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REVIEW

Advances in theoretical and technical
approaches for seismic prediction of reservoir
permeability

Lele Wei”, Lideng Gan*{*, Hao Yang'?, Xinyu Li‘®, Gang Hao'”, and Xiaoyu Jiang

Research Institute of Petroleum Exploration and Development, PetroChina Company Limited,
Beijing, China

Abstract

Reservoir permeability serves as a critical parameter for unconventional reservoir
characterization and hydrocarbon recovery optimization. However, complex
petrophysical mechanisms and multifactorial coupling make its seismic prediction
face significant challenges. This review comprehensively synthesized advances
and limitations across three dominant methodologies: (i) dispersion/attenuation-
based methods, limited by petrophysical assumptions, scaling issues, and non-
uniqueness; (ii) pore structure-constrained methods, enhancing prediction accuracy
but hindered by oversimplification and high-dimensional inversion instability; and
(iii) artificial intelligence frameworks, offering data efficiency yet challenged by error
propagation, overfitting vulnerability, and geologically implausible extrapolation.
Comparative analysis revealed core bottlenecks in inadequate multiscale coupling
between petrophysical mechanisms and data-driven approaches. These challenges
are compounded by the absence of cross-disciplinary validation frameworks. To
address these challenges, this review integrated interdisciplinary perspectives
from seismic exploration, petrophysics, and machine learning. It proposed a
tripartite permeability prediction paradigm unifying physical mechanisms, data-
driven techniques, and engineering validation. This framework encompasses: first,
advancing multi-porosity fluid-solid coupling theory and pore structure-constrained
rock physics models; second, constructing physics-guided multimodal learning
architectures that deeply embed differentiable physical laws (e.g., Darcy-Biot theory)
within cross-scale physics-informed neural networks, coupling microscopic pore
network simulations with macroscopic seismic responses; third, establishing a closed-
loop workflow covering digital rock core simulations, blind well testing validation,
production history matching, and dynamic data-driven evolution, thereby forming a
quantifiable and iteratively upgradable technological system.This paradigm provides
a multiscale approach for accurately characterizing permeability in unconventional
reservoirs, and it establishes foundational theoretical principles and delineates
practical implementation pathways for economically viable unconventional resource
development.

Keywords: Geophysical exploration; Reservoir permeability; Dispersion and attenuation;
Pore structure; Artificial intelligence
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1. Introduction

Reservoir permeability is a critical parameter for
unconventional reservoir classification. It directly governs
reservoir simulation outcomes and serves as an essential
element in reservoir engineering, with significant
implications for field development.'* Seismic data provide
a cost-effective characterization of lateral formation
distribution and inter-well reservoir properties due to their
extensive spatial coverage and relatively low acquisition
costs. Therefore, to enhance predictionaccuracy, developing
effective seismic prediction methodologies for reservoir
permeability holds substantial theoretical and practical
value for optimizing the exploration and development of
low-porosity and low-permeability reservoirs.*

Research on geophysical permeability prediction has
primarily evolved along three trajectories over recent
decades:® (i) numerical simulations grounded in classical
rock physics models or laboratory core measurements,
(ii) well-log-based permeability interpretation, and
(iii) seismic inversion of permeability parameters. While
coremeasurements deliver high accuracy, theyare expensive,
time-intensive, and spatially limited to discrete sample
points. Well-log-based permeability offers continuous
vertical profiles with moderate accuracy but remains
costly and inherently localized (“single-well” perspective),
lacking lateral continuity for areal development guidance.
In contrast, seismic methods provide economically
viable and laterally extensive formation characterization.
Nevertheless, the complex and non-explicit relationship
between permeability and seismic responses, compounded
by multifactorial controls, renders seismic permeability
prediction a persistently challenging frontier.

A pivotal 2001 United States Department of Energy
workshop engaged 15 experts from industry, national labs,
and academia to evaluate the detectability and invertibility
of permeability within seismic data. Pride’s synthesis
confirmed that permeability information resides within
seismic-frequency observations and outlined potential
inversion frameworks, catalyzing significant research
momentum.® Current seismic permeability prediction
methodologies converge on three dominant approaches:
dispersion/attenuation-based methods, pore structure-
based techniques, and artificial intelligence (AI)-driven
solutions.

Seismic permeability prediction currently resides in a
phase of methodological exploration, challenged by the
strongly nonlinear and implicitly coupled mechanisms
between permeability and seismic responses. Permeability
is governed by multifaceted controls, notably pore-throat
architecture. These controls fundamentally impede
the establishment of robust porosity and permeability

mapping models based solely on core or well-log data.
Consequently, effective permeability prediction in complex
reservoirs remains elusive. Despite inherent obstacles,
including theoretical model misfit and solution non-
uniqueness, seismic permeability prediction persists as a
frontier research focus. It lies at the interface of geophysics
and reservoir engineering. This persistence is driven by its
critical value in dynamic reservoir characterization. Recent
advances in deep learning have accelerated data-driven
methodologies. However, three persistent bottlenecks
endure: (i) traditional rock physics models, such as the Biot-
Squirt (BISQ) framework, exhibit limited generalizability
in highly heterogeneous formations, failing to accurately
quantify the coupling of pore-throat architecture with
seismic wavefields; (i) machine learning approaches
establish nonlinear mappings, but they suffer from
interpretability deficits and physical decoupling, producing
predictions unconstrained by geological plausibility; and
(iii) multiscale data integration across core-log-seismic
domains lacks standardized protocols, with information
degradation during upscaling constraining prediction
accuracy.

This review systematically synthesized technological
advancements in seismic permeability prediction through
a structured analysis of three dominant methodologies:
dispersion/attenuation-based  techniques  leveraging
frequency-dependent  velocity  characteristics, pore
structure-oriented approaches, and Al-driven solutions
employing deep learning architectures. By evaluating
the theoretical foundations, technical advantages,
and limitations of these paradigms, we proposed a
transformative “dual-engine” predictive framework that
embedded rock physics constraints within deep learning
infrastructures. This mechanism and data co-driven model
integrates theoretical rigor with data-adaptive capability,
particularly through physics-informed neural networks.
As a result, the model overcomes applicability barriers in
complex reservoirs where traditional methods falter.

The subsequent sections of this paper are organized as
follows: Section 2 elaborates on the theoretical foundations
and representative techniques of dispersion/attenuation-
based methods. Section 3 focuses on the key technologies
and applications of pore structure-based methods. Section
4 analyzes the progress and challenges of Al-driven
solutions. Section 5 explores potential future research
directions. Finally, Section 6 concludes the review.

2. Permeability prediction methods based
on dispersion and attenuation

These approaches comprise three primary categories:
(i) theoretical model-based inversion, (ii) velocity
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dispersion/quality factor prediction, and (iii) fluid mobility
attribute prediction.

2.1. Model-based inversion

Theoretical forward modeling investigates how
reservoir parameters (e.g., porosity, permeability, and
fluid saturation) influence seismic wave propagation
characteristics (e.g., dispersion, attenuation, and reflection
coefficients), providing foundations for geophysical
parameter inversion. Typically, this inversion seeks an
optimal permeability value within predefined bounds,
minimizing misfit between model-predicted and observed
P-wave velocity dispersion or quality factor, effectively
transforming permeability estimation into an optimization
problem. Some typical model-based inversion methods are
summarized in Table 1.

The BISQ model, incorporating both Biot flow and squirt
flow mechanisms, effectively explains high dispersion/
attenuation in seismic frequencies. Nie ef al.” implemented
BISQ-based inversion using niche genetic algorithms,
while Zhang et al® derived 3D anisotropic dispersion
equations and analyzed azimuthal dispersion effects on
permeability inversion. To address inherent limitations
of genetic algorithms (e.g., premature convergence and
poor local search), Fang and Yang’ developed a hybrid
genetic-simulated annealing algorithm demonstrating
superior accuracy and convergence. In addition, a series
of advancements in reservoir parameter inversion was
achieved based on the BISQ model.'*!"" White!? and
White et al.”* complemented the macroscopic-scale Biot
theory and microscopic-scale squirt flow mechanisms
and introduced a mesoscopic dissipation mechanism,
finally deriving frequency-dependent attenuation and
dispersion functions for partially saturated porous media
parameterized using permeability, porosity, and pore-
fluid properties. Johnson'* subsequently extended White’s
model to accommodate arbitrarily sized fluid patches
by incorporating geometric characteristic parameters
S/V. and T. Later, Sun" integrated these tri-scale
(macro-meso-micro) dispersion-attenuation mechanisms
to develop the Biot-patchy-squirt (BIPS) model, which

characterized wave dispersion and attenuation in
immiscible fluid-saturated fractured poroelastic media. In
the aforementioned models, permeability characterization
requires inversion through attenuation response without
establishingan explicittheoreticalrelationship. Forexample,
in the mesoscopic White’s layered patchy saturation model,
White'? derived the expression for the complex modulus
of P-waves (E[w]), which implicitly encoded permeability
information. Relying on this discovery and applying plane
wave theory, one can compute the phase velocity (VP) and
inverse quality factor (Q).

2(72 _71)2\/;
7 M)

E(w)= +
(@) {KBGH+(4/3)N @(LHFLZ)'

2 L.
J
;:1 /KE} coth( 5

v -l e \/(1—¢)ps +¢(S,p; +5,p;) w
P E(w)
E(w)
m
4 (1 _¢),DS +¢(Slpfl + Szpfz )
= (111)
E(w)

A=P)p, +¢(S,p; +S,p;)

where L denotes the thickness of the porous layer,
K,., represents Hills approximate expression of the
Gassmann modulus at high frequencies, N signifies the
shear modulus of the dry rock frame, y indicates the ratio
of fast P-wave fluid tension to total stress, 5 refers to the
viscosity coeflicient, x designates the permeability, w is

the angular frequency, K, denotes the effective modulus of

Table 1. Theoretical and application characteristics of typical model-based inversion methods

Model name Core mechanism

Target reservoir type

Permeability representation

BISQ Coupling of Biot flow and squirt flow

White/Johnson Mesoscopic fluid patch dissipation
BIPS Macro-meso-micro coupling

Geometric network Parametrization of elliptical
model pore/fracture geometry

Partially saturated porous media
Fracture-pore dual media

Fracture-pore/fracture reservoirs

Medium-high porosity/permeability Implicit (inverted via attenuation response)
sandstones

Implicit (inverted via attenuation response)
Implicit (inverted via attenuation response)

Explicit equation

Abbreviations: BIPS: Biot-patchy-squirt; BISQ: Biot-Squirt.

Volume 34 Issue 4 (2025)

doi: 10.36922/JSE025310050


https://dx.doi.org/10.36922/JSE025310050

Journal of Seismic Exploration

Advances in seismic permeability prediction

compressional wave, S represents the fluid saturation, and
pg and p; are the densities of the grain mineral and pore
fluid, respectively.

The following equations provide a methodology
for establishing explicit permeability representation
relationships. For example, Xiong et al.'* and Wei et al.””
established a 3D network model with elliptical cross-
sections for fractures and soft pores. They incorporated
permeability relationships with porosity, confining
pressure, and pore aspect ratio, deriving a computational
methodology for permeability estimation.

K(a)):ﬂ.(l'PUJré'PD)
A PP

Iv)
;{=2E o j_mRZ(cos(a)L/c) (ZII(KR)

- A%
1+a’ ) psc Lsin(a)L/c) KRJ,(KR) 1} )

5 2( o JmRZ( 1 {211(KR) ) 1] W

1+a’ psc ksin(a)L/c) KR]O(KR)

where # denotes the fluid viscosity, L represents the
length of the microtube, A indicates the cross-sectional
area (azR?), R is the semi-major axis radius of the elliptical
cross-section, a refers to the aspect ratio of the fracture
cross-section, P, and P, denote the pressure at both ends
of the microtube, respectively, p signifies the density of the
fluid within the microtube, J designates the zeroth-order

iw
Bessel function of the first kind, K represents K = / 0P )

n
and C is the acoustic wave velocity in the fluid.

Tan et al.'® integrated the coupled effects of solid
particle detachment, fluid-solid coupling, multiphase
flow, and stress sensitivity into a fluid and structure-
coupled stress-sensitive permeability model grounded in
material mechanics and fractal theory. They thus provided
theoretical guidance for accurate prediction of flow
behavior and development optimization in stress-sensitive
reservoirs.

It is evident that most existing pore media and fracture-
pore media models implicitly incorporate permeability
information. However, they fail to establish explicit
theoretical permeability relationships. Alternatively,
the developed permeability models contain numerous
physical parameters of the rock matrix. These parameters
hinder direct permeability prediction using exploration
data. Furthermore, the inversion process reveals that

the effectiveness of rock physics inversion critically
depends on the accuracy of elastic parameters derived
from prestack seismic data and the congruence between
rock physics models and actual formation properties.
Key limitations of model-based permeability inversion
include: (i) solution non-uniqueness and low noise
tolerance, (ii) significant result divergence across different
dispersion-attenuation models despite generally consistent
permeability response patterns in forward modeling, and
(iii) frequent mismatches between theoretical predictions
and field observations.

2.2. Velocity dispersion/quality factor-based
methods

In field applications, acquiring comprehensive
velocity dispersion data at every sampling point remains
challenging. Theoretical forward modeling generally
indicates an inverse relationship between permeability
and dispersion: low permeability correlates with high
dispersion, while high permeability corresponds to low
dispersion.

Following this principle, Liu' applied frequency-
dependent amplitude variation with offset (AVO) theory
to quantify P-wave velocity dispersion as a fluid mobility
proxy for permeability prediction. Yuan et al.’ established
permeability and dispersion relationships through core-
derived rock physics analysis and determined the first-
order relative variation of Young’s modulus with seismic
frequency and the second-order relative variation of
permeability with pressure. Then, subsequent frequency-
dependent amplitude variation with incident angle (AVA)
inversion of well logs yielded the reservoir’s P-wave
dispersion, enabling permeability prediction through
the derived relationships. Wu et al*® developed a quality
factor-based method, which involved correlation between
averaged core permeability and well quality factors, and
then they estimated permeability at unlogged locations
through seismic waveform similarity analysis to reference
wells.

The intrinsic limitations of dispersion attribute methods
originate from fundamental physical and operational
constraints:*»**  conventional  seismic  bandwidth
(10-100 Hz) fails to excite significant dispersion effects
in high-permeability reservoirs (v >10 mD). This
failure occurs due to fluid pressure diffusion thresholds
below 10 Hz, which critically attenuate permeability
sensitivity. This bandwidth confinement triggers a
cascading degradation: high-fidelity Q-factor inversion
demands ultrabroadband data (>3 octaves), yet narrow
field-acquisition bandwidths (<2 octaves) propagate
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Q-estimation errors into permeability predictions. Further
compounded by anisotropic scattering, fracture azimuthal
variability induces phase velocity dispersion anomalies
that mask permeability signatures. Collectively, these
interdependencies form an error amplification chain. The
chain restricts dispersion-based methods to homogeneous
siliciclastic reservoirs with moderate permeability, while
faltering in fractured or stress-sensitive formations.
Collectively, these constraints necessitate addressing
two persistent bottlenecks: (i) non-unique solutions in
frequency-dependent AVO/AVA dispersion attribute
inversion and (ii) significant relative errors in current
Q-factorextraction techniques,compromising permeability
estimation accuracy.

2.3. Fluid mobility-based methods

Fluid mobility (M), defined as the ratio of reservoir
permeability (x) to fluid viscosity (#), characterizes
the coupled effects of pore structure’s conductivity and
pore fluid viscosity. At present, fluid mobility-based
methods constitute the predominant approach for
permeability prediction within dispersion-attenuation
frameworks.

In 2004, Silin et al® derived the low-frequency
asymptotic reflection coeflicient for fluid-saturated porous

media:
Z -7 j

R=Z=Ze g LK, o] 4 (VII)
Z+27, \/E n

where Z denotes impedance, p_ is fluid density, and o is
angular frequency. This equation establishes a positive
correlation between the reflection coefficient and the
square root of the product term. Goloshubin et al.** and
Goloshubin et al®* subsequently proposed a novel
frequency-dependent imaging attribute when analyzing
dual-porosity media attenuation. Proportional to M,
this attribute was applied to reservoir permeability
estimation. On this basis, Chen et al.** developed a
computational expression for fluid mobility attributes and
established a method to identify the dominant frequency
within the low-frequency band of seismic signals. This
approach enabled the direct calculation of reservoir fluid
mobility using the instantaneous spectrum of the low-
frequency dominant frequency. The computational
expression is given as follows:

M zL{M} ® (VIIT)
C’l do

where C is a proportionality coeflicient, @ is the
dominant low frequency, and A(w) is the amplitude

spectrum of the low-frequency band derived from time-
frequency analysis.

This framework facilitates subsequent methodological
advances. For example, Zhao et al¥ investigated the
effects of fluid mobility on dispersion and attenuation
using dual-porosity and dual-permeability models.
Lu*® developed a Bayesian framework for direct
mobility inversion. Zhang et al® enhanced reservoir
prediction accuracy by integrating the synchro-
squeezed generalized S-transform with Lucy-Richardson
deconvolution into mobility computation.

The model-based inversion approach in Section 2.1 and
the permeability prediction technique using dispersion/
attenuation attributes in Section 2.2 were compared.
The comparison revealed that the core advantage of the
latter method lies in circumventing Q-factor extraction
errors and directly establishing a quantitative correlation
between seismic amplitude and fluid mobility. Application
to actual marine seismic data from the JZ area of the Bohai
Sea demonstrated that the fluid mobility attribute exhibits
significant imaging advantages for hydrocarbon reservoirs.
Itenables precise spatial delineation of reservoir distribution
while substantially reducing the non-uniqueness and
uncertainty in fluid identification. A representative case
study from Chen et al* illustrated these capabilities
(Figure 1). The fluid mobility measurement profile
displays a high-amplitude “bright spot” anomaly at the gas
reservoir location, while the fluid mobility slice extracted
along the gas-bearing interval clearly delineates the spatial
boundaries of high-permeability zones (outlined by black
dashed contours).

Most current methods approximate mobility attributes
through time-frequency decomposition for qualitative
permeability assessment. However, reservoir thickness
below A/8 induces significant low-frequency amplitude
distortion, which requires integrated compensation
through high-frequency tuning effects, combined with
subjectivity in dominant frequency selection and the
petrophysical-property  dependency of  calibration
coefficient C. Consequently, these thin-bed resolution
constraints collectively result in fundamental limitations of
such methods: Uncertainties artificially introduced by the
subjective determination of w, potentially misrepresenting
true reservoir mobility; and the inherently limited
resolution of mobility attributes derived from time-
frequency decomposition methods.

2.4. Challenges of dispersion/attenuation-based
methods

The model categories, theoretical bases, applicable
conditions, advantages, and limitations of various
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dispersion/attenuation-based  permeability  prediction
approaches are systematically compared in Table 2.
This comparison reveals that despite the clear physical
mechanisms underpinning this category of methods, four
fundamental challenges persist: (i) controversies regarding
the universality of petrophysical assumptions, such as
deviations between assumed pore-scale homogeneity
and actual reservoir heterogeneity, (ii) scale adaptability
conflicts due to mismatched micro-mechanisms and
macro-scale seismic observations, (iii) bandwidth
limitations of seismic data, where the absent of low-
frequency components induce significant fluid mobility

Sy

N 23
\: 5

Time (s)

estimation bias, and (iv) amplified solution non-uniqueness
due to coupled controls of pore geometry, fluid viscosity,
and fracture density on dispersion/attenuation responses.

3. Permeability prediction based on pore
structure characteristics

Traditional seismic permeability prediction methods
primarily rely on well-log or laboratory rock physics
data. These methods establish optimal porosity and
permeability relationships and then extrapolate these
petrophysical correlations to seismic data for areal

Figure 1. Fluid mobility analysis of reservoirs in the lower Ed2 formation from the JZ area. (A) Seismic section. (B) Fluid mobility reservoir
section. (C) Seismic slice. (D) Fluid mobility reservoir slice. The colors red, green, and blue in the well log in the zoomed image indicate gas, oil, and brine,
respectively. Reprinted with permission from Chen et al.** Copyright 2012 Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg.

Abbreviation: CDP: Common depth point.

Table 2. Theoretical and application characteristics of dispersion/attenuation-based methods

Model category Theoretical basis Applicable conditions Advantages Limitations
Model-based inversion BISQ/BIPS theoretical Moderate-to-high porosity/ Clear physical Mismatch in strongly
models permeability sandstones interpretation heterogeneous reservoirs
Velocity dispersion/quality Velocity-frequency Broadband seismic data High computational Sensitive to Q-factor
factor-based methods response efficiency extraction errors

Fluid mobility-based
methods

Low-frequency
reflectivity theory media

Fluid-saturated porous

Resolution constraints in
time-frequency analysis

Direct indicator of
flow capacity

Abbreviations: BIPS: Biot-patchy-squirt; BISQ: Biot-Squirt.
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permeability prediction.”® However, due to depositional
and diagenetic controls, carbonate reservoirs, particularly
reef-shoal facies, exhibit significantly more complex
pore architecture than clastic reservoirs. These reservoirs
demonstrate substantial permeability heterogeneity even at
comparable porosity levels. In lithofacies-varying formations
with intricate pore systems, conventional methods yield
compromised accuracy due to nonlinear porosity and
permeability relationships. Consequently, pore structure
integration becomes essential for reducing inversion non-
uniqueness and enhancing prediction reliability.

There are currently three pore structure-based
approaches: (i) Sun model-based inversion, (ii) lithofacies-
constrained prediction using pore-structure parameters,
and (iii) dual-porosity structure parameter integration.

3.1. Sun model-based methods

Sun’*? derived two pore structure parameters through
fundamental rock physics analysis: the bulk compliance
factor (y), which characterizes volumetric rock
deformation, and the shear compliance factor (y#), which
describes shape variations. Both y and y, satisfy the rock
physics relationship:

K=K, (1-gy (IX)

My =, (1—¢)™ (X)

where K, and u, denote the bulk modulus and shear
modulus of dry rock, respectively; K and u  represent
the bulk modulus and shear modulus of the grain mineral
phase, respectively; and ¢ signifies porosity. Furthermore,
7, can be expressed as:

, - 1g(V/p)-lgu,
b 1gt-¢)

where V, p, and ¢ denote the S-wave velocity, density,
and porosity, respectively.

(XD

Applied to Texas carbonate reservoirs by Dou et al.,”
these parameters effectively characterized the relationship
between porosity impedance and permeability. They
facilitated the identification of pore types and high-
permeability zones, thereby enhancing prediction
accuracy. Zhang et al** subsequently implemented
these parameters in the Puguang Gas Field, with a pore
structure-constrained porosity and permeability binary
model developed for permeability-type classification at
seismic scales. Similarly, Jin et al.*® established pore-type
discrimination criteria and type-specific porosity and
permeability models using y . These achievements enabled
refined well-log permeability interpretation. By analyzing

elastic parameter-pore structure relationships across pore
types, rock physics templates for the permeability prediction
of complex reservoirs were constructed (Figure 2). In the
case study of Puguang Gas Field (Figure 3), an intraparticle
pore-dominated reservoir within the 5369-5440 m
interval was developed in Well PG302-1. Although this
section exhibited relatively high predicted porosity, the
pore structure parameter was significantly low, indicating
low permeability consistent with core analysis results. This
case validates that permeability prediction based on pore
structure parameters effectively discriminates reservoir
flow capacity heterogeneity, thereby delineating the spatial
distribution of high-permeability zones. Compared to
conventional approaches, this method substantially
enhances permeability prediction accuracy in complex
reservoirs. Conventional methods rely on statistically
derived empirical formulas for porosity and permeability,
with prediction errors often exceeding one order of
magnitude. Critically, these findings substantiate that
pore structure exerts dominant control over permeability,
whereas porosity serves merely as a contributory factor.

The Sun model demonstrates porosity-independent
permeability prediction capabilities in both carbonate
and clastic reservoirs. It achieves this through its
characterization of rock deformation mechanisms through
y and 7, However, the model suffers from fundamental
flaws in its physical foundation. First, the model exclusively
captures elastic deformation responses while neglecting the
topological control mechanisms governing fluid pathways
(e.g., pore-throat connectivity). Second, its classification
regression framework contains inherent structural
deficiencies: oversimplified permeability zoning based
solely on y or y, results in ambiguous partition boundaries,
and the enforcement of linear porosity and permeability
regressions contradicts the intrinsic nonlinearity of
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Figure 3. Inversion profiles of (A) predicted porosity, (B) pore structure parameter, and (C) permeability through Well PG302-1. Reprinted with permission

from Jin et al.** Copyright 2016 Journal of Palacogeography.

carbonate systems, particularly the exponential porosity—
permeability relationships observed in vugular pore
networks.

3.2. Lithofacies-controlled methods with pore
structure parameters

Advancing  quantitative  reservoir  characterization
recognizes depositional microfacies as primary controls
on petrophysical properties. Sedimentary attributes,
including composition and grain size, fundamentally
govern porosity and permeability distributions. Therefore,
establishing microfacies-constrained property models is
essential.

Zhao* derived facies-control factors from Archie’s
equation, integrating them with permeability through
Kozeny’s hydrodynamic formula to develop a facies-
constrained permeability calculation method for seismic
inversion. This approach demonstrably enhances
lateral prediction accuracy by incorporating geological
priors. Given the primary control of pore structure on
permeability as introduced in Section 3.1, Gan et al.”
developed a comprehensive workflow for reservoir
permeability prediction integrating pore structure and
lithofacies controls: First, lithofacies classification was
conducted using the reservoir zones porosity, elastic
parameters, and y . Then, facies-specific multivariate
regression was used for permeability prediction. Relying
on this workflow, they selected the Fudong Slope area in
the eastern central depression belt of the Junggar Basin
as the study area for method application. The primary
reservoir type in this region is lithologic-stratigraphic

hydrocarbon accumulation. The study designated Well
FUD? as the training well and Well FUD6 as the prediction
well. Regression relationships were separately established
for different lithofacies in the training well. Subsequently,
the trained lithofacies-specific regression models were
applied to the prediction well to obtain permeability
prediction results. Comparative analysis with non-facies-
based multivariate regression in Table 3 reveals that both
wells exhibited reduced prediction errors and enhanced
coefficient of determination (R?) values after facies-
control implementation. The maximum error reduction
and greatest R’ improvement occurred when y, was
included in the regression parameters. Field applications
demonstrate that this method can confine permeability
prediction errors within one order of magnitude, and
multivariate regression proves to be a viable solution for
reservoir permeability prediction as it incorporates elastic
parameters and y, under lithofacies constraints.

While lithofacies-controlled = methods enhance
prediction accuracy through depositional microfacies
constraints, precise lithofacies classification remains
a prerequisite for permeability prediction, as it serves
as a geological prior. Furthermore, y exhibits extreme
sensitivity to velocity and density errors in seismic
inversion. Acting as a key input for lithofacies classification,
it forms a positive error feedback loop propagating through
the workflow. Strong multicollinearity also exists among
porosity, y,, and impedance in multivariate regression.
This multicollinearity distorts the physical significance of
the regression coefficients, and these factors collectively
cause abrupt lateral prediction jumps exceeding one order
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Table 3. Statistics of mean square error (MSE) and coefficient
of determination (R?) for multivariate regressions

Key input Facies- Fud7 well Fudé6 well
parameters based MSE R MSE R
¢ No 0.9599  0.4392 15056  0.3269
Yes 0.9387  0.5067 1.2961  0.5250
¢+Vp No 0.9569  0.4409 1.4026 0.3508
¢+Vp/Vs No 0.9239  0.4602 1.4014 0.3921
¢+VM No 0.7765 0.5463  1.3564 0.4961
¢+Vp+Vp/Vs No 0.8975 0.4757 1.0756  0.4989
Yes 0.8924  0.5408 0.9542  0.5925
¢>+Vp+Vp/V$+V# No 0.7421  0.5664 0.9356 0.6016
Yes 0.6721  0.7948  0.8943  0.7924

¥, indicates shear compliance factor; ¢ indicates porosity; V, indicates
P-wave velocity; V. indicates S-wave velocity.

of magnitude. In summary, the limitations of this method
include: High sensitivity to seismic lithofacies and pore
structure parameters that are intrinsically challenging
to quantify accurately; prevalent multicollinearity in
multivariate regression; and multiple pore structure factors
must be incorporated, given the multivariate nature of
permeability controls.

3.3. Dual-pore-structure parameters methods

Wei and Innanen®® discovered the combined effects of pore
morphology and scale on permeability, establishing a dual-
parameter model:

K = Ag® [%) o (XID)

where

Y, =Wy, +1-W)(1-7,) (XIII)

where x represents permeability; y and y_denote scale
and roundness parameters, respectively; W is a weighting
coefficient determined from the core and log data; and A,
B, and C are undetermined coefficients. Inspired by the
Sun model in Section 3.1, and guided by the lithofacies-
control rationale established in Section 3.2, Ding et al.**
derived a shear-Lee factor (cﬂ) from the Lee model. This
factor exhibited a strong linear correlation with principal
pore dimensions. By incorporating this factor, they
effectively integrated both pore-scale and morphological
effects. In addition, they integrated the factor with
elastic parameters, porosity, and pore aspect ratios (a)
as inputs for a feedforward neural network to predict

lithofacies, and then subsequently predicted permeability,
ultimately constraining prediction errors within half an
order of magnitude. Field application (Figure 4) in the
tight gas reservoirs of the Shaximiao Formation, Jinqiu
Gas Field, Sichuan Basin, demonstrated that predictions
incorporating  dual-pore-structure parameters (c +a)
achieved superior outcomes compared to single-factor
(v,) approaches. These predictions quantitatively matched
well-logs with higher fidelity and generated sand bodies
with enhanced spatial continuity.

The  dual-pore-structure  parameter  approach
demonstrates progress in characterizing the combined
effects of pore morphology and scale on permeability.
However, it suffers from inherent limitations in its physical
mechanisms. The model oversimplifies complex flow
processes into a power law combination of morphology
and scale, neglecting the fundamental control of pore
topology connectivity (e.g., tortuosity of pore throats).
More critically, the parameterization exhibits irresolvable
ambiguity: the model fails to distinguish the opposite
effects on permeability between the real-scale expansion
of pore throats and the morphological distortion caused by
the flattening of sheet-like pores. In industrial applications,
high-dimensional inversion spaces introduce significant
uncertainties: the Wei model requires simultaneous
resolution of multiple interacting parameters. Its high-
dimensional solution space causes pronounced oscillation
in inversion results. Meanwhile, Ding’s neural network
framework faces triple error propagation: inherent errors
in elastic parameters derived from seismic inversion
directly propagate into the calculation of the shear-Lee
factor. This propagation induces intermediate parameter
bias. Subsequent coupling of multi-source inputs in hidden
layers of the feedforward network further iteratively
amplifies upstream errors through weight matrices,
ultimately generating substantial errors in the output
layer’s permeability predictions.

3.4. Challenges of pore structure characteristics-
based methods

Although existing mainstream porosity and permeability
prediction models (e.g., Sun, Wei, and Ding models)
demonstrate progress in specific scenarios or mathematical
formulations, they still suffer from fundamental limitations,
as summarized in Table 4 regarding their methodologies,
advantages, and constraints. These limitations include their
core physical mechanisms, such as the neglect of pore-
throat connectivity control and the ill-defined physical
interpretations of parameters; model architecture, such
as arbitrarily imposed linearization and error-amplifying
designs; and application feasibility, such as dependence
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-1.00

Permeability profile predicted by dual-factor

Figure 4. Predicted permeability profiles, where dual-pore-structure parameters refer to ¢ +« and single-factor denotes y,. Reprinted with permission from

Ding et al.* Copyright 2023 Society of Exploration Geophysicists.

Table 4. Theoretical and application characteristics of pore structure characteristics-based methods

Dimension Sun model

Lithofacies-controlled model Dual-parameter model

Principle Rock physics

Key input parameters Bulk compliance factor and

shear compliance factor

Parameter acquisition Seismic/log elastic parameter

inversion

Lithofacies dependent No

Advantages Porosity-independent
heterogeneity characterization

Limitations Oversimplified classification

ignores multi-factor coupling

Reservoir applicability Carbonate/clastic reservoirs

Prediction accuracy Error<1 order of magnitude

Reference Jin et al.®

Sedimentology Morphology+scale

Lithofacies type, pore structure
parameters

Scale parameter, roundness
parameter

Core calibration-+seismic Core calibration+seismic/log

lithofacies division elastic parameter inversion

Yes Optional

Geological prior integration
reduces non-uniqueness

Morphology+scale

Subjectivity in lithofacies High-dimensional parameter

delineation instability, dependent on
upstream parameter accuracy
Highly heterogeneous Fracture-porosity systems

carbonates/clastic reservoirs
Error<1 order of magnitude Error<0.5 order of magnitude

Gan et al.”? Ding et al.¥

on difficult-to-acquire/high-error parameters and high-
dimensional inversion instability with non-unique solutions.

4, Permeability prediction based on Al

In recent years, Al algorithms have emerged as powerful
computational tools for solving complex non-linear
mapping and high-dimensional data fitting problems.
They trigger transformative advances across scientific and
engineering domains. Within petroleum exploration, the
inherent subsurface complexity and uncertainty present
significant challenges. These challenges, combined with
substantial human capital demands for analyzing massive
exploration datasets, have accelerated the industry-wide
integration of Al technologies.**

4.1. Data-driven Al approaches

The earliest Chinese research on seismic-driven
permeability prediction traces back to a groundbreaking
study published in Oil Geophysical Prospecting by Chen
and Guo.” Grounded in the elastic wave theory of dual-
phase media, the authors established the theoretical
basis for permeability prediction from seismic data. They
demonstrated that conventional approaches relying solely
on porosity and permeability functional relationships could
only delineate qualitative permeability trends. To enable
quantitative prediction, they pioneered the integration
of mathematical approximation techniques with
seismic attributes. As seismic attribute and permeability
relationships defy explicit mathematical formulation,
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Al serves as an advanced regression tool that correlates
well-log permeability with adjacent seismic traces. This
calibrated relationship can then be extrapolated across 3D
seismic volumes for reservoir permeability prediction.

Based on Chens work, He et al*® implemented the
rough set theory for optimal attribute selection, followed
by genetic algorithm-optimized backpropagation neural
networks to establish attribute and permeability mappings.
Anifowose et al** conducted a comparative analysis of
multiple algorithms for permeability estimation in Middle
Eastern carbonates. The study used integrated seismic
attributes and wireline logs. The algorithms evaluated
include artificial neural networks, fast Newman algorithm,
support vector machines, and extreme learning machines.
Meanwhile, Zhen et al.** integrated a convolutional block
attention module into a convolutional neural network to
characterize sand-body development patterns and identify
concealed channels.

Riyadi et al*® proposed a permeability estimation
method utilizing elastic attributes derived from
simultaneous seismic inversion and evaluated the
predictive performance of several ensemble-based models,
including extreme gradient boosting (XGBoost), light
gradient boosting (LightGBM), categorical gradient
boosting, bagging regressor, random forest, and stacking.
A multilayer perceptron neural network algorithm was
also assessed. They focused on the X Field in the Malay
Basin, characterized by complex pore systems (coexisting
intergranular pores, dissolution vugs, and fractures) and
pronounced heterogeneity. The statistical evaluation of
permeability prediction models was based on wireline
logging data using the R* and root mean squared log error

(RMSE). The results revealed that integrating porosity
with elastic properties as combined input features yielded
R*>0.95 and root mean squared log error (RMSLE) <0.174.
Among the tested algorithms, LightGBM and stacking
ensemble models delivered optimal performance (R*=0.97,
RMSLE = 0.112 for both), while random forest exhibited
relatively inferior results (R* = 0.92, RMSLE = 0.174).
In contrast, predictions using elastic properties alone
demonstrated significantly reduced accuracy, with R’
ranging from 0.82 to 0.87, and RMSLE from 0.195 to 0.278.
Within this feature configuration, XGBoost achieved the
highest precision (R* = 0.87, RMSLE = 0.195), closely
followed by a multilayer perceptron with 16 hidden layers
(R* = 0.87, RMSLE = 0.207). Figure 5 compares predicted
and measured permeability from the best-performing
models under both input scenarios. The contrast between
the bottom panels in Figure 5 visually confirms substantial
prediction challenges in low-permeability intervals
(<0.001 mD) when exclusively using elastic properties.
Collectively, these results demonstrate that feature
selection and combination exert decisive influence on
predictive efficacy even with high-performance models.
This limitation arises because pore-throat dimensions,
morphology, and connectivity—all critical controls on
flow behavior—exert more dominant control in tight
formations. In contrast, elastic properties have been
proven insufficient to characterize such microstructural
determinants of fluid transport.

Although purely data-driven AI models (black-
box models) in the aforementioned studies enhanced
the prediction accuracy of reservoir permeability,
their fundamental flaw lies in intrinsic decoupling
from the physical mechanisms governing fluid flow.
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Figure 5. Measured and predicted permeability comparison. (A) Permeability prediction employing elastic properties and porosity as input features
via the LightGBM modeling. (B) Elastic property-exclusive permeability prediction using the XGBoost framework. Top panels indicate depth-domain
permeability profiles, while bottom panels illustrate cross-plots of predicted and core-calibrated permeability values. Reprinted from Riyadi et al.*®
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These methods simplify the prediction process to
mathematical approximations, failing to construct
genuine geologically process-driven models. The so-called
“optimal feature combination” essentially represents over-
adaptation to known geological conditions in training well
areas. It is a feature mapping established through statistical
correlations. When extrapolated to undrilled regions or
complex diagenetic reservoirs, the geological plausibility
of predictions becomes significantly questionable due
to the absence of quantitative constraints on pore-throat
network parameters. Furthermore, the inherent small-
sample dilemma in reservoir parameter prediction
inevitably subjects single-task learning to dual challenges
of insufficient sample size and overfitting.

4.2, Data- and model-driven approaches

In 2019, Bergen et als.* seminal review in Science,
“Machine learning for data-driven discovery in solid
earth geosciences,” systematically evaluated applications
of data-driven AI in solid earth sciences. The study
emphasized that AI implementation must advance
beyond simplistic applications to address complex
geoscientific challenges. It highlighted that critical factors,
such as training test set partitioning and validation
methodology, significantly influence prediction outcomes.
Traditional geophysical approaches typically formulate
mathematical approximations between characterization
parameters based on theoretical assumptions, resulting
in deterministic physical models. Data-driven methods
bypass theoretical presuppositions by directly extracting
implicit patterns from data, making them well-suited
for complex geological studies. However, they often lack
physical interpretability. On the other hand, physical
models offer stronger explanatory power, but they face
limitations in accounting for geological complexity due
to inherent assumptions and difficulties in defining inter-
parameter relationships, ultimately constraining predictive
accuracy. Recently, interdisciplinary collaboration has
integrated data-driven methods with physical models.
This integration has emerged as a promising avenue. It is
deemed capable of yielding more universally applicable
solutions to geophysical problems.**°

The capillary bundle model provides the fundamental
basis for studying fluid flow in porous media, representing
the most essential physical model for permeability
characterization. Its extension, the Kozeny-Carman
equation, establishes the foundational relationship between
porosity, pore-scale geometry, and permeability:*!

¢3 d2

k=B
1-9¢)

(XIV)

where k represents permeability, ¢ represents porosity, d
denotes pore scale (characteristic pore/grain size), and B is
a geometric factor. On this basis, Bourbie et al.** proposed
a practical formulation for application to natural materials,
suggesting an empirical geometric factor # is 4 or 5, which
may better represent common geological media:

(XV)

Shi et al.> incorporated pore-scale effects by calibrating
n with well-log data, replacing Bourbie’s proportionality
with an explicit equality:

(XVI)

Where d, represents the equivalent pore scale. To
implement this permeability model, the authors first
predicted porosity through sensitive parameter analysis.
They used bulk modulus, shear modulus, and density
with kernel Bayesian discrimination. Subsequently, they
estimated the equivalent pore scale from compressional
wave velocity, shear wave velocity, and the derived porosity
using the same statistical method. Finally, permeability
was calculated through the porosity-equivalent pore scale-
permeability relationship using seismic elastic parameters.
While this method introduces valuable physical constraints
to data-driven prediction, there are two key limitations: on
the one hand, the permeability model accounts for pore
scale and porosity effects but neglects pore morphology
influences. On the other hand, cumulative errors may
significantly compromise prediction accuracy. These errors
arise from the stepwise porosity-pore scale-permeability
calculation.

Indeed, issues such as small sample sizes and overfitting
are frequently encountered in the context of distributed
computational cumulative errors and reservoir parameter
prediction. At present, multi-task learning addresses these
challenges by establishing end-to-end learning mechanisms
and sharing feature information across different tasks.
This approach effectively mitigates the overfitting often
associated with single-task learning, thereby enhancing the
generalization capability of the network model. However,
since multi-task learning relies on cross-task feature
transfer to enable information interaction, the correlation
between tasks plays a decisive role in model performance.

A large amount of statistical data demonstrated a close
correlation between porosity and permeability. Based on
this, Wei et al>* proposed a seismic prediction method
for reservoir permeability using multi-task learning. The
method employed post-stack seismic data and P-wave
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impedance as network inputs, with well-log porosity
and permeability serving as labeled data of the network.
Through network training, an optimal network model
was established by integrating near-well seismic and
well-log data. Finally, reservoir porosity and permeability
parameters between wells were simultaneously predicted.
Application results from the tight gas reservoir in the
Shaximiao Formation of Jinqiu Gas Field, Sichuan Basin,
demonstrated high consistency between predicted
permeability parameters of Sand Body No. 8 and actual
drilling data, along with superior vertical and horizontal
resolution.

4.3. Challenges of Al-based methods

While data-driven AI models demonstrate empirical
efficacy in permeability prediction, their core limitation
stems from divorcing mathematical approximations from
underlying petrophysical mechanisms. This physics-
agnostic approach manifests as an inability to construct
genuine geological process-driven models, vulnerability
to local overfitting through statistically derived feature
mappings, and geologically implausible extrapolation in
undrilled/complex diagenetic settings due to unconstrained
pore-throat parameterization.

5. Discussion

This review synthesizes the fundamental limitations
inherent in the three dominant methodologies within the
reservoir permeability prediction domain (Table 5).

Based on these findings, the above limitations
unequivocally indicate the necessary direction for next-
generation models. These models must transcend empirical
curve fitting through deep integration of multiscale physical
mechanisms, quantitative pore structure characterization,
and physics-embedded Al architectures. Ultimately, this
integration will dismantle the barriers between data-driven
and physical models to achieve a paradigm shift.

Future development must focus on establishing a
new permeability prediction paradigm centered on the
synergistic optimization of “physical mechanism, data-
driven approach, and engineering validation” (Figure 6):

(i) Theoretical mechanism innovation

a. Develop coupled models integrating pore, fluid,
and fracture system interactions with dispersion/
attenuation signatures, deepening the coupled
flow and elasticity theory for multi-porosity
media (e.g., pores, vugs, and fractures).

b. Advance pore-throat topology-constrained rock
physics models to quantify the control weights of
tortuosity and connectivity on permeability.

(ii) Data-driven architecture enhancement

a. Construct multimodal physics-guided learning
networks by fusing multi-source data (e.g.,
seismic attributes, electrical imaging, and nuclear
magnetic resonance).

b. Employ deep generative adversarial models to
synthesize geologically realistic virtual samples
(e.g., generating low-frequency signals to extend
bandwidth and compensate for flow capacity
calculations), thereby overcoming the bottleneck
of scarce training data.

(iii) Deep embedding of physical mechanisms
a. Deeply embed differentiable forms of fundamental
physical laws (e.g., Darcy’s law and Biot’s theory)
within neural networks.
b. Develop cross-scale physics-informed neural
networks to couple microscopic pore network
simulations with macroscopic seismic responses.

(iv) Engineering validation framework

a. Digital rock core simulation validation: Compare
seismically inverted permeability against direct
flow simulation results on the pore network to
utilize computerized tomography scans/process-
based modeling to create digital rock cores and
validate the microscale mechanistic soundness
and scale-transition capability of models.

b. Blind well testing validation: Withhold data from
key geological unit representative wells (blind
wells) during model training and optimization,
and assess spatial generalization capability and
geological scenario adaptability by analyzing
prediction errors (e.g., RMSE and relative error
distribution) against core analysis/well test
permeability data.

c. Dynamic  production  history  matching
validation: Embed the seismically predicted 3D
permeability field into reservoir simulators, use
actual production dynamics (pressure, rates,
water cut, etc.) as the benchmark, and quantify
improvements, such as the reduction in history
matching error and the enhancement of recovery
factor prediction accuracy, thereby demonstrating
the practical utility for development decision
support.

d. Dynamic data-driven model evolution: Trigger
incremental learning and model re-optimization
on acquiring new dynamic data (e.g., new drilling/
core data, production tests, and 4D seismic data)
and iteratively validate the performance of the
updated model on new blind wells and subsequent
production  periods, ensuring continuous
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Table 5. Summary of three methodological categories for seismic permeability prediction

Methodology Limitation

Dispersion and  Theoretical model
attenuation inversion

(a) Non-unique solutions and inherent uncertainty
(b) Significant result discrepancies across methods

(c) Frequent mismatch between theoretical predictions and field data

Velocity dispersion/
quality factor

Fluid mobility attributes

(a) Non-uniqueness in dispersion attributes from frequency-dependent AVO/AVA inversion
(b) High relative error in quality factor extraction

(a) Uncertainty in optimal frequency selection

(b) Low resolution of mobility attributes derived from time-frequency decomposition

Pore structure  Sun model

integration required

(a) Oversimplified pore-permeability classification using compliance factors alone; velocity data

(b) Overly simplistic linear porosity and permeability regression post-classification

Facies-constrained pore

structure parameters quantify accurately

(a) High sensitivity to seismic facies and pore structure parameters, both of which are challenging to

(b) Multicollinearity in multivariate linear regression
(c) Necessity of multi-parameter pore structure factors for permeability classification

Dual-pore-structure
parameters

Artificial
intelligence

Data-driven approach

Data- and model-driven
approaches

(a) Uncertainty in quantitative permeability expressions due to numerous undetermined coefficients
(b) Error propagation from elastic parameters in seismic inversion

(a) Lack of physical models and theoretical constraints
(b) “Small-sample” and overfitting issues in single-task neural networks for reservoir parameter prediction

(a) Neglect of pore morphology effects in constraining physical models
(b) Significant error accumulation from stepwise calculations degrades permeability prediction accuracy

Abbreviations: AVA: Amplitude variation with incident angle; AVO: Amplitude variation with offset.

Physics-based theory

Provides foundation

/ Feedback for

Data-driven Al 4\ improvement

Feedback for
improvement

\

Engineering validation

Generates model

Figure 6. A proposed permeability prediction paradigm
Abbreviation: Al Artificial intelligence.

predictive capability evolution throughout the
field lifecycle.

This paradigm deeply embeds rock physics principles
into neural networkarchitectures. Itachieves the unification
of physical interpretability and prediction accuracy. For
strongly heterogeneous reservoirs, such as fracture-
vuggy carbonates and bioturbated sandstones, it enables
reliable predictions at both exploration and development
grades. Its closed-loop engineering validation mechanism
provides quantifiable and iteratively improvable core
technological support for intelligent oilfield development.

This mechanism spans from digital rock core and blind
well testing to history matching and dynamic evolution.

6. Conclusion

Reservoir permeability is critical for characterizing
unconventional reservoirs and optimizing hydrocarbon
recovery. However, its seismic prediction remains
challenging due to the complex, non-explicit relationship
between seismic responses and permeability, which
is governed by multifaceted controlling factors. These
challenges are specifically manifested in three dominant
methodologies:

i.  Dispersion/attenuation-based models, while grounded
in explicit physical mechanisms, are constrained by
the coupled interactions of pore, fluid, and fracture
systems. This coupling leads to non-unique solutions,
scale adaptability conflicts, and biases in fluid mobility
characterization due to seismic bandwidth limitations.

ii. Pore structure methods (e.g., Sun’s compliance factor)
suffer from quantification uncertainties, primarily due
to oversimplified morphological characterization and
parameters with ambiguous physical interpretations.

iii. Al-based methods often decouple mathematical
approximations from rock physics principles, resulting
in a vulnerability to overfitting and geologically
implausible extrapolation. Although integrating
physics with AI has improved accuracy, critical
deficiencies remain, including inadequate pore-throat
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topology differentiation, underutilization of seismic
dispersion, and limited efficacy in enforcing physical
constraints.

Consequently, overcoming these fundamental
limitations necessitates a new paradigm centered on the
synergistic integration of multi-scale physical mechanisms,
quantitative pore-structure characterization, and physics-
embedded AI architectures. This integrated approach is
essential to achieve a paradigm shift from empirical curve-
fitting to theoretically guided forecasting in permeability
prediction.
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ARTICLE
Application of distributed helically wound cable
technology in ground seismic exploration

Jingyuan Wang‘>*, Bin Liu, Jing Zhu, and Weiwei Duan

Research and Development Center of Science and Technology, Sinopec Geophysical Corporation,
Nanijing, Jiangsu, China

Abstract

Fiber optic distributed acoustic sensing (DAS) based on phase-sensitive optical
time-domain reflectometry holds significant potential for monitoring applications
in seismic exploration, pipeline integrity, and border security. Conventional straight-
fiber DAS systems are inherently limited to detecting single-component vibration
signals along the fiber axis. To address this limitation, we propose a distributed
helically wound cable (HWC). In this article, we present a theoretical analysis of the
fundamental mathematical model governing HWC response and the selection criteria
for an optimal spiral wrapping angle. We conducted a pioneering three-dimensional
seismic field experiment in Xinghua, Jiangsu, China. An innovative underwater
cable deployment scheme was implemented to ensure effective coupling between
the cable and the surrounding medium. Experimental results demonstrated that
HWC with a 30° wrapping angle yielded single-shot records characterized by a high
signal-to-noise ratio and a broad effective frequency bandwidth, and enabled clear
identification of shallow reflection events in stacked sections. This confirms the
capability of HWC to acquire ground seismic reflection signals. Our findings provide
an effective pathway for advancing next-generation fiber optic distributed seismic
exploration technology.

Keywords: Helical wound cable; Surface seismic exploration; Wrapping angle; Fiber optic
sensing; Distributed acoustic sensing

1. Introduction

Distributed optical fiber distributed acoustic sensing (DAS) technology is a new optical
fiber sensing technology that uses optical fibers as sensors and achieves vibration signal
acquisition based on Rayleigh scattering of light. It offers advantages including low
cost, high measurement accuracy, immunity to electromagnetic interference, and ease
of installation."” Compared to conventional single-point and quasi-distributed sensors,
DAS is more suitable for long-distance or high-resolution applications in time and space,
and is widely used in oil exploration, pipeline leak monitoring, and border security
monitoring.**

Driven by the promise of cost reduction and increased channel density, significant
research efforts in recent years have focused on adapting DAS technology for seismic
applications that are traditionally dominated by geophones and accelerometers.
Researchers have explored its use for microseismic event detection and localization,®
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shallow near-surface characterization,® and vertical
seismic profiling within boreholes,” and substantial
progress has been made in fundamental theory, acquisition
methodologies, processing algorithms, and interpretation
techniques.>* However, a persistent and fundamental
challenge has hindered the widespread application of
conventional DAS for surface seismic reflection surveys:
its intrinsic directional sensitivity.

The underlying physics of phase-sensitive optical
time-domain reflectometry-based DAS dictates that it is
predominantly sensitive to strain components acting along
the longitudinal axis of the optical fiber (axial strain), while
exhibiting minimal response to strain perpendicular to
this axis (radial strain).'®!' Consequently, a straight optical
fiber deployed horizontally on the surface acts as a highly
directional sensor, primarily detecting seismic waves
propagating along its length. This “single-component”
nature is ideal for applications like vertical seismic profiling
(where the fiber is near-vertical) or strain monitoring
along pipelines. However, it renders standard DAS
largely insensitive to the dominant energy arriving from
near-vertical reflections in surface seismic exploration,
where the fiber cable is typically laid horizontally, and the
energetic reflected waves arrive almost perpendicularly
to it. This critical mismatch in sensitivity direction has
been the primary barrier preventing DAS from replacing
conventional geophone arrays for land seismic acquisition.

To overcome this fundamental limitation of axial-strain-
only sensitivity, Hornman et al.'> pioneered the concept of
the helically wound cable (HWC). The core innovation
involves coiling the sensing optical fiber into a helical
structure around a central strength member or mandrel
within the cable jacket. This geometric transformation is
pivotal; when seismic waves impinge on the cable, inducing
complex strains within its structure, the helical path of the
fiber ensures that its local axis has significant components
in both the radial and tangential directions relative to the
cable’s cross-section. As a result, the fiber experiences
strain components related to both compressional waves
(P-waves; causing volume changes) and shear waves
(S-waves; causing transverse particle motion). This multi-
component sensitivity significantly enhances the DAS
systeny’s responsiveness to the diverse wave types and arrival
directions encountered in surface seismic exploration,
making its application in this domain theoretically feasible.
Wauestefeld and Wilkd"” advanced the understanding by
employing precise ray tracing in complex velocity models
to determine wave incidence angles and further elucidated
the intricate relationships between subsurface medium
properties, the mechanical properties of the DAS cable’s
wrapping materials, and the optimal helical wrapping angle
for maximizing signal fidelity."® Furthermore, Innanen'

developed sophisticated mathematical models for helical
fibers wound along arbitrarily curved axes, specifically
addressing the challenges of strain tensor estimation and
the reconstruction of P-wave and S-wave signals from
the measured DAS data.'*'> These models have also been
instrumental in forward modeling and inversion studies
of seismic elastic waves using DAS data.'*'® Despite these
significant theoretical and simulation advances, rigorous
experimental validation of HWC performance under
realistic field conditions, particularly through direct
comparison with established geophone arrays in three-
dimensional (3D) seismic surveys, remains relatively
scarce and represents a crucial research gap that needs
bridging for technology maturation.

To directly address the core limitation of standard
straight-fiber DAS for surface seismic—its inability to
capture near-vertical reflections—this study focuses
on the development, theoretical underpinning, and
comprehensive field testing of a distributed HWC system
designed explicitly for land seismic exploration. Based
on a detailed theoretical analysis of the fundamental
mathematical model governing strain transfer in helical
fibers under seismic excitation, an optimal spiral wrapping
angle was selected to maximize sensitivity to vertically
incident waves while ensuring robust performance across
a range of angles. We then conducted a pioneering 3D
seismic field experiment in Xinghua, Jiangsu, China,
implementing a novel underwater deployment strategy to
ensure effective cable-medium coupling—a critical factor
often challenging to achieve with conventional trenching or
surface-laid methods, especially for kilometer-scale cables.
The primary objective was to empirically evaluate the
HWCs ability to acquire genuine surface seismic reflection
signals, assess its data quality relative to conventional
nodal systems, and validate its practical feasibility for next-
generation seismic acquisition.

2. Design and theoretical analysis of a
distributed HWC

In oil and gas exploration applications, distributed optical
cables function as sensors to detect weak seismic waves.
When a light pulse propagates along the optical fiber core,
Rayleigh scattering occurs due to inhomogeneities within
the fiber. The system detects the backward-scattered
Rayleigh light, generating an interference pattern.
When external forces such as sound pressure act on the
optical cable, the optical fiber will be strained, and the
interference image will change. By detecting the change,
the amplitude of the seismic wave can be reconstructed.
As compressional waves (P-waves) are predominantly
used in seismic exploration and generate strain parallel to
their propagation direction, this study focuses on P-waves
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as the research object. If a plane P-wave propagates along
the D-axis, then the unique non-zero strain component
along this axis is denoted as ™. Suppose the optical cable
is oriented at an angle 8 with respect to the D-axis, as
shown in Figure 1. The direction of e_is parallel to the axial
direction of the fiber, and the direction of ¢, is parallel to the
axial direction of the optical cable. Strain ¢™ is a second-
order tensor, and its component e”(w) along the parallel
direction of the optical cable length is e™'cos?®. If the fiber
is well coupled with the optical cable, the optical cable is
well coupled with the external structural layer, and there is
no loss at the contact interface, then e = ¢ “¥=¢, i.e., the
strain of the fiber is proportional to cos*®, independent of
the optical cable material and the external structural layer
parameters.

Based on the effect of seismic P-wave on the linear
optical cable, the optical fiber is wound as shown in
Figure 2. The optical fiber is tightly wound on the surface
of the cylindrical optical cable shaft, cut along the direction
AB of the left figure, and expanded to get the right figure.
The wrapping angle o of the optical fiber is the angle
between the optical fiber and the radial direction of the
optical cable.

Suppose b = |AB| in Figure 2, the circumference of the
fiber wrapping cylinder, is o = 27R, and R is the radius of
the cylinder, then the diagonal L of the rectangle on the
right is the length of the fiber (Equation I):

b* Ab
+__
b

AL aAa

L La @

When the optical cable generates strain under the
action of seismic waves, its cross-section will become an
ellipse. Let b, and b, be the length of the long axis and short
axis of the ellipse, respectively, then the ellipse equation
can be obtained as follows (Equation II):

x=b,cosf
{y:b2 cosﬁ} n

Inc1dent wave

Fiber

Optical cable

Figure 1. Schematic diagram of the effect of seismic waves on optical
cables.

The circumference of the ellipse is a=7(b, +b,)2n R,
where R is the approximate radius of the ellipse,
Aa/a=AR-R,and AR=R-R, then Equation I can be
expressed as Equation III:

e =e\sin’a +< © >cos o (I11)

(ﬁ’)

L
where o is the wrapping angle, e}’ = — is the axial

Ab
() = = s the axial strain of the

strain of the optical fiber, ¢

AR
(”’>:<Rf> is the radial strain of the

r

optical cable, <e
optical cable, cos o = a/L, and sin o = b/L.
This relationship can be derived as follows (Equation IV):
(/1 + 2N)e(“’) —()LC + 2N)e
2(A, +N,+N)

(w)
) — I cos?a (IV)

(W) 322
7z =€

sim”-a +

e

The internal strain of the loaded wave is taken as the
unit strain, that is, e™ =1. According to the previous

analysis, " =cos’@ can be expressed as follows
(Equation V):
A+2N A +2N
el)) = cos’ Osin’ a+( )<~ )i” cos’ o
2(A, +N_+N)
V)

According to Equation V, the strain of the spiral fiber
is related not only to the Lamme coefficient of the fiber
and optical cable, but also to the wrapping angle and the
incidence angle of the seismic wave. Without considering
the fiber and optical cable material, the simplified
Equation V can be obtained through Equation VI:

f)

1
=cos’Osin’a + 2cos *Ocos’ a (VI)

According to Equation VI, when the wrapping angle of
the fiber is constant, the relationship between the relative

Fiber

e b

Figure 2. Schematic diagram of the distributed fiber wrapping.

Volume 34 Issue 4 (2025)

20

doi: 10.36922/JSE025300040


https://dx.doi.org/10.36922/JSE025300040

Journal of Seismic Exploration

HWC in ground seismic exploration

fiber strain and the incidence angle of the seismic wave is
shown in Figure 3. For the incident wave of the same angle,
different wrapping angles will produce different optical
fiber strains, and for the same wrapping angle, different
angle incident waves will also produce different optical
fiber strains. When o is 90°, the optical fiber is linear, the
sensitivity is minimal, and the angle of incidence has the
greatest influence on the relative strain. When o is 0°, the
relative fiber strain is large, that is, the sensitivity is high,
and the consistency is also affected by the incident angle.
When the wrapping angle o is about 30°, the sensitivity is
relatively large, and the consistency of the relative strain of
the fiber is good.

To identify the optimal wrapping angle, we analyzed
angles between 27° and 36° in 2° increments (Figure 3). At
a wrapping angle of 33°, the fiber exhibits not only high
sensitivity but also minimal variation in strain response
across different incident angles.

According to Equation VI, the relationship between
relative fiber strain and fiber wrapping angle is shown in
Figure 4 when the incident angle is constant. When the
incident angles are 0°, 20°, 40°, 60°, and 80°, there are two
intersection points between 0 ~ 7 in the fiber wrapping
angle, and the effect of the two intersection points on the
fiber strain is the same. If one of the points is selected,
its radius is 0.58; hence, the angle is 33°, and the strain
generated at this point is the same for different incident
angles. Thus, it has the same strain response characteristics.

3. High-definition (HD) distributed optical
fiber acoustic wave sensing technology

HD-DAS is implemented based on the principle of self-
coherent heterodyne demodulation,'** with its schematic
diagram as shown in Figure 5A. The system uses the optical
signal modulation module to modulate the continuous
light emitted by the ultra-narrow linewidth laser into a
pair of pulses, where the two pulse frequencies are f, and
f,» respectively, and the heterodyne frequency is Af = f,f.

A

o o b Br o

'S

Relative optical fiber strain
e oo 9o 2 == =
N

)

o

20 40 60 80 100 120 140
Incident angle of seismic waves (°)

o

160

w

180

Relative optical fiber strain

The pulses are first amplified by the optical amplifier, and
then injected into the sensing fiber through the circulator.
The Rayleigh backscattered signal in the fiber reaches the
signal detection module through the circulator and is then
demodulated through the demodulation module for the
heterodyne algorithm to obtain the phase change of the
light wave caused by the external sound field. The system
does not need the interference of Rayleigh scattering and
local light, and the scattered light of the two pulses will
interfere with each other to achieve a self-coherent effect.
Then, the phase change caused by the external sound wave
is modulated to the heterodyne frequency, and the high-
precision phase signal can be obtained by a heterodyne
demodulation algorithm. In addition, given that the noise
environment experienced by the double pulse is the same,
the common mode noise can be eliminated to a large
extent after self-coherence, and the system can obtain a
good noise background. Figure 5B shows the assembled
HD-DAS system engineering prototype. Table 1 shows the
specific technical specifications of the HD-DAS system.

4, Data acquisition
4.1. Acquisition of geometry design

The HWC seismic acquisition test was conducted within
a 3D survey area located in Xinghua City, Jiangsu. The
acquisition utilized a single-point high-density 3D
geometry. The receiver array consisted of I-nodal and
SmartSolo nodal units. The seismic source consisted of
3D explosive charges deployed in shot holes at 12 m depth
with a shot interval of 40 m; a total of 100 shots were fired.
The HWC receiver line (total length: 2 km) was positioned
200 m away from the shot line.

To extend the spatial coverage for comparative analysis,
the HWC receiver array was repositioned three times as the
shot points advanced. Each repositioning involved moving
the HWC forward by 1 km. After three movements, seismic
data covering a total profile length of 5 km were acquired
(Figure 5).

)
Q

a=27°
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I
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¥}

w
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Incident angle of seismic waves (°)

Figure 3. R elative optical fiber strains. Relation between relative fiber strain and (A) incidence angle and (B) local magnification.
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Based on the theoretical analysis presented in Section 2
(Figures 3 and 4), a wrapping angle of approximately 30°-
33°is identified as optimal for achieving high sensitivity to
vertically incident waves while maintaining good angular
response consistency. However, manufacturing HWC with
a precise 30° wrapping angle presents significant process
challenges and higher costs compared to angles closer
to the natural lay of fibers, such as 60°. Theoretically,
a 60° wrapping angle is expected to exhibit inferior
acquisition performance, particularly for vertical waves.
To quantitatively assess the impact of this parameter on
field data quality and evaluate the viability of 60° HWC,
the 2 km cable was constructed with two distinct segments:
(i) an 860 m segment with a 60° wrapping angle, and (ii) a
1,140 m segment with a 30° wrapping angle.

In the receiver array layout, the 30° and 60° segments
were concatenated into a single cable spanning the survey
line, with the 30° segment occupying the northern 1,140 m
(Traces 1-1,140) and the 60° segment the southern 860 m
(Traces 1,141-2,000) (Figure 6). This placement ensured

0= 60°

40 60 80 100 120 140 160

Optical fiber winding angle (°)

20

180

Figure 4. The relationship between the relative fiber strain and the fiber
wrapping angle.

Isolator

L S

Optical signal
Laser dulati

that data from segments with different wrapping angles
were acquired under identical geological conditions, source
characteristics, and near-surface effects. Directly comparing
data quality between these segments under comparable
field conditions provides an unambiguous assessment of
the wrapping angle’s impact on acquisition fidelity.

4.2, Deployment of HWC

Effective mechanical coupling between the HWC and
the surrounding geological medium is paramount for
high-quality seismic data acquisition. Poor coupling acts
as a low-pass filter, attenuating high-frequency signal
components, and introduces spurious noise, severely
degrading signal-to-noise ratio and resolution. Common
HWC deployment methods for surface seismic include:

(i) Trenching: Excavating deep trenches (typically >0.5 m)
using machinery and burying the cable, providing
good coupling but at high cost and environmental
impact.

Surface laying: Placing the cable directly on the ground
surface. This is logistically simple but results in very
poor coupling efficiency and high susceptibility to

(ii)

Table 1. High-definition distributed optical fiber acoustic
wave sensing system technical specifications

Index item Technical index value
Noise background ( dB ref rad /| \NHZ ) -80

Stress resolution ( pe /~HZ ) 2.5
Measurement bandwidth (kHz) 2

Spatial resolution (m) 1

Scale length (m) 8

Dynamic range (dB) >100

Sensing distance (m) 50~2,500

module

Trigger

Data
management
module

Monitoring unit

Sensing cable

m =

Sensing l'nn/-\/—\“‘_/

Circulator

Figure 5. System overview and implementation. (A) High-definition distributed optical fiber acoustic wave sensing system principle and (B) engineering

prototype.
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ground roll, wind noise, and cultural noise, leading to
significantly degraded data quality.

While trench burial has been used in some international
HWC trials, its applicability is often limited to relatively
short cable lengths (typically <600 m in reported studies)
due to the prohibitive cost and time required for excavating
and reinstating long trenches. Given the 2 km length of our
HWC and the requirement for three repositionings (totaling
5 km of cable deployment), conventional trench burial was
deemed economically and logistically impractical.

To overcome this critical challenge and ensure effective
coupling for the entire length of the cable during all
deployment phases, we designed and implemented an
innovative underwater deployment scheme. The HWC
was carefully laid on the riverbed along the section parallel
to the seismic line (Figure 7). Water provides excellent
coupling due to its incompressibility and efficiently
transmits seismic P-waves propagating as acoustic waves.
Crucially, these acoustic waves in water fully retain the
reflected P-wave information from subsurface structures,
despite the difference in propagation velocity compared to
the solid earth. This principle is supported by the theory of
Ainslie,» which demonstrates that the dynamics of P-waves
in fluids are analogous to those in solid media (lacking only
the shear component), aligning perfectly with our objective
of P-wave acquisition (Section 2.1). Repositioning the 2 km
cable for the roll-along acquisition was efficiently achieved
using a small tugboat (Figure 7), significantly reducing
deployment time and cost compared to trenching.

5. Data analysis and results
5.1. Single-shot analysis

Figure 8A compares shot gathers acquired simultaneously by
the 30° and 60° HWC segments. A significant performance
contrast was evident: the left section (30° HWC) displayed
recognizable seismic signals, particularly in shallow layers,
despite interference from ground roll and other noise.

Figure 7. Field deployment documentation of helically wound cable.

Conversely, the right section (60° HWC) was severely
contaminated by noise, resulting in a critically low signal-
to-noise ratio that renders effective wave identification
nearly impossible. Spectral analysis (Figure 8B) provided
quantitative confirmation of the 30° segments superiority.
The amplitude spectrum of the 30° HWC data showed higher
amplitudes across a broader frequency range than the 60°
segment. Crucially, the 30° HWC demonstrated a significantly
broader effective bandwidth, preserving more high-frequency
content essential for achieving higher seismic resolution. The
60° segments spectrum exhibited noticeable attenuation,
particularly at higher frequencies, and lower overall energy,
consistent with its noisy time-domain character.

The superior quality of the 30° HWC data enabled
comparison with nodal acquisition. Comparison with
nodal acquisition revealed key differences. The 30°
HWC gather exhibited stronger ground roll amplitudes
but weaker first arrivals compared to the nodal data,
highlighting distinct sensor sensitivities and radiation
patterns that warrant further investigation into coupling
effects. Due to the shorter receiver spread length (2 km)
and finer trace interval (1 m) of the HWC array, reflection
hyperbolas appeared significantly flatter than those in
the nodal gather. This fine spatial sampling is a key DAS
advantage for high-resolution imaging, particularly of
shallow, steeply dipping events.
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Figure 8. Performance comparison of shot gathers from different
wrapping angles. (A) Shot records and (B) spectral analysis.
Abbreviation: CMP: Common midpoint.

Frequency-band scanning of the shot records
(Figure 9) showed that effective reflection wave energy for
both systems occupied a similar band (5-60 Hz). While
waveform characteristics differed—likely due to sensor
response, coupling, and directional sensitivity variations—
the fundamental similarity in detected frequency content
confirms both systems captured primary subsurface
reflections. The HWC data showed good coherence within
each filtered band, comparable to the nodal data.

5.2. Profile analysis

Given the extremely poor data quality of the 60° HWC
segment (Figure 8A), incorporating it into the full
processing flow would severely degrade the final stacked
section. Consequently, we applied a split processing
strategy during data conditioning. Data from the 30° and
60° sections were processed separately. While this isolation
preserved the integrity of the 30° signals, it introduced
significant compromises:

(i) Reduced fold coverage: The effective spread length
contributing to any common midpoint bin was
reduced (utilizing only the 30° or 60° segment, not the
full 2 km cable).

(ii) Spatially inconsistent coverage: Fold coverage became

highly variable along the profile, dropping sharply at

the boundaries between segments and remaining low
within each segment compared to the nodal array.

(iii) Dead trace zones: Some common midpoint bins,
particularly at segment boundaries or due to the
roll-along geometry, received zero coverage (“dead
traces”), creating gaps in the stacked section (Figure 10
illustrates the discontinuous coverage).

Stacked profile comparisons between the 60° and
30° HWC segments (Figure 10) revealed significant
differences. In the 60° stacked section (Figure 10A),
reflection events were identifiable only in isolated, very
shallow zones (likely corresponding to strong, near-
surface reflectors). Throughout the vast majority of
the section, reflection signals were scarcely discernible
above the background noise. The overall data quality
was markedly inferior, confirming the severely limited
capability of the 60° HWC to effectively capture
reflected wave energy under these field conditions.
The theoretical prediction of inferior performance is
strongly validated.

The 30° stacked section (Figure 10B), despite
processing challenges (low/uneven fold, gaps), showed
clear improvement. Continuous reflection events with
reasonably coherent wave group characteristics were
identifiable, particularly at shallow-to-intermediate depths
(down to 1.0-1.5 s two-way time. This demonstrates the
fundamental capability of the optimally designed 30°
HWC to acquire coherent surface seismic reflections
and produce a meaningful subsurface image, even under
suboptimal acquisition conditions.

To further validate HWC feasibility, we compared the
stacked profile from the 30° HWC segment with a nodal
array profile acquired concurrently. The nodal profile
benefited from single-point high-density acquisition
and a fold coverage exceeding 800. The HWC profile
faced inherent limitations: a short total cable length
(2 km), separate processing of segments reducing
effective spread length, and the roll-along geometry,
resulting in extremely uneven fold coverage with a
maximum of only 55.

Despite a significantly lower fold, the 30° HWC
profile (Figure 11A) displayed clear reflection events with
reasonably continuous wave groups. The fine 1-meter
trace spacing of the HWC provides superior vertical and
horizontal resolution in the shallow section compared
to the nodal profile. However, the limited maximum
offset (~1.4 km) resulted in weaker mid-to-deep section
reflections. Nevertheless, reflection events consistent
with the nodal profile were observable in the mid-to-
deep section (ellipse, Figure 11A), though with weaker
amplitudes and poorer continuity, constrained by the
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Figure 9. Frequency-band scanning comparison of shot gathers with (A-E) nodal acquisition and (F-J) 30° HWC acquisition. (A and F) Raw shot gather;
(B-G) 5-10Hz; (C-H) 10-20Hz; (D-I) 20-40Hz; (E-J) 0-60Hz.
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Figure 10. Performance comparison of seismic acquisition methods: (A) 60° HWC and (B) 30° HWC.
Abbreviations: CMP: Common midpoint; HWC: Helically wound cable.
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Figure 11. Performance comparison of seismic acquisition methods: (A) the HWC acquisition profile and (B) the seismic profile.

Abbreviations: CMP: Common midpoint; HWC: Helically wound cable.

low/uneven fold and limited offsets. Overall, the HWC
demonstrated a clear capability to acquire surface seismic
reflection data, showing significant practical potential.

6. Discussion

While this study demonstrates significant promise, it also
highlights areas for further development. The current
limitations in fold coverage and maximum offset inherent
in our test setup impacted the mid-to-deep section quality.
Future work should focus on deploying longer HWC arrays
or multiple parallel cables to achieve sufficient fold and
offset distribution for robust imaging of deeper targets.
Quantitative comparisons of signal fidelity, resolution,
and noise characteristics between HWC and geophones
with matched fold conditions are needed. Furthermore,
developing specialized processing flows tailored to HWC
DAS data, particularly addressing its unique noise fields,
amplitude behavior, and directional sensitivity, will be
crucial for maximizing its potential. From an economic
viewpoint, considering cable manufacturing costs,
deployment efficiency, and operational scalability compared
to large nodal arrays requires a detailed assessment as
the technology advances. Nevertheless, this successful
field trial marks a substantial step forward. Distributed
HWC technology, with its unique combination of high-
density sampling, operational flexibility in challenging
environments, and proven ability to capture surface seismic
reflections, offers a compelling pathway for next-generation
seismic acquisition systems aimed at higher resolution,
lower cost, and reduced environmental footprint.

7. Conclusion

This study proposed and field-tested an HWC for DAS in
land seismic exploration. Combining theoretical analysis
with field experimentation, we optimized the HWC design
and evaluated its performance, yielding the following key
conclusions. To overcome the single-component (axial)
sensitivity limitation of conventional straight-fiber DAS, we
developed the HWC concept. Helically winding the sensing
fiber enhances sensitivity to both compressional (P-) and

shear (S-) waves, significantly expanding DAS applicability
to surface seismic exploration. Field data acquired with
optimally wound (30°) HWC exhibited clear seismic signals,
continuous wave groups, and high resolution (particularly
shallow), demonstrating its viability for practical surface
seismic acquisition. Deploying HWC cables in challenging
terrains, such as water networks and tidal flats, through our
innovative underwater scheme effectively resolved coupling
issues. This approach leverages the inherent advantages of
high spatial sampling density offered by DAS and eliminates
the problem of missing traces encountered when deploying
conventional geophones in inaccessible areas.
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Quantifying the effects of micro-cracks on
velocity anisotropy in lacustrine shales with
variable sedimentary structures
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'SINOPEC Geophysical Research Institute Co., Ltd., Nanjing, Jiangsu, China
2SINOPEC Key Laboratory of Geophysics, Nanjing, Jiangsu, China

(This article belongs to the Special Issue: Seismic Wave Propagation Theories and Reservoir
Characterization Technologies for Complex Anisotropic Media)

Abstract

Understanding the relationship between micro-cracks and elastic anisotropy
is crucial for characterizing subsurface flow pathways, optimizing hydraulic
fracturing, and enhancing seismic interpretation in unconventional shale
reservoirs. Although clay content and total organic carbon (TOC) are recognized
primary controls on anisotropy, the specific influence of sedimentary structures
on micro-crack parameters (such as crack porosity, crack density, and aspect ratio)
and their contribution to anisotropic behavior have not been fully quantified,
particularly in lacustrine shales with varied sedimentary architectures. In this
study, 17 shale samples were categorized into three sedimentary structural types:
laminated, bedded, and massive, based on their microstructure characteristics.
Ultrasonic velocity measurements were performed on 17 paired shale plugs under
confining pressures to quantify the relationship between micro-crack parameters
and elastic anisotropy. Experimental results reveal a clear difference in stress
sensitivity of bedding-normal velocities: Laminated shales > bedded shales >
massive shales, which are attributed to varying degrees of micro-crack alignment
and density. Laminated shales exhibit the strongest anisotropic properties,
followed by bedded shales, while massive shales show weak anisotropy.
Velocity predictions from the Mori-Tanaka effective medium model are in good
agreement with the measurements, validating its applicability for shales with
diverse structures. Micro-crack analysis indicates a positive correlation between
crack density/porosity and anisotropy magnitude. Notably, laminated shales are
characterized by the highest crack porosity (0.012-0.015%), high clay content
(average 40%), and moderate TOC, indicating a combined effect of composition
and microstructure on anisotropy. This study highlights that sedimentary structure
plays a key role in controlling micro-crack development and related anisotropy in
lacustrine shales, with laminated shales exhibiting the most significant combined
effect, thus improving the accuracy of minimum-horizontal-stress prediction and
hydraulic-fracture design.

Keywords: Lacustrine shale; Micro-cracks; Thomsen anisotropic parameters; Ultrasonic
experiment; Mori-Tanaka model
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1. Introduction

In recent years, lacustrine shale oil and gas reservoirs in
China have emerged as a critical focus in the development
of unconventional hydrocarbon resources. Shale is a self-
generating and self-storing reservoir. Its unique properties
make it a strategic target for boosting China’s oil and gas
reserves.'” In the exploration and development of shale oil
and gas, elastic anisotropy is the key geological attribute to
determine the physical properties of reservoirs. Studies have
shown that shale reservoirs generally exhibit significant
anisotropic characteristics.*> This anisotropy controls
wave propagation, fluid flow, and mechanical response.
Consequently, it affects seismic imaging, log interpretation,
reservoir characterization, and fracturing design. This
characteristic has a direct impact on seismic imaging
accuracy, logging interpretation reliability, reservoir
physical characterization, and hydraulic fracturing scheme
design by controlling seismic wave propagation law,
seepage capacity, and mechanical response.®® Accurately
characterizing the anisotropic characteristics of shale can
not only improve the prediction accuracy of seismic data on
reservoir boundary and quality, but also effectively reduce
engineering risks and costs by optimizing exploration and
development strategies. However, due to the influence
of geological deposition and diagenesis, the coupling of
horizontal bedding, organic-inorganic mineral facies, and
pore space in organic-rich shale leads to the extremely
complex formation mechanism of elastic anisotropy, which
brings severe challenges to the establishment of a universal
anisotropy model. At the micro-scale, micro-cracks are the
key factor controlling the anisotropy of shale, and there
is still a significant uncertainties remain in quantifying
the influence mechanism of micro-cracks on velocity
anisotropy. In addition, the differences in experimental
conditions (such as stress state and fluid properties) and the
diversity of theoretical models (such as equivalent medium
theory and discrete fracture network simulation) in the
current research lead to the lack of comparability between
different results, and a unified scientific understanding has
not yet been established.'*"?

As a typical fine-grained sedimentary rock, shale
exhibits significant anisotropy shaped by micro-cracks, the
preferred orientations of platy clay particles, and lenticular
kerogen.*” Researchers worldwide have conducted
extensive experimental studies on shale samples to identify
the controlling factors of intrinsic anisotropy. Vernik and
Liu® performed ultrasonic measurements on the Bakken
shale (USA). They observed maximum elastic anisotropy
at total organic carbon (TOC) values of 15-20%. This
reveals the critical role of organic matter content in shale
elasticity; bedding-parallel organic matter may significantly

influence medium anisotropy by altering mineral grain
contacts or micro-crack alignment. Notably, there are
obvious geological differences in the influence of organic
matter on anisotropy. The anisotropy of Wufeng-Longmaxi
Formation shale in China has no obvious correlation with
organic matter content, while the organic matter content
of Bakken shale in the United States and Bazhenov shale
in Russia is the key controlling factor of anisotropy. This
difference is attributed to the different maturity, occurrence
form, and distribution characteristics of organic matter.
Laminated clay minerals represent another key factor.
Comparative studies by Sone and Zoback' on North
American shales (Barnett, Haynesville, Eagle Ford)
showed a significant positive correlation between clay
content and anisotropy intensity, consistent with theories
with transversely isotropic proposed by Hornby et al.'®
and Sayers' that laminated clay induces the formation of
transversely isotropic shale. Further studies indicate that
preferred orientation of clay platelets directly affects shale
elastic parameters.”’** Liu et al.'> measured ultrasonic pulses
in Longmaxi Shale and found a 0.82 correlation between
clay content and velocity anisotropy parameters: The
higher the degree of clay orientation, the more significant
the anisotropy characteristics. Liu et al.*® studied Jurassic
lacustrine shale from the Sichuan Basin and proposed
an “effective parameter” (total porosity + clay content +
kerogen volume) to distinguish elastic and anisotropic
characteristics among four lithofacies, based on ultrasonic
velocity measurements under varying confining pressures.

In recent years, beyond studies on the intrinsic
anisotropy of shale under high-pressure conditions, the
fracture response information embedded in velocity
variations with confining pressure has become a research
focus for scholars. Vernik® first quantified the dynamic
relationship between micro-crack-induced anisotropy and
mineral-oriented intrinsic anisotropy through confining
pressure-velocity experiments on mature source rock shales:
as confining pressure increases, progressive micro-crack
closure leads to a decrease of anisotropy, while intrinsic
anisotropy from preferred orientation clay/kerogen tends
to stabilize. This achievement provides key mechanical
insights into the anisotropy evolution of stress-sensitive
reservoirs. Ciz and Shapiro? established a porosity-
deformation approach for transversely isotropic shales and,
combined with ultrasonic measurement data from North
Sea shale samples, inverted crack contribution through the
confining pressure response of elastic moduli, verifying the
dominant role of micro-crack closure in anisotropy.'»*!
These previous studies revealed the coupled relationship
between cracks, confining pressure, and anisotropy
through experimental observations, theoretical modeling,
and numerical simulations. Nevertheless, the current rock
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physics approach to inverting the response mechanism
of cracks and reservoir parameters still faces multiple
challenges. At present, the research on anisotropy induced
by stress-induced cracks mainly focuses on marine shale.
However, due to the complexity of the microstructure of la
cuisine shale, the effective medium model is limited in its
application. In addition, there are significant differences in
the anisotropy values generated by stress-induced cracks
in different lithofacies, underscoring the urgent need for
more in-depth investigations in this domain.

In this study, we focus on lacustrine shales from
the Songliao Basin in Northeast China. Based on their
microstructural characteristics, these shales are classified
into three lithofacies types. Using ultrasonic velocity
measurement experiments and inversion based on
the Mori-Tanaka (M-T) effective medium theory, we
systematically investigate the anisotropic responses of
stress-induced micro-cracks in lacustrine shales and
elucidate the underlying mechanism by which micro-
cracks contribute to shale anisotropy. The results offer
critical experimental evidence and theoretical basis for
predicting micro-crack development in lacustrine shale
reservoirs via seismic data, as well as optimizing reservoir
evaluation and development strategies.

2. Experimental methodology
2.1. Basic characteristics of the sample

Seventeen full-diameter shale samples used in this study
were collected from a Cretaceous lacustrine reservoir located
in Northeastern China. The mud shale in such a formation
is frequently characterized by its large thickness, high TOC,
moderate thermal maturity, and overpressure.’*** A total of
17 cylindrical plugs, each with a diameter of 25 mm and a
length of approximately 50 mm, were drilled from the full-
diameter samples along the bedding direction. The cylinders
then underwent a drying process with a temperature of
80°C for over 48 h, until the sample weight does not vary.
Subsequently, the porosity of each cylindrical shale sample
is measured using the helium gas method.

TOC of each sample is measured by the Rock-Eval
Pyrolysis tests. The results revealed that TOC of 17 samples
ranges from 0.1 to 3.2%. The mineral composition of each
shale sample was determined through the powder X-ray
diffraction analysis (Figure 1). The collected shales are
mainly composed of clay, quartz + feldspar + pyrite (QFP),
and carbonate minerals. From the core photos and the
thin section images in Table 1, the fine-grained rocks can
be described as either laminated, bedded, or massive,**
according to the thickness of beddings. The laminated
rocks, with bedding thickness <10 mm, display obvious
grain-size changes. The silt and clay laminae terminate

0
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cz;\ o5 @ Massive
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Figure 1. Ternary diagram for 17 shale samples with different sedimentary
structures. The red circle represents laminated, the green circle represents
bedded, and the blue circle represents massive.

sharply at their margins, as shown in Table 1. The bedding
thickness of bedded rocks is normally >1 cm with silt or clay
beddings alternately stacking together, as shown in Table 1.
The massive samples, with bedding thickness larger than
50 cm, are distributed either near the 100%-carbonate-end
or the 100%-QFP-end in the ternary diagram (Figure 1).

From Table 1, the development of micro-cracks varies
with the sedimentary structures. In general, the micro-
cracks are most developed in laminated shales, followed
by bedded shales. Nearly no micro-cracks could be seen
in the massive shales from the amplified thin section
image. The development of micro-cracks in laminated
shales could be attributed to two main reasons. From one
aspect, in the weak plane between silt and clay laminae, it
is easy to develop bedding cracks or diagenetic contraction
cracks along bedding directions. From the other aspect,
the stripped kerogen in laminated shales is at the peak of
oil generation (R ~ 1.3%). A mass of hydrocarbon would
be generated and migrated along the weak plane between
beddings, leaving hydrocarbon-expulsion micro-cracks
behind.** For bedded shales, the inter-bedded micro-
cracks (at the silt-clay interfaces) dominate, while less
hydrocarbon-expulsion micro-cracks develop. For massive
shale, due to its homogeneous mineral composition and
lack of laminae weak planes, only sporadically isolated
contraction cracks develop.’”*

2.2. Measurement of anisotropic ultrasonic velocity

We performed ultrasonic velocity —measurements
on 17 horizontal shale samples by using the pulse
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Table 1. Cores and thin sections of laminated shale, bedded shale, and massive shale

Samples Cores Thin sections Descriptions

« Alternating deposition of silt and clay laminae, with
thickness <10 mm.

« Bedding cracks, diagenetic contraction cracks, and
hydrocarbon-expulsion cracks develop along bedding directions.

Laminated shale

Hydrocarbon-induced cracks

Bedded shale « Bedding thickness is >1 cm with silt or clay beddings alternately
stacking together.

o The inter-bedded micro-cracks (at the silt-clay interfaces) dominate.

o The mineral composition is uniform, lacking laminae or bedding
interfaces.
» Micro-cracks are less developed.

Massive shale

transmission method.* To gain velocities in different
directions from one single horizontal plug, three pairs
of P-wave transducers (0°, 45°, and 90° with respect to
the symmetry axis) and two pairs of S-wave transducers V,,(90°)
(propagating along beddings, polarizing in both bedding-
normal and bedding-parallel direction) were mounted in
the sample, as shown in Figure 2. The central frequencies
for P- and S-wave transducers were 1 MHz and 0.5 MHz,
respectively. The horizontal shale was wrapped with
the rubber sleeve and put into a confining vessel filled
with silicon oil. The velocities were measured at varied
confining pressures ranging from 5 MPa to 35 MPa. Five
velocities were all measured in one single horizontal shale
plug: V (0°), V (90°), V (45°), V(90°), and V (90°), X
allowing for a thorough analysis of the full stiffness tensor
and anisotropy of transversely isotropic (TT) shales. It is
noteworthy that the relative systematic error in velocity
measurements is approximately +1% for P-waves and +2%

Figure 2. Schematic diagram of the direction-dependent velocity
measurement with one-single-horizontal shale sample*

for S-waves. C,, =pV.(90°) (1)
Unconver%tional 'shales are o.ften depi.cted to l.ae a C, =C,,-2pV2(90°) (IV)

transversely isotropic medium with a vertical rotational

symmetry axis (VTI). According to the anisotropic (C,, +C,, —2pV,*(45°)

Hooke’s law, a VTT medium can be characterized by five C,=-C,+ ? e

independent stiffnesses (CH, C, C, Cep C13)' With five (Cy+Cy, _szP (459) V)

direction-dependent velocities and the measured bulk

density (p), five independent stiffnesses could be derived Subsequently, P- and S-wave velocity anisotropy

could be expressed with Thomsen’s parameters, ¢ and ¥,

as follows:
. respectively’:
G, =pV,(90°) (I)
C11_C33
C,, =pV, (0°) (10 2C,,
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3. Pressure-dependent properties
3.1. Experimental results

Figure 3 displays the directional velocities (V (0°), Vp(90°),
V,(90°),and V_(90°)) asa function of the appfied confining
pressure for three typical samples with laminated, bedded,
and massive structure. Overall, despite the rock structure,
all four velocities increase with the increasing pressure.
Both P- and S-wave velocities in the bedding-normal
direction (V (90°) and V_(90°)) satisfy the following
relationship: faminated < bedded < massive.

The pressure-dependent velocities in Figure 3, to some
extent, reveal the effects of bedding-related micro-cracks.

A 55
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Figure 3. P-wave (A) and S-wave velocities (B) in both bedding-normal
and bedding-parallel directions as a function of the applied confining
pressure for three typical samples with laminated, bedded, and massive
structure

In general, the bedding-normal velocities show strong
non-linear behavior at low pressures and subsequently
get flattened at high pressures, while the bedding-
parallel velocities are almost linear over the entire range
of confining pressure.”® By assuming that the flattened
bedding-normal velocities indicate all micro-cracks are
closed at the highest pressure,* we define a stress sensitivity
parameter, V/V(35MPa), to qualitatively characterize the
effects of micro-cracks for three types of rocks. It should
be noted that V denotes Vp(0°) or V_(90°) at the varied
conﬁning pressures (5 MPa, 10 MPa, 15 MPa, 25 MPa,
and 35 MPa), while V(35MPa) suggests Vp(0°) or V_(90°)
at the confining pressure of 35 MPa. Figure 4 shows the
plot of the stress sensitivity parameter against the applied
confining pressure for VP(0°) and V, (90°). Both stress
sensitivity parameters vary non-linearly up to 1 at the
highest confining pressure, revealing a process of micro-
cracks closure. The stress sensitivity of bedding-normal
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Figure 4. Stress sensitivity parameter as a function of the applied
confining pressure for VP(O") (A) and V_(90°) (B)
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velocities relies on the rock structures, satisfying the
following relationship: laminated > bedded > massive.

As shown in Figure 3, the bedding-parallel velocities are
generally greater than the bedding-normal ones, especially
for laminated and bedded shales, displaying obvious
velocity anisotropy. The anisotropy degree of P- and S-wave
velocities is expressed with € and y, calculated based on
Equations VI and VII. Accordingly, Figure 5 shows plots
of ¢ and y against the applied confining pressure for three
typical samples. Figure 5A shows both e and y for laminated
and bedded samples decrease non-linearly as the confining
pressure increases from 5 MPa to 25 MPa, and get relatively
flattened at the subsequently confining pressure. However,
¢ and y for the massive shale are much lower, combined
with relatively constant values over the entire confining
pressure range. Figure 5B presents a crossplot of Thomsen’s
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‘ B Messivee [l Bedded¢ [l Laminated ¢
s | [ Massivey Bedded y [ ] Laminated y
2 S
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Figure 5. Anisotropic characteristics of shale with three typical samples.
(A) € and y as a function of the applied confining pressure for three
typical samples with laminated, bedded, and massive structure. (B) A plot
of anisotropy parameter y versus anisotropy parameter € for three typical
samples with laminated, bedded, and massive structure.

anisotropy parameters ¢ and y for three structural types.
Overall, ¢ and y show a good positive linear correlation.
The laminated samples exhibit stronger anisotropy,
generally occupying higher values of both ¢ and y =, while
the massive samples cluster at lower values, and the bedded
samples show an intermediate distribution.

3.2. Mechanism of shale anisotropy

Shale velocity anisotropy is frequently attributed to the
combined effects of many intrinsic and extrinsic factors.®
Intrinsic velocity anisotropy primarily stems from three
key mechanisms: The alternation of lithologies or laminae,
the preferred orientation of clay platelets or kerogen, and
the bedding-parallel micro-cracks.”**>** Figure 5B shows
a plot of y versus ¢ at the highest confining pressure
(35 MPa), revealing the effects of rock texture (laminated,
bedded, massive) and mineral composition on intrinsic
anisotropy. Based on Figure 5B, the anisotropy degree of
17 lacustrine shales satisfies the following relationship:
laminated > bedded > massive. As shown in Figure 1, the
total clay content ranges from 5% to 45%, with an average
value of 40% for laminated shales and 32% for bedded
shales. For Cretaceous shale reservoirs, clay minerals
have thoroughly experienced the transition from smectite
to illite. Clay minerals are dominated by illite and illite-
smectite mixed layers with obvious preferred orientation
along beddings after sedimentary compaction, resulting
in relatively strong anisotropy. However, for massive
shales, the anisotropy degree is relatively low due to the
low clay content and lack of bedding texture. Besides, the
kerogen tends to align subparallel to beddings with a strip-
like pattern for laminated and bedded shales, as shown
in Table 1, further amplifying the velocity contrast in
bedding-normal and bedding-parallel directions.

In addition, the pressure-dependent properties of
bedding-normal velocities (Figure 4) and anisotropy
parameters (Figure 5A) indicate that micro-cracks might
be a non-negligible factor in evaluating shale anisotropy.
As discussed in Table 1, micro-cracks mainly originate
from two sources: Bedding-parallel micro-cracks and
hydrocarbon-expulsion-induced  micro-cracks.  These
cracks are closed at in situ conditions. In the process of
coring, these micro-cracks tend to open due to the stress
relief. By applying confining pressure to the approximate
in situ stress condition in the laboratory, these opened
cracks close gradually, revealing the pressure-dependence
of bedding-normal velocities. Conversely, the pressure
dependence of velocities can, to some extent, be used to
quantitatively evaluate the contribution of micro-cracks
to shale anisotropy. In the next section, we will focus on
the quantitative inversion and evaluation of micro-crack
effects on anisotropy.
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4, Effects of micro-cracks on shale
anisotropy

4.1. M-T theory

To quantitatively evaluate the effects of micro-cracks on
shale anisotropy, the key is to accurately invert micro-crack
parameters from the pressure-dependent bedding-normal
velocities (Figure 3). We employed the M-T theory,* which
has been widely recognized for its capability to capture the
intricate interactions between the micro-structural features
of materials and their macroscopic mechanical properties.

Mori and Tanaka* established the relationship between
the elastic modulus of rocks and their microscopic pore
structure. The stiff moduli of rocks are expressed as:

K, - K, (VI
St
(149 P)
- stifff
G - — GO (IX)
St )
a0

= Psiify

Where K . and G are the effective bulk and shear
modulus of rocks, when only stiff inter-particle pores exist.
K, and G, are bulk and shear moduli of mineral grains,
respectively. @_ . indicates the porosity contributed from
inter-particle pores. P and Q represent shape factors of stift
pores, which are related to the aspect ratio « of ellipsoidal
pores and Poisson’s ratio v, of mineral grains,*** as shown
in Equations X-XII. By assuming that low-aspect-ratio
micro-cracks (soft pores) are completely closed at extreme
high confining pressure, K . and G, could be calculated
through Vp(0°) and V, (90°) measured at confining pressure
of 35 MPa, as shown in Figure 3. Based on Equation VIII, «
can be obtained through the least squares regression of K.

4(1+v,)+2a*(7-20)-3(1+4v,)
Lo, +12a%(2-v,)]lg
S 6(1-20,) 20% +(1-40’)g + (o’ —1)(1+v,)g"

X)

4(a*-)(1-v,)
15{8(v, —1)+20° (3 —4v,) +[(7 - 8v,) — 4a*(1-20,) g}

Q
|8(lus)+2az(3+4us)+[(81)s ~1)—4a’(5+2v,)]g

+6(a’ -1)(1+v,)g>
20> +(1-4a*)g + (@’ -D(1+v,)g*

3 8(v, —1)+2a*(5—4v,) +[3(1-2v,) + 60’ (v, —1)]g
=20 +[(2-v,)+a’(1+v,)]g

(XI)

Where v, =(3K, —2G,)/ (6K, +2G,) , and

ﬁ(arccosa —avl-a’ )(a <1)
—a

a (ocxll—a2 —arccosh a)(a>l)

(1_a2)3/2

(X11)

With the rock only including minerals and stiff pores
as the background medium, the effective bulk and shear
moduli are expressed as follows by considering the effect
of soft micro-cracks:

16(1- (v, )'T
K=K, /14— — (XIIT)
9(2 —umﬁ)
321-v,,,)(5-v,. )
Gy =Gy 1| 1+ sl il (XIV)
452 -v ;)

Wherev = (3K , G /(6K .+ 2G ) is the Poisson’s
ratio of stiff pores. And I is the cumulative micro-crack

density.

Given that the pressure-dependent effective moduli are
closely related to the micro-crack density, the cumulative
micro-crack density I'(0) at each pressure can be fitted
based on the measured elastic moduli and Equations XIII
and XIV with the least-square regression method. Then,
the quantitative relationship between micro-crack density
and the effective pressure® is expressed as:

1“P(oc)=1""e"”i7 (XV)

Where I' represents the initial micro-crack density at
zero effective pressure; and p is a pressure constant with
the same order of magnitude as the effective pressure p,
which can be obtained by fitting data with Equations XIII
and XIV.

We can obtain the distribution characteristics of micro-
crack porosity and density based on the lab-measured
P- and S-wave velocities. The relationship between micro-
crack porosity ¢_ and crack density I', is described by
David and Zimmerman*' as follows:

(XVI)

In addition, the relationship between pore aspect ratio
and the effective pressure is expressed as:

4=,

, - (XVTI)

eff
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Where E =3K,[1-2v,] is the effective Youngs
modulus under high confining pressure; and
Uy = (3Keﬂ —2Geﬂ)/(6KEﬂ +2Geff) is the effective
Poisson’s ratio under high confining pressure.

4.2, Inversion of micro-crack parameters

According to Equations VIII-IX, we first inverted the
high-pressure velocities of three shale samples with
different structures to estimate the aspect ratios of stiff
pores. Since the measured velocities of the samples did
not fully reach asymptotic values at 35 MPa, exponential
curve fitting of the measured data was performed to
estimate the high-pressure velocities. The confining
pressure (P)-velocity fitting relationship of sample Gl
is V, = 2628*P®, V= 1681*P***. The confining
pressure-velocity fitting relationship of sample G2 is V,
= 2284*P00%1e, V= 1676*P**, The confining pressure-
velocity fitting relationship of sample G3 is V= 4040*P°%*,
V, = 2338*P*, The porosity of the laminated sample G1
is 6.5%, that of the bedded sample G2 is 1.5%, and that
of the massive sample G3 is 1.2%. The elastic moduli of
grains (KO, GO) were obtained using the Voigt-Reuss-Hill
theory for inverting high-pressure data, and the inversion
parameters of high-pressure velocities are listed in Table 2.
As expected, the inversion crack density/crack porosity
is much higher for laminated shale than for bedded and
massive shales, as shown in Table 2. The primary causes of
crack development in laminated shale are as follows: Silt
and clay laminae creates weak planes prone to forming
bedding cracks, and oil expulsion during the thermal
maturation of organic matter generates micro-cracks
arranged parallel to bedding planes as shown in Table 1.
Figure 6 shows the effective medium simulation results of
P-wave and S-wave velocities for the laminated shale G1,
bedded shale G2, and massive shale G3. The P-wave and
S-wave velocities inverted based on the M-T theoretical
model are in good agreement with the measured data
within the error range. Notably, the model’s predictions are
more accurate for P-waves for than S-waves. These results
validate the reliability of the model in predicting shale
micro-crack parameters and demonstrate its effectiveness

Table 2. Inversion result for the high-pressure velocities

Sample Type Porosity KO GO a Crack Crack

D (%) (GPa) (GPa) density porosity

Gl Laminated 6.5 21.5 11 0.09 0.0051 6.38E-05
shale

G2 Bedded 1.5 38 13 0.02 0.0042 4.49E-05
shale

G3 Massive 1.2 39 21 0.16 0.0021 1.01E-05
shale

in characterizing the elastic properties of shales with
different structure types.

Figure 7 illustrates the porosity distribution of
soft pores across aspect ratios for shales with distinct
structures. The laminated shale (red) features the highest
peak crack porosity, occurring at a relatively larger crack
aspect ratio. The bedded shale (green) has a lower peak
crack porosity than the laminated shale, while the massive
shale (blue) shows the lowest peak crack porosity among
the three. Across all aspect ratios shown, the laminated
shale consistently maintains higher crack porosity than the
bedded and massive shales. Figure 8 displays the cumulative
crack density distribution of soft pores for the three shale
types. The laminated shale has the largest cuamulative crack
porosity (6.38 x 107°%), followed by the bedded shale
(4.49 x 103%), and the massive shale (1.01 x 10%) due
to its slowest crack development and the lowest cumulative
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Figure 6. A comparison between the measured pressure-P-wave and
S-wave velocities of the samples G1/G2/G3 and those inverted by the
Mori-Tanaka model
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Figure 8. The relationship between cumulative crack porosity and crack
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porosity. Overall, cumulative crack porosity rises initially
and stabilizes, with the laminated shale having the highest
values, the bedded shale intermediate, and the massive
shale the lowest. As shown in Figure 4, the laminated
shale exhibits a non-linear stress-sensitive curve (steep
velocity-pressure response), while the bedded and massive
shales show gentler stress-sensitive curve changes (gradual
velocity-pressure response), reflecting their structural and
mineralogical differences in pore compressibility.

Figure 9 illustrates the relationship between crack
density and crack porosity for three different shale
structures. Data points for the laminated shale are widely
distributed, with crack porosity reaching approximately
0.015% and corresponding crack density around 0.012.
This indicates extensive crack development in laminated
shale. In contrast, data for the bedded shale cluster more
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@ Laminated

© Bedded

@ Massive

. .
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Crack porosity(%)

Figure 9. Crossplot of the relationship between crack density and crack
porosity

tightly in the medium-to-low range, with crack porosity
mostly below 0.006% and crack density typically below
0.006, suggesting moderate crack development. For the
massive shale, data points concentrate near the origin,
with crack porosity values mostly below 0.003% and crack
density consistently below 0.003, indicating the poorest
crack network development among the three types. As
shown in Figure 1 and Table 1, the high clay mineral
content in laminated shale (G1) results in strong clay
orientation, forming bedding weak planes. In addition,
during hydrocarbon generation and expulsion from
organic matter maturation, pressure release along these
weak planes generates numerous bedding-parallel cracks,
leading to high crack porosity (reflecting interlaminar
pores and cracks). Bedded shale (G2) exhibits distinct
mud-sand interbedding but with slightly poorer bedding
continuity and slightly higher mineral content (e.g., silty
quartz) than GI. Bedding weak planes still dominate
crack development (primarily bedding-parallel), but
some cracks form due to stress concentration at mineral
interfaces, resulting in lower crack and total porosity
(1.5%) compared to laminated shale. Finally, massive shale
(G3) lacks distinct bedding, is dominated by rigid minerals
(quartz, feldspar), has low clay content, and exhibits dense
intergranular cementation—all of which inhibit crack
development, resulting in the lowest crack and total
porosity. These results highlight the significant influence
of shale structural differences on crack development
characteristics, which cannot be overlooked.

4.3. Effects of micro-cracks on shale anisotropy

Analysis of the influencing factors of anisotropy in shale
(Figures 10 and 11) reveals two distinct controlling patterns
of shale anisotropy: One dominated by micro-crack
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Figure 10. The influence of total organic carbon (TOC)/clay on anisotropic parameters. (A) The relationship between the anisotropy parameter € and
the TOC. (B) The relationship between the anisotropy parameter y and the TOC. (C) The relationship between the anisotropy parameter € and the clay.

(D) The relationship between the anisotropy parameter y and the clay.

development and the other by composition. As shown
in Figure 10A and B, the Thomsen parameters € and y
exhibit a clear positive correlation with TOC, particularly
in laminated and bedded shales, indicating that organic
matter content enhances intrinsic anisotropy. Similarly,
Figures 10C and D demonstrate a strong dependence of €
and y on clay content, highlighting the essential role of clay
mineral orientation in forming anisotropic backgrounds.
Within this compositional framework, micro-crack
porosity further differentiates the anisotropy degree
among shale structures (Figure 11). Laminated shale,
characterized by high clay content (average 40%) and
moderate TOC, exhibits the strongest positive correlation
between crack porosity (up to 0.015%) and Thomsen
parameters (€ = 0.3-0.8; Y = 0.2-1.0). Results presented in
Figure 1 and Table 1 suggest a synergistic effect between
clay-induced intrinsic anisotropy and crack-related
extrinsic anisotropy. The preferred orientation of clay
minerals resulting from smectite-to-illite transformation
establishes a foundation of intrinsic anisotropy,** while
hydrocarbon-expulsion-induced micro-cracks, aligned
parallel to bedding, further amplify the anisotropic
expression.** Bedded shale, with slightly lower clay

content (average 32%), comparable TOC, and lower crack
porosity (<0.006%), shows moderate anisotropy (& = 0.2-
0.6; y = 0.3-0.6). Its interlayered silty quartz disrupts clay
fabric continuity, leading to less aligned micro-cracks and
thus reduced anisotropy. In contrast, massive shale, with
low clay content and minimal TOC, and the lowest crack
porosity (<0.003%) exhibits near isotropy (¢, y - 0). The
dominance of rigid minerals (quartz + feldspar >60%) and
the absence of continuous bedding or organic alignment
result in an isotropic elastic response, as predicted by
Backus averaging theory for homogeneous media.”**!
Thus, shale anisotropy is co-controlled by composition
(TOC and clay) and micro-structure (micro-crack
development), with laminated shales exhibiting the most
significant combined effect.

This study investigates the correlation between
anisotropy and micro-cracks using the M-T theoretical
model, providing valuable insights for exploration and
development of lacustrine shale reservoirs. Specifically,
in seismic data interpretation, integrating shale
anisotropy characteristics and dynamic effects of micro-
cracks can improve reservoir prediction accuracy. For
example, the significant anisotropy and bedding-parallel
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Figure 11. The relationships between the anisotropy parameter € and the
crack porosity (A), as well as between the anisotropy parameter y and
the crack porosity (B)

micro-cracks in laminated shale highlight the need
for targeted exploration focus on such intervals. In
addition, optimizing well locations to match dominant
micro-cracks directions and considering anisotropy
in fracturing designs can significantly enhance
hydrocarbon recovery efficiency. Collectively, these
findings provide critical, practice-oriented guidance for
the efficient development of unconventional resources
like shale oil and gas.

However, this study has some limitations. Firstly,
due to limited core availability, only 4-6 samples were
available for each structural type, potentially resulting in
uncertainty when extrapolating to the entire reservoir.
Future work should increase the sample size and combine
digital rock physics to reduce statistical bias. Then, the
model assumes an ideal uniform distribution of micro-
cracks in the medium, which fundamentally differs from

the complex heterogeneous fracture networks observed in
real shales. This may lead to prediction biases in anisotropy
characteristics. Therefore, future research could refine
the model by incorporating both uniformly distributed
random fractures and preferentially oriented bedding-
parallel cracks, thereby capturing the heterogeneous
characteristics of real reservoirs more accurately.

5. Conclusion

In this study, 17 shale samples from a Cretaceous
lacustrine reservoir were classified into three structural
types: Laminated, bedded, and massive, based on
their micro-fabric characteristics. Ultrasonic velocity
measurements were performed on 17 pairs of shale
plugs under varied confining pressures to quantitatively
analyze the relationship between micro-crack parameters
and elastic anisotropy. The results indicate that the
stress sensitivity of bedding-normal velocities relies on
rock sedimentary structure, in the order of: laminated
> bedded > massive. Specifically, laminated shales exhibit
the most pronounced anisotropic properties, followed by
bedded shales, while massive shales display the weakest
anisotropic characteristics. Measured velocities showed
good agreement with predictions from the M-T model,
validating its applicability for structurally diverse shales.
Furthermore, a trend was observed where a higher crack
aspect ratio correlates with higher crack porosity in non-
closable pores, a feature predominantly found in laminated
samples. As crack density and porosity increase, the degree
of anisotropy in lacustrine shales intensifies. Among the
three structural types, laminated shales exhibit the highest
crack porosity, which is consistent with their pronounced
anisotropic characteristics. Within the studied lacustrine
shales, sedimentary structure appears to be the dominant
factor controlling micro-crack development and
anisotropy, although clay and TOC also play contributory
roles. This study has specific guiding significance for
seismic anisotropy inversion, hydraulic fracturing design,
or well logging interpretation.
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Abstract

Suppressing complex mixed noise in seismic data poses a significant challenge for
conventional methods, which often cause signal damage or leave residual noise. While
sparse basis learning is a promising approach for this task, traditional data-driven
learning methods are often insensitive to the physical properties of seismic signals,
leading to incomplete noise removal and compromised signal fidelity. To address
this limitation, we propose a physics-constrained sparse basis learning method for
mixed noise suppression. Our method integrates local dip attributes—estimated
and iteratively refined by a plane-wave destructor filter—as a physical constraint
within the dictionary learning framework. This constraint guides the learning
process to achieve high-fidelity signal reconstruction while effectively suppressing
multiple noise types. Tests on complex synthetic and real data demonstrate that
the proposed method outperforms conventional techniques and industry-standard
workflows in attenuating mixed noise, including strong anomalous amplitudes,
ground roll, and random and coherent components, thereby significantly enhancing
the signal-to-noise ratio and imaging quality.

Keywords: Multiple-type noise suppression; Dictionary learning; Physical constraint;
Plane-wave destructor filter

1. Introduction

The evolution of seismic data denoising techniques reflects a deepening understanding
of signal and noise characteristics and the continuous refinement of processing
methodologies.! Early methods primarily relied on fixed-basis transforms, such as the
Fourier transform (F-K filtering) and the wavelet transform. These approaches operate
on the assumption that effective signals and noise exhibit distinct characteristics in the
transformed domain, allowing for their separation through filtering or thresholding.?

Volume 34 Issue 4 (2025)

42 doi: 10.36922/JSE025280034


https://dx.doi.org/10.36922/JSE025280034
https://orcid.org/0009-0000-8374-7414
https://orcid.org/0000-0001-9257-1254
https://orcid.org/0009-0005-0948-1802
https://orcid.org/0009-0002-3523-5056
https://orcid.org/0009-0005-4040-9657
https://orcid.org/0000-0001-8163-2699
https://dx.doi.org/10.36922/JSE025280034
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Seismic Exploration

Physical constraint denoising

The underlying principle for many of these techniques
is sparse representation, which aims to find the most
compact signal representation within an overcomplete
dictionary, thereby enabling effective compression,
feature extraction, and denoising.** Transforms such
as the curvelet and shearlet were developed to better
represent the linear and curvilinear features common in
seismic wavefields, offering improved performance over
traditional wavelets in preserving edges and suppressing
coherent noise.”” However, the efficacy of these fixed-basis
methods is inherently limited; they may introduce artifacts
or damage signals when the characteristics of the signal
and noise overlap in the transform domain.*® To overcome
the rigidity of fixed bases, adaptive dictionary learning
methods such as K-singular value decomposition (K-SVD)
and the method of optimal directions were introduced.
These techniques learn the dictionary atoms directly
from the data, allowing the basis to adapt to the specific
morphological features of seismic signals.'®!!

In recent years, deep learning (DL) has been
widely applied to seismic data denoising due to its
powerful nonlinear modeling and feature learning
capabilities.”? Initial supervised models, such as the
denoising convolutional neural network, demonstrated
state-of-the-art performance by using residual learning to
focus on noise components.'* However, their reliance on
large volumes of paired clean and noisy data for training
significantly increases the preprocessing workload and
limits their application in scenarios where clean reference
data is unavailable.”® To address this, recent research
has shifted toward more flexible DL paradigms. Self-
supervised learning models, for instance, can be trained
effectively on noisy data alone, eliminating the need
for clean labels by leveraging the statistical properties
of the data and noise.'* Furthermore, physics-informed
neural networks (PINNs) have emerged as a promising
direction. By incorporating physical laws, such as the
acoustic wave equation, directly into the network’s loss
function, PINNs ensure that the denoising process
respects the underlying wave propagation physics, which
enhances generalization and produces more physically
plausible results.'

Despite these advancements, significant challenges
remain. Data-driven dictionary learning, if unconstrained,
is prone to learning non-physical features that mimic noise,
leading to incomplete noise suppression and signal damage.
DL models, while powerful, often lack interpretability, and
their performance can be unreliable when applied to data
with characteristics different from the training set.>'®'
To address these issues, this paper proposes a physics-
constrained sparse basis learning method for mixed noise

suppression. This method constructs a joint optimization
model that introduces a dip regularization term, penalizing
components in the reconstructed signal that do not
conform to local coherence. By simultaneously imposing a
smoothness constraint on the dictionary atoms, the learned
basis is guided to be more physically meaningful. A plane-
wave destructor (PWD) filter is used to iteratively estimate
and update the local dip field, ensuring that the physical
constraint adapts to the progressively refined signal. Tests
on synthetic and real data demonstrate that our method
outperforms conventional techniques in suppressing
complex mixed noise while preserving the integrity of the
effective signal.

2. Materials and methods

2.1. Dip-constrained and gradient-optimized
learning framework

The core idea of the novel prestack seismic data joint
denoising framework proposed in this study is to
combine the signal representation capability of sparse
transforms with the dip attributes of effective signals. This
integration aimed to achieve high-fidelity, effective signal
reconstruction while simultaneously performing multi-
type noise suppression.'®

Prestack seismic data Y e R""": (where N, represents
the number of time samples and N, represents the number
of traces) can be expressed as the sum of effective seismic
signals X € R™*"* and multiple types of noise N e R™*": :

Y=X+N @

The primary goal of denoising was to estimate the
effective signal X from the raw data Y. Within the
framework of basis learning, we assume that the effective
signal X can be approximately represented by a dictionary
(set of basis functions) D e R and its corresponding
sparse coefficient matrix A € RY:;

X=~DA (1)

Here, the column vectors of D = [d,,d,...,d\,)], denoted
as d,, are referred to as atoms or basis functions, and N,
is the number of atoms. Each column g, of the sparse
coefficient matrix A represents the sparse representation
of the corresponding trace x, under the dictionary D. The
core challenge is to learn a dictionary D that provides a
compact representation of the effective signal features and
to solve for the corresponding sparse coefficients A.

Conventional basis function learning is achieved by
solving the following optimization problem:

min

Y ~ DA + AR (A),

(110

D,A
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where "Y —DA"; = zi’j(Yi‘j —(DA),; )2 represents the

data fidelity term, which measures the error between
the reconstructed data DA and the Raw data Y. R (A) is the
regularization term for the sparse coefficients A, used to
introduce a sparsity prior. The L,-norm regularization, i.e.,

RW=[4] =3, 4]
sparse solutions, meaning that the information for each
seismic trace can be represented by a linear combination of
a few atoms from the dictionary.® A, > 0 represents the
weighting balance between the data fidelity term and the
sparse regularization term. The selection of an appropriate
value for the hyperparameter A, is critical to the success of
the denoising task, as it governs the trade-off between
fitting the data and enforcing sparsity. A very small A,
would cause the optimization to prioritize the data fidelity
term, leading the model to fit the noisy data Y too closely
and fail to remove noise. Conversely, a very large A, would
heavily penalize non-sparse solutions, forcing the
coeflicient matrix A to be extremely sparse, at the risk of
over-smoothing the data and removing important features
of the effective signal. Therefore, an optimal A, must be
chosen to ensure that the sparsity constraint is strong
enough to separate noise, while the data fidelity term
preserves the integrity of the underlying signal. The
optimal value is data-dependent, influenced by factors
such as the noise level, and is typically determined
empirically.

, is commonly used to induce

In prestack data, effective reflection signals typically
exhibit good spatial coherence and predictable dips within
local regions. For instance, in common midpoint gathers
or common offset gathers, reflection events possess specific
kinematic characteristics. This coherence is a key feature
that distinguishes signals from various interferences such
as random noise, linear noise, anomalous amplitudes,
and ground roll. To make the basis learning framework
more suitable for seismic data denoising and to enhance
denoising performance by incorporating physical
meaning, this study introduced local dip attributes as a
physical constraint within the learning framework.'®

This research presents a dip regularization term to
penalize components in the reconstructed signal DA that
does not conform to local coherence. This constraint was
built upon the local dip P = {p, } (the local dip at data point
(i,f)). First, we defined a linear operator L, which depends
on the local dip field P and is used to enhance signal
smoothness along the dip direction or to suppress different
components. Ideally, if the signal DA is perfectly aligned
along the dip P, then the value of L, (DA) will be close to
zero. This constraint term can be expressed as:

will be close to R,,, (DA, P)=||L, (DA)||; , 1v)

coh

where the local dip field P can be estimated, computed,
and updated during the iterative process based on the
current reconstructed signal DA, allowing this constraint
to adaptively match the local structural features of the data.

This paper posits that the basic building blocks of
effective signals (atoms in the dictionary D) inherently
possess certain physical properties. For example,
they should exhibit smoothness and band-limited
characteristics, rather than containing excessive high-
frequency noise or irregular oscillations. To ensure that the
learned atoms are more physically meaningful, this method
imposes a smoothness constraint on the dictionary D itself
by penalizing its gradient:

min
D,A,P

+A

atom

‘coh

J(D, A, P)=|[Y - DA} +2,

A+

2
Lioa)

vD|; V)

where A, A, and A, are regularization parameters
used to balance the weights of different constraints.
The local dip field P, as part of the regularization term,
reflects the model’s adaptability to data characteristics.
The objective function above, by jointly optimizing the
dictionary D, sparse coefficients A, and physical parameter
P, yields a solution that fits the effective signal while
satisfying both sparsity and physical priors.

Given that the objective function j (D, A, P) is non-
convex with respect to D, A, and P, we employed an
alternating iterative optimization strategy that decomposes
the problem into the following four sub-steps:

Sub-step one: Initialization

(i) Initialize dictionary D®: Randomly select data
patches from the raw data Y or use Ricker wavelets for
initialization

(ii) Initialize sparse coeflicients A®: Use a zero matrix or
small random values

(iii) Initialize local dip field P©: Estimate from the raw
data Y using the PWD method

(iv) Set current iteration ¢ = 0 and maximum iterations T,

Sub-step two: Updating sparse coeflicients
(i) Fix DY and P% and establish the objective function for
solving A:

A =y - DOAL 4 2,[|A]| + A L, DO A (VD

(ii) The function above is an L,-norm minimization
problem with a quadratic regularization term.
Assuming L, is a linear operator, let Q' =L, D®.
Then, this subproblem can be rewritten as:

(t+1) __argmin
A - A

Y _D<'>A||; +2,]A] +4

coh

Q(’)A”i (VID)
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This can be transformed into:

po ’
Al +2,

) @{Jﬂ Q"

This problem can be efficiently solved using methods
such as the fast iterative shrinkage-thresholding algorithm
or the alternating direction method of multipliers.

argmin

APY = (VII)

F

Sub-step three: Updating the dictionary
(i) Fix A"Dand PY and solve the subproblem for D:

(t)Z

argmin

D(t+1) —

Y -Da|[”, +

(DA(HU )" oy

2
[vD],
(IX)
(ii) Theequationaboveisaquadratic programmingproblem
with respect to D. If optimized column-by-column d,, it

can be simplified as:

coh p< Dl atom

min 2
Y I ® (A(t+1) )T
0 |—| A, M, o vec(D) (X)
O /Iatom N
D 2

where M and N are matrix forms of expressing
(t+1)

respect to vec(D); @ denotes the Kronecker product; and
vec(.) is the vectorization operator. This results in a large-
scale least squares problem that can be solved using
iterative methods such as gradient descent or the conjugate
gradient method.’

| and ||VD||; as quadratic forms with

Sub-step four: Local dip field update

Fix D1 and A*" to obtain the current effective signal
estimate X**V=D®1 A®D_Then, update the local dip field
X based on P:

P = PWD(XD) (XI)

2.2. Plane-wave deconstruction filtering dip angle
estimation

In the aforementioned constrained learning framework,
the core of the physical constraint lies in the quantification
and utilization of seismic signal local coherence. The PWD
filter, proposed and developed by Sergey Fomel, cannot
only be used to estimate the local dip field but also directly
serve as a coherence constraint operator, providing strong
support for this objective.”

The PWD theory assumes that, within a local time-
space window, seismic data can be approximately viewed
as a superposition of a series of plane waves. A 2D plane
wave can be expressed as:

d(t,x) = f(t-ox), (XII)

where o represents the local dip of the plane wave.
PWD is essentially a steerable prediction-error filter. The
prediction error at the filter’s output is minimized when the
correct local dip is applied. Any components that do not
conform to this local plane wave model (such as various
types of noise) cannot be effectively predicted and thus
manifest as larger energy at the filter output. Assuming a
2D seismic data d(t,x), the theory aims to predict the value
of d(t,x), based on information from neighboring traces.
According to the plane wave assumption, the following
differential relationship is derived:

od _ad

=0
ox

XIII
o (XIII)

The above equation indicates that the directional
derivative along the plane wave direction (t,x) domain is
zero. PWD is the discrete realization of this differential
operator. A first-order PWD operator can be used to predict
the value at a central point d;; Its predicted value d,,; i

calculated from two nelghborlng points d;; , and d,,, in
the x-direction. To introduce the dip o into the predlctlon,
a shift in the time direction needs to be considered:

1
Ei,j El: i—round(c),j—1 + di+round(a),j+l:| (XV)
To address the precision issue caused by the integer
shifts in the above equation, Fomel proposed more accurate
Taylor expansion and finite-difference methods:

e - !,'_[ l(a)dlj 1+C1(0)dij+1]’

where e, represents the prediction error of d. ¢, (0) and
¢, (0) are functions of the local dip o, used to perform data
interpolation or extrapolation along the dip direction. In
practical applications, a separable approximation is commonly
used, where a three-point PWD operator F, applied to a data

point d,; can be approximated as: can be approximated as

d . —d.
— " 5, D))
2Ax SR

(XV)

E(d,)~ (XVI)

where D, is a differential operator in the time direction,
and o;; is the local dip at point (i,f). The output energy reflects
the degree to which the data deviates from the local plane
wave assumption. Conversely, this can be used to find a dip
value ¢ that minimizes the output energy of the PWD filter.
For each local window in the data, the optimal local dip o is
estimated by solving the following minimization problem:

min

(XVTI)

v (d)||

where d represents the data within the local window,
and F, is the PWD operator parameterized by the dip o.
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The PWD theory aligns well with the joint denoising
framework proposed in this study, providing a concrete
implementation for crucial steps of the algorithm. In our
objective Equation (VI), the local coherence constraint
L, (DA)"; . We define the PWD operator as L,

so this constraint term becomes:

termis A

coh

R, (DA,P)=||E,, (DA)[; (XVIII)

where, P = o(t,x) represents the local dip field required
by the PWD, and F° is the PWD operator guided by this
dip field. It constrains all components in the reconstructed
signal DA that cannot be predicted by the local plane wave
model.

Furthermore, for sub-step four predicted by the local
plane (Equation VI)—this can be achieved by solving the
PWD-based dip estimation problem:

argmin

2
P(t+l) _ fl')(X(H-l))"F (XIX)

P

This process ensures that the dip field consistently
aligns with the continuously improving signal estimation
throughout the iterative process, thereby guiding the entire
optimization toward clearer physical meaning and a more
distinct signal structure.

2.3. Learning-based seismic data denoising
framework

Unlike the training phase, where D, A, and P are optimized
simultaneously, in the denoising phase, the dictionary
D, and the dip field P,, are treated as known optimal
parameters. The objective function for solving the sparse
coefficient matrix A, is:

m

2 2
0, A 4 A+, 0,8

A||1 +A

coh

in (XX)
A

where "Y—Dg prA”i is the data fidelity term, which
ensures that the sparse representation, after reconstruction
using the optimal dictionary D,,, has minimal error with
respect to the raw data Y, thus preserving the fidelity of the
denoising process. The term A ||A||1 is the sparse
regularization term, encouraging the solution to be
represented sparsely using only a few atoms from D,

A

coh

estimated dip field P,, to enforce structural constraints on

the denoised data, requiring that the final denoising result
conforms to the local coherence structure defined by P,,.

2
L, (D A)” is the dip constraint term, which uses the
F

opt opt

By solving the optimization problem in Equation I, we
obtain the sparse coefficient matrix A. Combining it with
D, yields the final denoising result:

X,=D,A, (XXI)

The proposed method achieves a relative balance
among data fidelity, sparse representation, and structural
constraint. The estimated noise N, = Y-X; includes
interference components that are neither -effectively
represented by the dictionary nor conform to the local
coherence constraint. The proposed method comprises
two distinct phases within a single workflow, as illustrated
in Figure 1: A learning phase and an application phase.
The “iterative optimization” block constitutes the learning
phase, during which the optimal dictionary (D,,) and dip
field (P,,) are learned from the raw data. The subsequent
steps form the application phase, in which these learned
parameters are used to process the raw data once to
obtain the final denoised result. Unlike the learning phase,
where D, A, and P need to be optimized simultaneously, in
the application phase, the dictionary D, and dip field P,
are treated as known, optimal parameters.

3. Results
3.1. Synthetic data example

To validate the proposed method, we conducted
comparative denoising experiments on three synthetic
datasets (Blocks A, B, and C), derived from a complex
physical model based on a block in Western China. The
performance of our method was benchmarked against
three techniques: shearlet transform, DL model (a classic
supervised learning framework based on the denoising
convolutional neural network), and traditional dictionary
learning. The first dataset, Block A, was contaminated with
strong anomalous amplitude interference, random noise,
and coherent noise, as shown in the raw shot gather in
Figure 2A. Figure 2 compares the denoising results, where
the proposed method (Figure 2E) effectively removes
vertical interference while preserving signal continuity,
outperforming the shearlet (Figure 2B), DL (Figure 2C),
and traditional dictionary learning (Figure 2D) methods,
which exhibit residual noise or signal loss. The removed
noise profiles are displayed in Figure 3. The results from
the comparative methods show significant signal leakage
(Figure 3A-C), whereas the noise removed by our
method consists primarily of interference, with almost
no effective signal components, demonstrating superior
signal preservation (Figure 3D). Figure 4 presents the
final constrained dip fields, where the result from our
method (Figure 4E) exhibits weaker residual noise and
better preservation of effective signal features compared
to the raw data and other results (Figure 4A-D). Finally,
the dictionary iteration process is shown in Figure 5.
Compared to the initial dictionary (Figure 5A) and the
traditional result (Figure 5B), the dictionary learned
by the proposed method (Figure 5C) more effectively
captures signal features while discarding noise elements.
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|
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PWD update local
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Figure 1. Flowchart of the proposed method
Abbreviation: PWD: Plane-wave destructor.

The second dataset, Block B, was characterized by strong
ground roll, as depicted in Figure 6A. The results in
Figure 6 demonstrate that while the benchmark methods
(Figure 6B-D) struggled to suppress the ground roll, our
proposed method (Figure 6E) achieved excellent multi-
type noise removal while preserving the underlying
signal. The removed noise sections in Figure 7 confirm
this: While the other methods showed significant signal
leakage (Figure 7A-C), our method successfully isolated
the ground roll (Figure 7D). The corresponding dip fields
and dictionary iterations are shown in Figures 8 and 9,
respectively. The conclusions are consistent with those of
the first experiment: In contrast to the dip fields of the raw
data (Figures 8A), the shearlet result (Figures 8B), the deep
learning result (Figures 8C), and the traditional dictionary
learning result (Figures 8D), our method produced a
much cleaner dip field (Figures 8E). Additionally, when

Effect quality control

compared with the initial dictionary (Figure 9A) and the
result from traditional dictionary learning (Figure 9B),
our method yielded a dictionary more representative of
the true signal structure (Figure 9C). The third dataset,
Block C, contained a complex mix of strong noise,
including intermixed vertical amplitudes and coherent
acquisition noise (Figure 10A). As illustrated in Figure 10,
the comparative methods (Figure 10B-D) had a minimal
effect on this complex noise, while the proposed method
(Figure 10E) effectively resolved the issue. Figure 11
further depicts that the other techniques showed a
mixture of noise and signal in the removed components
(Figure 11A-C), whereas our method cleanly separated the
complex noise structures (Figure 11D). These findings are
further validated in Figure 12 and Figure 13. In contrast
to the dip fields of the raw data (Figure 12A), the shearlet
result (Figure 12B), the deep learning result (Figure 12C),
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Figure 2. Raw data and denoised data of Block A. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional
dictionary learning. (E) Result using the proposed method.
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Figure 3. Removed noise using different methods for Block A. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed
noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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Figure 4. Dip fields of raw data and denoised data for Block A. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using
deep learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.
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Figure 5. Initial dictionary and final learned dictionary of Block A. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result using

the proposed method.

and the traditional dictionary learning result (Figure
12D), our method yields a cleaner final dip field (Figure
12E). Similarly, when compared with the initial dictionary
(Figure 13A) and the result from traditional dictionary
learning (Figure 13B),our method produces a more signal-
focused dictionary (Figure 13C). Finally, the stacked
sections for all three blocks are presented. For Block A
(Figure 14), Block B (Figure 15), and Block C (Figure 16),
the stacks processed by our method consistently
demonstrated significant improvements in signal-to-noise
ratio and continuity of geological events compared to the
raw data and the results from the benchmark methods.

In all cases, weak signals previously masked by strong
noise were effectively recovered, highlighting the practical
applicability of the proposed approach.

3.2. Real data example

To further validate the effectiveness and applicability of our
method, we processed real seismic data from a work area in
Western China. The performance was benchmarked against
a DL method and a conventional industrial workflow.

A raw shot gathered from the dataset is shown in
Figure 17A, which is heavily contaminated by severe ground
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Figure 7. Removed noise using different methods for Block B. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed
noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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Figure 9. Initial dictionary and final learned dictionary of Block B. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result using

the proposed method.

roll and random noise. This results in a low signal-to-noise
ratio, where effective signals are obscured. Figure 17 presents
the denoising results, displaying that all three methods
removed a substantial amount of noise (Figure 17B-D).
For a more detailed comparison of signal preservation, a
partial enlargement is provided in Figure 18. In contrast
to the raw data (Figure 18A), the DL method produced a
cleaner result but with subtle smearing along the reflections
(Figure 18B), and the conventional workflow left noticeable
residual noise and compromised the continuity of reflection
events (Figure 18C). The result from our proposed method
(Figure 18D), however, shows superior noise removal while

preserving signal integrity. The noise profiles for each
method are depicted in Figure 19A-C. The coherence plots'*
2 for the DL method (Figure 19D) and the conventional
workflow (Figure 19E) exhibit higher coherence values
along noise and main reflection events, indicating weaker
denoising and poorer signal preservation. The plot for our
method (Figure 19F) demonstrates significantly lower
correlation between the removed noise and the denoised
result, confirming higher-fidelity separation of signal from
noise. Finally, we evaluated the impact of denoising on
seismic imaging by comparing stacked sections for two
sub-regions. For region A, shown in Figure 20, the stacked
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Figure 10. Raw data and denoised data of Block C. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional
dictionary learning. (E) Result using the proposed method.
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Figure 11. Removed noise using different methods for Block C. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed

noise using traditional dictionary learning. (D) Removed noise using the proposed method.

doi: 10.36922/JSE025280034

Volume 34 Issue 4 (2025) 52


https://dx.doi.org/10.36922/JSE025280034

Journal Of Seismic Exploration Physical constraint denoising

A Trace number B Trace number c Trace number
150 150 150

(s)owny

a5

60

Trace number

(s)owny

304

as< 1Y

6.0-L

Figure 12. Dip fields of raw data and denoised data from Block C. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using
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using the proposed method.
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denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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using the proposed method.
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Figure 19. Removed noise and local coherence analysis. (A) Removed noise using deep learning. (B) Removed noise using a conventional industrial
workflow. (C) Removed noise using the proposed method. (D) Local coherence between the removed noise and the denoised result using deep learning.
(E) Local coherence between the removed noise and the denoised result using a conventional industrial workflow. (F) Local coherence between the

removed noise and the denoised result using the proposed method and raw data.
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Figure 20. Stacked sections of raw data and denoised data in Region A. (A) Raw data. (B) Result using deep learning. (C) Result using conventional

industrial workflow. (D) Result using the proposed method.
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Figure 21. Stacked section of raw data and denoised data in Region B. (A) Raw data. (B) Result using deep learning. (C) Result using conventional

industrial workflow. (D) Result using the proposed method.

section from the raw data (Figure 20A) suffers from low
SNR and poor reflector continuity. While the results from
deep learning (Figure 20B) and the conventional industrial
workflow (Figure 20C) offer improvements, the result from
the proposed method (Figure 20D) demonstrates the most
significant enhancement, with clearer, more continuous
reflectors and more prominent structural features such as
faults and pinch-outs. A similar conclusion is drawn from
the stacked results for Region B, presented in Figure 21.
Compared to the raw data stack (Figure 21A) and the results
from both deep learning (Figure 21B) and the conventional
industrial workflow (Figure 21C), the proposed method’s
result (Figure 21D) again exhibits substantial improvement.
In both regions, our method effectively recovered weak
signals previously masked by strong noise, confirming its
superior capability and practical value.

4, Discussion

The physics-constrained sparse basis learning approach
for seismic data processing holds significant potential for

future research. Future research will focus on exploring
more advanced methods of incorporating physical
attributes, such as geological models, velocity fields, or
wavefield propagation theories. These additions could
further enhance the recognition and preservation of valid
seismic signals. Another promising direction involves
integrating the powerful feature extraction capabilities of
DL with the theoretical strengths of sparse representation.
Hybrid models that combine these elements could lead to
more efficient and higher-fidelity adaptive seismic data
processing while maintaining physical interpretability.

5. Conclusion

In this study, we proposed a physics-constrained sparse
basis learning method to address the critical challenge of
suppressing complex, mixed noise in seismic data without
damaging effective signals. The primary advantage of our
method lies in the integration of local dip information,
derived from a PWD filter, as a physical constraint within
the dictionary learning framework. This innovation
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effectively overcomes a key limitation of traditional data-
driven approaches by preventing the learned basis from
incorporating non-physical, noise-like features, thereby
ensuring high-fidelity signal preservation. Our extensive
experiments on both synthetic and real data demonstrated
that this approach provides superior suppression of mixed
noise—including anomalous amplitudes, ground roll,
random, and coherent noise—compared to conventional
techniques and other learning-based techniques.
Ultimately, the enhanced clarity and continuity of reflectors
in the final seismic images confirm the practical value of
our method for improving the delineation of geological
structures and recovering weak signals.
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Abstract

The Hessian matrix, though computationally expensive, plays a critical role
in ensuring inversion accuracy and mitigating cross-talk in multi-parameter
inversion. The well-known wavefield reconstruction inversion (WRI) or extended
space full-waveform inversion can reduce nonlinearity and mitigate cycle skipping
in traditional FWI. However, most implementations omit the Hessian. In this study,
the Hessian—formulated as a function of measurement and theoretical covariance
matrices—is incorporated into WRI within a Bayesian inference framework.
Furthermore, the connections between the data- and model-domain Hessian
equationsarediscussed, leading to a simplified calculation method for the extended
source. Based on this approach, a new definition for the theoretical covariance
matrix is proposed and validated through numerical tests, demonstrating its
accuracy.

Keywords: Inversion; Bayesian inference; Theory covariance matrix

1. Introduction

Full-waveform inversion (FWI),"* a tool commonly used to invert subsurface structures,
has been widely used in geophysics exploration.** However, as a data-fitting algorithm in
the least squares sense, FWT suffers from cycle skipping and nonlinearity, primarily due
to the difficulty of predicting the data resulting from the inexpressive wave equation and
the limited acquisition aperture.®

There are methods specifically designed to address cycle skipping, which generally
involves a complex operation for each trace®” or shot® to achieve accurate matching.
An advanced method for measuring distance using optimal transport distances has
garnered the attention of a wide range of researchers and has been well-developed.”!?
As for nonlinearity, the multi-scale strategy,'>”® changing the inversion domain," or
modifying the objective function form'® can help alleviate this limitation.
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In addition to the above methods, two other directions
have been proposed and developed into relatively mature
methods. One is an extended space FWI (ES-FWTI), which
introduces another search space in the inversion.

There are two ways to build the ES-FWI method. The
first approach is to add non-physical degrees of freedom
to the model, thereby pushing the synthetic data to better
fit the observed data.’® However, new space introduces
additional computational costs through either increased
calculation time for the new forward operator or more
storage requirements for new variables. Various methods
have been proposed to reduce computational cost,'”'
in which the extended source FWI" is a more efficient
method, as it only inverts the extended source and the
model parameters. A study by Symes® provided a detailed
analysis of why the extended source FWTI is effective.

The other method is the wavefield reconstruction
inversion (WRI), which starts by incorporating the wave
equation into the objective function to reduce nonlinearity
and computational cost.”’ Leeuwen and Herrmann?®
conducted a more mathematical analysis of the proposed
method and carefully analyzed the selection strategy of the
penalty scalar.? However, it was initially proposed in the
frequency domain, requiring an augmented wave equation
that is challenging to solve in the time domain. In addition,
the physical meaning of certain variables (reconstructed
wavefield, penalty scalar) and the tuning method for the
penalty scalar when solving WRI require clarification.

Several studies have been conducted to address the
above challenge, including rough approximations that
enable WRI in the time domain,”* resulting in more
precise solutions proposed. Rizzuti et al.*® proposed
a data-dual formulation of WRI, where the Lagrange
formula is used to reformulate the WRI, making it easier
to apply to large three-dimensional models in the time
domain.”»?*¢ Moreover, the iterative refining-WRI method
was proposed, in which an enhanced Lagrange method
equipped with operator splitting is used instead of the
penalty method, with its regularization and corresponding
expansion in other media investigated accordingly.”’-*
For the adjustment of the penalty scalar, a rough local
optimization method was used.*® Gholami et al.*' treated
the penalty scalar as a variable that needs to be inverted. In
addition, Gholami et al.** discussed the physical meaning
of the reconstructed wavefield, while Lin et al.”* elucidated
the mechanism of low-wavenumber update in WRI.

In general, although both extended FWI and WRI are
essentially ES-FWI, there are apparent differences between
them. Extended FWI expands space by introducing

seismic-related variables (e.g., offset, wavelet) into model
space, while WRI uses model space in the sense of the
wavefield. Extended FWT utilizes the introduced space
or variables to achieve an accurate data fit, while WRI
reduces the impact of non-linearity and non-physical
data through wavefield matching. However, both methods
require delicate settings of the inversion parameters.
Operto et al.** reviewed the above ES-FWI methods within
the framework of inverse scattering theory, in which
the Lippmann-Schwinger equation was used to govern
modeling.** In addition to ES-FWI, the Hessian is typically
used to ensure inversion accuracy in traditional FWI.
However, computing the Hessian remains challenging due
to its large scale. Furthermore, the Hessian is commonly
not included in WRI or ES-FWI.

In this paper, we analyze these inversion methods
using the Bayesian inference theory. Notably, all inversion
methods can be formulated uniformly using Bayesian
inference theory, which can bring substantial advantages.>*
First, deriving inversion methods from Bayesian inference
can provide a more accurate representation of the problem.
Figueiredo et al.** and Huang et al.”’ used the Bayesian
theory to develop a more precise inversion method for
an anisotropic medium.*** Furthermore, a reduced non-
linear inversion can be obtained. Moreover, Leeuwen?®
and Lin et al.** re-derived WRI from Bayesian inference
and accelerated the inversion by redefining the theoretical
covariance matrix.”*

The main contribution of this paper is a simplified
theoretical definition of the covariance matrix to alleviate
the computational problem of WRI. This paper is organized
as follows: first, the WRI is re-derived from Bayesian
inference to illustrate how the statistical variables included
in the model or data domain Hessian affect or improve the
inversion methods. Next, by comparing the data and model
domain methods, we provide a simplified extended source
calculation method. Finally, corresponding numerical tests
are shown to demonstrate the effectiveness of different
theoretical covariance matrix definitions.

2.Theory
2.1. Seismic inversion based on Bayesian inference

Various ES-FWI methods have been developed for different
concerns. In this section, we derive the original WRI from
Bayesian inference, in which the Hessian is naturally
introduced. First, the wavefield term u is introduced into
the Bayesian inference (Equation I):*

ppost (u’ m|d) C Piike (d|m’u) pprior (u’m) (I)
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Where the likelihood of probability density function is:

/%ke(dW,M): exp——(a’ Pu)z (d—-Pu)+

obs

exp—— (q Au) £, (q— Au)

(D)

in which m denotes the interested model parameters,
d represents the observed data, P is the sampling operator,
u denotes the seismic source, A is the forward operator, and
X0 L, are the measurement and theoretical covariance
matrices, respectively (EquationII). p . denotes the prior
knowledge of the wavefield and model parameters, which

will be excluded in this paper to simplify the calculation.

Maximizing the posterior leads to the following
minimization problem:
d(m,u)=(d - Pu) Zobs (d - Pu)+

* -1
(g = AGmw)' 55, = AGme

There are two ways to solve Equation III, which will be
discussed in the following section.

2.2. WRI based on the data-domain Hessian

We assumed the measurement uncertainty is random and
the measurement covariance matrix is Z,h = Ay
Then, by keeping the model m fixed and setting the
derivative of Equation III with respect to the wavefield to
zero, we obtain Equation IV:

Ali=q+ 2,3, A" P'od 1v)

Where 6d=d—Pu and u denotes the reconstructed
wavefield. The reconstructed wavefield on both sides
makes the above equation challenging to solve, and
moving the reconstructed wavefield to one side is difficult
to perform due to the complex combination of the forward
operators. Approximate or alternative measurements have
been proposed by Lin et al.** to address these challenges."
Essentially, the above equation involves the data-domain

Hessian, where dd can be solved by Equation V:

H,5d=5d° V)
where dd” = d-Pu, u is the background or current
wavefield, and

H; =2 (PA™Y +1

s (PATHZ (VI)

syn

as in Gholami et al.** (Equation VI).

With the reconstructed wavefield, ;; we can obtain
an update for the model parameters by calculating the
derivative of the objective function with respect to

the model, and replacing the latter term according to
Equation IV, we have Equation VII:

8Au * 6Au *

:_(_) z“syn (Au q)__ obs( ) A P od

(VII)

The gradient is a zero-lag correlation between the
reconstructed wavefield and the back-propagated residual
blurred by the data-domain Hessian with the theoretical
covariance matrix. The calculation of the data-domain
Hessian is computationally infeasible due to its large
scale. Lin et al.*® proposed a point spread function-based
method to alleviate this challenge. Furthermore, a proper
theoretical covariance matrix definition has been proven
to be another way to mitigate the computational problem.*

2.3. WRI based on the model-domain Hessian

Clearly, the data-domain Hessian is challenging to compute;
however, it remains essential for achieving accurate WRI.
An alternative is to reformulate the problem in a different
domain. By starting with the data-domain Hessian and
the weighted residual in WRI and FWRI, and multiplying
(PA™)* on both sides of Equation V, we transform it into
the model-domain equation (Equation VIII):

[Aops (PAT) (PATHZ,, +115=s5, (VIII)

where §= (PAfl)*(?d,so— s (PA ) *5d°, similar
to the adjoint state definitions.” In this case, instead
of inverting the data-domain Hessian, we consider the

inversion of the model-domain Hessian (Equation IX):

(PAYY (PA™HE (IX)

obs syn
In this case, the wavefield reconstruction process
becomes Equation X:

Au’\:q-’—ﬂ’obs syn (X)
The transformation significantly alleviates the
computation memory problem, and the model gradient can
be simplified into a straightforward form (Equation XI):
OA 5 o, at A
=(—) u(g,s) §
g=( ) ulg.5) (XI)
Next, we can divide the gradient into two terms by

separating the wavefields excited by different sources g
(d §). The first term (Equation XII):

(a—AYﬁo(q)

(XII)

Which is also the traditional FWI gradient, except for
the blurred residual. The second term is (Equation XIII):
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o=y a)'s (XIII)
om
The above two terms are identical to the FWRI gradients
developed in Lin et al.,”* and its original Equation XI is
directly derived from WRI, similar to the source extended
FWTI except for the source or data differences.

By comparison, we can see that the only difference
between the data-domain and model-domain solutions
is the extended source calculation, and the gradient
calculation can be made through Equations XII and XIII.

2.4.The comparison between the two Hessian
matrices

Here we write the two Hessian-based equations as follows
(Equations XIV & XV):
(4

0

p (PAHE (PATY +116d=5d° (XIV)

syn

A (XV)

0bs

(PA"Y (PANE,, +1]5=5"

Both equations are challenging to solve: Equation XIV
involves a largeale matrix inverse calculation for the data
residual, and Equation IV needs to operaten each wavefield
or the extended source at each time step or frequency slice.
A source-based definition of the theoretical covariance
matrix has been proposed to alleviate the data-domain
computation problem. Similarly, a proper definition of the
theoretical covariance matrix should simplify the model-
domain calculation problem.

Assuming the determinant of the first part of the
model domain Hessian is significantly larger than the
identity matrix, and all variables can be inverted, we
have an approximated extended source expression
(Equation XVI):

§2 A Xy AP PT A" (XVv1)
Substituting the s° definition into Equation XVI, we

have Equation XVII:

§= A S AP P A AT P 8d =53 AP 5d°

syn obs
(XVII)

Notably, the derivation of the above equations relies on
rough approximations and extreme assumptions. For the
first part, the value of the first term of the Hessian, which is
larger than the identity matrix, can be easily satisfied since
it is a diagonal domain matrix and can be scaled by the
theoretical matrix. We selected an exponential function,
which can ensure this assumption. As for the second
assumption, it essentially used the inverse of two operators.

One is the forward operator A, which is commonly used
in inversion and imaging methods and applicable in the
frequency codes. The other is the sampling operator B
which is mathematically incorrect to approximate the
inverse of the adjoint P! = P*.

However, the sampling operator is a dimensionality
reduction operator that reduces the whole model
space data to the receiver points, which is inevitable in
seismic exploration. Therefore, one can only hope that
the reduced data can recover the wavefield in the whole
model space through the forward operator. In other
words, the approximation of the sampling operator
is mathematically incorrect but physically applicable.
Although Equation XVII is similar to the extended source
Equation XI in Huang et al.,'® the specific calculation is
different: The SE-FWI method is a more accurate solution
that requires additional calculation and storage of the Green
function, while the proposed method in this paper is based
on an approximation that only requires one additional
partial differential equation (PDE) solver. In general, the
extended source can be considered an operator on the
receiver residual, where the operator is a function of the
theoretical covariance matrix and the forward operator.
The overall operator may help us to define the theoretical
covariance matrix (Equation XVIII):

- o2
zv n = E;]nA = 2;1n m—-—L (XVIID)
Sy sy ) 6t2

Where L is the Laplacian operator, the above
equation reduces to a function in the receiver size due
to the invertible assumption of the sampling operator P,
Furthermore, the model-domain Hessian operates on each
wavefield, while the original data comes from the source or
receiver locations.

In general, through a series of approximations,
assumptions, and derivations, we provide a straightforward
method to define the theoretical covariance matrix,
which ensures an accurate inversion with an affordable
computational cost (Equation XIX):

az

isyn :2;)/111 (xr’xr)l:m (xr )__L(xr ):| (XIX)

o’

where x_denotes the receiver locations.

Next, various theoretical covariance matrix definitions
were given according to the inversion problem. Notably,
through the above derivation, the calculation of the
extended source was made simpler and more cost-effective
(Equation XX), which is a simple operation for the original
data residual at the receiver location.
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- - &’
s(xr,t)=/10bls2Syln(x,,x,)l:m(x,)y—L(xr)} 50
XX
5d° (x,,1)

Various theoretical covariance matrix definitions are
given and discussed in the following numerical test section.
This part is only used for the wavefield reconstruction; the
model gradient is calculated using Equation VII.

3. Numerical tests
3.1.Inversion test with smoothed initial model

In this section, we applied the proposed method to the
classical Marmousi model. The size of the Marmousi model
in Figure 1 is 250 x 767 with a 10 m space interval in each
direction. A Ricker wavelet with 8 Hz central frequency
with 2 Hz cutoff was used to simulate data in Figure 2. The
recorded time was 3 s with a sampling of 1 ms. A total of
30 shots with 200 m intervals were set at a depth of 10 m
beginningat 340 m, and the receivers were evenly distributed
at a depth of 10 m at every grid point. The smoothed initial
model is shown in Figure 3, which can be obtained by
tomography or velocity analysis.

First, we presented the extended source used in WRI
in Figure 4, where Figure 4A is the classical data residual
used in the traditional WRI, and Figure 4B is the extended
source calculated by Equation XX. We can see that the
derived extended source exhibited a wider wavelength,
making the misfit easier.

The final inversion results are shown in Figure 5, where
Figure 5A is the traditional FWI result, Figure 5B plots the
traditional WRI result, and Figure 5C is the WRI result
based on the extended source (WRI-I). Due to the severely
smoothed initial model, the traditional FWTI failed to recover
part of the key structures, especially in the deep parts. By
comparison, the classical WRI provided a relatively accurate
inversion result, where all structures were accurately located
and inverted with limited artifacts. The WRI-I provided
an accurate inversion result, where all the structures are
recovered (especially the middle complex part) with fewer
artifacts. Moreover, the computational cost of the new WRI
is cheaper than that of the classical WRIL. Both WRI results
provided a more accurate inversion result at the deep part.
For a clearer comparison, we extracted two traces from the
true velocity and inversion results (Figure 6).

3.2. Inversion test with linear initial model

The basic parameters for the modeling and inversion were
the same, except for the initial model, which is linear in
Figure 7, causing more nonlinearity for the inversion.
Furthermore, unlike other inversion tests, the initial
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Figure 1. The Marmousi model
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Figure 2. (A and B) Wavelet used for modeling and inversion
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Figure 3. The smoothed Marmousi model
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Figure 4. Extended source comparison between (A) the data resource
calculated based on the identity matrix definition, and (B) the extended
source calculated by Equation XX

Volume 34 Issue 4 (2025)

64 doi: 10.36922/JSE025250018


https://dx.doi.org/10.36922/JSE025250018

Journal of Seismic Exploration

Novel WRI with approx. model-domain Hessian

5000
4000

elocity (m/s)

3000

v

2000

1000 2000 3000 4000 5000 6000 7000
Distance (m)

g

= 500
= 1000
£ 1500 F
= 2000

2500

g
g EE

Velocity (m/s)

g

1000 2000 3000 4000 5000 6000 7000
Distance (m)

= 500
= 1000 7
£ 1500
2 2000

5000
4000

Yelocity (m/s)

3000

»
=3
S
=3
v

2500

1000 2000 3000 4000 5000 6000 7000
Distance (m)

Figure 5. Inversion results. (A) Traditional full-waveform inversion result, (B) traditional wavefield reconstruction inversion (WRI) result, and (C) WRI

result based on extended source.
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Figure 6. Comparison of vertical velocity profiles at different depths.
(A) x =3,800 m and (B) x = 6,500 m.
Abbreviations: FWI:  Full-waveform
reconstruction inversion.

inversion; WRI: Wavefield

model was significantly different from the true velocity,
particularly in the deeper region. Therefore, we provided
a new theoretical covariance matrix definition to aid the
inversion (Equation XXI):
(r)

Zsyn =exp ¢ (XXI)

Where gis a manually picked function, and r denotes the
distance between an arbitrary point and the source location:
g(r) = 1/r. This equation is essentially an exponential
function to emphasize the source distance, which is a
known and relatively clear variable that can be used as an
additional quantity for assistance in extended FWI or WRL

Naturally, the extended sources used in WRI are shown
in Figure 8, where Figure 8A is the classical data residual
used in the traditional WRI, Figure 8B is the extended
source calculated by Equation XX, and Figure 8C is
the extended source calculated by Equation XXI. We
can see that the data residual calculated by the newly
defined theoretical covariance matrix is more structured

Velocity (m/s)

1000 2000 3000 4000 5000 6000 700
Distance (m)

Figure 7. Linear initial model

2000 6000
Distance (m)

2000 6000
Distance (m)

2000 6000
Distance (m)

Figure 8. Extended source comparison. (A) Identity matrix definition,
(B) calculated by Equation XX, and (C) calculated by Equation XXI.

at the waveform edges, and the deep reflections are more
significant.

Due to the strong non-linearity caused by the initial
model, the traditional FWI failed to perform an effective
inversion and still showed no sign of convergence at
the 50" iteration. The result (Figure 9A) contained
many artifacts and was different from the true model.
However, the traditional WRI (Figure 9B) produced an
accurate inversion result, but with stronger artifacts that
contaminated the shallow layers. Figure 9C plots the WRI-I,

Volume 34 Issue 4 (2025)

65

doi: 10.36922/JSE025250018


https://dx.doi.org/10.36922/JSE025250018

Journal of Seismic Exploration

Novel WRI with approx. model-domain Hessian

5000
4000
3000

2000

1000 2000 3000 4000 5000 6000 7000
Distance (m)

T

1000 2000 3000 4000 5000 6000 7000
Distance (m)

Velocity (m/s)

=)

Velocity (m/s)

1000
1500
2000—-—0
2500, S———— "

Depth (m)

Velocity (m/s)

1000 2000 3000 4000 5000 6000 7000
Distance (m)

a

Velocity (m/s)

—

1000 2000 3000 4000 5000 6000 7000
Distance (m)

Figure 9. Inversion results. (A) Traditional FWT result, (B) traditional WRI result, (C) WRI result based on the extended source, and (D) WRI result based

on the defined extended source.

Abbreviations: FWT: Full-waveform inversion; WRI: Wavefield reconstruction inversion.

and Figure 9D is the WRI-I calculated by Equation XXI.
Both WRI methods based on the extended source yielded
accurate inversion results. Meanwhile, the traditional
one, that is, WRI-I, was still unable to obtain an accurate
model in the middle. Furthermore, with a carefully defined
theoretical covariance matrix, the WRI-I calculated by
Equation XXI provided a very accurate inversion result
that is very close to the true model without any evident
artifacts. A curve comparison (Figure 10) is also provided
to support the above claims.

Furthermore, a noisy test was conducted to highlight
the robustness of the proposed method with respect to
noise and to clarify the determination of the measurement
constant. Figure 11 is the extended source used in WRL
An identity measurement covariance matrix can be used
to describe random noise. Considering the role of the
measurement constant / , in the extended source equation
and gradient formula, a subjectively determined constant
that preserves modeling stability is sufficient, as was done
in the previous tests. In the noise test, the constant was the
same as the signal-to-noise ratio, which is estimated using
the amplitude spectrum method.

As for the final inversion results (Figure 12), we
observed that the noise in the extended source was entirely
random and therefore did not form coherent wavefields
capable of generating artifacts. However, the final results
based on different theoretical covariance matrices showed
slight deviations compared to the noise-free tests.

4, Discussion

The assumptions and approximations used in this study
are generally applied in seismic inversion or imaging.
For example, in most WRI methods, in which the penalty
scalar is subjectively defined, the constant is commonly
very large,”? which is consistent with our assumption that
the main body of the model domain Hessian is larger than
the identity matrix. Moreover, the sampling operator is also

A o B o :
— True velocity —True velocity
——FWI result ——FWI result
——WRI result —WRI result
500 - WRI-I result - 500 WRI-I result
— WRI-II result
gwoo r 51000
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2500 : - '
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Velocity (m/s) Velocity (m/s)

Figure 10. Trace comparison. (A) Located at x = 3,800 m, and (B) located
at x = 6,500 m.
Abbreviations: FWTI:
reconstruction inversion.

Full-waveform inversion; WRI: Wavefield

defined subjectively, which can be the size of N, . xN =
or N . x N .. Furthermore, Equation XX provided
the final calculation method for the extended source used
in this paper, ensuring the accuracy of the reconstructed
wavefield. However, this series of approximations mainly
focused on the computational time by transforming the
space calculation to the receiver calculation, which weakens
the potential of WRI in the model space, making it more
applicable in complex cases with accurately calculated
extended sources. Notably, the theoretical covariance
matrix was defined before performing inversion, while
most Bayesian-based inversion methods use the covariance
matrix to evaluate the accuracy or resolution of the final
results. The main difference between the two methods is the
different definitions of the covariance matrix. In our method,
the covariance matrix is separated into measurement and
theoretical covariance matrices, representing different error
distributions, respectively, while the other Bayesian-based
method combines the two covariance matrices into one.
However, according to the covariance matrix definition
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Figure 11. Extended source comparison. (A) Identity matrix definition,
(B) calculated by Equation XX, and (C) calculated by Equation (XXI).
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Figure 12. Inversion results. (A) Wavefield reconstruction inversion
(WRI) result based on the extended source, and (B) WRI result based on
the defined extended source.

in the Bayesian-based methods, the proposed method can
be further evaluated based on the combined covariance
matrix. Regarding the computational cost, the traditional
WRI requires three PDE solvers, while the proposed
method only requires two, similar to the traditional FWI. In
addition, the source-extended FWT also needed three PDE
solvers, the same as the fast WRI proposed by Lin et al.*

5. Conclusion

This study introduced the Hessian, a function of the
measurement and theoretical covariance matrices, into
WRI based on Bayesian inference. Furthermore, the
connections between the data and model domain equations
were discussed, which led to a simplified extended source
calculation method for the extended source. A theoretical
covariance matrix definition based on the new calculation

method was proposed and validated through numerical
tests. Further research may focus on more theoretical
covariance matrix definitions and their effect on inversion.
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Abstract

Accurate prediction of reservoir porosity is fundamental for hydrocarbon resource
evaluation and development planning, yet traditional methods struggle with spatial
heterogeneity and complex geological structures. This study proposes a hybrid deep
learning framework that integrates U-Net++ with an attention-guided graph neural
network to simultaneously capture multiscale well logging data features and non-
Euclidean spatial dependencies. The model incorporates dense skip connections, deep
supervision, and dual-channel attention mechanisms to enhance both local feature
extraction and global topological modeling. Experiments on a real-world continental
sedimentary basin dataset (26 wells, ~40 km?) demonstrated that the proposed method
achieved a mean squared error (MSE) of 4.62, mean absolute error of 1.24, coefficient of
determination (R?) of 0.912, and structural similarity index measure of 0.831, representing
a 14.9-38.7% reduction in prediction errors relative to widely used deep learning and
graph-based baselines. Statistical tests (p<0.05) confirmed the significance of the
improvements. The model was particularly robust in extreme porosity ranges (>16% or
<8%), reducing errors by 23.1-42.6% compared to U-Net++. Ablation studies highlighted
the contribution of graph structure (19.0% MSE reduction), attention mechanism
(15.0%), and deep supervision (12.5%). Beyond predictive accuracy, attention-weight
analysis revealed strong alignment with geologically meaningful features, such as faults
and sedimentary facies boundaries, thereby enhancing interpretability. The proposed
framework offers a scalable and interpretable solution for reservoir characterization,
with broad potential applications in heterogeneous and faulted reservoirs.

Keywords: Reservoir porosity prediction; Graph neural network; U-Net++; Attention
mechanism; Spatial heterogeneity
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1. Introduction

Reservoir porosity is a core parameter that characterizes
the capacity of rock storage space and directly affects the
reserve assessment, development potential analysis, and
development plan optimization of oil and gas reservoirs.
In oil and gas exploration and development, accurately
obtaining the porosity distribution of underground
reservoirs is of great significance for reducing exploration
risks and improving recovery rates.

However, due to the complexity of geological structures
and the indirectness of underground information,
traditional porosity prediction methods, such as seismic
inversion and well logging data interpretation, often
have limitations in data accuracy, resolution, and
modeling capabilities. In particular, it is difficult to
accurately characterize the spatial variation of porosity in
heterogeneous reservoirs and fault development areas.’
This challenge is particularly prominent in the exploration
of unconventional oil and gas resources, and there is an
urgent need to develop more intelligent and precise
prediction technologies.

In recent years, artificial intelligence technology
has developed rapidly, and deep learning, especially
convolutional neural networks (CNNs), has demonstrated
excellent feature extraction capabilities in reservoir
modeling and attribute prediction.* The U-Net structure
has been widely used in geological image segmentation
and attribute prediction because it can effectively capture
multiscale spatial information.” However, such methods
usually rely on regular grid data, and their ability to model
unstructured and highly spatially heterogeneous geological
data is still insufficiently studied. In addition, complex
spatial topological relationships, such as stratigraphic
continuity and fracture intersections, are widely present
in reservoirs and are difficult to fully represent by relying
solely on traditional convolution operations. Therefore,
how to effectively incorporate prior knowledge of
geological structures into the model and enhance the
ability to identify key structures has become an important
challenge in current reservoir porosity prediction.®

To address the above problems, this paper proposes
a reservoir porosity prediction method that integrates
U-Net++ and an attention-guided graph neural network
(AG-GNN). This method utilizes the enhanced multiscale
feature extraction and fusion capabilities of U-Net++ to
process spatial hierarchical information in seismic and well
logging data; at the same time, it introduces non-Euclidean
relationships between graph neural network (GNN)
modeling nodes and achieves adaptive enhancement of
key geological areas through the attention mechanism,
thereby improving the recognition and prediction

performance of the model in complex structural areas.
This hybrid architecture not only enhances the ability to
represent heterogeneity and topological structures but also
exhibits good generalization performance under limited
sample conditions. It is also applicable to a variety of actual
geological scenarios.

The main contributions of this study include:

(i) A hybrid modeling framework combining AG-GNN

and deep convolutional structures is proposed,

significantly improving the accuracy and robustness
of porosity prediction under complex geological
conditions.

The applicability and superiority of the model in

different geological regions are verified through

multiple sets of real data experiments.

(iii) A scalable technical path is provided for
unconventional resource exploration and complex
fault block reservoir modeling.

(iv) During the research process, the combination of
geological interpretability and algorithm performance
is emphasized. Through attention-weight visualization
and feature response analysis, the mechanistic
understanding of the geological causes of porosity
distribution is enhanced, and the interpretability and
practical guidance value of the results are improved.

(ii)

2. Overview of related work

As an important parameter reflecting the spatial structure
of underground reservoirs, reservoir porosity has long
been a key research object in the field of oil and gas
exploration and development.”® Traditional porosity
prediction methods mainly rely on geostatistical methods
and seismic attribute inversion technology.® Geostatistical
methods, such as Kriging interpolation technology,
estimate porosity spatially based on the spatial correlation
of sample data, but their accuracy is often low when dealing
with nonlinear relationships and complex geological
environments.'* Seismic attribute inversion methods use
seismic data to invert underground porosity. Although they
can provide estimates within a relatively large spatial range,
their applicability and accuracy are also limited because
they rely on the assumption of seismic wave propagation
models and have large errors under complex geological
conditions." In general, traditional methods are difficult
to provide sufficient accuracy and robustness when faced
with complex spatial structures and high-dimensional
features.

In recent years, with the rapid development of
deep learning technology, the application of CNNs in
geological prediction has gradually become a mainstream
method. CNNs have made significant progress in porosity
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prediction due to their powerful feature extraction
capabilities.”” In particular, U-Net and its variants,
through their unique encoder-decoder structure and skip
connection mechanism, can extract multiscale spatial
features while ensuring spatial resolution, thus achieving
successful applications in fields such as medical image
segmentation.”” However, the structure of the U-Net still
has certain limitations in processing large-scale high-
dimensional spatial data. In particular, when geological
data have a complex topological structure, traditional
CNNGs are difficult to effectively capture the global spatial
dependencies between data.'

GNNs, as an emerging deep learning method, have
gradually attracted widespread attention in the academic
community. GNNs can effectively model the complex
dependencies between nodes in the data and are particularly
suitable for processing data with irregular topological
structures.”® Variants such as graph convolutional networks
(GCNs) and graph attention networks (GATs) have further
improved the performance of the model in learning
relationships between nodes through graph convolution
operations and attention mechanisms.'*"’ The application
of GNN in geology is mainly reflected in underground
structure modeling and prediction tasks. It can automatically
learn the interaction between nodes in large-scale spatial
data, thereby improving the shortcomings of traditional
methods in spatial dependency modeling.*** However,
although GNNs have advantages in processing complex
spatial structures, how to effectively integrate them into
porosity prediction tasks remains a challenge, especially
how to deal with noise and sparsity in geological data.

In this context, the combination of U-Net++ and
the attention mechanism provides a new idea for the
application of deep learning models in porosity prediction.
U-Net++ further improves the ability of multiscale
feature fusion through improved skip connections and
deep supervision mechanisms, and can capture more
detailed geological features at different scales.” At the
same time, the introduction of the attention mechanism
enables the model to automatically focus on key areas that
have an important impact on porosity prediction during
the prediction process, thereby effectively improving
the prediction accuracy. Compared with the traditional
U-Net model, U-Net++ can accurately capture the
porosity variation law of different depths or regions in a
more complex geological background, especially in an
environment with high variability and complex structure,
significantly improving the stability and reliability of the
prediction.

Although the current deep learning models have made
some progress in porosity prediction, there are still some

shortcomings. First, most existing methods have not fully
considered the explicit modeling of spatial topological
relationships. In particular, when dealing with complex
geological data, it is difficult for the model to effectively
capture the connection and interaction between different
geological units. Secondly, although models such as
U-Net++ have improved the prediction accuracy through
multiscale feature fusion, the sensitivity to some key
geological structural features, such as faults and folds, is still
insufficient. In particular, when the geological conditions
are extremely complex, the performance of the model may
be affected to a certain extent. Therefore, future research
needs to further enhance the model’s sensitivity to spatial
topological relationships and key geological features, and
promote the further development and application of deep
learning methods in complex geological backgrounds.

3. Methods
3.1. Overall architecture design of the model

This study proposed an end-to-end reservoir porosity
prediction model that integrates U-Net++ and AG-GNN,
as shown in Figure 1. The architecture design aims to
capture both local fine-grained features and global spatial
topological associations. Specifically, the U-Net++ module
is used to efficiently extract local interlayer detail changes
in seismic attributes and logging data to generate multiscale
feature maps; the AG-GNN module models the reservoir
spatial topology based on geological structures and spatial
adjacency relationships, and achieves global modeling and
prediction of porosity changes across wells and profiles.

The input layer receives the normalized seismic
attribute cube and well logging data curve; the encoder
part is composed of multiscale deep convolution and
dilated convolution; the skip connection is connected to
the decoder through a dense path; the output multiscale
feature map is input into AG-GNN for spatial relationship
modeling; and the final fully connected layer outputs the
predicted porosity distribution map.

3.2. U-Net++ improvement details

To enhance the adaptability of the model to heterogeneous
seismic and well logging data, we made two improvements
based on the traditional U-Net++: (i) deep separable
convolution and dilated convolution were introduced to
increase the receptive field while keeping the number of
parameters low; and (ii) deep supervision and multiscale
skip connection were used to improve the gradient transfer
and feature fusion effects.

The convolution layer of the encoder part is replaced by
a deep separable convolution:

Volume 34 Issue 4 (2025)

72

doi: 10.36922/JSE025300044


https://dx.doi.org/10.36922/JSE025300044

Journal of Seismic Exploration

Attention-guided reservoir porosity prediction

Input layer (seismic +

4 4
Normal flow,”
4

\ 4 ," 'I'
Encoder block2 |/’ !
(dilated conv d=2) 4

e
Normal flow;
o’

4
4
4

\ 4
Encoder block 3
(dilated conv d=4)

<
~§

logs)
Normal flow
L 4 oF
Encoder block 1 | e q_':_‘_____
(dilated conv d=1) A
P ’
o' l'

Decoder block 1
(upsample + conv)
4 . .
o Skip connection

\ 4

Decoder block 2
(upsample + conv)

Feature fusion

\ 4

Attention-guided GNN

Output prediction

\ 4
Fully connected layer
output prediction

Figure 1. Overall architecture of the U-Net++ and attention-guided graph neural network (GNN) fusion model

Abbreviation: Conv: Convolutional layer.

K

Y=(X*,, o @

de) *pw

where dw is channel-by-channel convolution, pw is a
1x1 convolution, and K, and K are convolution kernels,
respectively.

The decoder introduces dilated convolution:

Y(p)=Y W(d)-X(p+r-d)

deD

(1)

where r is the dilation rate. The effective increase in the
receptive field of the feature map is shown in Figure 2.

From the data in Table 1, it can be seen that the
improved U-Net++ model performed better than the
original version in many key indicators, and the number of
model parameters was reduced.

The number of parameters of the improved model
was reduced from 52 M to 4.8 M, a decrease of
approximately 7.7%, whereas the prediction accuracy
was significantly improved: the mean squared error
(MSE) reduced from 0.022 to 0.017 (decrease of
22.7%), the mean absolute error (MAE) reduced from
0.103 to 0.085 (decrease of 17.5%), the coefficient
of determination (R?) increased from 0.847 to 0.895
(increase of 5.7%), and the structural similarity index
measure (SSIM) increased from 0.789 to 0.832 (increase
of 5.4%). In addition, the inference time was shortened
from 0.84 s to 0.79 s, an improvement of approximately
6.0%. These data show that the improved model not only

Table 1. Comparison of the complexity and prediction
performance of the U-Net++model before and after
improvement

Model Parameter MSE MAE R* Reasoning SSIM
quantity (M) time (s)

Original 5.2 0.022 0.103 0.847 0.84 0.789

U-Net++

Improved 4.8 0.017 0.085 0.895 0.79 0.832

U-Net++

Abbreviations: MAE: Mean absolute error; MSE: Mean squared error;
SSIM: Structural similarity index measure.

reduces the computational complexity but also further
improves the accuracy and efficiency of the prediction,
achieving a balance between lightweight and high
performance.

3.3. Design of attention-guided GNN

The AG-GNN design includes three parts: node feature
encoding, adjacency relationship construction, and
attention mechanism fusion:*

(i) Node feature encoding: geological attributes, such
as well logging data porosity, seismic reflection
coeflicient, strike-slip fault index, and lithology mark,
are spliced into node vectors:

E‘ =[fi,1’fi,2’”"fi,N]

(ii) Adjacency relationship construction: Based on the
spatial coordinates of the well location (x, y, z,) and

(I10)

Volume 34 Issue 4 (2025)

73

doi: 10.36922/JSE025300044


https://dx.doi.org/10.36922/JSE025300044

Journal of Seismic Exploration

Attention-guided reservoir porosity prediction

1x1 Conv
(sigmoid)

Input (seismic +
logs)

Output

Depthwise

V(dWpeeeeccccccccccaa
separa:).I: ::;n (dw] Dec3
Depthwise
L Attt Dec2
Depthwise D eC 1

separable conv (dw
+pw)

Bottleneck

Depthwise
separable conv (dw
+pw)

Figure 2. Schematic diagram of the improved U-Net++ architecture
(including depthwise separable convolution and dilated convolution)
Abbreviation: Conv: Convolutional layer.

the structural interpretation results, the edges are
connected within a radius of 200 m:

{1, d <r
A = i
ij 0,

else
where d_is the well distance.
(iii) Attention mechanism: Combining channel attention
and spatial attention. Channel attention calculates
channel weight (w):

Iv)

w, = o (MLP(AvgPool(F)) + MLP(MaxPool(F))) (V)

Spatial attention calculates the spatial weight (“,-j)
between nodes:

exp(LeakyReLU(a'[WE P WE]))

a. = VI
Y ZkeMexp(LeakyReLU(aT[WFi WE,])) VD

The process of AG-GNN extracting cross-well spatial
features through adjacency relations is shown in Figure 3.

Well_D »{Well F

Figure 3. Attention-guided graph neural network’ spatial topology
modeling diagram

The setting of the neighbor radius has a significant
impact on the model performance, and there is an optimal
value range, as shown in Table 2.

When the neighbor radius was 200 m, the model reached
the optimal balance, with an MSE 0f 0.017, R* of 0.895, and
SSIM of 0.832—all indicators were better than other radius
settings. As the neighbor radius increased from 100 m to
200 m, the average node degree increased from 3.2 to 5.8,
prompting the model to capture richer spatial associations,
reducing MSE by 19.0% and increasing R* by 4.3%. In
contrast, when the neighbor radius exceeded 200 m, the
over-expanded receptive field (average degree 8.1 at 300 m
and 11.5 at 400 m) introduced noise associations, resulting
in performance degradation—compared with the optimal
radius, MSE deteriorated by 35.3% and SSIM decreased by
4.8% at a neighbor radius of 400 m. The calculation time
showed a monotonically increasing trend, from 0.64 s at
a neighbor radius of 100 m to 1.02 s at 400 m, an increase
of 59.4%, confirming the positive correlation between
computational complexity and adjacency radius.

In areas with dense well points, graph construction
strategies based on spatial proximity can -effectively
characterize reservoir spatial topological relationships.
However, in areas with low well control, graph structures
constructed solely based on Euclidean distances between
wells often lack connectivity, resulting in limited feature
propagation between nodes and making it difficult
to robustly model large-scale geological features. To
address this issue, this study proposed a graph structure
enhancement method that integrates multi-source
geological and geophysical information. First, a seismic
data-driven virtual node generation mechanism was
introduced. Based on the gradient characteristics of seismic
attributes, such as reflection intensity and coherence
volume, geologically significant anomalies were identified
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Table 2. Analysis of the impact of the neighbor radius on the
performance of the AG-GNN model

Table 3. Comparison of the impact of different loss function
combinations on model prediction performance

Adjacent MSE R* Average SSIM Number Computation
radius, r (m) of nodes time (s)
100 0.021 0.858 3.2 0.801 125 0.64
200 0.017 0.895 5.8 0.832 125 0.72
300 0.019 0.884 8.1 0.817 125 0.89
400 0.023 0.841 115 0.792 125 1.02

Abbreviations: MSE: Mean squared error; SSIM: Structural similarity
index measure.

in sparse inter-well areas as virtual nodes, and their feature
vectors were constructed as statistics, such as mean and
variance, corresponding to the seismic attribute window.
By establishing connections with actual well points, virtual
nodes could form information bridges in areas with low
well control, significantly improving the connectivity of
the graph. Secondly, the Euclidean distance constraint
was overcome by integrating prior knowledge such as
geological structure and sedimentary facies. Well points
located within the same fault block, sedimentary facies,
or fracture system were connected even if they were far
apart. Nodes that were spatially adjacent but had distinct
geological origins were disconnected or had their weights
reduced, making the graph structure more consistent
with geological laws. Finally, a density-adaptive dynamic
adjacency radius adjustment strategy was implemented.
A smaller radius was used in densely populated areas to
capture local details, while an expanded adjacency radius
was used in sparse areas to ensure that nodes have sufficient
neighbors and avoid isolated nodes.

3.4. Model training and loss function
The combined loss function was used in end-to-end model
training:*

L

‘total

where a (0.7), 5 (0.3), y (10™*) are weights, and 0 is a
model parameter. Regularization uses L2 regularization
and dropout (p = 0.3) to prevent overfitting; the optimizer
uses AdamW, the initial learning rate is 1 x 107, and the
learning rate scheduler StepLR decays to 0.5 times every
20 epochs.

=a -MSE(y,7)+ B-(1-SSIM(y, 7)) +7 -L2(6) (VII)

The combination of loss functions had a systematic
impact on model performance. The experimental results
are shown in Table 3.

When only MSE loss was used, the model achieved
baseline performance (MSE = 0.020, R*> = 0.861). After
the introduction of SSIM loss, various indicators were
significantly improved, among which MSE was reduced

Loss combination MSE MAE R? SSIM
MSE only 0.020 0.092 0.861 0.805
MSE+SSIM 0.017 0.085 0.895 0.832
MSE+SSIM+L2 0.016 0.083 0.902 0.837

Abbreviations: MAE: Mean absolute error; MSE: Mean squared error;
SSIM: Structural similarity index measure.

by 15.0%, R’ increased by 3.4%, and SSIM increased
from 0.805 to 0.832, an increase of 3.4%. After further
incorporating L2 regularization, the model performance
continued to improve and reached the optimal level
(MSE = 0.016, R* = 0.902), which was 20.0% lower than
the single MSE loss scheme, and R® was increased by
4.1%. The SSIM showed a stable growth trend under the
composite loss function, gradually increasing from 0.805
to 0.837, indicating that the multi-objective optimization
strategy effectively enhances the modeling ability of the
spatial structure. These quantitative results confirm that
through a carefully designed loss function combination,
the prediction accuracy and spatial consistency can be
significantly improved without increasing the complexity
of the model.

3.5. Model fusion and end-to-end prediction process

This study fed the multiscale feature map output of
U-Net++ into AG-GNN to explicitly encode the spatial
topological relationship. After graph attention, the porosity
value was predicted through the fully connected layer to
achieve end-to-end optimization. The prediction process
is shown in Figure 4.

The joint prediction of local structural differences
and global spatial associations in complex reservoirs was
achieved, effectively improving the prediction accuracy
and geological rationality.

4, Data and experimental design
4.1. Data source and description

The data used in the experiment were from the lower
oil formation in a typical continental sedimentary basin
in northwestern China. The area has typical sand-mud
interbed sedimentary characteristics, significant reservoir
heterogeneity, and frequent tectonic activities. The study
area contains 26 wells, covering an area of approximately
40 km?. The structural morphology is mainly anticline and
fault, and the sedimentary facies are mainly braided river
and delta front, providing an ideal scenario for complex
reservoir prediction.
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Figure 4. End-to-end process from seismic and well logging data to
porosity prediction
Abbreviation: AG-GNN: Attention-guided graph neural network.

This study used three types of data:
(i) Well logging data: Encompassing five types of curves,
including acoustic time difference, natural gamma,
resistivity, neutron porosity, and bulk density. The
sampling interval was 0.1 m, and the data coverage
depth range was 1,000-2,500 m. Some wells had
significant intervals of missing log data.

Seismic attribute data: Extracted based on three-

dimensional seismic data, including 12 types of

structural and stratigraphic attributes, such as
reflection coeflicient, instantaneous amplitude,

frequency, and phase. The sampling resolution is 25 m

x 25 m, and the vertical resolution corresponds to the

well depth.

(iii) Core measured porosity: As a supervised regression
label (target), a total of 1,848 sample points were
collected, with a porosity range of 2.1-21.4% and
an average of 12.7%, which was used as the training
target of this study.

(ii)

Figure 5 shows the spatial distribution of 26 wells in
the study area. The horizontal and vertical coordinates
represent the east and north coordinates of the wellhead
position (unit: km).

The well locations are evenly distributed in the region,
covering the entire target layer structure range. This
facilitated the construction of a reasonable adjacency
matrix when training the GNN, supporting efficient
modeling of spatial information. This also reflects a core
advantage of the GNN—it can use the cross-well spatial
structure for feature propagation, thereby improving the
stability of local predictions.
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Figure 5. Well location and sample spatial distribution map

4.2, Data preprocessing
4.2.1. Spatial alignment and interpolation

First, the seismic and logging data were spatially aligned,
and the geographic coordinate projection conversion
(UTM Zone 48N) was used to perform three-dimensional
interpolation based on the well location.? The interpolation
used the spline-based local weighting method to ensure
that each well point has a corresponding multiscale seismic
attribute sample.

4.2.2. Feature normalization and missing value
processing

Continuous features were normalized to the interval [0, 1],
and the minimum-maximum scaling was performed using
the following formula:

__ X= min(x) (VIID)
max(x) — min(x)

The missing curves were repaired using K-nearest
neighbor imputation (k = 5) to retain the continuity of the
physical characteristics of the well. Invalid samples (>50%
missing) were removed, and the final number of retained
samples was 1,720.

4.2.3. Feature selection

Through the Pearson correlation coeflicient and variance
analysis (ANOVA), the top eight seismic attribute features
highly correlated with porosity were retained, as shown in
Table 4.
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Table 4. Pearson correlation analysis of seismic attributes
and porosity

Serial Attribute name Correlation  Retain
number coefficient (r)

1 Reflection coefficient 0.81 Yes

2 RMS amplitude 0.76 Yes

3 Instantaneous frequency 0.68 Yes

4 Absorption attenuation coefficient —-0.63 Yes

5 Amplitude envelope 0.59 Yes

6 Multiscale GLCM texture 0.53 Yes

7 Main reflection direction 0.49 Yes

8 Inter-layer reflection difference -0.45 Yes

Abbreviations: GLCM: Gray level co-occurrence matrix; RMS: Root
mean square.

Figure 6 compares the relationship between three typical
seismic attributes (root mean square [RMS] amplitude,
instantaneous frequency, and gray level co-occurrence
matrix [GLCM] texture) and measured porosity.

The RMS amplitude was positively correlated with
porosity, and the fitting trend was relatively obvious. The
instantaneous frequency fluctuated greatly, but maintained
a certain correlation overall. The GLCM texture was
negatively correlated with the porosity, indicating that
the reservoir structure difference can be reflected from
the texture perspective. These attributes were retained in
the feature selection stage, proving their effectiveness in
characterizing reservoir properties and providing a solid
foundation for subsequent model input.

4.3. Experimental settings
4.3.1. Dataset division

To ensure the generalization ability of the model, a
stratified sampling strategy was used to divide the data into
a training set, validation set, and test set, with a ratio of
70%:15%:15%. The division results are shown in Table 5.

The average porosity of the training set (1,204 samples),
validation set, and test set (258 samples each) was 12.73%,
12.68%, and 12.71%, respectively, with a difference of no
more than 0.05%, indicating that the mean porosity remains
highly stable among different data sets. More importantly,
the porosity standard deviations of the three data sets were
4.22,4.31, and 4.19, respectively, with a range of only 0.12,
and a coefficient of variation difference of no more than
2.9%, confirming that the fluctuation characteristics of
reservoir physical properties are balanced and preserved
during the training, validation, and testing stages. When
the validation set and the test set had the same sample size
(258 samples each), the difference in statistical parameters

Table 5. Sample division results

Dataset Number of Average Standard deviation
samples porosity (%) of porosity

Training set 1,204 12.73 4.22

Validation set 258 12.68 4.31

Test set 258 12.71 4.19

was negligible: the average porosity difference was 0.03%,
and the standard deviation difference was 0.12. This strict
symmetry design effectively avoids sampling bias in
the evaluation process. Although the sample size of the
training set was 4.67 times that of the validation and test
sets, its standard deviation (4.22) was only 0.03 different
from that of the test set (4.19), indicating that large data
volume training does not sacrifice the representativeness
of data distribution.

4.3.2. Hardware and software environment

All experiments were run on Ubuntu 20.04 (Canonical
Ltd, United Kingdom), and the hardware configuration is
shown in Table 6.

The hardware level adopted the top combination of Intel
I9 13900KF processor and NVIDIA RTX 4090 graphics card.
The RTX 4090 graphics card has 24 GB GDDR6X video
memoryand 16,384 CUDA cores, thereby providing hardware
acceleration guarantee for large-scale matrix operations of
GNN:Gs; the configuration of 256 GB DDR4 memory effectively
supports the efficient access of graph structure data of complex
geological models in memory, avoiding the common memory
bottleneck problem in traditional geological modeling. In
terms of software ecology, the combination of PyTorch 2.1
and DGL 1.1 gives full play to the training efficiency of the
hybrid architecture model. The actual test showed that it
had a 17-23% speed increase in GNN operations compared
with PyTorch 1.13. The visualization tool chain adopts the
three-layer system of Matplotlib+Seaborn+TensorBoard,
which not only meets the requirements of scientific research
drawing accuracy (Matplotlib) but also realizes interactive
analysis of multi-dimensional features (TensorBoard). Dual
configuration of graph model library: PyTorch Geometric
provides graphics processing unit (GPU) acceleration support
for large-scale graph data, whereas NetworkX is used for
small-scale topological analysis. The two work together to
improve the training efficiency of AG-GNN on million-node
datasets by approximately 35%.

4.4. Comparison of baseline models

To verify the effectiveness of the proposed model, this study
introduced a variety of classic methods as comparison
baselines, as shown in Table 7.

Volume 34 Issue 4 (2025)

77

doi: 10.36922/JSE025300044


https://dx.doi.org/10.36922/JSE025300044

Journal of Seismic Exploration

Attention-guided reservoir porosity prediction

The basic CNN had only 1.2 M parameters, the
standard U-Net increased to 7.8 M, and U-Net++
further expanded to 12.5 M through dense connections;
the AG-GNN model proposed in this paper had 149 M
parameters—15.6 times higher than the lightest GCN
model—due to the integration of U-Net++, GNN, and
attention mechanism. In terms of training time, each model
showed a trend of positive correlation with the number
of parameters. Among them, CNN only took 5.6 min to
complete training, the U-Net series took 11.3-14.1 min,
and AG-GNN took 15.6 min to train due to its complex

Table 6. Experimental platform configuration

hybrid architecture—178% more than the fastest CNN.
Although GCN and GAT are both GNNs with similar
parameters (0.9 M vs. 1.1 M), GAT increases the training
time by 35.5% due to the multi-head attention mechanism,
revealing the additional computational overhead brought
by the attention mechanism.

4.5. Validation indicators

To comprehensively evaluate the performance of the model,
the following indicators were set from multiple dimensions,
such as prediction accuracy, spatial consistency, and model
efficiency:"%

(i) Mean squared error:

Hardware/software Description
. . 1 ¢ .2

Central processing unit Intel I9 13900KF MSE = _Z( ¥, =7, ) (IX)
Graphics processing unit NVIDIA RTX 4090 i=1
RAM 256 GB DDR4 (ii) Mean absolute error:
Deep learning Library PyTorch 2.1, DGL 1.1
Visualization tools Matplotlib, Seaborn, TensorBoard 1 9

. ) MAE:_Z|yi_yi| (X)
Graph model library PyTorch Geometric (PyG), NetworkX ng
Table 7. Overview of the baseline models and comparison of structural parameters
Model Type Feature extraction Whether to model Number of Training

structure spatial structure parameters (M) time (min)
CNN Convolutional neural 3-layer standard Conv No 1.2 5.6
network (CNN)

U-Net Encoder-decoder UNet-5 level No 7.8 11.3
U-Net++ Improved U-Net Dense skip+nested No 12.5 14.1
GCN Graph neural network 2-layer GCN Yes 0.9 6.2
GAT Attention graph network 2-layer GAT, 8-head Yes 1.1 8.4
AG-GNN (ours) Fusion model U-Net++ + GNN-+attention Yes 14.9 15.6

mechanism

Abbreviations: AG-GNN: Attention-guided graph neural network; GAT: Graph attention networks; GCN: Graph convolutional network; GNN: Graph

neural network.
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Figure 6. Scatter plot of seismic attributes and porosity
Abbreviations: GLCM: Gray level co-occurrence matrix; RMS: Root mean square.
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(iii) Coefhicient of determination:

R? =1_Zl()/i—_)/i) (XI)

Z(yi_y)Z

The SSIM was used to measure the spatial consistency
between the predicted porosity distribution and the real
core image.

Qu.p, +C)20,, +C,)

SSIM(x,y) =
Y+ )0 +ol +Cy)

(XII)

Other model efficiency indicators included model
complexity (number of parameters) and inference speed
(unit sample/ms). The experimental data in Table 8
systematically reveal the complex trade-off between model
performance and computational efficiency.

The proposed AG-GNN model led in all four core
indicators: its MSE (4.62) was 14.9% lower than the
second-best U-Net++, MAE (1.24) was 19.0% lower than
GAT, R*(0.912) and SSIM (0.831) were 2.6% and 3.7%
higher than U-Net++, respectively. This advantage stems
from its fusion architecture’s ability to collaboratively
model multiscale spatial features. Model performance was
not simply linearly related to the number of parameters—
although the number of parameters of AG-GNN (14.9 M)
was 16.6 times that of GCN (0.9 M), its MSE decreased by
25.2%; whereas U-Net++ had only improved its MSE by
9.8% when the number of parameters increased by 60.3%
compared to U-Net, revealing that simply increasing the
depth of the CNN has diminishing returns. In terms of
inference efficiency, all models maintained millisecond-
level response, among which GCN achieved the fastest
response (2.0 ms) with its simple graph structure operation.
Although AG-GNN (3.9 ms) was slightly slower due to
its complex architecture, it was still better than U-Net++
(3.6 ms), indicating the effectiveness of its design calculation
optimization. GAT’s SSIM (0.777) was significantly better

Table 8. Evaluation indicators of each model in the test set

Model MSE MAE R* SSIM  Parameter Inference
quantity (M)  speed (ms)
CNN 7.54 192 0.832 0.712 1.2 2.1
U-Net 6.02 1.67 0.864 0.759 7.8 3.2
U-Net++ 543 1.48 0.889 0.801 12.5 3.6
GCN 6.18 1.69 0.857 0.744 0.9 2.0
GAT 571 1.53 0.873 0.777 1.1 2.5
AG-GNN 4.62 124 0912 0.831 14.9 39

Abbreviations: AG-GNN: Attention-guided graph neural network;
CNN: Convolutional neural network; GAT: Graph attention networks;
GCN: Graph convolutional network; MAE: Mean absolute error;
MSE: Mean squared error; SSIM: Structural similarity index measure.

than GCN (0.744) with similar parameter volume (1.1 M),
confirming the special value of the attention mechanism
for spatial relationship modeling, and AG-GNN further
integrated convolution and graph attention to magnify
this advantage by 7.1%. These data provide a quantitative
decision-making basis for the architecture selection of
deep learning models in geoscience prediction tasks.

Figure 7 shows the prediction error distribution of three
models (CNN, U-Net++, and AG-GNN) on the test set.

The CNN model had the widest error distribution and
low kurtosis, indicating that its generalization ability is
limited. U-Net++ was significantly improved, with higher
error concentration. Meanwhile, AG-GNN presented
the narrowest error distribution, with errors mainly
concentrated in the range of +1.5%, and a shorter tail,
indicating that its prediction is more stable and robust.
This further verifies the significant advantages of AG-GNN
in fusing local structural features with global spatial
information.

5. Experimental results and analysis

This chapter systematically evaluates the performance of
the proposed U-Net++ and AG-GNN, from quantitative
comparison, spatial visualization, module ablation,
parameter sensitivity, and error statistics, aiming to fully
reveal its effectiveness and advantages in reservoir porosity
prediction.

5.1. Quantitative evaluation

Table 9 presents the accuracy indicators of the six models
on the test set, including MSE, MAE, R?, and SSIM.

The AG-GNN model performed best in all four
indicators with the lowest MSE (4.62) and the highest
R? (0.912), indicating that its prediction accuracy and

3 NN
0 U-Net++
[0 AG-GNN (ours)

Frequency
9

0
Prediction error (%)

Figure 7. Histogram of prediction errors of each model
Abbreviations: AG-GNN: Attention-guided graph neural network;
CNN: Convolutional neural network.
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Table 9. Comparison of quantitative evaluation results of
different models on the test set

Model MSE MAE R? SSIM
CNN 7.54 1.92 0.832 0.712
U-Net 6.02 1.67 0.864 0.759
U-Net++ 5.43 1.48 0.889 0.801
GCN 6.18 1.69 0.857 0.744
GAT 5.71 1.53 0.873 0.777
AG-GNN 4.62 1.24 0.912 0.831

Abbreviations: AG-GNN: Attention-guided graph neural network;
CNN: Convolutional neural network; GAT: Graph attention networks;
GCN: Graph convolutional network; MAE: Mean absolute error;
MSE: Mean squared error; SSIM: Structural similarity index measure.

spatial consistency are significantly better than the other
models.

5.2. Spatial distribution visualization

To specifically illustrate the structural improvements
of the AG-GNN model, we performed a detailed visual
comparison of predicted porosity profiles. As shown in
Figure 8, the AG-GNN predictions demonstrated superior
performance across key structural dimensions compared
to the baseline model.

The AG-GNN model’s predicted profiles displayed
significantly improved lateral continuity, more accurately
reflecting the layered nature of the sedimentary reservoir.
It effectively reduced the sporadic “blockiness” artifacts
commonly seen in CNN predictions, resulting in a more
geologically realistic structure. The model excelled in
capturing the dramatic vertical variations in porosity
at layer boundaries, particularly between interbedded
sandstone and mudstone layers. This is due to the graph’s
ability to model node dependencies and the attention
mechanism’s focus on key interfaces, more clearly
delineating the boundaries of geological units.

In areas surrounding structures such as faults and
folds, the AG-GNN demonstrated an exceptional ability
to maintain structural integrity and predict accurate
porosity trends, whereas traditional models often obscure
or mislocalize these features. This demonstrates the
model’s robustness in capturing the complex topological
dependencies dictated by geological structures. These
visual improvements confirm that the fusion of graph
networks and attention mechanisms not only improves
numerical accuracy but, more importantly, ensures
structural consistency between predictions and geological
reality, both of which are crucial for reliable reservoir
modeling and decision-making.
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Figure 8. Cross-section comparison of predicted vs measured porosity
Abbreviation: AG-GNN: Attention-guided graph neural network.

5.3. Ablation experiment analysis

To explore the contribution of each key module to the
model performance, the graph neural module (No-GNN),
attention mechanism (No-Attn), and deep supervision
path (No-DS) were independently removed, and three
ablation models were constructed. The comparison results
are shown in Table 10.

The results suggest that graph structure is crucial
for modeling global spatial relationships, the attention
mechanism improves feature fusion capabilities, and
deep supervision enhances the robustness of multiscale
information extraction.

5.4. Parameter sensitivity analysis

This section analyzes theimpact of two key hyperparameters
on model performance: (i) graph adjacency radius (r) and
(ii) learning rate (7). Figure 9 shows the MSE changes of
the model under different r values, and Figure 10 shows the
convergence trend of different #.

Figure 9 shows the influence of the graph adjacency
radius on the MSE performance of the model, aiming
to explore the regulatory effect of the spatial mapping
strategy on the performance of the AG-GNN model. As
the adjacency radius gradually increased from 0.2 km
to 1.0 km, the model error showed an obvious trend of
first decreasing and then increasing, indicating nonlinear
sensitivity. The optimal performance occurred at a radius of
0.6 km, where the MSE was the lowest at 4.62. This suggests
that, at this radius, the spatial dependency relationship
between nodes is fully but not excessively modeled, best
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Table 10. Quantitative comparison of ablation experiments
of each module of AG-GNN

Model Module removal MSE MAE R?

AG-GNN None 4.62 1.24 0912
No-Attn  Attention mechanism 528 142 0.883
No-GNN  Graph neural network architecture 594  1.61 0.861
No-DS Deep supervision path 537 149 0.874

Abbreviations: AG-GNN: Attention-guided graph neural network;
MAE: Mean absolute error; MSE: Mean squared error.
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Figure 9. Effect of graph adjacency radius on mean squared error
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Figure 10. Training loss under different learning rates
Abbreviation: Ir: Learning rate.

reflecting the expression advantage of the graph structure.
When r < 0.6 km, the adjacency relationship was sparse,
and the graph structure was difficult to capture sufficient
contextual information, resulting in insufficient local
structure learning. When r > 0.6 km, excessive connections
introduced redundant or even interfering information,

reducing the generalization ability and expression accuracy
of the model.

Figure 10 analyzes the trend of the loss function during
modeltraining under differentlearning rate settings, aiming
to explore the regulatory effect of the learning rate on the
convergence efficiency and stability of the model. When
the learning rate was at 0.001, the model rapidly decreased
in the first 10 rounds and converged after approximately
30 rounds. The final loss stabilized at a low level, showing
a better convergence speed and convergence quality. In
contrast, although the training process was smoother with
a smaller learning rate (1 = 0.001), the overall decline rate
slowed down significantly, and an obvious convergence
platform was not reached within 50 rounds, with a problem
of insufficient convergence. The moderate to small learning
rate (# = 0.0005) showed medium speed and stability, and
the final loss was slightly higher than when # was 0.001.
Comprehensively comparing the final loss values and the
number of convergence rounds under different learning
rates, an 7 of 0.001 achieved a good balance between
accuracy and efliciency—its final training error was less
than 0.12 and was basically stable at approximately 35
rounds. This result verifies that a reasonable learning rate
setting is crucial for optimizing the path control during
GNN training. Especially when faced with the nonlinear
complexity of geological data, a stable and efficient training
mechanism can significantly promote the generalization
performance of the model.

5.5. Statistical tests

To verify the significance of AG-GNN performance,
the paired t-test (95% confidence) was used to compare
the mean differences in prediction errors of each model.
Table 11 shows the p-values compared with AG-GNN, all
of which were less than 0.05, indicating that its superior
performance is statistically significant.

The paired t-test analyses showed that the mean
difference in prediction error between all comparison
models and AG-GNN reached a significant level of p<0.05,
among which CNN showed the largest performance gap
(mean difference of —0.68), with an extremely low p-value
(0.00012) that statistically rejects the null hypothesis with
99.988% confidence. Although the gap between U-Net++
and AG-GNN was relatively small (-0.24), the p-value
(0.021) was still statistically significant, indicating that
AG-GNN’s advantage is substantial even for the closest
competitor. The mean differences of GCN and U-Net were
—0.45 and —0.43, respectively, with a statistical confidence
of more than 99.7% (p=0.0036 and 0.0028, respectively).
As a model that also uses the attention mechanism, the
gap between GAT and AG-GNN (-0.29) was significant
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Table 11. Statistical test results of AG-GNN with other models

Model Mean difference p-value
CNN —-0.68 0.0001*
U-Net -0.43 0.0036*
U-Net++ -0.24 0.0210*
GCN —-0.45 0.0028*
GAT -0.29 0.0074*

Note: *p<0.05. Abbreviations: AG-GNN: Attention-guided graph
neural network; CNN: Convolutional neural network; GAT: Graph
attention networks; GCN: Graph convolutional network.

(p=0.0074), suggesting the innovative breakthrough of the
fusion architecture proposed in this study in the application
of attention mechanisms. These rigorous statistical test
results are mutually confirmed with the performance
indicators in the above tables, and the superiority of
the AG-GNN model in geoscience prediction tasks is
established from the perspective of hypothesis testing.

5.6. Error analysis

Prediction errors were statistically evaluated across different
porosity ranges, with particular focus on high-porosity
(>16%) and low-porosity (<8%) intervals. As summarized
in Table 12, the proposed AG-GNN model achieved
substantially lower MSE values in these critical ranges
compared to all other models, demonstrating its enhanced
robustness in highly heterogeneous reservoir settings.

The proposed AG-GNN model achieved an MSE of
5.41 in the high-porosity range, representing reductions
of 42.6% and 23.1% compared to CNN and U-Net++,
respectively. In the low-porosity range, its MSE of 5.21
corresponded to error reductions of 40.7% and 24.9%
relative to the same benchmarks. The model also excelled
in medium-porosity predictions, with an MSE of 3.92—
18.7% lower than that of U-Net++ (4.82), the second-best
performer.

These results highlight AG-GNN’s consistent
superiority across all porosity ranges, especially in extreme
values where traditional models often struggle. Notably,
the error inflation observed in CNN models—56.9%
for high porosity and 46.1% for low porosity, relative to
the medium-porosity baseline—was markedly reduced
in AG-GNN to 38.0% and 32.9%, respectively. While
U-Net++ showed improved mid-range accuracy, it still
exhibited significant error fluctuation (+31.5%) in extreme
ranges. In contrast, AG-GNN narrowed this fluctuation to
+24.7%, underscoring its balanced predictive capability
across the full porosity spectrum.

Figure 11 shows the comparison of the prediction
residual distribution between the AG-GNN model

Table 12. Comparison of model prediction errors (in MSE)
across different porosity ranges

Model High porosity Medium Low porosity
section porosity section section
CNN 9.42 6.01 8.78
U-Net++ 7.03 4.82 6.94
AG-GNN 5.41 3.92 5.21

Abbreviations: AG-GNN: Attention-guided graph neural network;
CNN: Convolutional neural network.
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Figure 11. Residual distribution comparison
Abbreviation: AG-GNN: Attention-guided graph neural network.

and the benchmark model. Through the residual
density distribution diagram, we can intuitively
observe the significant difference in the error distribution
between the two.

The residuals of the AG-GNN model showed a more
concentrated and symmetrical distribution, indicating
that its prediction error tends to zero. Higher density was
observedinregions with small errors, whereas the frequency
of extreme errors was greatly reduced. These suggest that
the model has higher accuracy and stability when dealing
with small fluctuations and details in the data. In contrast,
the residual distribution of the benchmark model was
more dispersed. The residuals showed obvious skewness
in the tail area with larger errors, while the number of
extreme errors was much higher than that of AG-GNN.
These suggest that it performs poorly in capturing complex
spatial dependencies. Further quantification, the MAE of
the AG-GNN model was 0.016, and the standard deviation
was 0.034, indicating that its error control is more precise.
The MAE of the benchmark model was 0.045, and the
standard deviation was 0.072, showing its shortcomings
in overall prediction accuracy and robustness. Overall,
Figure 11 fully demonstrates the ability of AG-GNN in
capturing spatial structural relationships and reducing
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prediction errors through the comparison of residual
distributions, and verifies the advantages and reliability of
the model in the prediction of complex geological data.

5.7. Geological significance analysis based on
attention weights

To quantitatively evaluate the geological patterns captured
by the attention mechanism, this study statistically
analyzed the channel attention weights and the spatial
coupling relationship between regions with high attention
weights (>90™ percentile) and key geological features. The
results are shown in Tables 13 and 14.

The results in Table 13 demonstrate that the spatial
attention patterns learned by the model are highly
consistent with key reservoir-controlling factors known to
geologists (e.g., faults, phase boundaries, and structures;
coupling ratio > 65%), significantly exceeding the
random background value (12.3%). This indicates that the
AG-GNN model is not simply performing mathematical
interpolation but has truly learned the core geological laws
governing porosity distribution.

The results in Table 14 show that the reflection
coeflicient was assigned the highest importance by the
model, which is consistent with geophysical principles, as
it most directly reflects lithology and porosity information.
Attributes related to fluid effects, such as RMS amplitude
and instantaneous frequency, rank highly, suggesting that
the model may indirectly capture signals related to oil and

Table 13. Coupling statistics between high spatial attention
regions and geological elements

Geological elements Coupling ratio of high
attention areas (%)

Both sides of the fault zone (200 m buffer) 85.4

Boundary of the main channel sand body 78.2

Axis of the anticline structure 65.1

Random distribution throughout the area 12.3

Table 14. Ranking of seismic attributes based on channel
attention weights

Ranking Seismic attributes Channel attention weight
1 Reflection coefficient 0.251
2 RMS amplitude 0.198
3 Instantaneous frequency 0.163
4 Absorption coefficient 0.142
5 Amplitude envelope 0.112
6 GLCM texture 0.086
7 Main reflection direction 0.048

gas distribution in the study area when predicting porosity.
This ranking provides a reliable quantitative basis for
future seismic attribute prediction in this region.

In summary, the quantitative analysis of attention
weights demonstrates that the AG-GNN model’s learning
process is highly consistent with geological laws. Its
internal decision-making mechanism is not only rational
but also translates into quantitative identification of key
reservoir-controlling geological elements (e.g., faults
and phase boundaries) and effective seismic attributes.
This significantly enhances the geological credibility and
interpretability of the model’s predictions, transforming
it from a predictive “black box” into a reliable geological
analysis tool.

6. Discussion

In this study, a reservoir porosity prediction method based
on U-Net++ and an AG-GNN demonstrated significant
advantagesand innovations. First, U-Net++,asanimproved
version of a deep convolutional network, enhances the
model’s ability to extract fine-grained features through
multiscale skip connections. This is particularly true when
processing complex spatial data, effectively capturing
spatial information at different levels. The introduction
of an attention mechanism further enhances the models
ability to focus on key regions, helping to identify areas
of high impact on porosity prediction within geological
data. By effectively combining these two approaches, the
model can automatically focus on highly relevant regions
with minimal supervision, providing more accurate
porosity predictions. Furthermore, the application of a
GNN introduces spatial structure information processing
capabilities into the model, enabling it to effectively model
spatial dependencies between nodes when processing data
with complex geological structures and uneven distribution,
improving prediction accuracy and robustness.

Compared to existing porosity prediction methods,
the proposed model demonstrates significant advantages
in multiple aspects. Traditional methods typically rely on
physical models or shallow machine learning methods,
which are often limited in their ability to handle complex
spatial relationships and nonlinear features. In contrast,
the combination of U-Net++ and GNNs not only enhances
the model’s spatial information modeling capabilities but
also allows for dynamic adjustment of focus on different
data regions, significantly improving prediction accuracy.
Comparisons with baseline models demonstrate that the
proposed model achieves superior performance across
multiple evaluation metrics, such as MSE, R’ and the
centrality of the residual distribution. This improvement
not only demonstrates the algorithm’s advanced nature but
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also provides new insights and methodologies for solving
similar geological problems in the future.

Compared with the methods used in recent studies that
combine deterministic seismic inversion with attribute
interpretation,® or rely on technical approaches such
as 3D seismic attribute enhancement and geological
illumination,® as well as 3D automatic interpretation
strategies based on relative geological models and
stratigraphic slices,” the AG-GNN model in this study has
achieved a fundamental breakthrough. Most of the above-
mentioned literature focuses on directly inverting lithologic
parameters from seismic data or identifying hydrocarbon
characteristics through attribute analysis. Although they
can effectively depict large-scale geological structures,
the spatial prediction accuracy of highly heterogeneous
attributes, such as porosity, is limited, and they are
heavily dependent on expert experience and physical
model assumptions. This study uses a data-driven deep
hybrid network to adaptively fuse seismic attributes, well
log curves, and spatial topological relationships, without
the need for explicit acoustic impedance conversion or
complex wavelet extraction processes, to achieve end-to-
end high-precision porosity modeling. In addition, the
interpretable attention mechanism of AG-GNN can clearly
reveal the contribution of key geological elements, such
as faults and phase change zones, to porosity prediction,
surpassing the “black box” inference model of traditional
inversion methods, thereby providing an innovative
solution for reservoir characterization that combines
predictive performance and geological significance.

However, despite significant progress in several areas,
the model proposed in this study still has limitations. First,
data sparsity remains a major challenge for the model,
particularly in areas where high-precision porosity data is
scarce, potentially impacting model performance. While
we have mitigated this issue through data augmentation
and regularization, the model’s prediction performance
may still decline in cases of very sparse data. Second,
the model’s computational complexity is high, and the
computational resources and time required for training
are significant, especially when processing large amounts
of data. Specifically, on a workstation equipped with an
NVIDIA RTX 4090 graphics card, the AG-GNN model
achieved an inference time of approximately 3.9 ms for a
single well and completed porosity prediction for all 26
wells in the entire region in approximately 0.1 s. Model
training took approximately 15.6 min, which is expected
to be reduced to less than 10 min using professional-
grade GPUs, such as V100 or A100. While current
performance meets the requirements of practical
exploration cycles, further optimization of computational

efficiency is needed for larger areas or higher-resolution
data scenarios.

Furthermore, geological data are inherently uncertain,
and robust decision-making requires quantifying the
uncertainty of predictions. The deterministic prediction
framework currently employed in this study does not
provide uncertainty bands, confidence intervals, or
Bayesian inference results, thereby limiting the models
application in risk-sensitive scenarios. Understanding the
reliability and range of variation of predictions is crucial
for practical oil and gas exploration decisions. Future
improvements will consider incorporating methods such
as Monte Carlo dropout or Bayesian neural networks to
generate probability distributions and confidence intervals
for each prediction point, thereby enabling a quantitative
assessment of prediction uncertainty and providing
decision makers with a more comprehensive basis for risk
analysis.

Although the model performs well in local areas, its
generalization capabilities still need to be improved. The
current model is primarily trained and validated based on
data from specific oil and gas blocks. When applied to other
regions with significantly different geological backgrounds,
predictive performance may decline. This indicates that the
model is sensitive to differences in data distribution when
transferred across regions, making it difficult to maintain
stable prediction accuracy in situations with significant
differences in lithology, reservoir formation conditions,
and sedimentary environments. Furthermore, because the
training data are primarily derived from a limited sample,
the model still has shortcomings in capturing universal
geological characteristics and is prone to overfitting
to local features. Future research should consider
incorporating methods such as transfer learning, multi-
source data fusion, and domain adaptation to enhance the
model’s generalization capabilities across different regions
and complex geological conditions, thereby expanding its
application value in a wider range of oil and gas exploration
scenarios.

In terms of potential engineering applications, the
reservoir porosity prediction method based on U-Net++
and AG-GNN offers valuable insights for oil and gas
exploration and development. Accurately predicting
reservoir porosity distribution provides crucial geological
evidence for reservoir evaluation and development
decisions. This is particularly true in the early stages
of oil and gas field exploration, helping to determine
optimal drilling locations and development strategies,
thereby optimizing resource utilization. Furthermore,
the model offers significant flexibility, allowing for
adjustment and optimization based on diverse geological
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conditions and data characteristics, providing a viable
technical approach for reservoir prediction in complex
geological settings.

Future research will focus on expanding and optimizing
several key areas. First, multimodal data fusion is a key
research direction. By combining multiple sources of
information, such as core images, well logging data, and
seismic data, we can more comprehensively characterize
reservoir porosity and enhance the model’s predictive
capabilities. Second, we will focus on developing a
probabilistic prediction framework. Using ensemble
learning or Bayesian methods, we can quantify uncertainty
in prediction results, output confidence intervals, and
generate probability distribution plots, thereby enhancing
the model’s practicality and reliability in exploration
decision-making. Reservoir porosity not only exhibits
spatial distribution characteristics but also displays
temporal evolution patterns. Predicting porosity evolution
trends using time-series data will provide more accurate
long-term forecasts for oil and gas field development.
Finally, in terms of model expansion, improving the model’s
generalization capabilities to adapt to porosity prediction
needs in diverse geological environments will be a core
topic for future research. Further research in these areas
will further promote the application and development of
porosity prediction technology based on deep learning and
GNNes in oil and gas exploration.

7. Conclusion

This study addressed the challenge of fine-scale reservoir
porosity prediction in geologically heterogeneous settings
and proposed a hybrid framework integrating U-Net++
with an AG-GNN. By combining multiscale convolutional
feature extraction, explicit graph-based spatial topology
modeling, and dual-channel attention mechanisms,
the model achieves significant improvements in both
predictive accuracy and geological interpretability.

Quantitative experiments on a continental sedimentary
basin dataset (26 wells, ~40 km?) demonstrated the
effectiveness of the proposed method. The AG-GNN
achieved an MSE of 4.62, MAE of 1.24, R? of 0.912, and
SSIM of 0.831, representing improvements of 14.9-38.7%
in error reduction compared with widely adopted
deep learning models, such as U-Net++ and graph-
based methods. Particularly, the model showed robust
performance in extreme porosity intervals (>16% and
<8%), where prediction errors were reduced by 23.1-
42.6%, addressing a long-standing weakness of traditional
methods. Ablation studies further confirmed the
contribution of each module: the graph structure reduced
MSE by 19.0%, the attention mechanism by 15.0%, and

deep supervision by 12.5%, underscoring the synergistic
effect of the hybrid architecture.

Beyond numerical superiority, the interpretability
analysis based on attention weights revealed strong
alignment between high-weight regions and geologically
meaningful  structures, such as faults, channel
boundaries, and anticline axes. This not only validates
the physical plausibility of the model’s decision-making
process but also provides an advantage over previous
“black-box” approaches, which often lack geological
transparency. Compared with prior studies that rely
heavily on deterministic seismic inversion or geostatistical
interpolation, our method demonstrates superior
adaptability to complex, nonlinear, and sparse datasets,
offering a scalable and data-driven alternative.

Looking forward, challenges remain in improving
cross-regional  generalization under heterogeneous
geological backgrounds and in incorporating uncertainty
quantification for risk-sensitive decision-making. Future
work will focus on multi-source data fusion, temporal
modeling of porosity evolution, and transfer learning
strategies to extend applicability across diverse reservoirs.
With the continued growth of computational resources and
geoscience datasets, the proposed AG-GNN framework
holds strong potential to become a practical and reliable
tool for hydrocarbon exploration, unconventional reservoir
evaluation, and data-driven reservoir management.
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