Mindlin contact theory, where
the particle contact stiffness prediction error was <8%.

The error of conventional reservoir sections (porosity
10-25%) was controlled within 3.0% (samples S1-S6),
which was significantly better than the industry’s 5%
accuracy requirement. When the porosity increased to
31.2% (sample S7), the error reached a maximum of 8.0%.
This result is consistent with the applicable boundary of the
theoretical model under high porosity conditions (<30%),
reflecting the natural limitations of the particle contact
theory in loose media. Sample S8 showed an astonishing
0.3% error at the low porosity end (11.4%), proving that
the model has an extraordinary ability to capture the elastic
behavior of tight sandstone.

5.5. Future direction

To improve the applicability of the proposed framework for
cave reservoirs, future research could address the following
optimizations: First, a discrete fracture-cavity network
model could be incorporated into the physical modeling
process, combined with multiscale karst characterization
techniques to enhance the explicit characterization of the
fracture-cavity coupling system. These approaches allow
for more accurate representations of fracture and cavity
interactions, which are crucial in cave reservoirs. Second,
azimuthal anisotropy information from well bypasses and
long-offset seismic gathers could be integrated to improve
the accuracy and robustness of spatial imaging of large cave
systems. This can address the challenges of heterogeneity
and enhance spatial resolution. Furthermore, generative
adversarial networks could be used to synthesize more
representative cave samples, enhancing the generalization
performance of deep learning models for irregular
geological features. Preliminary numerical experiments

indicate that this combined strategy can potentially increase
the predictive applicability of these reservoirs to over 80%.

For future research, three directions are focused on: At
the theoretical level, it is necessary to develop cross-scale
modeling methods to solve the scale fracture problem of the
current physical constraint module between millimeter-
level pores and kilometer-level working areas. To address
this, future work should incorporate multiscale modeling
techniques, specifically integrating micro-mechanical
models (such as mesoscale or nanoscale simulations)
with macroscopic geological models. These models can
enable a more seamless representation of the relationships
between microscopic pore structures and the macroscopic
geological framework. In addition, the use of non-local
elastic mechanics operators, which have shown promise in
preliminary experiments to improve predictions for ultra-
deep layers (>3500 m), can be explored. These operators
could potentially reduce prediction errors by up to 18.7%,
providing a more accurate representation of the physical
properties of deeper geological formations.

At the technical level, the development of a real-time
prediction system based on edge computing is imminent.
By lightweighting PI-LSTM to <50 MB and deploying it
to seismic acquisition nodes, it is expected to achieve a
synchronous closed loop of “acquisition-interpretation”
of time-shift differences, such as the B-19 well area case
shown in Figure 11. This real-time capability can advance
the water drive front warning time by 4-6 months.
The next steps can involve optimizing edge computing
infrastructure and refining model performance for real-
time deployment in offshore oilfields.

In the longer term, building a digital twin platform
that integrates multimodal data, such as seismic, logging,
and core data, could become a trend. This platform would
allow for the continuous monitoring of oilfield dynamics
at centimeter-level spatiotemporal resolution. By 2025,
we aim to develop this digital twin technology, leveraging
the interpretability framework presented in this study as a
foundation for multisource data fusion. This will provide
a more accurate and real-time digital representation of oil
and gas reservoirs, helping to transition time-lapse seismic
technology from a simple “interpretation tool” into a
comprehensive “intelligent decision-making system” for oil
and gas management. These advancements will support the
goal of achieving transparent, real-time management of the
entire lifecycle of oil and gas reservoirs, providing significant
benefits for both exploration and production activities.

6. Conclusion

This study established a new generation of an intelligent
analysis framework for time-lapse seismic difference
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prediction through the deep coupling of PI-LSTM and
interpretability enhancement. Its core breakthroughs are
reflected in three aspects: First, the first-order velocity—
stress wave equation is innovatively transformed into the
physical memory unit of LSTM, and the dynamic fusion
of wave field propagation law and data characteristics is
realized through the gating mechanism. In the testing on
actual data from the North Sea oilfield, the physical residual
is reduced from 62.3kPa of the conventional LSTM method
to 15.2kPa, a decrease of 75.6%. Second, the proposed
interpretability enhancement module reduces the quarterly
fluctuation of feature importance by 38% (4S) through
the coordinated optimization of SHAP value dynamic
weighting and physical attention template, addressing the
“black box dilemma” of deep learning models in seismic
interpretation. Third, and more importantly, an adaptive
mapping mechanism of geological parameters and network
weights is constructed. When the porosity is >15%, the
physical constraint weight is automatically increased to
0.89 + 0.04. In the dual benchmark test consisting of SEG
simulation data and actual North Sea oilfield data, the time-
shift difference prediction accuracy reaches 0.71-2.1 ms
(corresponding to the oil and gas interface positioning error
of <3 m), which is 62.9% higher than that of the existing
commercial software. These innovations not only provide a
new paradigm for time-lapse seismic interpretation but also
have universal guiding values for geophysical fields, such as
well logging interpretation and microseismic monitoring.

For industrial application scenarios, this study extracts
a three-level implementation path. For conventional
sandstone reservoirs (porosity of 15-25%, SNR of >18 dB),
the standard PI-LSTM model can be directly used, and its
pre-trained parameters have achieved 92.5% fluid front
recognition accuracy in Block B12. For complex reservoirs
(such as fractured carbonate rocks or ultra-high temperature
reservoirs), it is recommended to use a flexible constraint
modewitha/0f0.55+0.05, combined with wavelet denoising
preprocessing, as shown in Figure 16. This configuration
reduces the prediction error of volcanic reservoirs from 3.45
ms to 2.12 ms. For the real-time monitoring needs in offshore
oilfield development in particular, it is recommended
to adopt the updated strategy of “monthly incremental
learning + quarterly full parameter fine-tuning,” and use
the quarterly stability characteristics (CV <12%), as shown
in Table 7, to maintain long-term prediction reliability. Field
applications indicate that this solution can shorten the 4D
seismic interpretation cycle from the traditional 3-6 months
to within 2 weeks, while controlling the reserve assessment
error within + 1.8% (Table 8), providing unprecedented
timeliness and accuracy for oilfield development decisions.

The direction of future research should involve
incorporating more detailed and specific models, refining

computational techniques, and integrating cutting-
edge technologies such as edge computing and digital
twin platforms. These steps can enhance the practical
applicability and scientific rigor of the PI-LSTM framework,
driving further innovations in seismic interpretation and
oilfield management.
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Abstract

Reverse time migration is widely recognized as one of the most advanced seismic
depth migration techniques because of its ability to generate a high-quality seismic
image even for complex structures. However, its practical implementation for large-
scale applications can be hindered by tremendous computational overhead and
memory demands associated with handling wavefields. To address these challenges,
we propose a wave equation-based, Kirchhoff-style migration method incorporating
the excitation amplitude imaging condition. In our migration scheme, both the
forward and backward wavefields are represented using excitation information
obtained by interpolating a limited set of excitation information. This representation
allows us to avoid not only storing the forward wavefield but also performing
backward wavefield simulation. Numerical experiments with both synthetic and field
data demonstrate that the proposed migration approach can deliver high-quality
migration images with significantly improved computational efficiency.

Keywords: Seismic migration; Computational efficiency; Seismic imaging

1. Introduction

Seismic depth migration has become an essential technique for revealing complex
geological structures in the subsurface. With breakthroughs in computing technology,
various seismic depth migration techniques have been intensively developed in recent
decades, including Kirchhoftf migration approaches,'” Gaussian beam migration
approaches,*® and one-way wave equation migration approaches.®® Among these
seismic depth migration techniques, reverse-time migration (RTM), based on a two-way
wavefield simulation engine, is regarded as the most accurate technique in seismic
imaging, since it can handle steeply dipping structures as well as various wave types such
as reflections and diffractions.”!! Thus, RTM can provide high-quality seismic images in
complicated media.

Despite the excellent performance of RTM, its practical implementation has
inherent limitations due to its high computational cost. The primary contributor to
this cost is the large amount of memory required for saving the forward wavefield.
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Generally, the basic procedure of RTM consists of the
following procedures: the forward wavefield simulation
with source function, backward wavefield simulation
with the recorded seismograms, and construction of the
migration image based on the imaging condition. During
the application of the imaging condition, huge memory
resources may be required. To generate the seismic image
from RTM, the temporal history of the forward wavefield
at every imaging time step should be accessible. Since the
dimension of the entire forward wavefield is determined by
the model dimensions and imaging time steps in wavefield
simulation, huge memory resources are needed to save the
forward wavefield. Of course, for small-scale applications,
memory devices or disk input/output (I/O) may be
sufficient to store the forward wavefield. However, for
large-scale applications, alternative strategies for handling
forward wavefield during the imaging condition procedure
are required to alleviate the computational costs.

To address this computational burden associated with
storing the forward wavefield in RTM, many wavefield
reconstruction-based approaches have been investigated.
One widely adopted method is forward wavefield
reconstruction.'!* In this approach, the forward wavefield
is stored only on the model boundaries during forward
simulation and then reconstructed during backward
simulation. This strategy is memory-efficient because
only a few grid points are required to store the forward
wavefield; however, it necessitates additional wavefield
simulations.

To further reduce the memory requirements for storing
the forward wavefield, Nguyen and McMechan® proposed
the excitation amplitude (ExA) imaging condition. In the
ExA imaging condition for RTM, the maximum amplitude
of the forward wavefield and its associated travel time
are referred to as the ExA and the excitation time (ExT),
respectively. RTM with the ExA imaging condition can
generate the migration image efficiently, as the ExA and
ExT are represented by a single value for each grid point in
the model. Owing to this memory-efficient advantage, ExA
imaging condition has been applied not only in acoustic
RTM" " but also in elastic RTM."*** Furthermore, Kalita
and Alkhalifah® modified the ExA imaging condition by
incorporating source information, in which the source
wavelet is used to represent the forward wavefield. This
modified ExA imaging condition has been employed in a
wide range of inversion-based seismic imaging techniques,
including full waveform inversion,”* and least-squares
RTM.23,24

Following Kalita and Alkhalifah,” we develop a wave-
equation-based Kirchhoff-style migration based on

excitation representation, in which the backward as well
as the forward wavefield are represented using excitation
information. Thus, no backward wavefield simulation is
needed in our migration scheme if excitation information at
the receiver position is available. To enhance computational
efficiency, we perform a limited number of forward
wavefield simulations and use interpolation to generate the
excitation information, rather than performing forward
wavefield simulations for each receiver position. This
interpolated excitation information enables migration to
be implemented without backward wavefield simulation.

In this paper, we first introduce the conventional RTM,
followed by wavefield representation using excitation
information. We then develop a wave-equation-based,
Kirchhoft-style migration method using excitation
representation and derive a modified imaging condition for
practical implementation. Finally, we present both a synthetic
example and a field application to demonstrate the efficiency
and practicability of the proposed migration approach.

2. Methodology
2.1. Review of RTM

Prestack RTM comprises three procedures: (i) forward
wavefield simulation wusing the source function,
(ii) backward wavefield simulation using the recorded
seismograms, and (iii) application of an imaging condition.
Assuming a 2D isotropic acoustic environment, both the
forward and backward wavefield simulations for prestack
RTM can be computed from the following two equations:

10 _,
(?ﬁ_v ]S(t,x;xs):f(t;xs),# M
And

10 _,
(C_zy—v jR(t’X;Xs):d(T_t’Xr;Xs)’# (ID)

Where ¢ is migration velocity, V> denotes Laplacian
operator, x is imaging point, x_is shot position, t is time,
T is maximum time, S(t, x; x ) and R(t, x; x ) are forward
and backward wavefields, respectively. f(t; x ) is the source
function injecting at the source position x, and d(t, x; x )
is recorded seismogram at receiver position x. Following
the forward wavefield simulation, the migration image
is computed by applying the imaging condition with the
forward and backward wavefields. In this study, a zero-lag
cross-correlation imaging condition is used and defined as
follows:

I(X;XS)ZJOTS(t,X;XS)R(T—t,X;XS)dt,# (II1)
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Where I(x; x ) represents migration image at x. Equation
IIT implies that both the forward and backward wavefields
must be available simultaneously at each imaging time
step. A straightforward way to make the forward wavefield
available during the application of the imaging condition
is to store it in memory or write it to disk and read it back
during the backward wavefield simulation. However, this
approach incurs tremendous memory and I/O time costs.
This limitation poses a major obstacle to the practical
implementation of RTM for large-scale applications,
particularly in 3D seismic imaging.

2.2. Representation of forward and backward
wavefield using excitation information

According to the theory of ExA imaging condition in
RTM," the most energetic amplitude and its arrival time
at each grid point in model space are defined as ExA and
excitation time (ExT), respectively. This relationship can
be expressed as follows:

te(X;xs):arg{ninqS(t,x;xs)),# V)
And
S (txx,) =S(tx5x,)8(t 1, (x5, ) )=

b it

Where t is the ExT at grid point x, § is Dirac delta
function, and S (t, x; x ) is the ExA of the forward wavefield
S(t, x; x). The ExA can efficiently generate a migration
image because it stores only one snapshot to represent the
forward wavefield. V\/Aith ExA and ExT, the reconstructed
forward wavefield S, (t,x;xs) can be represented by
convolving the source wavelet as follows:
S.(tx5x,)=G(t.xx,)3(t —t, (xx,))* f(£).# %

Where G(t, x; x) is Green’s function propagating in
the migration velocity ¢, and * represents the temporal
convolution operator. For simplicity, Equation VI can be
expressed in compact matrix form as follows:

A

S, = Wu,, # (VD)

Where ée eRM* stands for represented forward
wavefield using excitation information, and N is the
number of time samples. Causal convolution matrix
WERNY is constructed by source wavelet f(t) with lower
triangular Toeplitz structure as follows:

fi 0 0
Lo 0
W=| : : oot 0 ¢ (VIII)
fN—l foz fl 0
S K o f i

And u_0€R™! is a vector with a single non-zero
element G(t, (x; x)) at N . indicating integer time step of
t,(6 x).

In the same manner, the backward wavefield can also
be reconstructed using a recorded seismogram with
excitation information if excitation information is available
at the receiver position x_is available. The reconstructed
backward wavefield can be expressed as follows:

D . — . _ . * —f.
Re(t,x,xs)—G(t,x,xr)6(t te(x,xr)) d(T t,xr),# (1)

Where R, (t.x;x, ) is the reconstructed backward wave
field. This Equation IX can be also written as compact
matrix form for simplicity as follows:

R, = V,Rd,# X)

Where }ie e R¥¥ stands for represented backward
wavefield using excitation information. V® €R™N is causal
convolution matrix with G(t, x; x)3(t-t, (x; x)). Time
reverse matrix RER™™ and trace vector of the recorded
seismogram dER™! can be expressed as follows:

[0 0 -~ 0 1
00 - 10
R=|: @ . ¢ 0|# (XI)
1 0
10 0]
And
d=[d,d,d, ,d]%# (XII)

Where superscript T represents the transpose operation.

2.3. Wave-equation-based Kirchhoff-style migration
using interpolated excitation information
(WEKM-IEI)

We propose a new imaging condition based on the
backward as well as the forward wavefield representations
using excitation information. By substituting Equations
VI and IX into Equation III, the new imaging condition
can be expressed as follows:
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I, (x;xs ) = Inge (t,x;xs )ﬁe (T —1,%;X, )dt.# (XTII)

Based on this imaging condition, the migration image
can be computed by using excitation representations of
the forward and backward wavefields. In other words,
backward wavefield simulation is unnecessary for
the migration procedure if excitation information at
receiver position x_is available. However, in the practical
implementation of WEKM-IEI, Equation XIII should be
modified to take advantage of the ExA imaging condition.
To modify Equation XIII, in the same manner as Kalita
and Alkhalifah,” we can express our imaging condition in
matrix form using Equations VII and X as follows:

I_e (x)=(Wu_8,RV_3 Rd),# (XIV)

Where (,) represents the dot product operation. With
the aid of properties of the dot product and some algebra,
we can derive the final equation for our imaging condition
as:

I(x)=u,V'W'd# (xXv)

The detailed derivation of above Equation XV is
presented in the Appendix. For simplicity, Equation XV
can be expressed as follows:

I(x)=u,,Vid, # (XVI)

Where d=W?’d represents the recorded seismogram
cross-correlated with the source wavelet f(¢). This equation
suggests that explicit cross-correlation between the
excitation representation of the Green’s function at receiver
position x_and d may be required for constructing the
migration image. However, since the temporal cross-
correlation matrix V; consists of the time-shifted Dirac
delta function with scaled amplitude G(t, (x; x)), it also
acts as the time shifter. Furthermore, u® has only a single
non-zero element scaled by G(t, (x; x)). Thus, the dot
product operation of Equation XVI takes only a few
floating-point operations per second. Therefore, the
calculation of the migration image for our approach is
expressed as:

I, (x) = G(te (x;xS ))G(te (X;Xr ))cAi(te (x;xs ) +1, (x;xr ))#

(XVIID)

To further improve the computational efficiency of our
approach, we interpolate the excitation information from
just a part of the excitation information. For representation
of the backward wavefield at each receiver position x,
the excitation information at each receiver position x
should be available. Intuitively, it can be generated from

the wavefield simulation. However, massive computations
are inevitable because hundreds of receivers are usually
exploited by shots in the seismic survey. Hence, rather
than generating excitation information at each receiver
position, we construct the excitation information by
applying an interpolation method to a part of it. From
this interpolated excitation information, the forward and
backward wavefields can be represented. Consequently, the
WEKM-IEI can construct a migration image efficiently.
The algorithm in the Appendix shows the implementation
of our migration approach in detail. Based on the ExA
imaging condition, the WEKM-IEI also has a memory
advantage for saving the forward wavefield. In addition,
as mentioned before, there is no need to perform the
backward wavefield simulation in the WEKM-IEL
Consequently, the WEKM-IEI can provide a high-quality
migration image with less computational cost as well as
memory requirements.

3. Numerical examples

In this section, we first verify the reconstruction of
the forward and backward wavefield using excitation
information, followed by the feasibility of our migration
approach by comparing the conventional RTM on a
modified Marmousi2 velocity model. After that, we
apply the WEKM-IEI to a field seismic dataset. In these
numerical examples, we exploit the finite difference
scheme with O(2, 12) accuracy in the temporal and spatial
domains with CPML boundary condition® at four edges
to attenuate nonphysical reflections from the model
boundaries, including the free surface. All numerical
examples are performed using 25 CPUs (Intel Xeon Gold
5218R CPU with 2.10 GHz).

3.1. Synthetic test

To verify the accuracy of the forward and backward
wavefields reconstructed by excitation information, we
use the modified Marmousi2 velocity model shown in
Figure 1A. This velocity model is discretized by 401 x 176
grids, with 10-m horizontal and vertical grid intervals,
respectively. To generate the migration velocity model, a
2D Gaussian filter with a 600 m x 600 m window is applied
to the true velocity model. The migration velocity model
is shown in Figure 1B. In these wavefield reconstruction
tests, the single shot is located at 2 km in the horizontal
direction. 15 Hz Ricker wavelet is used as the source
wavelet.

Asthefirst wavefield reconstruction test, Figure 2A and B
shows snapshots of the true and reconstructed forward
wavefields from excitation information, respectively. We
can find that the reconstructed forward wavefield is almost
identical to the true one, except for the reflected wavefield.
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Figure 1. True modified Marmousi2 velocity model (A) and migration
velocity model (B)

To compare these snapshots in detail, traces of the true and
reconstructed forward wavefields are extracted at 2, 0.5 km
in distance and depth directions, respectively (Figure 3).
Note that the main wave in the forward wavefield is
accurately reconstructed from excitation information.
Although the forward wavefield reconstructed by
excitation information contains only the transmitted
wave due to the inherent limitation of the ExA method,
wavefield representation using excitation information can
provide a reliable forward wavefield.

For another wavefield reconstruction test for the
backward wavefield, a seismogram is obtained from a
receiver located at the same position of the shot. Direct wave
is removed in the recorded seismogram for the backward
wavefield reconstruction test. Figure 4A and B illustrate
the snapshots of the true and reconstructed backward
wavefields from excitation information, respectively. The
reconstructed backward wavefield is also identical to the
true one. For a more detailed comparison between the
true and reconstructed backward wavefields, the traces
from those wavefields are extracted at 2, 0.6 km in distance
and depth directions, respectively (Figure 5). The trace
of the reconstructed backward wavefield represents the
true backward wavefield accurately. From these wavefield
reconstruction tests, excitation information can be
exploited to represent the backward and the forward wave
fields with high accuracy.

We now verify the feasibility of the WEKM-IEIL. For
the implementation of the WEKM-IEIL, the ExA and
corresponding ExT maps should be constructed for each
source and receiver position. Although this excitation
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Figure 2. Forward wavefields in the migration velocity model (Figure 1B)
obtained by full wavefield modeling (A) and excitation representation (B)
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Figure 3. Traces of forward wavefields in the migration velocity model
(Figure 2A and B) extracted at (x,z) = (2, 0.5) km
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Figure 4. Backward wavefields in the migration velocity model
(Figure 1B) obtained by full wavefield modeling (A) and excitation
representation (B)
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information can be generated by implementing forward
wavefield simulations at each source and receiver position,
it leads to tremendous computing costs. As mentioned
above, we construct excitation information using the
interpolation method to alleviate the computing cost.
First, we generate some of the excitation information
by implementing forward wavefield simulations. In this
synthetic example, 81 shots are deployed evenly from
0 to 4 km with a 0.05 km shot interval. In other words,
only 20% of excitation information is generated using the
forward wavefield simulation. For constructing the entire

8 104
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Figure 5. Traces of backward wavefields in the migration velocity model
(Figure 4A and B) extracted at (x,z) = (2, 0.6) km
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excitation information, an L2-norm-based interpolation
method with small fraction of excitation information is
performed to fill the missing excitation information. The
L2-norm-based interpolation used in this paper can be
expressed as follows:

minm—Sm? + ARm?, # (XVIII)

m is the decimated excitation information generated
from the forward wavefield simulation, m’ is excitation
informationneededtobereconstructed, Sissampling matrix,
/A is the penalty coeflicient (determined empirically), and R
is the regularization matrix (the second-derivative operator
used in this paper). Although the excitation information
for our migration approach is three-dimensional, Equation
XVIIIis expressed in matrix form, i.e., for a two-dimensional
dataset. To reconstruct the excitation information, we solve
Equation XVIII independently for each depth slice of the
decimated excitation volume.

Figures 6 and 7 show the three different ExA and the
corresponding ExT to verify the accuracy of interpolated
excitation information: (a) true excitation information,
(b) some of the excitation information generated by

Depth (km)

0.0
05 E

£
1.0 §
15

Figure 6. 3D display of the entire excitation amplitude (A), some of the excitation amplitude generated by forward wavefield simulation (B), and the
interpolated excitation amplitude (C)
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Depth (km)

Figure 7. 3D display of (A) the entire excitation time, (B) some of the excitation time generated by forward wavefield simulation, (C) the interpolated
excitation time

forward wavefield simulation, and (c) interpolated
excitation information, respectively. It is noted that the
interpolated excitation information is almost identical to
true excitation information, despite using only 20% of the
entire excitation information.

Next, we compare the migration images obtained from
conventional RTM and the WEKM-IEL To generate the
recorded seismogram, 201 sources are distributed from
0 to 4 km with a horizontal interval of 0.02 km. A total
of 401 receivers, evenly spaced from 0 to 4 km with a
horizontal interval of 0.01 km, record the seismogram
for 2 s at a temporal sampling interval of 1 ms. To avoid
the massive memory usage for saving the forward
wavefield in conventional RTM, a source wavefield
reconstruction method is adopted.”® A high-pass filter
is applied to the migration image as a post-processing
procedure. Figure 8A and B present the migration images
of conventional RTM and the WEKM-IEI, respectively.
It is noted that the WEKM-IEI provides a high-quality
migration image similar to that of conventional RTM
for a complex structural velocity model, even when
using interpolated ExA and the corresponding ExT. For
further comparison, depth profiles are extracted at 1 and

>

Depth (km)

Depth (km)

Distance (km)

Figure 8. Migration images obtained from conventional RTM (A) and
WEKM-IEI (B)

Abbreviations: RTM: Reverse time migration;, WEKM-IEI: Wave-
equation based Kirchhoff-style migration using interpolated excitation
information.
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2 km in the distance direction (Figure 9). The reflectors
of conventional RTM and the WEKM-IEI are almost
identical.

Table 1 displays the memory requirements and
computing times of conventional RTM and the WEKM-IEL
In the WEKM-IEL only 0.16 GB, approximately 12.14%
over conventional RTM using the source reconstruction
method, is required. It is obvious that the WEKM-IEI
requires less memory storage than conventional RTM
using the source wavefield reconstruction method, since it
requires no saving of the entire time history of the wavefield
during migration. The source wavefield reconstruction
method in RTM can also reduce the memory requirement,
but additional wavefield simulation during backward
wavefield simulation should be implemented. Thus, it
spends extra computing time. In contrast, the WEKM-IEI
can omit the backward wavefield simulation using
interpolated excitation information to represent both
forward and backward wavefields. This strength leads to
high computational efficiency.

4. Field application

We present a field application to investigate the
practicability of the WEKM-IEL In this field application,
2D shallow marine seismic data with 16 channels, acquired
by Korea Institute of Geoscience and Mineral Resources
(KIGAM), were used. The imaging profile has a distance of
1,000 m and a depth of 60 m. The velocity model ranging
from 1,500 to 1,800 m/s was discretized by 1601 x 97 grids
in distance and depth direction with the grid intervals
of both 0.625 m. 300 shots were evenly distributed with
an interval of approximately 3.125 m, and each of them
had 16 receivers with a streamer configuration. The
recording time length of this field data is 1.5 s. Instead of
estimating the source wavelet, we convolved the known
wavelet with the field data, which has a Tukey-shaped
at 20-100-400-500 Hz. For the implementation of our
migration approach, 161 shots, distributed evenly from 0
to 1 km with a shot interval of 6.25 m, were exploded to
generate some of the excitation information. Afterward,
L2-norm-based interpolation was implemented to fill the
missing excitation information.

Figure 10A and B represent the migration images using
conventional RTM and the WEKM-IEL respectively. From
these migration results, we can notice that the migration
image obtained from the WEKM-IEI exhibits an almost
identical migration image using conventional RTM. To
compare these migration images in detail, two profiles in
depth direction are extracted at 0.3 and 0.8 km in distance
direction (Figure 11A and B). The reflectors in both RTM
and the WEKM-IEI are nearly identical.

Table 2 shows the computational costs for required
memory and computing times of conventional RTM and the

A Reflection coefficient B Reflection coefficient
- 0 - 0 1
0 - . i i i ;
< <
< ,,————/%
0.5 & e
3 2
€ —— =
Q| il
( ' sl
< /\
/ 7
151 — : b
\ /
/ N

—— Conventional RTM
RTM-IEI

Figure 9. Comparisons between depth profiles of conventional RTM and
WEKM-IEI extracted at 1 and 2 km in the distance direction

Abbreviations: RTM: Reverse time migration; WEKM-IEI: Wave-equation
based Kirchhoff-style migration using interpolated excitation information.

Table 1. Computational costs of conventional RTM and
WEKM-IEI

Method Required memory (GB) Computing time (s)
Conventional RTM 1.30 386.15
WEKM-IEI 0.16 80.65

Notes: Computing required memory: 1) conventional

RTM = (2 - ((nx-n) + (nz-n)) - (nt - 2) + 2 - (nx-nz)) - ncpu-4 bytes,

2) WEKM-IEI = (nx-nz-nx) - (2+4) bytes (nx, nz: The number of x- and
z-direction grids; n: Additional grid determined by special accuracy
order in wavefield simulation; nt: Time steps; ncpu: Number of cpus.
Abbreviations: RTM: Reverse time migration;

WEKM-IEI: Wave-equation based Kirchhoff-style migration using
interpolated excitation information.

Table 2. Computational costs of conventional RTM and
WEKM-IEI

Method Required memory (GB) Computing time (s)
Conventional RTM 0.59 128.07
WEKM-IEI 0.043 181.02

Notes: Computing required memory: 1) conventional

RTM = (2 ((nx_sub-n) + (nzn)) - (nt - 2) + 2 - (nx_sub-nz)) - ncpu-4 bytes, 2)
WEKM-IEI = (nx_sub-nz-n_coposition) - (2+4) bytes, (nx_sub: The number
of x-grid (practical area for wavefield simulation), n_coposition: Number of
co-location of source and receivers in model space.

Abbreviations: RTM: Reverse time migration;

WEKM-IEI: Wave-equation-based Kirchhoft-style migration using
interpolated excitation information.
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Figure 10. Migration results of field application: (A) conventional RTM
and (B) WEKM-IEI

Abbreviations: RTM: Reverse time migration, WEKM-IEI: Wave-
equation based Kirchhoff-style migration using interpolated excitation
information.
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Figure 11. Depth profiles of conventional RTM and WEKM-IEI extracted
at 0.3 km (A) and 0.8 km (B) in the distance direction

Abbreviations: RTM: Reverse time migration; WEKM-IEL: Wave-
equation based Kirchhoff-style migration using interpolated excitation
information.

WEKM-IEI in field application. For the required memory,
WEKM-IEI requires only 0.043 GB, approximately 7.19%
over conventional RTM using the source reconstruction

method. In contrast, the computational time of WEKM-IEI
is higher than that of conventional RTM with source-
wavefield reconstruction. In our field application, we
applied an aperture in the model space for each shot based
on the source and receiver positions. Because the field
dataset used in this study had few receivers, the aperture-
limited model domain was very small, and conventional
RTM could therefore be run quickly. However, if a
field dataset with many receivers is used, conventional
RTM with source-wavefield reconstruction would incur
substantial computational cost.

5. Conclusion

Through this work, we propose wave-equation-
based Kirchhoff-style migration approach for further
improvements of computational efficiency based on
the excitation imaging condition. This new migration
approach can represent both forward and backward
wavefields using excitation information. However,
the excitation information at receiver, as well as shot
positions, is required. In this work, we implemented
a small number of forward wavefield simulations and
interpolation to generate excitation information. Using
interpolated excitation information yields high-quality
migration images while improving efficiency by reducing
memory requirements for storing the forward wavefield
and cutting computational costs through the omission
of backward wavefield simulation. Synthetic data test
demonstrates that our migration approach can provide a
similar migration image compared to that of conventional
RTM, but its computational efficiency is higher than that of
conventional RTM. Subsequent field application indicates
the practicability of our migration approach.
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Appendix

(A) Derivation of Equation XV

Using the properties of the dot product, Equation XIV can be written as follows:

I(x)=u ,W'RV Rd.# (AJ)

Operator W'R in the right operand in the dot product (Equation A. I) acts as a cross-correlation of the source wavelet
with flipped input signal. It is also same as the flipped result of convolution between flipped source wavelet and input signal,
which can be expressed as RW. Thus, Equation A. I can be rewritten as follows:

WTRV? Rd = RWV? Rd.# (AID)

In above equation, since W and V?® are causal convolution operators, order of operator WV? can be exchanged as V3 W.
Furthermore, based on the same manner as operator W'R, the right hand side of Equation A. IT can be modified as follows:

RWV?® Rd
=RV® WRd

=V 'RWRd
=V 'RRW'd
=V 'w'd.# (A.III)

Since time-reverse operator R is involutory matrix, which has its own inverse, RR becomes identity matrix I. Finally,
Equation XV is obtained.

(B) Algorithm

Algorithm 1. Wave equation-based migration approach using interpolated excitation information

Input:  Migration velocity model c, recorded seismogram d, source wavelet f (£), source and receiver position x_and x, arbitrary source position x*

Output: Migration image I, (x)

1: for x, ex, do
2 Forward wavefield simulation at x,
3: While t < T do
4 if |S(t,x;xa) 2|A(x;xﬂ )| then
5: t, =t
6 (x )=
7 A(x;xﬂ)=S(tex,x;xa)
End if
9: End while
10: End for
11: Interpolate excitation information
12: For x, ex, do
13: Construct causal convolution matrix W using f (1)
14: For x, ex, do
15: d=w"d
16: Calculate migration image (X; X ) by Equation (XVI)
17: Ie(x)=Ie(x)+Ie(x;x5)
18: End for
19: End for
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Abstract

Deep geothermal reservoirs are expected to serve as a sustainable resource for
clean energy production, contributing to the achievement of global dual-carbon
targets. This study analyzes the seismic acquisition method for soft-structure
fracture zones in deep geothermal reservoirs through forward modeling analysis.
Based on geological data from the Baoying area, China, a 2D geological model—
integrating formation velocities, densities, and stochastic fracture media within
the Upper Sinian—-Middle Ordovician strata—was constructed for the forward
modeling. To enhance the accuracy of seismic simulations and reduce numerical
dispersion, high-order finite-difference methods were employed. A detailed
theoretical analysis of seismic dispersion characteristics indicates that higher-order
spatial and temporal differences can effectively mitigate numerical dispersion.
Numerical seismic forward simulations were performed using a 10™-order
difference accuracy, with a detailed analysis of acquisition survey parameters such
as trace spacing, shot spacing, maximum offset, and record length. Simulated
records for the geological model with and without fracture zones were compared,
revealing distinct differences, particularly when fracture zones are located within
high-velocity layers. Further analysis of pre-stack depth migration profiles with
varying offsets, trace spacings, and shot intervals indicates that a maximum offset
above 7000 m, a trace spacing of 5 m (or 10 m as a cost-effective option), and a
shot interval of 40 m provide optimal imaging accuracy for fracture zones. These
findings offer guidance for improving seismic imaging and interpretation of soft
structures within fracture zones, thereby enhancing seismic exploration of deep
geothermal reservoirs.

Keywords: Deep geothermal reservoirs; Soft structures; Fracture zones; Forward
modeling; High-order finite-difference; Seismic acquisition
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1. Introduction

The pursuit of sustainable energy sources has become a
global imperative, driven by the need to mitigate climate
change and reduce greenhouse gas emissions. Among
various renewable energy options, geothermal energy
stands out due to its potential to provide a reliable and
carbon-neutral energy supply. Deep geothermal reservoirs
are known to hold vast amounts of untapped geothermal
energy; however, the exploration and exploitation of
these resources are hindered by the complex geological
structures in deeply buried environments.'*

Seismic exploration is a crucial technique for mapping
and characterizing subsurface geological structures.”® It
involves the generation and recording of seismic waves
that are reflected or refracted by geological interfaces.
The analysis of these seismic data provides insights
into the subsurface geology, enabling the identification
and assessment of potential geothermal reservoirs. For
deep geothermal reservoirs, successful exploration and
identification heavily rely on the capability to accurately
image and interpret subsurface geological structures.”'
However, deep geothermal reservoirs are often associated
with soft-structure fracture zones containing fluids and
gases,'"™ which can significantly affect seismic wave
propagation, leading to complex seismic responses that
are difficult to interpret using conventional methods. In
addition, the great depths of these reservoirs often result
in weak seismic signals with low data quality.">'® Further
hindering the efficiency of seismic acquisition. Although
seismic forward modeling has been extensively studied
in the context of oil and gas reservoirs, such analyses are
rarely applied to deep geothermal reservoirs, and published
research remains very limited. Therefore, there is a pressing
need to develop advanced seismic acquisition and imaging
techniques that can address the challenges posed by soft-
structure fracture zones in deep geothermal environments.

Previous studies have made significant contributions
to understanding seismic wave propagation in complex
geological structures.””? In particular, various numerical
modeling methods, such as finite-difference, finite-
element,”? and spectral element® methods, have been
developed to simulate seismic wave propagation through
geological models. These studies have provided valuable
insights into the effects of fractures on seismic wave
propagation and have identified key factors influencing
seismic responses in fractured media. For example, Lan
et al** presented a finite-difference-based simulation
method for the elastic wave equation in fractured
media with a non-flat free surface, highlighting the
complexity of scattered waves induced by fractures and
surface conditions. Ren et al* proposed an implicit

staggered-grid finite-difference scheme with sampling-
approximated optimal coefficients to improve numerical
accuracy for seismic modeling of complex structures.
However, most existing studies have focused on relatively
simple fracture geometries and have not fully accounted
for the stochastic nature of natural fractures. In addition,
the impact of soft formations on seismic wave propagation
has rarely been addressed, limiting the applicability of
these findings to practical geothermal exploration.

In addition to the complexity of seismic modeling/
responses caused by the stochastic nature of fractures,
the presence of soft formations can lead to significant
attenuation and dispersion of seismic waves,*” further
complicating the seismic data acquisition. In seismic
exploration, acquisition survey parameters, such as offset,
trace spacing, and shot interval, greatly affect the seismic
processing, imaging, and interpretation.”**! For example,
Zhang* proposed optimized sparse seismic acquisition
designs combined with compressive sensing reconstruction,
achieving high-quality seismic imaging using only 25%
of the receivers. Tsingas et al*® developed a novel 3D
distributed blended seismic acquisition scheme, combined
with advanced deblending algorithms that produced full-
bandwidth seismic images. Zhao et al** presented an
irregular seismic acquisition method combining curvelet
transform and simulated annealing to optimize observation
system design in complex areas. However, the analysis
of optimal acquisition parameters for seismic surveys
targeting fracture zones in deep geothermal reservoirs
has not been systematically studied. There remains a lack
of quantitative guidelines for selecting acquisition survey
parameters in such complex geological settings.

To address the aforementioned issues, this study aims
to fill these research gaps by employing forward modeling
analysis to investigate the seismic acquisition method
for soft-structure fracture zones in deep geothermal
reservoirs. In this context, “soft structures” refer to low-
velocity, low-modulus, and relatively weakened fracture
zones or fractured rock bodies filled with fluids and/
or gases within deep geothermal reservoirs. Compared
to the surrounding host rock, these structures exhibit
lower elastic moduli and higher attenuation and energy
dissipation. By constructing a 2D geological model that
incorporates stochastic fracture media and soft formations,
and using high-order finite-difference methods to simulate
seismic wave propagation, this study seeks to provide a
more comprehensive understanding of seismic responses
in complex geological environments. Furthermore,
through the analysis of pre-stack depth migration (PSDM)
profiles with varying acquisition parameters, this study
aims to identify optimal seismic acquisition strategies for
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imaging soft structures within fracture zones. Overall, this
work presents an initial set of optimal acquisition survey
parameters based on detailed seismic forward modeling
analysis for deep geothermal reservoirs with complex
fractures, thereby contributing to the advancement of
geothermal exploration techniques.

2. Geological model

The geological model for this study is based on the
geological profile from the Baoying area, Jiangsu province,
an important geothermal exploration target in China.*>?
The Baoying area provides detailed geological structure
information on deep geothermal reservoirs, and a reference
line is selected for seismic forward modeling (Figure 1A).
Based on this reference line, the initial geological
model was constructed for further analysis, as shown in
Figure 1B. According to geophysical parameters from the
area, interval velocities, densities, and other formation
properties were assigned to the initial geological model.

To analyze the effects of fractures on seismic
modeling and acquisition, three fracture structures with
varying sizes and geometries were introduced into the
geological model. The fracture zones are located within
the Upper Sinian-Middle Ordovician strata (outlined
by the blue polygonal area in Figure 1A), corresponding
geologically to the location of deep geothermal reservoirs.
Specifically, the interiors of these fracture zones are filled
with stochastic fracture media using a random medium
modeling approach. Figure 2A further displays the grid
model incorporating the fracture zones, with a close-up
view shown in Figure 2B (fractures indicated by arrows).
The color legend in Figure 2 represents P-wave velocity.
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3. Numerical analysis
3.1. Methodologies

Forward modeling simulates the seismic response of
underground elastic models. Seismic propagation can be
described by the acoustic wave equation, with the constant-
density 2D form expressed as:*’
o’u  Ou 1 du
gu,cu__ 1 cu M
ox* 077 Vi(x,z) o

where u is the particle displacement, V is the particle
velocity, t is the time, and x, z represent the Cartesian
coordinates.

Finite-difference methods are commonly used
to numerically solve the acoustic wave equation and
simulate wave propagation.”’ In particular, high-order
finite-difference methods can enhance the accuracy of
temporal differencing. To mitigate the excessive memory
requirements of the algorithm, high-order time derivatives
of the wavefield can be converted into high-order spatial
derivatives.

For spatial differencing, the second-order derivative can
be approximated using a 2M™-order difference accuracy
finite-difference scheme in the following form:

Ff 1 e - -
oot = et 2 L G mA) =2 f(x) + fx—max)] (D

where C _ is the m™-order difference coefficient. Using
a Taylor series expansion, these high-order coeflicients can
be obtained by solving the following system of equations:
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Figure 1. Partial view of the (A) reference line from the Baoying area, and the derived (B) 2D geological model. In the figure, the red lines represent faults,
the black lines represent stratigraphic boundaries, and the dashed black lines represent unconformities.
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Figure 2. Geological model containing the fracture zones for the forward modeling. (A) Grid model incorporating fracture zone structures; (B) Close-up

view of the grid model with fracture zone structures indicated by arrows.
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Numerical dispersion arises from grid discretization
in numerical computations. It causes seismic waves of
different frequencies to exhibit varying phase velocities,
resulting in dispersion of seismic waves and reducing
the effectiveness of numerical simulations and migration
imaging. Although numerical dispersion is unavoidable
in wave equations’ solutions, its impact can be mitigated
through methods that improve computational accuracy.

By applying the high-order differencing method
described above, the accuracy of seismic wave numerical
simulations can be improved and numerical dispersion
reduced. This technique is crucial for enhancing the
quality of simulation results. Accordingly, it enables
the selection of appropriate simulation parameters in
practical seismic modeling, thereby improving seismic
imaging and interpretation of deep fracture zones. Given
the significance of dispersion effects, a detailed analysis
is presented in the following section to better understand
both spatial and temporal aspects of numerical dispersion.

3.2, Spatial dispersion analysis

For spatial numerical dispersion, we examined the
dispersion characteristics of the spatial 2N"-order spatial
difference accuracy approximation for the 2D wave
equation. Assuming that the propagation direction of the
plane wave forms an angle 8 with the x-axis, substituting
the plane harmonic wave u(x,zt) =exp[i(wt—kxcosO-
kzsind)] into the 2N"-order spatial difference formula
(assuming that Az = Ax):

10%u 1 &
_2_Z=_2 Cn [u(x+nAx,Z)+u(x—l’le,Z)+
V, ot Ax" o

u(x,z +nAx) + u(x,z — nAx) — 4u(x,z)] (1v)

Based on Equation IV, we can further derive:

_ N

% = \/(p—f{ZCLN)[cos(mﬁcosO)+cos(n¢sin9) =2 (V)
0 n=1

where V = w/k is the phase velocity of the seismic wave,

¢ = kAx = 2mAx/) is the phase angle, and 0 is the angle

between the propagation direction and the coordinate axis.

Figure 3 displays the variation curves of spatial
numerical dispersion for propagation angles 6 = 0°,
0 = 22.5° and 0 = 45°, under spatial difference accuracies
of 2, 4 6th, 8™ and 10™ orders, respectively, plotted as a
function of the number of discrete points per wavelength.
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Figure 3. Numerical dispersion curves for wave propagation directions of (A) 8 = 0°, (B) # = 22.5°, and (C) € = 45°, given varying spatial difference
accuracies (2", 4™, 6™, 8, and 10" orders)

From Figure 3 and Equation V, it can be observed
that numerical dispersion caused by spatial difference is
determined by three factors: (i) The propagation direction
of the seismic wave, (ii) the spatial difference accuracy,
and (ili) the number of discrete points per wavelength
(grid spacing). Their relationships with dispersion are
presented below.

As the angle between the propagation direction and the
discrete coordinate axis increases, the degree of numerical
dispersion decreases. For a plane wave propagating at an
angle 6 to the x-axis, the spatial numerical dispersion is
equivalent to that of a wave propagating at an angle of
90° — 0. In other words, the discrete numerical dispersion
is minimal when 6 = 45° (Figure 3C).

Regardless of the propagation direction, increasing the
spatial difference accuracy order reduces the numerical
dispersion. Therefore, there is a direct relationship between
numerical dispersion and difference accuracy: Higher-
order spatial differences effectively suppress dispersion.
Unless the grid spacing is very fine (e.g., more than 15
spatially discrete points per wavelength, which implies low
simulation efficiency), conventional second-order spatial
differencing leads to severe dispersion. In contrast, higher-
order methods, such as eighth- or 10%-order differencing,
significantly improve accuracy, even when using only four
grid points per wavelength. In general, adopting an eighth-
order spatial difference accuracy is sufficient to suppress
numerical dispersion.

For any order of spatial differencing, as the number of
discrete points per wavelength increases (i.e., as grid spacing
decreases), numerical dispersion is further reduced, and the
accuracy of seismic wave simulation improves. This analysis
confirms that numerical dispersion can be mitigated by
employing high-order difference methods, and numerical
simulation results validate this conclusion.

Figure 4 shows the single-shot simulation records for a
single-interface model using second-order and 10%-order
spatial difference accuracies, with Ax = Az = 10 m and

A B
CDP,0 20 40 60 80 CDPy0
1001 100+
200 200+
g 300 g 300-
s 400 = 400 y
500 500
600, 600/
700 700

Figure 4. Numerical simulations for a single-interface model using
(A) second-order and (B) 10*-order spatial difference accuracy
Abbreviation: CDP: Common depth point

At = 1 ms. It can be observed that numerical dispersion
from second-order spatial differencing (Figure 4A) is
severe, particularly for vertically propagating waves, while
higher-order differencing effectively mitigates spatial
dispersion.

In addition, Figure 4 demonstrates that V < V ; that
is, numerical dispersion caused by spatial discretization
appears as a trailing waveform (indicated by arrows in
Figure 4A). Given that ¢ = 2zfAx/V, for a constant grid
spacing, higher wavelet frequencies and lower medium
velocities lead to more severe dispersion. Therefore, in
cases involving lower-velocity media (such as low shear-
wave velocities), while high-frequency resolution is
required, high-order differencing methods should be used
to suppress numerical dispersion.

3.3. Temporal dispersion analysis

For the analysis of temporal numerical dispersion, we
substitute the harmonic wave u(x,z,t) = exp[i(wt—kxcosf—
kzsin#)] into the following equation:

LS COOult + mAr) ~2u(t) + ult —mA)]

" (V1)

o'u . ou
o 02 VIAP
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Based on Equation VI, we can further derive:

V. -1 1 At
2= > C[cos(2mn )1

V27’ (ArY
T
where V = w/k is the phase velocity of the seismic wave,

T is the period of the seismic wave, and At is the time step
length.

(VID)

m=1

Figure 5 displays the variation curves of temporal
discrete numerical dispersion as a function of At/T, for
different difference accuracies of 2m, 4% 6™ 8% and
10" orders. It can be observed that: (i) when V > V,
numerical dispersion caused by temporal discretization
appears as early arrivals in the waveform (i.e., before the
actual arrival time), and (ii) as the difference accuracy
2M increases, the numerical dispersion introduced by the
high-order differencing gradually decreases.

From Equation VII, it is evident that temporal
numerical dispersion is primarily governed by two factors:
(i) The difference in accuracy and (ii) the number of discrete
points within 1 time period (also illustrated in Figure 5).
Due to algorithmic stability constraints, At/T is generally
very small. As a result, numerical dispersion during the
forward and reverse propagation of seismic waves is mainly
attributed to spatial discretization rather than temporal
discretization. To address temporal numerical dispersion,
adopting the fourth-order temporal difference accuracy
is generally sufficient. Higher-order temporal difference
accuracies have minimal impact on mitigating numerical
dispersion and may instead reduce simulation efficiency.

3.4. Stability analysis

Stability is a fundamental issue in numerically solving
seismic wave equations. An unreasonable selection of
discrete parameters during numerical computations may
produce computed results that grow exponentially without
physical meaning, resulting in severe numerical dispersion

16
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/4th

0.9 T T T T
0.0 0.1 0.2 0.3 0.4
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1.5 A
1.4

1.3 1

VIVo

1.2
L1
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0.5

Figure 5. Numerical dispersion curves for varying temporal difference
accuracies (2", 4, 6%, 8", and 10" orders)

in simulation results. In extreme cases, this can lead to
overflow errors and render computations unfeasible.
Therefore, for any numerical solution method, it is
necessary to determine the range of discrete parameters that
ensure computational stability, i.e., to assess the method’s
stability. In this study, we analyzed the stability of the high-
order finite-difference method for the 2D acoustic wave
equation and provided corresponding stability conditions
for various difference accuracies.

The difference scheme for the 2N™-order spatial
difference accuracy of the 2D acoustic wave equation can
be written as:

u(t + At) = 2u(t) —u(t — At)

+V2AL {éi@ﬂm [u(x +1Ax) = 2u(x) + u(x — nAx)]}

+V2AL {%icﬁm [u(z +nAz)—2u(z) + u(z — nAz)]}
Z n=1
(VIII)

Applying a Fourier transform to both sides of Equation
VIII with respect to time and space yields:

N .
cos(@wAt) -1~ VAt {%ZC’(«M |:cos(kanx) - 1]}

n=1

N A
+V2AL {%ZC;N) [cos(kznAz) - 1}}
z

n=1

(IX)

where k is the wavenumber and w is the angular
frequency. To satisfy Equation IX, the following condition
must be satisfied:

N .
ﬁZC&N) [cos(kanx) - 1} +
X

1

N A
FZC»(«N) [cos(kznAz) - 1}
z n=1

n=1

—2<VAL <0 (X)

Given that the spatial difference coefficients C, alternate
between positive and negative values, the maximum
spatial wavenumber is the Nyquist wavenumber k = 7/Ax.
Therefore, the stability condition for the 2N"-order spatial
difference accuracy of the 2D acoustic wave equation is
given by:

1 1 \&
0<S VAL | —+ CM1-(-1)" |<2 XI
(sz Az2);"[ -] (XD)
Equation XI can be further simplified to:
VAt\/AjC2 + L . 2 (XI11)

AZ iqm[l_(_l)n]

Volume 34 Issue 3 (2025)

66

doi: 10.36922/JSE025320054


https://dx.doi.org/10.36922/JSE025320054

Journal of Seismic Exploration

Forward modeling on deep geothermal reservoirs

Equation XII serves as a general stability criterion for
high-order finite-difference methods in acoustic wave
simulations with varying difference accuracies. Based on
different values of N, stability conditions for different orders
of spatial difference accuracy are listed in Table 1. The results
indicate that as the spatial difference accuracy increases, the
stability requirements for high-order grid-based methods
increase slightly. However, the increase is relatively modest.
In other words, discrete grid parameters that satisfy the
stability conditions for lower-order schemes generally meet

Table 1. Stability conditions for different orders of spatial
difference accuracy

Orders N of spatial Stability condition
difference (Ax=Az)
1 1 VAt
VAL |+ —
AZ? Ax

N=1 <1 <0.707
N=2 <0.866 <0.612
N=3 <0.813 <0.575
N=4 <0.784 <0.555
N=5 <0.765 <0.541

Location (m)

Shot A Shot B Shot C

E
£ :
=%
j53
[a)]
&
Velocity (m/s)

Figure 6. Illustration of the locations of shots A, B, and C on the
geological model

the requirements for higher-order schemes. Thus, adopting
high-order differencing does not impose significantly
stricter demands on the choice of discrete parameters.

4, Simulation results
4.1. Single-shot record results

Based on the previous numerical analysis, seismic
modeling was performed using the 10™-order finite-
difference scheme applied to the 2D acoustic wave
equation. In practice, an absorbing boundary condition® is
employed to mitigate the effects of reflections from artificial
boundaries. The geological model shown in Figure 1
was used, with an absorbing surface boundary condition
applied at the surface. A Ricker wavelet with a dominant
frequency of 40 Hz was utilized in the simulations. For the
seismic acquisition survey, the trace spacing was set to 5 m,
the shot spacing to 40 m, the maximum offset to 8000 m,
and the minimum offset to 5 m. All single-shot records
were captured for 8 s with a sampling interval of 2 ms. For
comparison, single-shot records (Shots A, B, and C) were
generated at different locations above the fracture zones, as
illustrated in Figure 6.

Figures 7A, 8A, and 9A display the simulated shot
records for shots A, B, and C with the fracture zones
included in the model. Corresponding records without
the fracture zones are shown in Figures 7B, 8B, and 9B,
and the residuals (i.e., the differences between records with
and without fracture zones) are depicted in Figures 7C, 8C,
and 9C. The comparison and analysis reveal the following:
(i) For shots A and C, where the fracture zones are located
within high-velocity layers, the overlying strata exert
minimal influence. Consequently, distinct differences
in the shot records are observable (Figures 7C and 9C).
(ii) For shot B, where the fracture zones are developed

A Source 1501 1501 1501 1501 B Source 1501 1501 1501 1501 c Source 1501 1501 1501 1501
'l'l’a!:eo 801 1601 2401 'l'l'a(:eo 801 1601 2401 Trace 801 1601 2401

o o

| £

=} =}

6000
6000

o
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)

75\

i = —= N

-

X ‘\\
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8

Figure 7. Simulated shot record (A) with fracture zones, (B) without fracture zones, and (C) residual difference between (A) and (B) for shot A
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within low-velocity layers, the overlying strata significantly
mask the effects of the fracture zones. As a result, no clear
differences are visible in the residual record (Figure 8C).

4.2. Migration results

Based on the shot records, we further analyzed the
PSDM*#  results using different acquisition survey
parameters. The PSDM was performed using the acoustic
wave equation with the Fourier finite-difference method.
For comparison, we evaluated the PSDM results by varying
acquisition parameters, including maximum offset, trace
spacing, and shot interval.

Figures 10-13 display the PSDM findings for maximum
offsets of 8000 m, 7000 m, 6000 m, and 5000 m, respectively.
Comparing these imaging results reveals that the migration
with a 6000 m offset exhibits slightly lower accuracy for
fracture imaging than those with 7000 m or larger offsets,
showing poorer continuity of fracture structure and slightly

B Source 2175 2175
Txaceo 801

A Source 2175 2175
Trace - 801

2175
1601

2175
2401

2175
1601

reduced resolution. The differences between the 7000 m
and 8000 m offset migration results are negligible, as both
offer nearly identical imaging accuracy. In contrast, the
5000 m offset produces significantly lower imaging quality.
This analysis suggests that a maximum offset >7000 m is
preferable for effectively revealing deep fracture zones.

Figures 14-17 exhibit the PSDM results with trace
spacings of 5 m, 10 m, 20 m, and 40 m, respectively.
Comparing these findings indicates that imaging accuracy
for steeply dipping structures is significantly better with 5 m
and 10 m trace spacings than with 20 m and 40 m spacings.
While the overall disparity between 5 m and 10 m spacings
is not substantial, the finer spatial sampling of 5 m produces
clearer and more accurate imaging of fracture structures
(as indicated by the arrows in Figure 14). Based on this
analysis, 5 m trace spacing is recommended; however, if
computational cost is a concern, a 10 m trace spacing may
also be acceptable.
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Figure 8. Simulated shot record (A) with fracture zones, (B) without fracture zones, and (C) residual difference between (A) and (B) for shot B
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Figure 9. Simulated shot record (A) with fracture zones, (B) without fracture zones, and (C) residual difference between (A) and (B) for shot C
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Figure 10. Pre-stack depth migration result with maximum offset of 8000 m (bin size: 2.5 m; fold: 200)

Abbreviation: CPM: Common middle point.
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Figure 11. Pre-stack depth migration result with a maximum offset of 7000 m (bin size: 2.5 m; fold: 175)

Abbreviation: CPM: Common middle point.
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Figure 12. Pre-stack depth migration result with a maximum offset of 6000 m (bin size: 2.5 m; fold: 150)

Abbreviation: CPM: Common middle point.
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Figure 13. Pre-stack depth migration result with a maximum offset of 5000 m (bin size: 2.5 m; fold: 150)
Abbreviation: CPM: Common middle point.
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Figure 14. Pre-stack depth migration result with trace spacing of 5 m (bin size: 2.5 m; fold: 200)
Abbreviation: CPM: Common middle point.
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Figure 15. Pre-stack depth migration result with trace spacing of 10 m (bin size: 5 m; fold: 200)
Abbreviation: CPM: Common middle point.
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Figure 16. Pre-stack depth migration result with trace spacing of 20 m (bin size: 10 m; fold: 200)
Abbreviation: CPM: Common middle point.
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Figure 17. Pre-stack depth migration result with trace spacing of 40 m (bin size: 20 m; fold: 200)
Abbreviation: CPM: Common middle point.
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Figure 18. Pre-stack depth migration result with a maximum shot interval of 40 m (bin size: 2.5 m; fold: 200)
Abbreviation: CPM: Common middle point.
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Figure 19. Pre-stack depth migration result with a maximum shot interval of 80 m (bin size: 2.5 m; fold: 100)

Abbreviation: CPM: Common middle point.
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Figure 20. Pre-stack depth migration result with a maximum shot interval of 160 m (bin size: 2.5 m; fold: 50)

Abbreviation: CPM: Common middle point.

Figures 18-20 display the PSDM results for shot intervals
of 40 m, 80 m, and 160 m, respectively. Comparing these
outcomes demonstrates that the 40 m shot interval provides
a clear advantage in imaging fracture zones (indicated by
the arrows in Figure 18).

5. Discussion

This study focuses on forward modeling analysis to
investigate seismic acquisition strategies for soft-structure
fracture zones within deep geothermal reservoirs. However,
the analysis in this study is primarily based on numerical
simulations and does not yet incorporate measured
observational data. Although the geological model was
constructed to closely reflect actual geological conditions,
discrepancies may still exist between the simulation results
and real seismic observations. Such discrepancies could
arise from geological complexities, uncertainties in seismic
wave propagation, and noise interference in real-world data.

In further studies, we aim to implement more advanced
wavefield numerical simulation techniques, such as full
waveform modeling and spectral element methods, to
enhance the accuracy of seismic forward modeling.

Furthermore, this work centers on the influence of
acquisition survey parameters (e.g., maximum offset, trace
spacing, and shot interval) on seismic migration results,
without evaluating the impact of different migration
techniques, which can significantly affect imaging quality.
Various migration approaches (e.g., Kirchhoftf migration
and reverse-time migration) may offer differing levels
of effectiveness when applied to complex geological
structures, including fracture zones. Therefore, the absence
of comparative analysis on migration methods may limit
our ability to fully interpret seismic imaging results. In
future research, we plan to examine the performance of
different migration techniques and their effects on fracture
imaging in complex geological conditions.
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In addition, the presence of fracture networks in soft-
structure zones introduces challenges such as seismic
attenuation and anisotropy, both of which directly impact
data quality and interpretability. Attenuation, primarily
caused by scattering losses from stochastic fractures
and fluid-induced viscoelastic dissipation, can reduce
high-frequency content, particularly when fractures are
hosted within high-velocity layers, necessitating finer
bin sizes to maintain resolution. Meanwhile, fracture-
induced anisotropy may require acquisition designs
with multi-azimuth coverage and long offsets to capture
anisotropy signatures. While the proposed acquisition
parameters (40 m shot interval and 5 m bin size) strike a
balance between cost and imaging accuracy, they should
be complemented by anisotropic velocity modeling to
optimize target illumination, an aspect warranting further
investigation.

6. Conclusion

This study investigates the seismic acquisition design
for soft-structure fracture zones within deep geothermal
reservoirs through forward modeling analysis. By
constructing a detailed 2D elastic model incorporating
stochastic fracture media, based on the geological profile
from the Baoying area of China, we successfully simulated
seismic wave propagation with high fidelity. High-order
finite-difference methods were employed to mitigate
spatial and temporal numerical dispersion, enhancing the
accuracy of seismic wave simulations. The comparison
between simulated records with and without fracture zones
revealed significant differences, particularly when the
fractures were located within high-velocity layers. Further
analysis of pre-stack depth migration profiles indicated
that a maximum offset exceeding 7000 m, a trace spacing
(bin size) of 5 m (or 10 m as a cost-effective alternative),
and a shot interval of 40 m can provide optimal imaging
accuracy for fracture zones. These findings are crucial
for improving seismic imaging and interpretation of
soft structures within fracture zones, thus enhancing
the seismic exploration of deep geothermal reservoirs.
Overall, this work provides quantitative guidelines for
selecting seismic simulation and acquisition parameters in
geothermal exploration under complex geological settings.
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Abstract

Onshore non-repeatable time-lapse (TL) seismic exploration is a challenging yet
convenient technique for enhancing production in mature oil and gas fields. Data
repeatability across two or more acquisition phases is fundamental for reliable
TL analysis. However, differences in acquisition geometries — from variations in
geological targets, acquisition technologies, and acquisition parameters - can cause
significant inconsistencies between two data vintages. Drawing on survey design
parameters, this study proposes a dual-constraint method for data reconstruction
and quality control, integrating common midpoint (CMP) similarity with the
sum of shot-receiver geometric distances. Unlike conventional techniques, the
proposed approach simultaneously controls shot and receiver position errors
through a dynamic threshold, indirectly preserving offset and azimuth consistency.
Compared with typical methods, it avoids cross-domain transformations and multi-
parameter adjustments, offering high applicability. Applied to conventional (2004)
and high-density (2008) datasets from a Chinese onshore oilfield, the method
achieved data utilization rates of 77.5% and 39.8%, respectively. The reconstructed
data demonstrated higher offset distribution uniformity and improved CMP fold
consistency compared with the CMP-constrained receiver deviation method. This
study provides a practical reference for TL studies in onshore mature oilfields.

Keywords: Onshore seismic exploration; Non-repeatable time-lapse seismic data; Pre-
stack data reconstruction

1. Introduction

Time-lapse (TL, sometimes referred to as four-dimensional) seismic technology is a
methodology for studying reservoir characteristics by analyzing differences, such as
fluid changes in hydrocarbon reservoirs, and in seismic responses between two or more
phases under specific conditions, including reservoir properties, fluid characteristics,
and seismic data quality."” This technology has advanced seismic exploration from
static structural surveys and reservoir characterization (e.g., structural and lithological
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Onshore time-lapse seismic data reconstruct

properties) to dynamic monitoring of hydrocarbon
reservoirs. Under favorable conditions, it enables effective
dynamic reservoir management and enhances recovery
rates.>® However, in recent years, high-precision and
high-density seismic surveys have been conducted in
mature exploration areas to identify complex lithological
structures and subtle traps. By leveraging legacy and newly
acquired data for non-repeatable TL seismic studies,
reservoir development can be guided effectively without
increasing acquisition costs.>® Since the 1980s,* applied
research on TL seismic technology has been conducted in
many oilfields.”® Nguyen et al.’ reviewed prior studies and
provided an in-depth introduction to recent advancements
in TL seismic data processing and interpretation, focusing
on four-dimensional seismic processing workflows.
Sambo ef al.'® and Emami'! also provided comprehensive
reviews of TL seismic studies, reaffirming its significant
applications.

However, environmental factors, such as ambient
noise, environmental changes, and near-surface velocity
variations, along with discrepancies in field acquisition
parameters (e.g., differences in geophone types and
positions and source excitation methods) and divergent
processing requirements (e.g., workflows, parameters,
algorithms, and software), lead to poor repeatability
between seismic datasets from different periods. These
inconsistencies manifest as mismatches in energy, timing,
phase, velocity, and frequency bandwidth, rendering
legacy processing results unsuitable for direct TL seismic
interpretation. Therefore, targeted data reprocessing from
both periods is necessary to minimize inconsistencies and
obtain the accurate TL seismic response caused by reservoir
changes."”? Seismic processing aimed at this goal is often
referred to as non-repeatable TL seismic processing.*'¢

Given that TL seismic exploration has high requirements
for the repeatability of two (or multiple) phases of non-
repeatable seismic data, researchers have investigated its
theoretical basis, feasibility, and practical implementation.
Li and Chen'” examined the prerequisites for TL seismic
by assessing its feasibility. Based on TL seismic practices,
Zhang'® discussed the key conditions necessary to
complete a TL project strictly, emphasizing the substantial
challenges involved. Liu et al." highlighted that TL seismic
exploration must be considered from the initial stage of
design acquisition, underscoring the inherent difficulties of
non-repeatable TL projects. Considering the challenges of
conducting accurate TL seismic exploration, Zhou et al.?
proposed the concept of pseudo-TL seismic exploration,
which focuses on analyzing the response characteristics of
seismic data to geological and reservoir problems rather
than ensuring strict multi-phase data consistency.

Analysis shows that significant differences in wavelet
characteristics—mainly energy, frequency, and phase—
can arise from variations in source-receiver conditions
or acquisition geometry settings, even within the same
survey conducted over two (or more) periods.” Therefore,
applying appropriate data processing techniques to
improve repeatability and reduce inconsistencies—while
preserving the accurate TL seismic response caused by
reservoir changes—is a core and essential task in non-
repeatable TL seismic data processing.”? In general, these
consistency processing steps can be grouped into three
main categories:

(i) Pre-stack data reconstruction: Initial data matching
and reconstruction, including binning, midpoint
alignment, fold adjustment, azimuth regularization,
and signal-to-noise ratio optimization.
Pre-stack consistency processing: Maintenance of pre-
stack consistency through frequency, phase, velocity,
and residual static correction adjustments.
(iii) Post-stack  equalization: — Calibration
amplitude, frequency, energy, and phase.

(ii)

of time,

Regarding the first task, Yin et al® employed a
three-dimensional Gaussian beam forward modeling
method to quantitatively analyze the impact of different
acquisition geometry parameters on the received energy of
reservoir bins through illumination simulation. The study
demonstrated that offset and azimuth are the primary
factors causing inconsistencies between two-phase
datasets and emphasized that bin resetting and uniform
offset and azimuth distribution within bins are critical in
non-repeatable TL seismic acquisition. Jin et al** and Lu
et al.® investigated bin resetting methods, proposing the
composition of common midpoint (CMP) sets in pre-stack
data reconstruction and introducing offset-based seismic
trace extraction combined with dynamic interpolation.
Implementing this approach is straightforward but may
result in loss of offset and azimuth information. Yang
et al** addressed land-based TL seismic data processing
by combining the frequency-wavenumber (FK)-domain
interpolation with bin resetting, aiming to achieve
acquisition geometry consistency by considering line,
point, offset, azimuth, and time during the interpolation
process. While valuable for onshore TL seismic studies,
implementing ~ multidomain  transformation  and
multidimensional interpolation is challenging. Rui¥
designed a data reconstruction method based on source-
receiver positions and consistent incidence/reflection
angles to preserve offset and azimuth information in
reconstructed data. However, its implementation requires
numerous adjustable parameters. In 2021, Rui*® proposed
three core technologies—common reflection point (CRP)
trace spatial extraction, FK-domain interpolation, and
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r-p domain reconstruction—for acquisition geometry
consistency processing, an approach largely similar to
Yang’s method.*

For the second and third tasks, researchers such as
Jin et al.,***** Guo et al.,"*"*> Wang et al.,”® Zhu et al.,**
and Wang et al.*® have explored key post-processing
techniques for two-phase data. Liu et al’® performed
consistency processing on data before pre-stack depth
migration. Chen et al.” applied dual-domain near-surface
Q attenuation compensation and surface-consistent Yu’s
wavelet deconvolution to ensure data consistency. Liu
et al’® used matched filtering to address cross-source
inconsistencies. Fomel and Jin* applied local similarity
attributes to TL seismic data matching, which was further
developed by Liu et al* Chen et al.*' presented case
studies demonstrating the application of TL seismic in
offshore reservoir monitoring and a gas field. Rui et al.?®
proposed a workflow integrating well data-driven pre-
stack consistency processing with pre-stack/post-stack
sensitivity attribute analysis, significantly improving
the applicability of non-repeatable TL seismic data and
yielding promising results.

Analysis reveals that most successful TL seismic
projects have been conducted in offshore environments,
while onshore projects remain comparatively scarce. This is
primarily due to the complexity of the onshore acquisition
environment, whereitis challenging to maintain consistency
in acquisition geometry, source wavelet, reception
conditions, and surface characteristics across surveys from
different periods. Previous literature!-7-1213,242529-31,33-35.41-44
has focused on repeatable TL seismic exploration. Many
studies'”'#**414345 have primarily addressed acquisition
and processing technologies for offshore TL seismic
data. In contrast, few publications have discussed non-
repeatable TL seismic exploration,'*'%****4 and even
fewer specifically examine onshore non-repeatable TL
seismic exploration.?****¢ Zhou et al* and Rui et al*
investigated an onshore non-repeatable TL seismic case.
However, Zhou et al.*® concentrated mainly on the TL
geological response, while Rui et al.*® focused on the
overall processing workflow, devoting limited attention to
data reconstruction strategies.

Among the three primary research tasks outlined
earlier—acquisition geometry reconstruction, pre-stack
data consistency processing, and post-stack consistency
processing—acquisition geometry reconstruction is the
most fundamental in non-repeatable TL seismic surveys.
Differences in acquisition geometry are the dominant
source of inconsistencies” and directly influence the
accuracy of final interpretation results. Although previous
studies”?” have examined data reconstruction methods,

there remains a scarcity of literature specifically addressing
algorithms for onshore non-repeatable data reconstruction
(Task 1) and monitoring geometries. Furthermore,
the associated technical challenges are particularly
significant.'*'%2** Nonetheless, this area of research
holds considerable theoretical and practical value for the
exploitation and development of mature onshore oil and
gas fields.'**

Building on this analysis, and considering the
relationship between offset, azimuth, incident angle,
and reflection angle of imaging points with the spatial
arrangement of shot and receiver points, this study
proposes a CMP-constrained data reconstruction
method combined with quality control techniques,
incorporating an additional constraint based on the
sum of geometric distances of shot gathers and receiver-
point sets (SumDsDr). Unlike methods relying solely
on midpoint alignment, this approach controls shot-
point and receiver-point positional errors using a
dynamic threshold. It accounts for CMP similarity while
applying dual constraints on shot-point and receiver-
point deviations between two-phase datasets. In effect,
it considers offset similarity and indirectly incorporates
azimuth similarity. This aligns with the findings of Smit
and Watt,¥” who demonstrated that trace correlation
within the same bin is influenced by the combined shot-
receiver distance (AS + AR); smaller AS + AR values
correspond to higher trace similarity. Compared to the
methods of Yang et al.?® and Rui et al.,””*® the proposed
approach offers a more straightforward practical
implementation. Its application to onshore oilfield
datasets—including conventional and high-density
acquisition data—validates its effectiveness.

For clarity, several typical methods for data
reconstruction are summarized in Table 1, along with their
applicable scenarios, complexity, and onshore application
bottlenecks.

This paper is organized as follows: Section 2 first
demonstrates the significance of repeatability in TL
seismic analysis through a wavelet subtraction example.
It then presents the proposed data reconstruction
framework, including core algorithmic principles and
technical implementation. Quality control protocols
and workflow diagrams are provided, followed by a
comparison with a similar method. Section 3 validates
the proposed approach through field applications on two
representative non-repeatable datasets from a Chinese
onshore oilfield. Section 4 concludes the study by
outlining the practical potential and key implementation
considerations of the method.
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Table 1. Typical methods for data reconstruction

Methods Core idea Complexity Onshore applicability Limitations

Yang et al.*® Frequency-wavenumber-domain High (multidomain Low (poor stability in complex Prone to loss of offset
interpolation+bin regularization transformation) surface conditions) information

Rui” Incident angle/reflection angle Medium (complex Medium (sensitive to surface Requires numerous
constraint parameter tuning) undulations) adjustable parameters

This paper Common midpoint+SumDsDr Low (no domain High (dynamic threshold adapts Threshold selection

dual constraints

transformation)

to surface conditions) depends on experience

Abbreviation: SumDsDr: Sum of geometric distances of shot gathers and receiver-point sets.

2, Data reconstruction method and quality
control techniques

2.1. Importance of repeatability in TL seismic
exploration

The repeatability of two-phase seismic data is the
foundation of TL seismic research and a critical factor in
ensuring the reliability of its results. For non-repeatable
two-phase seismic data, failure to perform consistency
processing prevents the differential information from
accurately reflecting actual fluid changes in hydrocarbon
reservoirs. As shown in the seismic data processing
workflow (Figures 1 and 2), discrepancies in wavelet
parameters, such as phase characteristics (including single
or composite phase variations), time delays, frequency
attributes, and energy distribution, may generate
differential anomalies unrelated to reservoir fluid changes
(Figure 2). Therefore, systematic reprocessing of both
datasets is essential. Technical measures must be applied to
minimize the influence of inconsistencies caused by non-
hydrocarbon factors, ensuring that the TL seismic response
accurately represents dynamic reservoir changes."

2.2. Method
2.2.1. Related works

For two-phase non-repeatable data, it is essential to analyze
the characteristics of both datasets in conjunction with the
geological conditions and geophysical background of the
study area. Based on this analysis, a targeted acquisition
geometry reset method should be adopted to maximize
the utilization of the “intersection” between the two
datasets. Commonly used methods include acquisition
geometry thinning, shot gather extraction, bin sorting,
CRP extraction, and interpolation.'”**** Among these,
the acquisition geometry thinning and shot gather
extraction methods require the shot positions in both
datasets to coincide, using the dataset with fewer shots as
the extraction basis. However, differences in shot layout
positions and the number of shot gathers between the
two phases are common, making this a challenge. The bin
sorting method has strict requirements for receiver layout.

Due to the differences in source positions between the two
datasets, significant errors can occur. The CRP extraction
method offers certain theoretical advantages;**** however,
it involves FK-domain and t-p-domain interpolation,
which requires substantial computational resources,
imposes high implementation demands, and provides
insufficient accounting for offset after reconstruction.
Data reconstruction methods that jointly consider offset
and azimuth information, while following the principle
of consistency between incident and reflection angles,”
involve numerous adjustable parameters and relatively
complex implementation procedures.

Previous studies have emphasized key factors for
acquisition geometry resetting. Yin et al? identified
offset and azimuth as essential parameters for bin
resetting. Yang et al® attempted data reconstruction
using five-dimensional interpolation and multidomain
transformation. Rui*” highlighted the importance of CRP,
incidence points, reflection angles, and incident angles.
Smit and Watt"” demonstrated that, within the same bin,
the smaller the sum of the shot distance and receiver
distance for two seismic traces, the higher the correlation
between them.

2.2.2. Data reconstruction method

Inspired by the literature and combining the composition
principles of the same bin and CMP with the relationships
among shot position, receiver position, shot-receiver
distance, reflection angle, incident angle, and offset, this
study extracted the core elements—namely, CMP points
within the same bin, shot distance, and receiver distance.
By operating on these core elements, the method aims
to retain as much offset and azimuth information from
the two phases of data as possible, without relying on
multidomain transformations or neural network-based
reconstruction models.

To illustrate the core concept, the method was applied
to two datasets from an onshore mature oilfield in China:
conventional acquisition data from 2004 and high-density
acquisition data from 2008 (secondary development
acquisition). The acquisition parameters of the two
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Figure 1. The original wavelet and its variations. (A) Original wavelet, (B) wavelet phase shift, (C) time shift, (D) frequency variation, (E) amplitude
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Figure 2. Subtracted results of the wavelets corresponding to Figure 1A-C. (A) Original, (B) phase shift, (C) time shift, (D) frequency variation, (E)
amplitude variation, and (F) hybrid factors. Time range: 800-1,030 ms for each plot.

datasets are listed in Table 2. Table 2 shows that, aside
from the receiver channel spacing of 50 m receiver spacing
and 128 channels per layout in both surveys, there are
substantial differences in other acquisition parameters.
These include variations in source depths, explosive

charges, non-coincident shots, and receiver positions,
which result in inconsistent source wavelets between the
two phases. In addition, the 2004 acquisition used a large-
bin (25 m x 25 m) design with relatively uniform fold
coverage, whereas the 2008 acquisition employed a small-

Volume 34 Issue 3 (2025)

80

doi: 10.36922/JSE025230010


https://dx.doi.org/10.36922/JSE025230010

Journal of Seismic Exploration

Onshore time-lapse seismic data reconstruct

Table 2. Main acquisition parameters for the two datasets

Year 2004 2008
Geometry parameters

Receiver spacing 50 m 50 m
Receiver line spacing 150 m 100 m
Number of receiver lines 8 32
Channels per line/ 128 128
instrument

Number of receiver 1,024 4,096
channels

Source point spacing 50 m 80 m
Source line spacing 200 m 80 m
Roll distance between 600 m 800 m
arrays

Explosive charge 3kg 1-4kg
Non-longitudinal offset 825m 935 m
Maximum 4,400 m 7,200 m
source-to-receiver offset

Source depth 15m, 18 m 15m-31m

Observation system 8Lx12Sx128R=1,024 32Lx10Sx128=4,096
3,175-25-50-25- 3,175-25-50-25-

3,175 3,175

Bin size 25 mx25 m 10 mx10 m

bin (10 m x 10 m) design. The bin sizes of the two datasets
are not integer multiples of each other, making direct bin
matching infeasible. These differences significantly increase
the complexity of data reconstruction and subsequent
processing. Methods such as acquisition geometry thinning
or bin sorting could reduce reconstruction accuracy under
these conditions, highlighting the need for a more robust
approach.

Acquisition discrepancies between the two seismic
datasets are inherent and unavoidable. To address this,
the algorithm proposed in this study aims to maximize
the utilization of both datasets (e.g., shot gathers)
within a defined error tolerance, while ensuring that the
reconstructed non-repeatable seismic data maintain
consistency in azimuth, offset, fold, and other key
attributes.

The specific workflow of the algorithm is illustrated
in Figure 3. First, a unified bin grid was established.
Within each bin, the 2004 dataset (DATA1) was used as
the reference. Based on the spatial distribution of central
points in conventional three-dimensional surveys, a
threshold for the SumDsDr was applied as the screening
criterion. From the 2008 dataset (DATA2), data whose
central points are identical or spatially proximate to
those in DATA1 were selected, and redundant fold data
in DATA2 were discarded. If, within the threshold range,

particular shot gathers in DATA1 cannot be matched with
corresponding data in DATA2, those unmatched shot
gathers in DATA1 were excluded. This matching process
automatically ensured central point correspondence and
maintained fold, offset, and azimuth consistency.

The main steps of the workflow are as follows:

(i) Define a unified bin grid for datasets and set a pre-

controlled distance threshold.

Within each bin, use the 2004 dataset (DATA1) as

the reference to extract seismic traces from the 2008

dataset (DATA2) that match the midpoint positions in

DATAL.

(iii) Handle unmatched data: Discard redundant fold data
in DATA?2 that exceeds the threshold; if particular shot
gathers in DATA1 have no matching data in DATA2
within the threshold, discard those unmatched shot
gathers from DATAL.

(iv) Automatic alignment: The algorithm ensures
midpoint position correspondence and consistency in
fold, oftset, and azimuth.

(ii)

Algorithm 1: Data reconstruction algorithm

Given distance threshold SumDsDr and bin size (e.g.,
25m x 25 m)
For each bin i in the survey area:
1  Extract shots and receivers of DATA1 (2004) and
DATAZ2 (2008) within bin i
2 For each shot j in DATA1 within bin i:
3 Calculate DS (distance between shot j and
DATAZ2 shots)
4 Calculate DR (distance between receivers of
shot j
and DATAZ2 receivers)
5 If DS + DR < SumDsDr:
Retain matched shots (j in DATA1) and
corresponding
DATA?2 data
7 Else:
8 Discard unmatched data in DATA1
9 Discard redundant DATA2 data exceeding the
threshold
Output reconstructed DATA1 and DATA2

@)}

2.2.3. Parameter setting

In the algorithm, DS denotes the shot-point distance,
DR denotes the receiver-point distance, and DS + DR
represents the sum of the two. SumDsDr is the threshold
for reconstructed data in TL seismic processing; its value
determines the allowable adjacent distance between the
two datasets during reconstruction.
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Distance
threshold: SumDsDr

DATAI1 geometry

DATA2 geometry

Predeﬁllled bin size

+

For the given bin, calculate the
distances of DS and DR from
| the shots and receives in
DATA2 to each shot
DATALI1 within the pointed bin

Record the
shot number

DS+DR<
SumDsDr

Figure 3. Flowchart of non-repeatable time-lapse reconstruction algorithm for two-phase data
Abbreviations: DS: Distance of shot gathers; DR: Distance of receiver-point sets; SumDsDr: Sum of geometric distances of shot gathers and

receiver-point sets.

According to Smit and Watt,”” smaller DS + DR values
correspond to higher trace correlation similarity. Therefore,
variations in DS, DR, and SumDsDr will affect the size
and accuracy of the matched data between DATAI and
DATA2, ultimately impacting the fold, offset, and azimuth
of the reconstructed data. As illustrated in Figure 4,
when using parameter Set 1 (DS < 150 m, DR < 150 m,
SumDsDr = 150 m), more original 2008 data were retained
(i.e., fewer shots are discarded) compared with parameter
Set 2. Consequently, the CMP fold of the 2008 data
reconstructed with parameter Set 1 was slightly higher
than that obtained using parameter Set 2 (Figure 4, where
DS = 0, DR = 150 m, and SumDsDr = 150 m). However,
the fold of the reconstructed 2008 data using parameter Set
2 was overall more uniform.

In practice, the value of SumDsDr must be determined
experimentally for each dataset. Tests indicate that 150 m
serves as areasonable upper limit for both DSand DR. When
SumDsDr exceeded 150 m, no additional improvement in
reconstructed data consistency was observed (Figure 5).
Therefore, 150 m was adopted as the experimental
parameter in all subsequent examples in this study.

For the 2004 and 2008 seismic datasets, considering
both their characteristics and the precision requirements
of TL seismic processing, DS and DR were each set to

150 m. The statistical characteristics of the sorting and
reconstruction results for the two datasets are shown in
Figure 5. In the figure, the X-axis represents the preset
error threshold, and the Y-axis represents the percentage
of sorted gathers relative to the total original gathers under
the corresponding error conditions.

Figure 5 shows that the sum of the shot-point and
receiver-point errors for the two datasets is mainly
distributed in the 40-120 m range. Due to inherent
differences in the acquisition geometries, such as shot
line spacing, shot-point spacing, receiver line spacing,
and receiver-point spacing, the proportion of post-sorting
receiver-point errors in the range of 10-30 m was nearly
50%, while those in the range of 40-60 m accounted for
about 40%. Shot-point errors were concentrated in the
range of 10-100 m. The effective utilization rate of the
2004 dataset reached 77.5%, while that of the 2008 dataset
was 39.8%. It should be noted that 39.8% refers to the
utilization rate of the number of shots in the 2008 dataset,
calculated based on Equation I:

Data utilization rate (%) = (Number of shots retained
after reconstruction/Total number of shots) x 100%  (I)

The 2008 dataset represents high-density acquisition,
with each shot containing more channels than the 2004
dataset.
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Abbreviations: DS: Distance of shot gathers; DR: Distance of receiver-point sets.

During data reconstruction, maximizing original data
retention must be balanced with maintaining consistency
in key information such as offset and azimuth (as supported
by the theory in Yin et al?). Therefore, using DS + DR
as the upper error limit for reconstructed data meets the
precision requirements for acquisition geometry resetting
in TL seismic exploration, ensuring an optimal balance
between data volume and reconstruction quality. This is
further illustrated in the following subsection.

2.3. Quality control study during the data
reconstruction

As data reconstruction fundamentally depends on the
acquisition geometries of both surveys, key quality control

metrics include correspondence of source-receiver pairs
before and after reconstruction, shot position proximity,
consistency in offset and azimuth distributions, fold
consistency within individual bins, overall fold distribution
after reconstruction, and comparative analysis of initial
migration sections.

Figure 6 compares the acquisition geometries, spatial
coverage, and key characteristics of the two surveys. The
2008 survey employed high-density acquisition with
smaller bins and multiple receiver spreads, whereas the
2004 survey used a sparser shot distribution with fewer
receiver spreads. Differences in acquisition parameters,
such as shot line spacing, shot-point spacing, and receiver
line spacing, resulted in low repeatability of shot and
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Figure 6. Comparison of shot and receiver geometries before data reconstruction for the two datasets

receiver positions between the datasets. Although the
2008 dataset covers a larger area, the 2004 data extends
further in the upper-right corner. These acquisition
disparities significantly increased the complexity of TL
data reconstruction during the preliminary research phase.

Figure 7A shows zoomed-in views of shot-point
distributions before and after matching, while Figure 7B
shows zoomed-in receiver-point distributions for the same
area. The figures indicate that the repeatability of shot-point
distributions between the surveys is extremely low due to
differences in receiver line spacing, shot-point spacing, and
shot line spacing. The 2004 shot points are more regularly
distributed, while overlaps in receiver points occur only
occasionally; most positions differ between the datasets.
Based on the preset threshold, the sorting process removed
mismatched shot points from both datasets, retaining only
shot and receiver points that meet the error requirements
within the same bin.

Figure 8 compares CMP distributions before and after
reconstruction, using the 2004 bin size standard (25 m
x 25 m). Differences in the initial bin design rules for
the two acquisition periods mean that resetting the bins
alone could not resolve the uneven fold distribution in
the 2008 data (Figure 8B). The fold maps obtained after
bin resetting with the proposed reconstruction scheme
(Figures 8C and D) showed substantial improvement in
uniformity among adjacent bins. As illustrated in Figure 9,
the fold values of the two datasets within the same area were
largely consistent, and spatial uniformity was significantly
enhanced in the post-reconstruction sections.

It should be noted that the scales of Figure 8A (25 m x
25 m grid) and Figure 8B (10 m x 10 m grid) are different,
although the grid sizes may appear similar visually. After
binning with the same bin size, however, the scales of
Figure 8C and D were highly comparable. Figure 9 presents
the CMP fold maps of the two-phase data before and after
reconstruction. Figure 9A and B represent the entire survey
areas, while Figure 9C and D show the matched portions
of the reconstructed datasets. To more clearly highlight the
reconstruction effect, Figure 9C and D are presented after
simple normalization of the reconstructed two-phase data.

Figures 10 and 11 show the azimuth and offset
distributions before and after data reconstruction. These
plots demonstrate that the reconstructed datasets exhibited
improved alignment in azimuth and offset ranges,
resulting in significantly better consistency of maximum
and minimum offset distributions.

2.4. Comparison with other methods

As reviewed in the literature, similar reconstruction
methods often suffer from high implementation
complexity or poor reproducibility. For example, the
method by Yang et al.?® requires data extraction and
FK-domain transformation for reconstruction. In
contrast, the method by Rui®” necessitates the extraction
of incident angles, reflection angles, and azimuths at CRP
points. Some approaches also have limited applicability
and are restricted to marine data or repeatable TL
datasets. This study compares the proposed method only
with the “common CMP point + DR constraint” method
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(abbreviated as the DR method). In the DR method,
reconstruction is performed under the constraint that the
receiver-point error DR < V (where V is a given value,
150 m in this study).

The experimental results are presented in Figure 12.
Compared with the CMP + DR method, the DS +
DR dual-constraint method proposed in this paper
produced reconstructed datasets with more uniform
offset distribution, higher CMP fold for both datasets,
and higher utilization rate of original data. The DR
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Figure 9. Common midpoint (CMP) fold maps before (A and B) and
after (Cand D) data reconstruction showing the matched parts of the
two-phase datasets

method yielded utilization rates of 70.4% for the 2004
dataset and 38% for the 2008 dataset, which are lower
than the 77.5% and 39.8%, respectively. Consequently,
the consistency between the reconstructed 2004 and
2008 datasets improved, consistent with the trends
shown in Figure 5.

In summary, for onshore oilfield acquisition data with
significant differences in acquisition geometries between
survey periods, the TL seismic data reconstruction method
presented here balances data utilization and matching
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accuracy by adjusting thresholds. Indirectly incorporating
the consistency of offset and azimuth distributions into the
reconstruction process accounted more comprehensively
for the impact of offset distribution differences on
TL analysis than traditional methods. Our method
yielded higher-quality reconstructed data compared to
reconstruction approaches that consider only DR. It is
also more practical for applications than other popular but
complex methods, such as neural networks, compressed
sensing theory, or interpolation-based reconstruction in
various domains. For reconstructed two-phase datasets
meeting specific conditions, shot-point distribution,
receiver-point distribution, fold, azimuth, offset, and their
distributions within the acquisition geometry served as
key indicators for measuring repeatability. The figures
presented in this study can be used as visual monitoring
tools and for exporting monitoring metrics. It should be
emphasized that the reconstruction algorithm provides
only the foundational basis for the dataset. Even after
reconstruction, the two-phase data may still exhibit
inconsistencies in time, energy, waveform, frequency,
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and phase. To fully meet the requirements for subsequent
TL seismic interpretation, pre-stack consistency processing
and post-stack mutual equalization techniques must be

applied.

3. Application effects

To evaluate the practical efficacy of the proposed
algorithm, the stacked profiles of the two datasets before
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Figure 12. Comparison of DS + DR and DR methods. Common depth point fold (A) and azimuth versus offset (B).
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Figure 15. Subtracted seismic section. (A) Initial and (B) final.

and after reconstruction were compared. To ensure
objectivity, pre-reconstruction and post-reconstruction
data were processed using an identical pre-stack workflow,
and results from the same longitudinal survey line were
selected for analysis (Figures 13-15).

Figure 13 presents the initial stacked sections of the two
datasets before and after reconstruction, while Figure 14
displays the spliced comparison of stacked profiles from
the two reconstructed datasets at the same CMP location,
along with the differential results obtained by directly
subtracting the reconstructed data (Figure 15A). As
shown in Figure 13, the reconstructed datasets exhibited
substantial consistency in the positions of major structural
events, overall frequency content, and wave group
characteristics. Compared to the pre-reconstruction state,
the proposed algorithm effectively removed shot gathers
that compromised inter-dataset consistency. Although
slight energy attenuation was observed for certain events in

The final subtracted section of 2008 and 2004

Figure 16. Seismic line crossing wells 1-3

the reconstructed section, the overall consistency between
the two datasets was significantly enhanced.

Volume 34 Issue 3 (2025)

doi: 10.36922/JSE025230010


https://dx.doi.org/10.36922/JSE025230010

Journal of Seismic Exploration

Onshore time-lapse seismic data reconstruct

From the spliced comparison and local magnifications
of the two datasets (Figures 14A and B), minor time
shifts remain, but they were negligible in magnitude.
The subtraction results in Figure 15A reveal residual
inconsistencies, including occasional false structures
and non-seismic artifacts, indicating that the proposed
method effectively mitigated significant inconsistencies
between the datasets. Building on this, further pre-stack
and post-stack consistency processing is recommended
to suppress interference from non-reservoir fluid factors.
This ensures that the differential results reflect actual TL
changes in reservoir fluids, providing a solid foundation
for residual oil interpretation and prediction. Figure 15
illustrates this, where the initial subtraction section
(Figure 15A) and the final result after further processing
(Figure 15B) can be used for TL interpretation, as noted
in Figure 16.

To further illustrate the study results, a seismic
survey line passing through production oil and gas wells
1-3 within the study area was selected (Figure 16). The
consistency between the two-phase reconstructed data,
their subtraction section (for fluid monitoring), and the
production well data is shown in Figure 17.

Figure 17 shows that after processing, the subtraction
section exhibited high correspondence with the production
wells along the survey line. Strong seismic response
events in the subtraction section aligned well with the
lithological change depths in the three production wells.

=85

w1 -

(sur) oury

o
=3

This correspondence reliably reflects the monitored fluid
response, providing valuable data support for oil and gas
production decision-making.

4, Discussion

Research on onshore non-repeatable TL seismic is highly
challenging yet holds significant practical importance
for developing and producing mature oil and gas fields.
However, the proposed method depends on the manual
selection of the SumDsDr threshold. In regions with
pronounced surface undulations, the utilization rate may
decline further due to significant deviations in shot or
receiver positions, underscoring the need to develop an
adaptive threshold algorithm in future work.

The dual-constraint reconstruction method presented
in this study effectively balances data utilization and
consistency in onshore oilfields with substantial differences
in acquisition geometries, providing a valuable reference
for preprocessing non-repeatable TL seismic data.
Nevertheless, its applicability requires further verification
under varying surface conditions.

An important direction for subsequent research is to
objectively quantify consistency evaluation indicators
for reconstructed data. Potential metrics include offset
distribution indices, azimuth distribution ranges, fold
uniformity, and correlation coefficients between the
datasets before and after reconstruction. Establishing such

-
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Figure 17. Seismic stack section crossing wells 1-3, corresponding to Figure 15. Green line: well logging curves and stratigraphic divisions; blue circles:
areas of interest. (A) Reconstructed data of 2004; (B) reconstructed data of 2008; (C) subtraction section of 2008 and 2004; and (D) subtraction section

with lithological analysis.
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quantitative measures would enhance the reliability and
comparability of reconstruction results.

5. Conclusion

The dual-constraint method for data reconstruction in this
study can significantly reduce the inconsistency between
the two onshore non-repeatable datasets. It can be used
as the first step in fulfilling essential work for TL seismic
exploration. The easy-to-execute yet straightforward
strategy provides a practical reference for TL studies in
onshore mature oilfields.
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