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REVIEW

Advances in theoretical and technical 
approaches for seismic prediction of reservoir 
permeability

Lele Wei , Lideng Gan* , Hao Yang , Xinyu Li , Gang Hao , and Xiaoyu Jiang
Research Institute of Petroleum Exploration and Development, PetroChina Company Limited, 
Beijing, China

Journal of Seismic Exploration

Abstract
Reservoir permeability serves as a critical parameter for unconventional reservoir 
characterization and hydrocarbon recovery optimization. However, complex 
petrophysical mechanisms and multifactorial coupling make its seismic prediction 
face significant challenges. This review comprehensively synthesized advances 
and limitations across three dominant methodologies: (i) dispersion/attenuation-
based methods, limited by petrophysical assumptions, scaling issues, and non-
uniqueness; (ii) pore structure-constrained methods, enhancing prediction accuracy 
but hindered by oversimplification and high-dimensional inversion instability; and 
(iii) artificial intelligence frameworks, offering data efficiency yet challenged by error 
propagation, overfitting vulnerability, and geologically implausible extrapolation. 
Comparative analysis revealed core bottlenecks in inadequate multiscale coupling 
between petrophysical mechanisms and data-driven approaches. These challenges 
are compounded by the absence of cross-disciplinary validation frameworks. To 
address these challenges, this review integrated interdisciplinary perspectives 
from seismic exploration, petrophysics, and machine learning. It proposed a 
tripartite permeability prediction paradigm unifying physical mechanisms, data-
driven techniques, and engineering validation. This framework encompasses: first, 
advancing multi-porosity fluid-solid coupling theory and pore structure-constrained 
rock physics models; second, constructing physics-guided multimodal learning 
architectures that deeply embed differentiable physical laws (e.g., Darcy-Biot theory) 
within cross-scale physics-informed neural networks, coupling microscopic pore 
network simulations with macroscopic seismic responses; third, establishing a closed-
loop workflow covering digital rock core simulations, blind well testing validation, 
production history matching, and dynamic data-driven evolution, thereby forming a 
quantifiable and iteratively upgradable technological system. This paradigm provides 
a multiscale approach for accurately characterizing permeability in unconventional 
reservoirs, and it establishes foundational theoretical principles and delineates 
practical implementation pathways for economically viable unconventional resource 
development.
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Pore structure; Artificial intelligence
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1. Introduction
Reservoir permeability is a critical parameter for 
unconventional reservoir classification. It directly governs 
reservoir simulation outcomes and serves as an essential 
element in reservoir engineering, with significant 
implications for field development.1-3 Seismic data provide 
a cost-effective characterization of lateral formation 
distribution and inter-well reservoir properties due to their 
extensive spatial coverage and relatively low acquisition 
costs. Therefore, to enhance prediction accuracy, developing 
effective seismic prediction methodologies for reservoir 
permeability holds substantial theoretical and practical 
value for optimizing the exploration and development of 
low-porosity and low-permeability reservoirs.4

Research on geophysical permeability prediction has 
primarily evolved along three trajectories over recent 
decades:5 (i) numerical simulations grounded in classical 
rock physics models or laboratory core measurements, 
(ii) well-log-based permeability interpretation, and 
(iii) seismic inversion of permeability parameters. While 
core measurements deliver high accuracy, they are expensive, 
time-intensive, and spatially limited to discrete sample 
points. Well-log-based permeability offers continuous 
vertical profiles with moderate accuracy but remains 
costly and inherently localized (“single-well” perspective), 
lacking lateral continuity for areal development guidance. 
In contrast, seismic methods provide economically 
viable and laterally extensive formation characterization. 
Nevertheless, the complex and non-explicit relationship 
between permeability and seismic responses, compounded 
by multifactorial controls, renders seismic permeability 
prediction a persistently challenging frontier.

A pivotal 2001 United States Department of Energy 
workshop engaged 15 experts from industry, national labs, 
and academia to evaluate the detectability and invertibility 
of permeability within seismic data. Pride’s synthesis 
confirmed that permeability information resides within 
seismic-frequency observations and outlined potential 
inversion frameworks, catalyzing significant research 
momentum.6 Current seismic permeability prediction 
methodologies converge on three dominant approaches: 
dispersion/attenuation-based methods, pore structure-
based techniques, and artificial intelligence (AI)-driven 
solutions.

Seismic permeability prediction currently resides in a 
phase of methodological exploration, challenged by the 
strongly nonlinear and implicitly coupled mechanisms 
between permeability and seismic responses. Permeability 
is governed by multifaceted controls, notably pore-throat 
architecture. These controls fundamentally impede 
the establishment of robust porosity and permeability 

mapping models based solely on core or well-log data. 
Consequently, effective permeability prediction in complex 
reservoirs remains elusive. Despite inherent obstacles, 
including theoretical model misfit and solution non-
uniqueness, seismic permeability prediction persists as a 
frontier research focus. It lies at the interface of geophysics 
and reservoir engineering. This persistence is driven by its 
critical value in dynamic reservoir characterization. Recent 
advances in deep learning have accelerated data-driven 
methodologies. However, three persistent bottlenecks 
endure: (i) traditional rock physics models, such as the Biot-
Squirt (BISQ) framework, exhibit limited generalizability 
in highly heterogeneous formations, failing to accurately 
quantify the coupling of pore-throat architecture with 
seismic wavefields; (ii) machine learning approaches 
establish nonlinear mappings, but they suffer from 
interpretability deficits and physical decoupling, producing 
predictions unconstrained by geological plausibility; and 
(iii) multiscale data integration across core-log-seismic 
domains lacks standardized protocols, with information 
degradation during upscaling constraining prediction 
accuracy.

This review systematically synthesized technological 
advancements in seismic permeability prediction through 
a structured analysis of three dominant methodologies: 
dispersion/attenuation-based techniques leveraging 
frequency-dependent velocity characteristics, pore 
structure-oriented approaches, and AI-driven solutions 
employing deep learning architectures. By evaluating 
the theoretical foundations, technical advantages, 
and limitations of these paradigms, we proposed a 
transformative “dual-engine” predictive framework that 
embedded rock physics constraints within deep learning 
infrastructures. This mechanism and data co-driven model 
integrates theoretical rigor with data-adaptive capability, 
particularly through physics-informed neural networks. 
As a result, the model overcomes applicability barriers in 
complex reservoirs where traditional methods falter.

The subsequent sections of this paper are organized as 
follows: Section 2 elaborates on the theoretical foundations 
and representative techniques of dispersion/attenuation-
based methods. Section 3 focuses on the key technologies 
and applications of pore structure-based methods. Section 
4 analyzes the progress and challenges of AI-driven 
solutions. Section 5 explores potential future research 
directions. Finally, Section 6 concludes the review.

2. Permeability prediction methods based 
on dispersion and attenuation
These approaches comprise three primary categories: 
(i) theoretical model-based inversion, (ii) velocity 

https://dx.doi.org/10.36922/JSE025310050
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dispersion/quality factor prediction, and (iii) fluid mobility 
attribute prediction.

2.1. Model-based inversion

Theoretical forward modeling investigates how 
reservoir parameters (e.g., porosity, permeability, and 
fluid saturation) influence seismic wave propagation 
characteristics (e.g., dispersion, attenuation, and reflection 
coefficients), providing foundations for geophysical 
parameter inversion. Typically, this inversion seeks an 
optimal permeability value within predefined bounds, 
minimizing misfit between model-predicted and observed 
P-wave velocity dispersion or quality factor, effectively 
transforming permeability estimation into an optimization 
problem. Some typical model-based inversion methods are 
summarized in Table 1.

The BISQ model, incorporating both Biot flow and squirt 
flow mechanisms, effectively explains high dispersion/
attenuation in seismic frequencies. Nie et al.7 implemented 
BISQ-based inversion using niche genetic algorithms, 
while Zhang et al.8 derived 3D anisotropic dispersion 
equations and analyzed azimuthal dispersion effects on 
permeability inversion. To address inherent limitations 
of genetic algorithms (e.g., premature convergence and 
poor local search), Fang and Yang9 developed a hybrid 
genetic-simulated annealing algorithm demonstrating 
superior accuracy and convergence. In addition, a series 
of advancements in reservoir parameter inversion was 
achieved based on the BISQ model.10,11 White12 and 
White et al.13 complemented the macroscopic-scale Biot 
theory and microscopic-scale squirt flow mechanisms 
and introduced a mesoscopic dissipation mechanism, 
finally deriving frequency-dependent attenuation and 
dispersion functions for partially saturated porous media 
parameterized using permeability, porosity, and pore-
fluid properties. Johnson14 subsequently extended White’s 
model to accommodate arbitrarily sized fluid patches 
by incorporating geometric characteristic parameters 
S/V and T. Later, Sun15 integrated these tri-scale 
(macro-meso-micro) dispersion-attenuation mechanisms 
to develop the Biot-patchy-squirt (BIPS) model, which 

characterized wave dispersion and attenuation in 
immiscible fluid-saturated fractured poroelastic media. In 
the aforementioned models, permeability characterization 
requires inversion through attenuation response without 
establishing an explicit theoretical relationship. For example, 
in the mesoscopic White’s layered patchy saturation model, 
White12 derived the expression for the complex modulus 
of P-waves (E[ω]), which implicitly encoded permeability 
information. Relying on this discovery and applying plane 
wave theory, one can compute the phase velocity (Vp) and 
inverse quality factor (Q−1).
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where L denotes the thickness of the porous layer, 
KBGH represents Hill’s approximate expression of the 
Gassmann modulus at high frequencies, N signifies the 
shear modulus of the dry rock frame, γ indicates the ratio 
of fast P-wave fluid tension to total stress, ƞ refers to the 
viscosity coefficient, κ designates the permeability, ω is 
the angular frequency, KE denotes the effective modulus of 

Table 1. Theoretical and application characteristics of typical model‑based inversion methods

Model name Core mechanism Target reservoir type Permeability representation

BISQ Coupling of Biot flow and squirt flow Medium‑high porosity/permeability 
sandstones

Implicit (inverted via attenuation response)

White/Johnson Mesoscopic fluid patch dissipation Partially saturated porous media Implicit (inverted via attenuation response)

BIPS Macro‑meso‑micro coupling Fracture‑pore dual media Implicit (inverted via attenuation response)

Geometric network 
model

Parametrization of elliptical 
pore/fracture geometry

Fracture‑pore/fracture reservoirs Explicit equation

Abbreviations: BIPS: Biot‑patchy‑squirt; BISQ: Biot‑Squirt.
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compressional wave, S represents the fluid saturation, and 
ρS and ρf are the densities of the grain mineral and pore 
fluid, respectively.

The following equations provide a methodology 
for establishing explicit permeability representation 
relationships. For example, Xiong et al.16 and Wei et al.17 
established a 3D network model with elliptical cross-
sections for fractures and soft pores. They incorporated 
permeability relationships with porosity, confining 
pressure, and pore aspect ratio, deriving a computational 
methodology for permeability estimation.
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where ƞ denotes the fluid viscosity, L represents the 
length of the microtube, A indicates the cross-sectional 
area (απR2), R is the semi-major axis radius of the elliptical 
cross-section, α refers to the aspect ratio of the fracture 
cross-section, PU and PD denote the pressure at both ends 
of the microtube, respectively, ρf signifies the density of the 
fluid within the microtube, J designates the zeroth-order 

Bessel function of the first kind, K represents K �
i f��
�

, 
and C is the acoustic wave velocity in the fluid.

Tan et al.18 integrated the coupled effects of solid 
particle detachment, fluid-solid coupling, multiphase 
flow, and stress sensitivity into a fluid and structure-
coupled stress-sensitive permeability model grounded in 
material mechanics and fractal theory. They thus provided 
theoretical guidance for accurate prediction of flow 
behavior and development optimization in stress-sensitive 
reservoirs.

It is evident that most existing pore media and fracture-
pore media models implicitly incorporate permeability 
information. However, they fail to establish explicit 
theoretical permeability relationships. Alternatively, 
the developed permeability models contain numerous 
physical parameters of the rock matrix. These parameters 
hinder direct permeability prediction using exploration 
data. Furthermore, the inversion process reveals that 

the effectiveness of rock physics inversion critically 
depends on the accuracy of elastic parameters derived 
from prestack seismic data and the congruence between 
rock physics models and actual formation properties. 
Key limitations of model-based permeability inversion 
include: (i) solution non-uniqueness and low noise 
tolerance, (ii) significant result divergence across different 
dispersion-attenuation models despite generally consistent 
permeability response patterns in forward modeling, and 
(iii) frequent mismatches between theoretical predictions 
and field observations.

2.2. Velocity dispersion/quality factor-based 
methods

In field applications, acquiring comprehensive 
velocity dispersion data at every sampling point remains 
challenging. Theoretical forward modeling generally 
indicates an inverse relationship between permeability 
and dispersion: low permeability correlates with high 
dispersion, while high permeability corresponds to low 
dispersion.

Following this principle, Liu19 applied frequency-
dependent amplitude variation with offset (AVO) theory 
to quantify P-wave velocity dispersion as a fluid mobility 
proxy for permeability prediction. Yuan et al.5 established 
permeability and dispersion relationships through core-
derived rock physics analysis and determined the first-
order relative variation of Young’s modulus with seismic 
frequency and the second-order relative variation of 
permeability with pressure. Then, subsequent frequency-
dependent amplitude variation with incident angle (AVA) 
inversion of well logs yielded the reservoir’s P-wave 
dispersion, enabling permeability prediction through 
the derived relationships. Wu et al.20 developed a quality 
factor-based method, which involved correlation between 
averaged core permeability and well quality factors, and 
then they estimated permeability at unlogged locations 
through seismic waveform similarity analysis to reference 
wells.

The intrinsic limitations of dispersion attribute methods 
originate from fundamental physical and operational 
constraints:21,22 conventional seismic bandwidth 
(10–100  Hz) fails to excite significant dispersion effects 
in high-permeability reservoirs (κ >10 mD). This 
failure occurs due to fluid pressure diffusion thresholds 
below 10  Hz, which critically attenuate permeability 
sensitivity. This bandwidth confinement triggers a 
cascading degradation: high-fidelity Q-factor inversion 
demands ultrabroadband data (>3 octaves), yet narrow 
field-acquisition bandwidths (<2 octaves) propagate 
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Q-estimation errors into permeability predictions. Further 
compounded by anisotropic scattering, fracture azimuthal 
variability induces phase velocity dispersion anomalies 
that mask permeability signatures. Collectively, these 
interdependencies form an error amplification chain. The 
chain restricts dispersion-based methods to homogeneous 
siliciclastic reservoirs with moderate permeability, while 
faltering in fractured or stress-sensitive formations. 
Collectively, these constraints necessitate addressing 
two persistent bottlenecks: (i) non-unique solutions in 
frequency-dependent AVO/AVA dispersion attribute 
inversion and (ii) significant relative errors in current 
Q-factor extraction techniques, compromising permeability 
estimation accuracy.

2.3. Fluid mobility-based methods

Fluid mobility (M), defined as the ratio of reservoir 
permeability (κ) to fluid viscosity (ƞ), characterizes 
the coupled effects of pore structure’s conductivity and 
pore fluid viscosity. At present, fluid mobility-based 
methods constitute the predominant approach for 
permeability prediction within dispersion-attenuation 
frameworks.

In 2004, Silin et al.23 derived the low-frequency 
asymptotic reflection coefficient for fluid-saturated porous 
media:

R
Z Z
Z Z

R i
f�
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where Z denotes impedance, ρf is fluid density, and ω is 
angular frequency. This equation establishes a positive 
correlation between the reflection coefficient and the 
square root of the product term. Goloshubin et al.24 and 
Goloshubin et al.25 subsequently proposed a novel 
frequency-dependent imaging attribute when analyzing 
dual-porosity media attenuation. Proportional to M , 
this attribute was applied to reservoir permeability 
estimation. On this basis, Chen et al.26 developed a 
computational expression for fluid mobility attributes and 
established a method to identify the dominant frequency 
within the low-frequency band of seismic signals. This 
approach enabled the direct calculation of reservoir fluid 
mobility using the instantaneous spectrum of the low-
frequency dominant frequency. The computational 
expression is given as follows:

M
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d
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where C is a proportionality coefficient, ω is the 
dominant low frequency, and A(ω) is the amplitude 

spectrum of the low-frequency band derived from time-
frequency analysis.

This framework facilitates subsequent methodological 
advances. For example, Zhao et al.27 investigated the 
effects of fluid mobility on dispersion and attenuation 
using dual-porosity and dual-permeability models. 
Lu28 developed a Bayesian framework for direct 
mobility inversion. Zhang et al.29 enhanced reservoir 
prediction accuracy by integrating the synchro-
squeezed generalized S-transform with Lucy-Richardson 
deconvolution into mobility computation.

The model-based inversion approach in Section 2.1 and 
the permeability prediction technique using dispersion/
attenuation attributes in Section 2.2 were compared. 
The comparison revealed that the core advantage of the 
latter method lies in circumventing Q-factor extraction 
errors and directly establishing a quantitative correlation 
between seismic amplitude and fluid mobility. Application 
to actual marine seismic data from the JZ area of the Bohai 
Sea demonstrated that the fluid mobility attribute exhibits 
significant imaging advantages for hydrocarbon reservoirs. 
It enables precise spatial delineation of reservoir distribution 
while substantially reducing the non-uniqueness and 
uncertainty in fluid identification. A  representative case 
study from Chen et al.26 illustrated these capabilities 
(Figure  1). The fluid mobility measurement profile 
displays a high-amplitude “bright spot” anomaly at the gas 
reservoir location, while the fluid mobility slice extracted 
along the gas-bearing interval clearly delineates the spatial 
boundaries of high-permeability zones (outlined by black 
dashed contours).

Most current methods approximate mobility attributes 
through time-frequency decomposition for qualitative 
permeability assessment. However, reservoir thickness 
below λ/8 induces significant low-frequency amplitude 
distortion, which requires integrated compensation 
through high-frequency tuning effects, combined with 
subjectivity in dominant frequency selection and the 
petrophysical-property dependency of calibration 
coefficient C. Consequently, these thin-bed resolution 
constraints collectively result in fundamental limitations of 
such methods: Uncertainties artificially introduced by the 
subjective determination of ω, potentially misrepresenting 
true reservoir mobility; and the inherently limited 
resolution of mobility attributes derived from time-
frequency decomposition methods.

2.4. Challenges of dispersion/attenuation-based 
methods

The model categories, theoretical bases, applicable 
conditions, advantages, and limitations of various 
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dispersion/attenuation-based permeability prediction 
approaches are systematically compared in Table  2. 
This comparison reveals that despite the clear physical 
mechanisms underpinning this category of methods, four 
fundamental challenges persist: (i) controversies regarding 
the universality of petrophysical assumptions, such as 
deviations between assumed pore-scale homogeneity 
and actual reservoir heterogeneity, (ii) scale adaptability 
conflicts due to mismatched micro-mechanisms and 
macro-scale seismic observations, (iii) bandwidth 
limitations of seismic data, where the absent of low-
frequency components induce significant fluid mobility 

estimation bias, and (iv) amplified solution non-uniqueness 
due to coupled controls of pore geometry, fluid viscosity, 
and fracture density on dispersion/attenuation responses.

3. Permeability prediction based on pore 
structure characteristics
Traditional seismic permeability prediction methods 
primarily rely on well-log or laboratory rock physics 
data. These methods establish optimal porosity and 
permeability relationships and then extrapolate these 
petrophysical correlations to seismic data for areal 

Figure  1. Fluid mobility analysis of reservoirs in the lower Ed2 formation from the JZ area. (A) Seismic section. (B) Fluid mobility reservoir 
section. (C) Seismic slice. (D) Fluid mobility reservoir slice. The colors red, green, and blue in the well log in the zoomed image indicate gas, oil, and brine, 
respectively. Reprinted with permission from Chen et al.26 Copyright 2012 Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg.
Abbreviation: CDP: Common depth point.

DC

BA

Table 2. Theoretical and application characteristics of dispersion/attenuation‑based methods

Model category Theoretical basis Applicable conditions Advantages Limitations

Model‑based inversion BISQ/BIPS theoretical 
models

Moderate‑to‑high porosity/
permeability sandstones

Clear physical 
interpretation

Mismatch in strongly 
heterogeneous reservoirs

Velocity dispersion/quality 
factor‑based methods

Velocity‑frequency 
response

Broadband seismic data High computational 
efficiency

Sensitive to Q‑factor 
extraction errors

Fluid mobility‑based 
methods

Low‑frequency 
reflectivity theory

Fluid‑saturated porous 
media

Direct indicator of 
flow capacity

Resolution constraints in 
time‑frequency analysis

Abbreviations: BIPS: Biot‑patchy‑squirt; BISQ: Biot‑Squirt.
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permeability prediction.30 However, due to depositional 
and diagenetic controls, carbonate reservoirs, particularly 
reef-shoal facies, exhibit significantly more complex 
pore architecture than clastic reservoirs. These reservoirs 
demonstrate substantial permeability heterogeneity even at 
comparable porosity levels. In lithofacies-varying formations 
with intricate pore systems, conventional methods yield 
compromised accuracy due to nonlinear porosity and 
permeability relationships. Consequently, pore structure 
integration becomes essential for reducing inversion non-
uniqueness and enhancing prediction reliability.

There are currently three pore structure-based 
approaches: (i) Sun model-based inversion, (ii) lithofacies-
constrained prediction using pore-structure parameters, 
and (iii) dual-porosity structure parameter integration.

3.1. Sun model-based methods

Sun31,32 derived two pore structure parameters through 
fundamental rock physics analysis: the bulk compliance 
factor (γ), which characterizes volumetric rock 
deformation, and the shear compliance factor (γµ), which 
describes shape variations. Both γ and γµ satisfy the rock 
physics relationship:

Kd = Km (1-ϕ)γ� (IX)

� � � ��
d m� �( )1 � (X)

where Kd and µd denote the bulk modulus and shear 
modulus of dry rock, respectively; Km and µm represent 
the bulk modulus and shear modulus of the grain mineral 
phase, respectively; and ϕ signifies porosity. Furthermore, 
γµ can be expressed as:

�
� �

�� =
lg( ) lg
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Vs m

2
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where Vs, ρ, and ϕ denote the S-wave velocity, density, 
and porosity, respectively.

Applied to Texas carbonate reservoirs by Dou et al.,33 
these parameters effectively characterized the relationship 
between porosity impedance and permeability. They 
facilitated the identification of pore types and high-
permeability zones, thereby enhancing prediction 
accuracy. Zhang et al.34 subsequently implemented 
these parameters in the Puguang Gas Field, with a pore 
structure-constrained porosity and permeability binary 
model developed for permeability-type classification at 
seismic scales. Similarly, Jin et al.35 established pore-type 
discrimination criteria and type-specific porosity and 
permeability models using γµ. These achievements enabled 
refined well-log permeability interpretation. By analyzing 

elastic parameter-pore structure relationships across pore 
types, rock physics templates for the permeability prediction 
of complex reservoirs were constructed (Figure 2). In the 
case study of Puguang Gas Field (Figure 3), an intraparticle 
pore-dominated reservoir within the 5369–5440  m 
interval was developed in Well PG302-1. Although this 
section exhibited relatively high predicted porosity, the 
pore structure parameter was significantly low, indicating 
low permeability consistent with core analysis results. This 
case validates that permeability prediction based on pore 
structure parameters effectively discriminates reservoir 
flow capacity heterogeneity, thereby delineating the spatial 
distribution of high-permeability zones. Compared to 
conventional approaches, this method substantially 
enhances permeability prediction accuracy in complex 
reservoirs. Conventional methods rely on statistically 
derived empirical formulas for porosity and permeability, 
with prediction errors often exceeding one order of 
magnitude. Critically, these findings substantiate that 
pore structure exerts dominant control over permeability, 
whereas porosity serves merely as a contributory factor.

The Sun model demonstrates porosity-independent 
permeability prediction capabilities in both carbonate 
and clastic reservoirs. It achieves this through its 
characterization of rock deformation mechanisms through 
γ and γμ. However, the model suffers from fundamental 
flaws in its physical foundation. First, the model exclusively 
captures elastic deformation responses while neglecting the 
topological control mechanisms governing fluid pathways 
(e.g., pore-throat connectivity). Second, its classification 
regression framework contains inherent structural 
deficiencies: oversimplified permeability zoning based 
solely on γ or γμ results in ambiguous partition boundaries, 
and the enforcement of linear porosity and permeability 
regressions contradicts the intrinsic nonlinearity of 

Figure  2. Permeability interpretation chart of Puguang Gas Field. 
Reprinted with permission from Jin et al.35 Copyright 2016 Journal of 
Palaeogeography.
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carbonate systems, particularly the exponential porosity−
permeability relationships observed in vugular pore 
networks.

3.2. Lithofacies-controlled methods with pore 
structure parameters

Advancing quantitative reservoir characterization 
recognizes depositional microfacies as primary controls 
on petrophysical properties. Sedimentary attributes, 
including composition and grain size, fundamentally 
govern porosity and permeability distributions. Therefore, 
establishing microfacies-constrained property models is 
essential.

Zhao36 derived facies-control factors from Archie’s 
equation, integrating them with permeability through 
Kozeny’s hydrodynamic formula to develop a facies-
constrained permeability calculation method for seismic 
inversion. This approach demonstrably enhances 
lateral prediction accuracy by incorporating geological 
priors. Given the primary control of pore structure on 
permeability as introduced in Section 3.1, Gan et al.37 
developed a comprehensive workflow for reservoir 
permeability prediction integrating pore structure and 
lithofacies controls: First, lithofacies classification was 
conducted using the reservoir zone’s porosity, elastic 
parameters, and γµ. Then, facies-specific multivariate 
regression was used for permeability prediction. Relying 
on this workflow, they selected the Fudong Slope area in 
the eastern central depression belt of the Junggar Basin 
as the study area for method application. The primary 
reservoir type in this region is lithologic-stratigraphic 

hydrocarbon accumulation. The study designated Well 
FUD7 as the training well and Well FUD6 as the prediction 
well. Regression relationships were separately established 
for different lithofacies in the training well. Subsequently, 
the trained lithofacies-specific regression models were 
applied to the prediction well to obtain permeability 
prediction results. Comparative analysis with non-facies-
based multivariate regression in Table 3 reveals that both 
wells exhibited reduced prediction errors and enhanced 
coefficient of determination (R2) values after facies-
control implementation. The maximum error reduction 
and greatest R2 improvement occurred when γµ was 
included in the regression parameters. Field applications 
demonstrate that this method can confine permeability 
prediction errors within one order of magnitude, and 
multivariate regression proves to be a viable solution for 
reservoir permeability prediction as it incorporates elastic 
parameters and γµ under lithofacies constraints.

While lithofacies-controlled methods enhance 
prediction accuracy through depositional microfacies 
constraints, precise lithofacies classification remains 
a prerequisite for permeability prediction, as it serves 
as a geological prior. Furthermore, γµ exhibits extreme 
sensitivity to velocity and density errors in seismic 
inversion. Acting as a key input for lithofacies classification, 
it forms a positive error feedback loop propagating through 
the workflow. Strong multicollinearity also exists among 
porosity, γµ, and impedance in multivariate regression. 
This multicollinearity distorts the physical significance of 
the regression coefficients, and these factors collectively 
cause abrupt lateral prediction jumps exceeding one order 

Figure 3. Inversion profiles of (A) predicted porosity, (B) pore structure parameter, and (C) permeability through Well PG302-1. Reprinted with permission 
from Jin et al.35 Copyright 2016 Journal of Palaeogeography.
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of magnitude. In summary, the limitations of this method 
include: High sensitivity to seismic lithofacies and pore 
structure parameters that are intrinsically challenging 
to quantify accurately; prevalent multicollinearity in 
multivariate regression; and multiple pore structure factors 
must be incorporated, given the multivariate nature of 
permeability controls.

3.3. Dual-pore-structure parameters methods

Wei and Innanen38 discovered the combined effects of pore 
morphology and scale on permeability, establishing a dual-
parameter model:

� �
�

�

� �

�
�

�

�
�

�

A
C

B
p0 5.
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where
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where κ represents permeability; γs and γc denote scale 
and roundness parameters, respectively; Wp is a weighting 
coefficient determined from the core and log data; and A, 
B, and C are undetermined coefficients. Inspired by the 
Sun model in Section 3.1, and guided by the lithofacies-
control rationale established in Section 3.2, Ding et al.39 
derived a shear-Lee factor (cµ) from the Lee model. This 
factor exhibited a strong linear correlation with principal 
pore dimensions. By incorporating this factor, they 
effectively integrated both pore-scale and morphological 
effects. In addition, they integrated the factor with 
elastic parameters, porosity, and pore aspect ratios (α) 
as inputs for a feedforward neural network to predict 

lithofacies, and then subsequently predicted permeability, 
ultimately constraining prediction errors within half an 
order of magnitude. Field application (Figure  4) in the 
tight gas reservoirs of the Shaximiao Formation, Jinqiu 
Gas Field, Sichuan Basin, demonstrated that predictions 
incorporating dual-pore-structure parameters (cµ+α) 
achieved superior outcomes compared to single-factor 
(γµ) approaches. These predictions quantitatively matched 
well-logs with higher fidelity and generated sand bodies 
with enhanced spatial continuity.

The dual-pore-structure parameter approach 
demonstrates progress in characterizing the combined 
effects of pore morphology and scale on permeability. 
However, it suffers from inherent limitations in its physical 
mechanisms. The model oversimplifies complex flow 
processes into a power law combination of morphology 
and scale, neglecting the fundamental control of pore 
topology connectivity (e.g., tortuosity of pore throats). 
More critically, the parameterization exhibits irresolvable 
ambiguity: the model fails to distinguish the opposite 
effects on permeability between the real-scale expansion 
of pore throats and the morphological distortion caused by 
the flattening of sheet-like pores. In industrial applications, 
high-dimensional inversion spaces introduce significant 
uncertainties: the Wei model requires simultaneous 
resolution of multiple interacting parameters. Its high-
dimensional solution space causes pronounced oscillation 
in inversion results. Meanwhile, Ding’s neural network 
framework faces triple error propagation: inherent errors 
in elastic parameters derived from seismic inversion 
directly propagate into the calculation of the shear-Lee 
factor. This propagation induces intermediate parameter 
bias. Subsequent coupling of multi-source inputs in hidden 
layers of the feedforward network further iteratively 
amplifies upstream errors through weight matrices, 
ultimately generating substantial errors in the output 
layer’s permeability predictions.

3.4. Challenges of pore structure characteristics-
based methods

Although existing mainstream porosity and permeability 
prediction models (e.g., Sun, Wei, and Ding models) 
demonstrate progress in specific scenarios or mathematical 
formulations, they still suffer from fundamental limitations, 
as summarized in Table  4 regarding their methodologies, 
advantages, and constraints. These limitations include their 
core physical mechanisms, such as the neglect of pore-
throat connectivity control and the ill-defined physical 
interpretations of parameters; model architecture, such 
as arbitrarily imposed linearization and error-amplifying 
designs; and application feasibility, such as dependence 

Table 3. Statistics of mean square error (MSE) and coefficient 
of determination (R2) for multivariate regressions

Key input 
parameters

Facies‑ 
based

Fud7 well Fud6 well

MSE R2 MSE R2

ϕ No 0.9599 0.4392 1.5056 0.3269

Yes 0.9387 0.5067 1.2961 0.5250

ϕ+Vp No 0.9569 0.4409 1.4026 0.3508

ϕ+Vp/Vs No 0.9239 0.4602 1.4014 0.3921

ϕ+γμ No 0.7765 0.5463 1.3564 0.4961

ϕ+Vp+Vp/Vs No 0.8975 0.4757 1.0756 0.4989

Yes 0.8924 0.5408 0.9542 0.5925

ϕ+Vp+Vp/Vs+γμ No 0.7421 0.5664 0.9356 0.6016

Yes 0.6721 0.7948 0.8943 0.7924

γμ indicates shear compliance factor; ϕ indicates porosity; Vp indicates 
P‑wave velocity; Vs indicates S‑wave velocity.
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on difficult-to-acquire/high-error parameters and high-
dimensional inversion instability with non-unique solutions.

4. Permeability prediction based on AI
In recent years, AI algorithms have emerged as powerful 
computational tools for solving complex non-linear 
mapping and high-dimensional data fitting problems. 
They trigger transformative advances across scientific and 
engineering domains. Within petroleum exploration, the 
inherent subsurface complexity and uncertainty present 
significant challenges. These challenges, combined with 
substantial human capital demands for analyzing massive 
exploration datasets, have accelerated the industry-wide 
integration of AI technologies.40-43

4.1. Data-driven AI approaches

The earliest Chinese research on seismic-driven 
permeability prediction traces back to a groundbreaking 
study published in Oil Geophysical Prospecting by Chen 
and Guo.30 Grounded in the elastic wave theory of dual-
phase media, the authors established the theoretical 
basis for permeability prediction from seismic data. They 
demonstrated that conventional approaches relying solely 
on porosity and permeability functional relationships could 
only delineate qualitative permeability trends. To enable 
quantitative prediction, they pioneered the integration 
of mathematical approximation techniques with 
seismic attributes. As seismic attribute and permeability 
relationships defy explicit mathematical formulation, 

Table 4. Theoretical and application characteristics of pore structure characteristics‑based methods

Dimension Sun model Lithofacies‑controlled model Dual‑parameter model

Principle Rock physics Sedimentology Morphology+scale

Key input parameters Bulk compliance factor and 
shear compliance factor

Lithofacies type, pore structure 
parameters

Scale parameter, roundness 
parameter

Parameter acquisition Seismic/log elastic parameter 
inversion

Core calibration+seismic 
lithofacies division

Core calibration+seismic/log 
elastic parameter inversion

Lithofacies dependent No Yes Optional

Advantages Porosity‑independent 
heterogeneity characterization

Geological prior integration 
reduces non‑uniqueness

Morphology+scale

Limitations Oversimplified classification 
ignores multi‑factor coupling

Subjectivity in lithofacies 
delineation

High‑dimensional parameter 
instability, dependent on 
upstream parameter accuracy

Reservoir applicability Carbonate/clastic reservoirs Highly heterogeneous 
carbonates/clastic reservoirs

Fracture‑porosity systems

Prediction accuracy Error≤1 order of magnitude Error≤1 order of magnitude Error≤0.5 order of magnitude

Reference Jin et al.35 Gan et al.37 Ding et al.39

Figure 4. Predicted permeability profiles, where dual-pore-structure parameters refer to cµ+α and single-factor denotes γµ. Reprinted with permission from 
Ding et al.39 Copyright 2023 Society of Exploration Geophysicists.
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AI serves as an advanced regression tool that correlates 
well-log permeability with adjacent seismic traces. This 
calibrated relationship can then be extrapolated across 3D 
seismic volumes for reservoir permeability prediction.

Based on Chen’s work, He et al.43 implemented the 
rough set theory for optimal attribute selection, followed 
by genetic algorithm-optimized backpropagation neural 
networks to establish attribute and permeability mappings. 
Anifowose et al.44 conducted a comparative analysis of 
multiple algorithms for permeability estimation in Middle 
Eastern carbonates. The study used integrated seismic 
attributes and wireline logs. The algorithms evaluated 
include artificial neural networks, fast Newman algorithm, 
support vector machines, and extreme learning machines. 
Meanwhile, Zhen et al.45 integrated a convolutional block 
attention module into a convolutional neural network to 
characterize sand-body development patterns and identify 
concealed channels.

Riyadi et al.46 proposed a permeability estimation 
method utilizing elastic attributes derived from 
simultaneous seismic inversion and evaluated the 
predictive performance of several ensemble-based models, 
including extreme gradient boosting (XGBoost), light 
gradient boosting (LightGBM), categorical gradient 
boosting, bagging regressor, random forest, and stacking. 
A  multilayer perceptron neural network algorithm was 
also assessed. They focused on the X Field in the Malay 
Basin, characterized by complex pore systems (coexisting 
intergranular pores, dissolution vugs, and fractures) and 
pronounced heterogeneity. The statistical evaluation of 
permeability prediction models was based on wireline 
logging data using the R2 and root mean squared log error 

(RMSE). The results revealed that integrating porosity 
with elastic properties as combined input features yielded 
R2 > 0.95 and root mean squared log error (RMSLE) < 0.174. 
Among the tested algorithms, LightGBM and stacking 
ensemble models delivered optimal performance (R2 = 0.97, 
RMSLE = 0.112 for both), while random forest exhibited 
relatively inferior results (R2 = 0.92, RMSLE = 0.174). 
In contrast, predictions using elastic properties alone 
demonstrated significantly reduced accuracy, with R2 
ranging from 0.82 to 0.87, and RMSLE from 0.195 to 0.278. 
Within this feature configuration, XGBoost achieved the 
highest precision (R2 = 0.87, RMSLE = 0.195), closely 
followed by a multilayer perceptron with 16 hidden layers 
(R2 = 0.87, RMSLE = 0.207). Figure 5 compares predicted 
and measured permeability from the best-performing 
models under both input scenarios. The contrast between 
the bottom panels in Figure 5 visually confirms substantial 
prediction challenges in low-permeability intervals 
(<0.001 mD) when exclusively using elastic properties. 
Collectively, these results demonstrate that feature 
selection and combination exert decisive influence on 
predictive efficacy even with high-performance models. 
This limitation arises because pore-throat dimensions, 
morphology, and connectivity—all critical controls on 
flow behavior—exert more dominant control in tight 
formations. In contrast, elastic properties have been 
proven insufficient to characterize such microstructural 
determinants of fluid transport.

Although purely data-driven AI models (black-
box models) in the aforementioned studies enhanced 
the prediction accuracy of reservoir permeability, 
their fundamental flaw lies in intrinsic decoupling 
from the physical mechanisms governing fluid flow. 

Figure  5. Measured and predicted permeability comparison. (A) Permeability prediction employing elastic properties and porosity as input features 
via the LightGBM modeling. (B) Elastic property-exclusive permeability prediction using the XGBoost framework. Top panels indicate depth-domain 
permeability profiles, while bottom panels illustrate cross-plots of predicted and core-calibrated permeability values. Reprinted from Riyadi et al.46
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These methods simplify the prediction process to 
mathematical approximations, failing to construct 
genuine geologically process-driven models. The so-called 
“optimal feature combination” essentially represents over-
adaptation to known geological conditions in training well 
areas. It is a feature mapping established through statistical 
correlations. When extrapolated to undrilled regions or 
complex diagenetic reservoirs, the geological plausibility 
of predictions becomes significantly questionable due 
to the absence of quantitative constraints on pore-throat 
network parameters. Furthermore, the inherent small-
sample dilemma in reservoir parameter prediction 
inevitably subjects single-task learning to dual challenges 
of insufficient sample size and overfitting.

4.2. Data- and model-driven approaches

In 2019, Bergen et al’s.47 seminal review in Science, 
“Machine learning for data-driven discovery in solid 
earth geosciences,” systematically evaluated applications 
of data-driven AI in solid earth sciences. The study 
emphasized that AI implementation must advance 
beyond simplistic applications to address complex 
geoscientific challenges. It highlighted that critical factors, 
such as training test set partitioning and validation 
methodology, significantly influence prediction outcomes. 
Traditional geophysical approaches typically formulate 
mathematical approximations between characterization 
parameters based on theoretical assumptions, resulting 
in deterministic physical models. Data-driven methods 
bypass theoretical presuppositions by directly extracting 
implicit patterns from data, making them well-suited 
for complex geological studies. However, they often lack 
physical interpretability. On the other hand, physical 
models offer stronger explanatory power, but they face 
limitations in accounting for geological complexity due 
to inherent assumptions and difficulties in defining inter-
parameter relationships, ultimately constraining predictive 
accuracy. Recently, interdisciplinary collaboration has 
integrated data-driven methods with physical models. 
This integration has emerged as a promising avenue. It is 
deemed capable of yielding more universally applicable 
solutions to geophysical problems.48-50

The capillary bundle model provides the fundamental 
basis for studying fluid flow in porous media, representing 
the most essential physical model for permeability 
characterization. Its extension, the Kozeny-Carman 
equation, establishes the foundational relationship between 
porosity, pore-scale geometry, and permeability:51
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where κ represents permeability, ϕ represents porosity, d 
denotes pore scale (characteristic pore/grain size), and B is 
a geometric factor. On this basis, Bourbie et al.52 proposed 
a practical formulation for application to natural materials, 
suggesting an empirical geometric factor n is 4 or 5, which 
may better represent common geological media:
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Shi et al.53 incorporated pore-scale effects by calibrating 
n with well-log data, replacing Bourbie’s proportionality 
with an explicit equality:

�
�
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Where de represents the equivalent pore scale. To 
implement this permeability model, the authors first 
predicted porosity through sensitive parameter analysis. 
They used bulk modulus, shear modulus, and density 
with kernel Bayesian discrimination. Subsequently, they 
estimated the equivalent pore scale from compressional 
wave velocity, shear wave velocity, and the derived porosity 
using the same statistical method. Finally, permeability 
was calculated through the porosity-equivalent pore scale-
permeability relationship using seismic elastic parameters. 
While this method introduces valuable physical constraints 
to data-driven prediction, there are two key limitations: on 
the one hand, the permeability model accounts for pore 
scale and porosity effects but neglects pore morphology 
influences. On the other hand, cumulative errors may 
significantly compromise prediction accuracy. These errors 
arise from the stepwise porosity-pore scale-permeability 
calculation.

Indeed, issues such as small sample sizes and overfitting 
are frequently encountered in the context of distributed 
computational cumulative errors and reservoir parameter 
prediction. At present, multi-task learning addresses these 
challenges by establishing end-to-end learning mechanisms 
and sharing feature information across different tasks. 
This approach effectively mitigates the overfitting often 
associated with single-task learning, thereby enhancing the 
generalization capability of the network model. However, 
since multi-task learning relies on cross-task feature 
transfer to enable information interaction, the correlation 
between tasks plays a decisive role in model performance.

A large amount of statistical data demonstrated a close 
correlation between porosity and permeability. Based on 
this, Wei et al.54 proposed a seismic prediction method 
for reservoir permeability using multi-task learning. The 
method employed post-stack seismic data and P-wave 
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impedance as network inputs, with well-log porosity 
and permeability serving as labeled data of the network. 
Through network training, an optimal network model 
was established by integrating near-well seismic and 
well-log data. Finally, reservoir porosity and permeability 
parameters between wells were simultaneously predicted. 
Application results from the tight gas reservoir in the 
Shaximiao Formation of Jinqiu Gas Field, Sichuan Basin, 
demonstrated high consistency between predicted 
permeability parameters of Sand Body No.  8 and actual 
drilling data, along with superior vertical and horizontal 
resolution. 

4.3. Challenges of AI-based methods

While data-driven AI models demonstrate empirical 
efficacy in permeability prediction, their core limitation 
stems from divorcing mathematical approximations from 
underlying petrophysical mechanisms. This physics-
agnostic approach manifests as an inability to construct 
genuine geological process-driven models, vulnerability 
to local overfitting through statistically derived feature 
mappings, and geologically implausible extrapolation in 
undrilled/complex diagenetic settings due to unconstrained 
pore-throat parameterization.

5. Discussion
This review synthesizes the fundamental limitations 
inherent in the three dominant methodologies within the 
reservoir permeability prediction domain (Table 5).

Based on these findings, the above limitations 
unequivocally indicate the necessary direction for next-
generation models. These models must transcend empirical 
curve fitting through deep integration of multiscale physical 
mechanisms, quantitative pore structure characterization, 
and physics-embedded AI architectures. Ultimately, this 
integration will dismantle the barriers between data-driven 
and physical models to achieve a paradigm shift.

Future development must focus on establishing a 
new permeability prediction paradigm centered on the 
synergistic optimization of “physical mechanism, data-
driven approach, and engineering validation” (Figure 6):

(i)	 Theoretical mechanism innovation
a.	 Develop coupled models integrating pore, fluid, 

and fracture system interactions with dispersion/
attenuation signatures, deepening the coupled 
flow and elasticity theory for multi-porosity 
media (e.g., pores, vugs, and fractures).

b.	 Advance pore-throat topology-constrained rock 
physics models to quantify the control weights of 
tortuosity and connectivity on permeability.

(ii)	 Data-driven architecture enhancement
a.	 Construct multimodal physics-guided learning 

networks by fusing multi-source data (e.g., 
seismic attributes, electrical imaging, and nuclear 
magnetic resonance).

b.	 Employ deep generative adversarial models to 
synthesize geologically realistic virtual samples 
(e.g., generating low-frequency signals to extend 
bandwidth and compensate for flow capacity 
calculations), thereby overcoming the bottleneck 
of scarce training data.

(iii)	Deep embedding of physical mechanisms
a.	 Deeply embed differentiable forms of fundamental 

physical laws (e.g., Darcy’s law and Biot’s theory) 
within neural networks.

b.	 Develop cross-scale physics-informed neural 
networks to couple microscopic pore network 
simulations with macroscopic seismic responses.

(iv)	 Engineering validation framework
a.	 Digital rock core simulation validation: Compare 

seismically inverted permeability against direct 
flow simulation results on the pore network to 
utilize computerized tomography scans/process-
based modeling to create digital rock cores and 
validate the microscale mechanistic soundness 
and scale-transition capability of models.

b.	 Blind well testing validation: Withhold data from 
key geological unit representative wells (blind 
wells) during model training and optimization, 
and assess spatial generalization capability and 
geological scenario adaptability by analyzing 
prediction errors (e.g., RMSE and relative error 
distribution) against core analysis/well test 
permeability data.

c.	 Dynamic production history matching 
validation: Embed the seismically predicted 3D 
permeability field into reservoir simulators, use 
actual production dynamics (pressure, rates, 
water cut, etc.) as the benchmark, and quantify 
improvements, such as the reduction in history 
matching error and the enhancement of recovery 
factor prediction accuracy, thereby demonstrating 
the practical utility for development decision 
support.

d.	 Dynamic data-driven model evolution: Trigger 
incremental learning and model re-optimization 
on acquiring new dynamic data (e.g., new drilling/
core data, production tests, and 4D seismic data) 
and iteratively validate the performance of the 
updated model on new blind wells and subsequent 
production periods, ensuring continuous 
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predictive capability evolution throughout the 
field lifecycle.

This paradigm deeply embeds rock physics principles 
into neural network architectures. It achieves the unification 
of physical interpretability and prediction accuracy. For 
strongly heterogeneous reservoirs, such as fracture-
vuggy carbonates and bioturbated sandstones, it enables 
reliable predictions at both exploration and development 
grades. Its closed-loop engineering validation mechanism 
provides quantifiable and iteratively improvable core 
technological support for intelligent oilfield development. 

This mechanism spans from digital rock core and blind 
well testing to history matching and dynamic evolution.

6. Conclusion
Reservoir permeability is critical for characterizing 
unconventional reservoirs and optimizing hydrocarbon 
recovery. However, its seismic prediction remains 
challenging due to the complex, non-explicit relationship 
between seismic responses and permeability, which 
is governed by multifaceted controlling factors. These 
challenges are specifically manifested in three dominant 
methodologies:
i.	 Dispersion/attenuation-based models, while grounded 

in explicit physical mechanisms, are constrained by 
the coupled interactions of pore, fluid, and fracture 
systems. This coupling leads to non-unique solutions, 
scale adaptability conflicts, and biases in fluid mobility 
characterization due to seismic bandwidth limitations.

ii.	 Pore structure methods (e.g., Sun’s compliance factor) 
suffer from quantification uncertainties, primarily due 
to oversimplified morphological characterization and 
parameters with ambiguous physical interpretations.

iii.	 AI-based methods often decouple mathematical 
approximations from rock physics principles, resulting 
in a vulnerability to overfitting and geologically 
implausible extrapolation. Although integrating 
physics with AI has improved accuracy, critical 
deficiencies remain, including inadequate pore-throat 

Table 5. Summary of three methodological categories for seismic permeability prediction

Methodology Limitation

Dispersion and 
attenuation

Theoretical model 
inversion

(a) Non‑unique solutions and inherent uncertainty
(b) Significant result discrepancies across methods
(c) Frequent mismatch between theoretical predictions and field data

Velocity dispersion/
quality factor

(a) Non‑uniqueness in dispersion attributes from frequency‑dependent AVO/AVA inversion
(b) High relative error in quality factor extraction

Fluid mobility attributes (a) Uncertainty in optimal frequency selection
(b) Low resolution of mobility attributes derived from time‑frequency decomposition

Pore structure Sun model (a) �Oversimplified pore‑permeability classification using compliance factors alone; velocity data 
integration required

(b) Overly simplistic linear porosity and permeability regression post‑classification

Facies‑constrained pore 
structure parameters

(a) �High sensitivity to seismic facies and pore structure parameters, both of which are challenging to 
quantify accurately

(b) Multicollinearity in multivariate linear regression
(c) Necessity of multi‑parameter pore structure factors for permeability classification

Dual‑pore‑structure 
parameters

(a) Uncertainty in quantitative permeability expressions due to numerous undetermined coefficients
(b) Error propagation from elastic parameters in seismic inversion

Artificial 
intelligence

Data‑driven approach (a) Lack of physical models and theoretical constraints
(b) “Small‑sample” and overfitting issues in single‑task neural networks for reservoir parameter prediction

Data‑ and model‑driven 
approaches

(a) Neglect of pore morphology effects in constraining physical models
(b) Significant error accumulation from stepwise calculations degrades permeability prediction accuracy

Abbreviations: AVA: Amplitude variation with incident angle; AVO: Amplitude variation with offset.

Figure 6. A proposed permeability prediction paradigm
Abbreviation: AI: Artificial intelligence.
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topology differentiation, underutilization of seismic 
dispersion, and limited efficacy in enforcing physical 
constraints.

Consequently, overcoming these fundamental 
limitations necessitates a new paradigm centered on the 
synergistic integration of multi-scale physical mechanisms, 
quantitative pore-structure characterization, and physics-
embedded AI architectures. This integrated approach is 
essential to achieve a paradigm shift from empirical curve-
fitting to theoretically guided forecasting in permeability 
prediction.
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Abstract
Fiber optic distributed acoustic sensing (DAS) based on phase-sensitive optical 
time-domain reflectometry holds significant potential for monitoring applications 
in seismic exploration, pipeline integrity, and border security. Conventional straight-
fiber DAS systems are inherently limited to detecting single-component vibration 
signals along the fiber axis. To address this limitation, we propose a distributed 
helically wound cable (HWC). In this article, we present a theoretical analysis of the 
fundamental mathematical model governing HWC response and the selection criteria 
for an optimal spiral wrapping angle. We conducted a pioneering three-dimensional 
seismic field experiment in Xinghua, Jiangsu, China. An innovative underwater 
cable deployment scheme was implemented to ensure effective coupling between 
the cable and the surrounding medium. Experimental results demonstrated that 
HWC with a 30° wrapping angle yielded single-shot records characterized by a high 
signal-to-noise ratio and a broad effective frequency bandwidth, and enabled clear 
identification of shallow reflection events in stacked sections. This confirms the 
capability of HWC to acquire ground seismic reflection signals. Our findings provide 
an effective pathway for advancing next-generation fiber optic distributed seismic 
exploration technology.

Keywords: Helical wound cable; Surface seismic exploration; Wrapping angle; Fiber optic 
sensing; Distributed acoustic sensing

1. Introduction
Distributed optical fiber distributed acoustic sensing (DAS) technology is a new optical 
fiber sensing technology that uses optical fibers as sensors and achieves vibration signal 
acquisition based on Rayleigh scattering of light. It offers advantages including low 
cost, high measurement accuracy, immunity to electromagnetic interference, and ease 
of installation.1,2 Compared to conventional single-point and quasi-distributed sensors, 
DAS is more suitable for long-distance or high-resolution applications in time and space, 
and is widely used in oil exploration, pipeline leak monitoring, and border security 
monitoring.3,4

Driven by the promise of cost reduction and increased channel density, significant 
research efforts in recent years have focused on adapting DAS technology for seismic 
applications that are traditionally dominated by geophones and accelerometers. 
Researchers have explored its use for microseismic event detection and localization,5 
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shallow near-surface characterization,6 and vertical 
seismic profiling within boreholes,7 and substantial 
progress has been made in fundamental theory, acquisition 
methodologies, processing algorithms, and interpretation 
techniques.8,9 However, a persistent and fundamental 
challenge has hindered the widespread application of 
conventional DAS for surface seismic reflection surveys: 
its intrinsic directional sensitivity.

The underlying physics of phase-sensitive optical 
time-domain reflectometry-based DAS dictates that it is 
predominantly sensitive to strain components acting along 
the longitudinal axis of the optical fiber (axial strain), while 
exhibiting minimal response to strain perpendicular to 
this axis (radial strain).10,11 Consequently, a straight optical 
fiber deployed horizontally on the surface acts as a highly 
directional sensor, primarily detecting seismic waves 
propagating along its length. This “single-component” 
nature is ideal for applications like vertical seismic profiling 
(where the fiber is near-vertical) or strain monitoring 
along pipelines. However, it renders standard DAS 
largely insensitive to the dominant energy arriving from 
near-vertical reflections in surface seismic exploration, 
where the fiber cable is typically laid horizontally, and the 
energetic reflected waves arrive almost perpendicularly 
to it. This critical mismatch in sensitivity direction has 
been the primary barrier preventing DAS from replacing 
conventional geophone arrays for land seismic acquisition.

To overcome this fundamental limitation of axial-strain-
only sensitivity, Hornman et al.12 pioneered the concept of 
the helically wound cable (HWC). The core innovation 
involves coiling the sensing optical fiber into a helical 
structure around a central strength member or mandrel 
within the cable jacket. This geometric transformation is 
pivotal; when seismic waves impinge on the cable, inducing 
complex strains within its structure, the helical path of the 
fiber ensures that its local axis has significant components 
in both the radial and tangential directions relative to the 
cable’s cross-section. As a result, the fiber experiences 
strain components related to both compressional waves 
(P-waves; causing volume changes) and shear waves 
(S-waves; causing transverse particle motion). This multi-
component sensitivity significantly enhances the DAS 
system’s responsiveness to the diverse wave types and arrival 
directions encountered in surface seismic exploration, 
making its application in this domain theoretically feasible. 
Wuestefeld and Wilkd13 advanced the understanding by 
employing precise ray tracing in complex velocity models 
to determine wave incidence angles and further elucidated 
the intricate relationships between subsurface medium 
properties, the mechanical properties of the DAS cable’s 
wrapping materials, and the optimal helical wrapping angle 
for maximizing signal fidelity.13 Furthermore, Innanen14 

developed sophisticated mathematical models for helical 
fibers wound along arbitrarily curved axes, specifically 
addressing the challenges of strain tensor estimation and 
the reconstruction of P-wave and S-wave signals from 
the measured DAS data.14,15 These models have also been 
instrumental in forward modeling and inversion studies 
of seismic elastic waves using DAS data.16-18 Despite these 
significant theoretical and simulation advances, rigorous 
experimental validation of HWC performance under 
realistic field conditions, particularly through direct 
comparison with established geophone arrays in three-
dimensional (3D) seismic surveys, remains relatively 
scarce and represents a crucial research gap that needs 
bridging for technology maturation.

To directly address the core limitation of standard 
straight-fiber DAS for surface seismic—its inability to 
capture near-vertical reflections—this study focuses 
on the development, theoretical underpinning, and 
comprehensive field testing of a distributed HWC system 
designed explicitly for land seismic exploration. Based 
on a detailed theoretical analysis of the fundamental 
mathematical model governing strain transfer in helical 
fibers under seismic excitation, an optimal spiral wrapping 
angle was selected to maximize sensitivity to vertically 
incident waves while ensuring robust performance across 
a range of angles. We then conducted a pioneering 3D 
seismic field experiment in Xinghua, Jiangsu, China, 
implementing a novel underwater deployment strategy to 
ensure effective cable-medium coupling—a critical factor 
often challenging to achieve with conventional trenching or 
surface-laid methods, especially for kilometer-scale cables. 
The primary objective was to empirically evaluate the 
HWC’s ability to acquire genuine surface seismic reflection 
signals, assess its data quality relative to conventional 
nodal systems, and validate its practical feasibility for next-
generation seismic acquisition.

2. Design and theoretical analysis of a 
distributed HWC
In oil and gas exploration applications, distributed optical 
cables function as sensors to detect weak seismic waves. 
When a light pulse propagates along the optical fiber core, 
Rayleigh scattering occurs due to inhomogeneities within 
the fiber. The system detects the backward-scattered 
Rayleigh light, generating an interference pattern. 
When external forces such as sound pressure act on the 
optical cable, the optical fiber will be strained, and the 
interference image will change. By detecting the change, 
the amplitude of the seismic wave can be reconstructed. 
As compressional waves (P-waves) are predominantly 
used in seismic exploration and generate strain parallel to 
their propagation direction, this study focuses on P-waves 
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as the research object. If a plane P-wave propagates along 
the D-axis, then the unique non-zero strain component 
along this axis is denoted as e(w). Suppose the optical cable 
is oriented at an angle θ with respect to the D-axis, as 
shown in Figure 1. The direction of ez is parallel to the axial 
direction of the fiber, and the direction of e|| is parallel to the 
axial direction of the optical cable. Strain e(w) is a second-
order tensor, and its component e||

(w) along the parallel 
direction of the optical cable length is e(w)cos2 θ. If the fiber 
is well coupled with the optical cable, the optical cable is 
well coupled with the external structural layer, and there is 
no loss at the contact interface, then ezz

(f)= e||
(c)=e(w), i.e., the 

strain of the fiber is proportional to cos2 θ, independent of 
the optical cable material and the external structural layer 
parameters.

Based on the effect of seismic P-wave on the linear 
optical cable, the optical fiber is wound as shown in 
Figure 2. The optical fiber is tightly wound on the surface 
of the cylindrical optical cable shaft, cut along the direction 
AB of the left figure, and expanded to get the right figure. 
The wrapping angle α of the optical fiber is the angle 
between the optical fiber and the radial direction of the 
optical cable.

Suppose b = |AB| in Figure 2, the circumference of the 
fiber wrapping cylinder, is α = 2πR, and R is the radius of 
the cylinder, then the diagonal L of the rectangle on the 
right is the length of the fiber (Equation I):
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When the optical cable generates strain under the 
action of seismic waves, its cross-section will become an 
ellipse. Let b1 and b2 be the length of the long axis and short 
axis of the ellipse, respectively, then the ellipse equation 
can be obtained as follows (Equation II):
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This relationship can be derived as follows (Equation IV):
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The internal strain of the loaded wave is taken as the 
unit strain, that is, e w( ) =1 . According to the previous 
analysis, e w( ) cos� 2�  can be expressed as follows 
(Equation V):
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According to Equation V, the strain of the spiral fiber 
is related not only to the Lamme coefficient of the fiber 
and optical cable, but also to the wrapping angle and the 
incidence angle of the seismic wave. Without considering 
the fiber and optical cable material, the simplified 
Equation V can be obtained through Equation VI:

eZZ
f( ) cos sin cos cos� �2 2 2 21

2
� � � � � (VI)

According to Equation VI, when the wrapping angle of 
the fiber is constant, the relationship between the relative 

Figure  1. Schematic diagram of the effect of seismic waves on optical 
cables. Figure 2. Schematic diagram of the distributed fiber wrapping.
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fiber strain and the incidence angle of the seismic wave is 
shown in Figure 3. For the incident wave of the same angle, 
different wrapping angles will produce different optical 
fiber strains, and for the same wrapping angle, different 
angle incident waves will also produce different optical 
fiber strains. When α is 90°, the optical fiber is linear, the 
sensitivity is minimal, and the angle of incidence has the 
greatest influence on the relative strain. When α is 0°, the 
relative fiber strain is large, that is, the sensitivity is high, 
and the consistency is also affected by the incident angle. 
When the wrapping angle α is about 30°, the sensitivity is 
relatively large, and the consistency of the relative strain of 
the fiber is good.

To identify the optimal wrapping angle, we analyzed 
angles between 27° and 36° in 2° increments (Figure 3). At 
a wrapping angle of 33°, the fiber exhibits not only high 
sensitivity but also minimal variation in strain response 
across different incident angles.

According to Equation VI, the relationship between 
relative fiber strain and fiber wrapping angle is shown in 
Figure  4 when the incident angle is constant. When the 
incident angles are 0°, 20°, 40°, 60°, and 80°, there are two 
intersection points between 0 ~ π in the fiber wrapping 
angle, and the effect of the two intersection points on the 
fiber strain is the same. If one of the points is selected, 
its radius is 0.58; hence, the angle is 33°, and the strain 
generated at this point is the same for different incident 
angles. Thus, it has the same strain response characteristics.

3. High-definition (HD) distributed optical 
fiber acoustic wave sensing technology
HD-DAS is implemented based on the principle of self-
coherent heterodyne demodulation,19,20 with its schematic 
diagram as shown in Figure 5A. The system uses the optical 
signal modulation module to modulate the continuous 
light emitted by the ultra-narrow linewidth laser into a 
pair of pulses, where the two pulse frequencies are f1 and 
f2, respectively, and the heterodyne frequency is ∆f = f1–f2. 

The pulses are first amplified by the optical amplifier, and 
then injected into the sensing fiber through the circulator. 
The Rayleigh backscattered signal in the fiber reaches the 
signal detection module through the circulator and is then 
demodulated through the demodulation module for the 
heterodyne algorithm to obtain the phase change of the 
light wave caused by the external sound field. The system 
does not need the interference of Rayleigh scattering and 
local light, and the scattered light of the two pulses will 
interfere with each other to achieve a self-coherent effect. 
Then, the phase change caused by the external sound wave 
is modulated to the heterodyne frequency, and the high-
precision phase signal can be obtained by a heterodyne 
demodulation algorithm. In addition, given that the noise 
environment experienced by the double pulse is the same, 
the common mode noise can be eliminated to a large 
extent after self-coherence, and the system can obtain a 
good noise background. Figure  5B shows the assembled 
HD-DAS system engineering prototype. Table 1 shows the 
specific technical specifications of the HD-DAS system.

4. Data acquisition
4.1. Acquisition of geometry design

The HWC seismic acquisition test was conducted within 
a 3D survey area located in Xinghua City, Jiangsu. The 
acquisition utilized a single-point high-density 3D 
geometry. The receiver array consisted of I-nodal and 
SmartSolo nodal units. The seismic source consisted of 
3D explosive charges deployed in shot holes at 12 m depth 
with a shot interval of 40 m; a total of 100 shots were fired. 
The HWC receiver line (total length: 2 km) was positioned 
200 m away from the shot line.

To extend the spatial coverage for comparative analysis, 
the HWC receiver array was repositioned three times as the 
shot points advanced. Each repositioning involved moving 
the HWC forward by 1 km. After three movements, seismic 
data covering a total profile length of 5 km were acquired 
(Figure 5).

A

Figure 3. R elative optical fiber strains. Relation between relative fiber strain and (A) incidence angle and (B) local magnification.

B
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Based on the theoretical analysis presented in Section 2 
(Figures 3 and 4), a wrapping angle of approximately 30°–
33° is identified as optimal for achieving high sensitivity to 
vertically incident waves while maintaining good angular 
response consistency. However, manufacturing HWC with 
a precise 30° wrapping angle presents significant process 
challenges and higher costs compared to angles closer 
to the natural lay of fibers, such as 60°. Theoretically, 
a 60° wrapping angle is expected to exhibit inferior 
acquisition performance, particularly for vertical waves. 
To quantitatively assess the impact of this parameter on 
field data quality and evaluate the viability of 60° HWC, 
the 2 km cable was constructed with two distinct segments: 
(i) an 860 m segment with a 60° wrapping angle, and (ii) a 
1,140 m segment with a 30° wrapping angle.

In the receiver array layout, the 30° and 60° segments 
were concatenated into a single cable spanning the survey 
line, with the 30° segment occupying the northern 1,140 m 
(Traces 1–1,140) and the 60° segment the southern 860 m 
(Traces 1,141–2,000) (Figure  6). This placement ensured 

that data from segments with different wrapping angles 
were acquired under identical geological conditions, source 
characteristics, and near-surface effects. Directly comparing 
data quality between these segments under comparable 
field conditions provides an unambiguous assessment of 
the wrapping angle’s impact on acquisition fidelity.

4.2. Deployment of HWC

Effective mechanical coupling between the HWC and 
the surrounding geological medium is paramount for 
high-quality seismic data acquisition. Poor coupling acts 
as a low-pass filter, attenuating high-frequency signal 
components, and introduces spurious noise, severely 
degrading signal-to-noise ratio and resolution. Common 
HWC deployment methods for surface seismic include:

(i)	 Trenching: Excavating deep trenches (typically >0.5 m) 
using machinery and burying the cable, providing 
good coupling but at high cost and environmental 
impact.

(ii)	 Surface laying: Placing the cable directly on the ground 
surface. This is logistically simple but results in very 
poor coupling efficiency and high susceptibility to 

Table 1. High‑definition distributed optical fiber acoustic 
wave sensing system technical specifications

Index item Technical index value

Noise background ( /dB ref rad HZ ) −80

Stress resolution ( /p HZε ) 2.5

Measurement bandwidth (kHz) 2

Spatial resolution (m) 1

Scale length (m) 8

Dynamic range (dB) >100

Sensing distance (m) 50~2,500
Figure 4. The relationship between the relative fiber strain and the fiber 
wrapping angle.

Figure 5. System overview and implementation. (A) High-definition distributed optical fiber acoustic wave sensing system principle and (B) engineering 
prototype.

A B
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ground roll, wind noise, and cultural noise, leading to 
significantly degraded data quality.

While trench burial has been used in some international 
HWC trials, its applicability is often limited to relatively 
short cable lengths (typically <600 m in reported studies) 
due to the prohibitive cost and time required for excavating 
and reinstating long trenches. Given the 2 km length of our 
HWC and the requirement for three repositionings (totaling 
5 km of cable deployment), conventional trench burial was 
deemed economically and logistically impractical.

To overcome this critical challenge and ensure effective 
coupling for the entire length of the cable during all 
deployment phases, we designed and implemented an 
innovative underwater deployment scheme. The HWC 
was carefully laid on the riverbed along the section parallel 
to the seismic line (Figure  7). Water provides excellent 
coupling due to its incompressibility and efficiently 
transmits seismic P-waves propagating as acoustic waves. 
Crucially, these acoustic waves in water fully retain the 
reflected P-wave information from subsurface structures, 
despite the difference in propagation velocity compared to 
the solid earth. This principle is supported by the theory of 
Ainslie,21 which demonstrates that the dynamics of P-waves 
in fluids are analogous to those in solid media (lacking only 
the shear component), aligning perfectly with our objective 
of P-wave acquisition (Section 2.1). Repositioning the 2 km 
cable for the roll-along acquisition was efficiently achieved 
using a small tugboat (Figure  7), significantly reducing 
deployment time and cost compared to trenching.

5. Data analysis and results
5.1. Single-shot analysis

Figure 8A compares shot gathers acquired simultaneously by 
the 30° and 60° HWC segments. A significant performance 
contrast was evident: the left section (30° HWC) displayed 
recognizable seismic signals, particularly in shallow layers, 
despite interference from ground roll and other noise. 

Conversely, the right section (60° HWC) was severely 
contaminated by noise, resulting in a critically low signal-
to-noise ratio that renders effective wave identification 
nearly impossible. Spectral analysis (Figure  8B) provided 
quantitative confirmation of the 30° segment’s superiority. 
The amplitude spectrum of the 30° HWC data showed higher 
amplitudes across a broader frequency range than the 60° 
segment. Crucially, the 30° HWC demonstrated a significantly 
broader effective bandwidth, preserving more high-frequency 
content essential for achieving higher seismic resolution. The 
60° segment’s spectrum exhibited noticeable attenuation, 
particularly at higher frequencies, and lower overall energy, 
consistent with its noisy time-domain character.

The superior quality of the 30° HWC data enabled 
comparison with nodal acquisition. Comparison with 
nodal acquisition revealed key differences. The 30° 
HWC gather exhibited stronger ground roll amplitudes 
but weaker first arrivals compared to the nodal data, 
highlighting distinct sensor sensitivities and radiation 
patterns that warrant further investigation into coupling 
effects. Due to the shorter receiver spread length (2 km) 
and finer trace interval (1 m) of the HWC array, reflection 
hyperbolas appeared significantly flatter than those in 
the nodal gather. This fine spatial sampling is a key DAS 
advantage for high-resolution imaging, particularly of 
shallow, steeply dipping events.

Figure 6. Schematic diagram of the helically wound cable acquisition geometry.

Figure 7. Field deployment documentation of helically wound cable.
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Frequency-band scanning of the shot records 
(Figure 9) showed that effective reflection wave energy for 
both systems occupied a similar band (5–60  Hz). While 
waveform characteristics differed—likely due to sensor 
response, coupling, and directional sensitivity variations—
the fundamental similarity in detected frequency content 
confirms both systems captured primary subsurface 
reflections. The HWC data showed good coherence within 
each filtered band, comparable to the nodal data.

5.2. Profile analysis

Given the extremely poor data quality of the 60° HWC 
segment (Figure  8A), incorporating it into the full 
processing flow would severely degrade the final stacked 
section. Consequently, we applied a split processing 
strategy during data conditioning. Data from the 30° and 
60° sections were processed separately. While this isolation 
preserved the integrity of the 30° signals, it introduced 
significant compromises:

(i)	 Reduced fold coverage: The effective spread length 
contributing to any common midpoint bin was 
reduced (utilizing only the 30° or 60° segment, not the 
full 2 km cable).

(ii)	 Spatially inconsistent coverage: Fold coverage became 
highly variable along the profile, dropping sharply at 

the boundaries between segments and remaining low 
within each segment compared to the nodal array.

(iii)	Dead trace zones: Some common midpoint bins, 
particularly at segment boundaries or due to the 
roll-along geometry, received zero coverage (“dead 
traces”), creating gaps in the stacked section (Figure 10 
illustrates the discontinuous coverage).

Stacked profile comparisons between the 60° and 
30° HWC segments (Figure  10) revealed significant 
differences. In the 60° stacked section (Figure  10A), 
reflection events were identifiable only in isolated, very 
shallow zones (likely corresponding to strong, near-
surface reflectors). Throughout the vast majority of 
the section, reflection signals were scarcely discernible 
above the background noise. The overall data quality 
was markedly inferior, confirming the severely limited 
capability of the 60° HWC to effectively capture 
reflected wave energy under these field conditions. 
The theoretical prediction of inferior performance is 
strongly validated.

The 30° stacked section (Figure  10B), despite 
processing challenges (low/uneven fold, gaps), showed 
clear improvement. Continuous reflection events with 
reasonably coherent wave group characteristics were 
identifiable, particularly at shallow-to-intermediate depths 
(down to 1.0–1.5 s two-way time. This demonstrates the 
fundamental capability of the optimally designed 30° 
HWC to acquire coherent surface seismic reflections 
and produce a meaningful subsurface image, even under 
suboptimal acquisition conditions.

To further validate HWC feasibility, we compared the 
stacked profile from the 30° HWC segment with a nodal 
array profile acquired concurrently. The nodal profile 
benefited from single-point high-density acquisition 
and a fold coverage exceeding 800. The HWC profile 
faced inherent limitations: a short total cable length 
(2  km), separate processing of segments reducing 
effective spread length, and the roll-along geometry, 
resulting in extremely uneven fold coverage with a 
maximum of only 55.

Despite a significantly lower fold, the 30° HWC 
profile (Figure 11A) displayed clear reflection events with 
reasonably continuous wave groups. The fine 1-meter 
trace spacing of the HWC provides superior vertical and 
horizontal resolution in the shallow section compared 
to the nodal profile. However, the limited maximum 
offset (~1.4  km) resulted in weaker mid-to-deep section 
reflections. Nevertheless, reflection events consistent 
with the nodal profile were observable in the mid-to-
deep section (ellipse, Figure  11A), though with weaker 
amplitudes and poorer continuity, constrained by the 

Figure  8. Performance comparison of shot gathers from different 
wrapping angles. (A) Shot records and (B) spectral analysis.
Abbreviation: CMP: Common midpoint.

A

B

https://dx.doi.org/10.36922/JSE025300040


Journal of Seismic Exploration HWC in ground seismic exploration

Volume 34 Issue 4 (2025)	 25� doi: 10.36922/JSE025300040

Figure 9. Frequency-band scanning comparison of shot gathers with (A-E) nodal acquisition and (F-J) 30° HWC acquisition. (A and F) Raw shot gather; 
(B-G) 5–10Hz; (C–H) 10–20Hz; (D–I) 20–40Hz; (E-J) 0–60Hz.

Figure 10. Performance comparison of seismic acquisition methods: (A) 60° HWC and (B) 30° HWC.
Abbreviations: CMP: Common midpoint; HWC: Helically wound cable.
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low/uneven fold and limited offsets. Overall, the HWC 
demonstrated a clear capability to acquire surface seismic 
reflection data, showing significant practical potential.

6. Discussion
While this study demonstrates significant promise, it also 
highlights areas for further development. The current 
limitations in fold coverage and maximum offset inherent 
in our test setup impacted the mid-to-deep section quality. 
Future work should focus on deploying longer HWC arrays 
or multiple parallel cables to achieve sufficient fold and 
offset distribution for robust imaging of deeper targets. 
Quantitative comparisons of signal fidelity, resolution, 
and noise characteristics between HWC and geophones 
with matched fold conditions are needed. Furthermore, 
developing specialized processing flows tailored to HWC 
DAS data, particularly addressing its unique noise fields, 
amplitude behavior, and directional sensitivity, will be 
crucial for maximizing its potential. From an economic 
viewpoint, considering cable manufacturing costs, 
deployment efficiency, and operational scalability compared 
to large nodal arrays requires a detailed assessment as 
the technology advances. Nevertheless, this successful 
field trial marks a substantial step forward. Distributed 
HWC technology, with its unique combination of high-
density sampling, operational flexibility in challenging 
environments, and proven ability to capture surface seismic 
reflections, offers a compelling pathway for next-generation 
seismic acquisition systems aimed at higher resolution, 
lower cost, and reduced environmental footprint.

7. Conclusion
This study proposed and field-tested an HWC for DAS in 
land seismic exploration. Combining theoretical analysis 
with field experimentation, we optimized the HWC design 
and evaluated its performance, yielding the following key 
conclusions. To overcome the single-component (axial) 
sensitivity limitation of conventional straight-fiber DAS, we 
developed the HWC concept. Helically winding the sensing 
fiber enhances sensitivity to both compressional (P-) and 

shear (S-) waves, significantly expanding DAS applicability 
to surface seismic exploration. Field data acquired with 
optimally wound (30°) HWC exhibited clear seismic signals, 
continuous wave groups, and high resolution (particularly 
shallow), demonstrating its viability for practical surface 
seismic acquisition. Deploying HWC cables in challenging 
terrains, such as water networks and tidal flats, through our 
innovative underwater scheme effectively resolved coupling 
issues. This approach leverages the inherent advantages of 
high spatial sampling density offered by DAS and eliminates 
the problem of missing traces encountered when deploying 
conventional geophones in inaccessible areas.
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Abstract
Understanding the relationship between micro-cracks and elastic anisotropy 
is crucial for characterizing subsurface flow pathways, optimizing hydraulic 
fracturing, and enhancing seismic interpretation in unconventional shale 
reservoirs. Although clay content and total organic carbon (TOC) are recognized 
primary controls on anisotropy, the specific influence of sedimentary structures 
on micro-crack parameters (such as crack porosity, crack density, and aspect ratio) 
and their contribution to anisotropic behavior have not been fully quantified, 
particularly in lacustrine shales with varied sedimentary architectures. In this 
study, 17 shale samples were categorized into three sedimentary structural types: 
laminated, bedded, and massive, based on their microstructure characteristics. 
Ultrasonic velocity measurements were performed on 17 paired shale plugs under 
confining pressures to quantify the relationship between micro-crack parameters 
and elastic anisotropy. Experimental results reveal a clear difference in stress 
sensitivity of bedding-normal velocities: Laminated shales > bedded shales > 
massive shales, which are attributed to varying degrees of micro-crack alignment 
and density. Laminated shales exhibit the strongest anisotropic properties, 
followed by bedded shales, while massive shales show weak anisotropy. 
Velocity predictions from the Mori-Tanaka effective medium model are in good 
agreement with the measurements, validating its applicability for shales with 
diverse structures. Micro-crack analysis indicates a positive correlation between 
crack density/porosity and anisotropy magnitude. Notably, laminated shales are 
characterized by the highest crack porosity (0.012–0.015%), high clay content 
(average 40%), and moderate TOC, indicating a combined effect of composition 
and microstructure on anisotropy. This study highlights that sedimentary structure 
plays a key role in controlling micro-crack development and related anisotropy in 
lacustrine shales, with laminated shales exhibiting the most significant combined 
effect, thus improving the accuracy of minimum-horizontal-stress prediction and 
hydraulic-fracture design.
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1. Introduction
In recent years, lacustrine shale oil and gas reservoirs in 
China have emerged as a critical focus in the development 
of unconventional hydrocarbon resources. Shale is a self-
generating and self-storing reservoir. Its unique properties 
make it a strategic target for boosting China’s oil and gas 
reserves.1-3 In the exploration and development of shale oil 
and gas, elastic anisotropy is the key geological attribute to 
determine the physical properties of reservoirs. Studies have 
shown that shale reservoirs generally exhibit significant 
anisotropic characteristics.4,5 This anisotropy controls 
wave propagation, fluid flow, and mechanical response. 
Consequently, it affects seismic imaging, log interpretation, 
reservoir characterization, and fracturing design. This 
characteristic has a direct impact on seismic imaging 
accuracy, logging interpretation reliability, reservoir 
physical characterization, and hydraulic fracturing scheme 
design by controlling seismic wave propagation law, 
seepage capacity, and mechanical response.6-9 Accurately 
characterizing the anisotropic characteristics of shale can 
not only improve the prediction accuracy of seismic data on 
reservoir boundary and quality, but also effectively reduce 
engineering risks and costs by optimizing exploration and 
development strategies. However, due to the influence 
of geological deposition and diagenesis, the coupling of 
horizontal bedding, organic-inorganic mineral facies, and 
pore space in organic-rich shale leads to the extremely 
complex formation mechanism of elastic anisotropy, which 
brings severe challenges to the establishment of a universal 
anisotropy model. At the micro-scale, micro-cracks are the 
key factor controlling the anisotropy of shale, and there 
is still a significant uncertainties remain in quantifying 
the influence mechanism of micro-cracks on velocity 
anisotropy. In addition, the differences in experimental 
conditions (such as stress state and fluid properties) and the 
diversity of theoretical models (such as equivalent medium 
theory and discrete fracture network simulation) in the 
current research lead to the lack of comparability between 
different results, and a unified scientific understanding has 
not yet been established.10-12

As a typical fine-grained sedimentary rock, shale 
exhibits significant anisotropy shaped by micro-cracks, the 
preferred orientations of platy clay particles, and lenticular 
kerogen.4,5 Researchers worldwide have conducted 
extensive experimental studies on shale samples to identify 
the controlling factors of intrinsic anisotropy. Vernik and 
Liu13 performed ultrasonic measurements on the Bakken 
shale (USA). They observed maximum elastic anisotropy 
at total organic carbon (TOC) values of 15–20%. This 
reveals the critical role of organic matter content in shale 
elasticity; bedding-parallel organic matter may significantly 

influence medium anisotropy by altering mineral grain 
contacts or micro-crack alignment. Notably, there are 
obvious geological differences in the influence of organic 
matter on anisotropy. The anisotropy of Wufeng-Longmaxi 
Formation shale in China has no obvious correlation with 
organic matter content, while the organic matter content 
of Bakken shale in the United States and Bazhenov shale 
in Russia is the key controlling factor of anisotropy. This 
difference is attributed to the different maturity, occurrence 
form, and distribution characteristics of organic matter. 
Laminated clay minerals represent another key factor. 
Comparative studies by Sone and Zoback14 on North 
American shales (Barnett, Haynesville, Eagle Ford) 
showed a significant positive correlation between clay 
content and anisotropy intensity, consistent with theories 
with transversely isotropic proposed by Hornby et al.15 
and Sayers16 that laminated clay induces the formation of 
transversely isotropic shale. Further studies indicate that 
preferred orientation of clay platelets directly affects shale 
elastic parameters.17-24 Liu et al.12 measured ultrasonic pulses 
in Longmaxi Shale and found a 0.82 correlation between 
clay content and velocity anisotropy parameters: The 
higher the degree of clay orientation, the more significant 
the anisotropy characteristics. Liu et al.25 studied Jurassic 
lacustrine shale from the Sichuan Basin and proposed 
an “effective parameter” (total porosity + clay content + 
kerogen volume) to distinguish elastic and anisotropic 
characteristics among four lithofacies, based on ultrasonic 
velocity measurements under varying confining pressures.

In recent years, beyond studies on the intrinsic 
anisotropy of shale under high-pressure conditions, the 
fracture response information embedded in velocity 
variations with confining pressure has become a research 
focus for scholars. Vernik26 first quantified the dynamic 
relationship between micro-crack-induced anisotropy and 
mineral-oriented intrinsic anisotropy through confining 
pressure-velocity experiments on mature source rock shales: 
as confining pressure increases, progressive micro-crack 
closure leads to a decrease of anisotropy, while intrinsic 
anisotropy from preferred orientation clay/kerogen tends 
to stabilize. This achievement provides key mechanical 
insights into the anisotropy evolution of stress-sensitive 
reservoirs. Ciz and Shapiro27 established a porosity-
deformation approach for transversely isotropic shales and, 
combined with ultrasonic measurement data from North 
Sea shale samples, inverted crack contribution through the 
confining pressure response of elastic moduli, verifying the 
dominant role of micro-crack closure in anisotropy.11,28-31 
These previous studies revealed the coupled relationship 
between cracks, confining pressure, and anisotropy 
through experimental observations, theoretical modeling, 
and numerical simulations. Nevertheless, the current rock 
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physics approach to inverting the response mechanism 
of cracks and reservoir parameters still faces multiple 
challenges. At present, the research on anisotropy induced 
by stress-induced cracks mainly focuses on marine shale. 
However, due to the complexity of the microstructure of la 
cuisine shale, the effective medium model is limited in its 
application. In addition, there are significant differences in 
the anisotropy values generated by stress-induced cracks 
in different lithofacies, underscoring the urgent need for 
more in-depth investigations in this domain.

In this study, we focus on lacustrine shales from 
the Songliao Basin in Northeast China. Based on their 
microstructural characteristics, these shales are classified 
into three lithofacies types. Using ultrasonic velocity 
measurement experiments and inversion based on 
the Mori-Tanaka (M-T) effective medium theory, we 
systematically investigate the anisotropic responses of 
stress-induced micro-cracks in lacustrine shales and 
elucidate the underlying mechanism by which micro-
cracks contribute to shale anisotropy. The results offer 
critical experimental evidence and theoretical basis for 
predicting micro-crack development in lacustrine shale 
reservoirs via seismic data, as well as optimizing reservoir 
evaluation and development strategies.

2. Experimental methodology
2.1. Basic characteristics of the sample

Seventeen full-diameter shale samples used in this study 
were collected from a Cretaceous lacustrine reservoir located 
in Northeastern China. The mud shale in such a formation 
is frequently characterized by its large thickness, high TOC, 
moderate thermal maturity, and overpressure.32-34 A total of 
17 cylindrical plugs, each with a diameter of 25 mm and a 
length of approximately 50 mm, were drilled from the full-
diameter samples along the bedding direction. The cylinders 
then underwent a drying process with a temperature of 
80°C for over 48 h, until the sample weight does not vary. 
Subsequently, the porosity of each cylindrical shale sample 
is measured using the helium gas method.

TOC of each sample is measured by the Rock-Eval 
Pyrolysis tests. The results revealed that TOC of 17 samples 
ranges from 0.1 to 3.2%. The mineral composition of each 
shale sample was determined through the powder X-ray 
diffraction analysis (Figure  1). The collected shales are 
mainly composed of clay, quartz + feldspar + pyrite (QFP), 
and carbonate minerals. From the core photos and the 
thin section images in Table 1, the fine-grained rocks can 
be described as either laminated, bedded, or massive,34,35 
according to the thickness of beddings. The laminated 
rocks, with bedding thickness <10  mm, display obvious 
grain-size changes. The silt and clay laminae terminate 

sharply at their margins, as shown in Table 1. The bedding 
thickness of bedded rocks is normally >1 cm with silt or clay 
beddings alternately stacking together, as shown in Table 1. 
The massive samples, with bedding thickness larger than 
50 cm, are distributed either near the 100%-carbonate-end 
or the 100%-QFP-end in the ternary diagram (Figure 1).

From Table 1, the development of micro-cracks varies 
with the sedimentary structures. In general, the micro-
cracks are most developed in laminated shales, followed 
by bedded shales. Nearly no micro-cracks could be seen 
in the massive shales from the amplified thin section 
image. The development of micro-cracks in laminated 
shales could be attributed to two main reasons. From one 
aspect, in the weak plane between silt and clay laminae, it 
is easy to develop bedding cracks or diagenetic contraction 
cracks along bedding directions. From the other aspect, 
the stripped kerogen in laminated shales is at the peak of 
oil generation (Ro ~ 1.3%). A mass of hydrocarbon would 
be generated and migrated along the weak plane between 
beddings, leaving hydrocarbon-expulsion micro-cracks 
behind.36 For bedded shales, the inter-bedded micro-
cracks (at the silt-clay interfaces) dominate, while less 
hydrocarbon-expulsion micro-cracks develop. For massive 
shale, due to its homogeneous mineral composition and 
lack of laminae weak planes, only sporadically isolated 
contraction cracks develop.37,38

2.2. Measurement of anisotropic ultrasonic velocity

We performed ultrasonic velocity measurements 
on 17  horizontal shale samples by using the pulse 

Figure 1. Ternary diagram for 17 shale samples with different sedimentary 
structures. The red circle represents laminated, the green circle represents 
bedded, and the blue circle represents massive.
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transmission method.39 To gain velocities in different 
directions from one single horizontal plug, three pairs 
of P-wave transducers (0°, 45°, and 90° with respect to 
the symmetry axis) and two pairs of S-wave transducers 
(propagating along beddings, polarizing in both bedding-
normal and bedding-parallel direction) were mounted in 
the sample, as shown in Figure 2. The central frequencies 
for P- and S-wave transducers were 1 MHz and 0.5 MHz, 
respectively. The horizontal shale was wrapped with 
the rubber sleeve and put into a confining vessel filled 
with silicon oil. The velocities were measured at varied 
confining pressures ranging from 5 MPa to 35 MPa. Five 
velocities were all measured in one single horizontal shale 
plug: Vp(0°), Vp(90°), Vp(45°), Vsh(90°), and Vsv(90°), 
allowing for a thorough analysis of the full stiffness tensor 
and anisotropy of transversely isotropic (TI) shales. It is 
noteworthy that the relative systematic error in velocity 
measurements is approximately ±1% for P-waves and ±2% 
for S-waves.

Unconventional shales are often depicted to be a 
transversely isotropic medium with a vertical rotational 
symmetry axis (VTI). According to the anisotropic 
Hooke’s law, a VTI medium can be characterized by five 
independent stiffnesses (C11, C33, C44, C66, C13). With five 
direction-dependent velocities and the measured bulk 
density (ρ), five independent stiffnesses could be derived 
as follows:
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2 90� �� ( ) � (Ⅰ)

C Vp33
2 0� �� ( ) � (Ⅱ)
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Subsequently, P-  and S-wave velocity anisotropy 
could be expressed with Thomsen’s parameters, ε and γ, 
respectively40:
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C
11 33

332
-

� (Ⅵ)

Table 1. Cores and thin sections of laminated shale, bedded shale, and massive shale

Samples Cores Thin sections Descriptions

Laminated shale • �Alternating deposition of silt and clay laminae, with 
thickness <10 mm.

• �Bedding cracks, diagenetic contraction cracks, and 
hydrocarbon‑expulsion cracks develop along bedding directions.

Bedded shale • ��Bedding thickness is >1 cm with silt or clay beddings alternately 
stacking together.

• The inter‑bedded micro‑cracks (at the silt‑clay interfaces) dominate.

Massive shale • �The mineral composition is uniform, lacking laminae or bedding 
interfaces.

• Micro‑cracks are less developed.

Figure 2. Schematic diagram of the direction-dependent velocity 
measurement with one-single-horizontal shale sample39
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3. Pressure-dependent properties
3.1. Experimental results

Figure 3 displays the directional velocities (Vp(0°), Vp(90°), 
Vsh(90°), and Vsv(90°)) as a function of the applied confining 
pressure for three typical samples with laminated, bedded, 
and massive structure. Overall, despite the rock structure, 
all four velocities increase with the increasing pressure. 
Both P-  and S-wave velocities in the bedding-normal 
direction (Vp(90°) and Vsv(90°)) satisfy the following 
relationship: laminated < bedded < massive.

The pressure-dependent velocities in Figure 3, to some 
extent, reveal the effects of bedding-related micro-cracks. 

In general, the bedding-normal velocities show strong 
non-linear behavior at low pressures and subsequently 
get flattened at high pressures, while the bedding-
parallel velocities are almost linear over the entire range 
of confining pressure.26 By assuming that the flattened 
bedding-normal velocities indicate all micro-cracks are 
closed at the highest pressure,41 we define a stress sensitivity 
parameter, V/V(35MPa), to qualitatively characterize the 
effects of micro-cracks for three types of rocks. It should 
be noted that V denotes Vp(0°) or Vsv(90°) at the varied 
confining pressures (5 MPa, 10 MPa, 15 MPa, 25 MPa, 
and 35 MPa), while V(35MPa) suggests Vp(0°) or Vsv(90°) 
at the confining pressure of 35 MPa. Figure  4 shows the 
plot of the stress sensitivity parameter against the applied 
confining pressure for Vp(0°) and Vsv(90°). Both stress 
sensitivity parameters vary non-linearly up to 1 at the 
highest confining pressure, revealing a process of micro-
cracks closure. The stress sensitivity of bedding-normal 

Figure 3. P-wave (A) and S-wave velocities (B) in both bedding-normal 
and bedding-parallel directions as a function of the applied confining 

pressure for three typical samples with laminated, bedded, and massive 
structure

B

A

Figure 4. Stress sensitivity parameter as a function of the applied 
confining pressure for Vp(0o) (A) and Vsv(90o) (B)

B

A
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velocities relies on the rock structures, satisfying the 
following relationship: laminated > bedded > massive.

As shown in Figure 3, the bedding-parallel velocities are 
generally greater than the bedding-normal ones, especially 
for laminated and bedded shales, displaying obvious 
velocity anisotropy. The anisotropy degree of P- and S-wave 
velocities is expressed with ε and γ, calculated based on 
Equations Ⅵ and Ⅶ. Accordingly, Figure 5 shows plots 
of ε and γ against the applied confining pressure for three 
typical samples. Figure 5A shows both ε and γ for laminated 
and bedded samples decrease non-linearly as the confining 
pressure increases from 5 MPa to 25 MPa, and get relatively 
flattened at the subsequently confining pressure. However, 
ε and γ for the massive shale are much lower, combined 
with relatively constant values over the entire confining 
pressure range. Figure 5B presents a crossplot of Thomsen’s 

anisotropy parameters ε and γ for three structural types. 
Overall, ε and γ show a good positive linear correlation. 
The laminated samples exhibit stronger anisotropy, 
generally occupying higher values of both ε and γ =, while 
the massive samples cluster at lower values, and the bedded 
samples show an intermediate distribution.

3.2. Mechanism of shale anisotropy

Shale velocity anisotropy is frequently attributed to the 
combined effects of many intrinsic and extrinsic factors.8 
Intrinsic velocity anisotropy primarily stems from three 
key mechanisms: The alternation of lithologies or laminae, 
the preferred orientation of clay platelets or kerogen, and 
the bedding-parallel micro-cracks.13,42,43 Figure  5B shows 
a plot of γ versus ε at the highest confining pressure 
(35 MPa), revealing the effects of rock texture (laminated, 
bedded, massive) and mineral composition on intrinsic 
anisotropy. Based on Figure 5B, the anisotropy degree of 
17 lacustrine shales satisfies the following relationship: 
laminated > bedded > massive. As shown in Figure 1, the 
total clay content ranges from 5% to 45%, with an average 
value of 40% for laminated shales and 32% for bedded 
shales. For Cretaceous shale reservoirs, clay minerals 
have thoroughly experienced the transition from smectite 
to illite. Clay minerals are dominated by illite and illite-
smectite mixed layers with obvious preferred orientation 
along beddings after sedimentary compaction, resulting 
in relatively strong anisotropy. However, for massive 
shales, the anisotropy degree is relatively low due to the 
low clay content and lack of bedding texture. Besides, the 
kerogen tends to align subparallel to beddings with a strip-
like pattern for laminated and bedded shales, as shown 
in Table  1, further amplifying the velocity contrast in 
bedding-normal and bedding-parallel directions.

In addition, the pressure-dependent properties of 
bedding-normal velocities (Figure  4) and anisotropy 
parameters (Figure 5A) indicate that micro-cracks might 
be a non-negligible factor in evaluating shale anisotropy. 
As discussed in Table  1, micro-cracks mainly originate 
from two sources: Bedding-parallel micro-cracks and 
hydrocarbon-expulsion-induced micro-cracks. These 
cracks are closed at in situ conditions. In the process of 
coring, these micro-cracks tend to open due to the stress 
relief. By applying confining pressure to the approximate 
in situ stress condition in the laboratory, these opened 
cracks close gradually, revealing the pressure-dependence 
of bedding-normal velocities. Conversely, the pressure 
dependence of velocities can, to some extent, be used to 
quantitatively evaluate the contribution of micro-cracks 
to shale anisotropy. In the next section, we will focus on 
the quantitative inversion and evaluation of micro-crack 
effects on anisotropy.

Figure 5. Anisotropic characteristics of shale with three typical samples. 
(A) ε and γ as a function of the applied confining pressure for three 
typical samples with laminated, bedded, and massive structure. (B) A plot 
of anisotropy parameter γ versus anisotropy parameter ε for three typical 
samples with laminated, bedded, and massive structure.

B

A
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4. Effects of micro-cracks on shale 
anisotropy
4.1. M-T theory

To quantitatively evaluate the effects of micro-cracks on 
shale anisotropy, the key is to accurately invert micro-crack 
parameters from the pressure-dependent bedding-normal 
velocities (Figure 3). We employed the M-T theory,44 which 
has been widely recognized for its capability to capture the 
intricate interactions between the micro-structural features 
of materials and their macroscopic mechanical properties.

Mori and Tanaka44 established the relationship between 
the elastic modulus of rocks and their microscopic pore 
structure. The stiff moduli of rocks are expressed as:

K
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Where Kstiff and Gstiff are the effective bulk and shear 
modulus of rocks, when only stiff inter-particle pores exist. 
K0 and G0 are bulk and shear moduli of mineral grains, 
respectively. Φstiff indicates the porosity contributed from 
inter-particle pores. P and Q represent shape factors of stiff 
pores, which are related to the aspect ratio α of ellipsoidal 
pores and Poisson’s ratio νs of mineral grains,41,45 as shown 
in Equations X-XII. By assuming that low-aspect-ratio 
micro-cracks (soft pores) are completely closed at extreme 
high confining pressure, Kstiff and Gstiff could be calculated 
through Vp(0°) and Vsv(90°) measured at confining pressure 
of 35 MPa, as shown in Figure 3. Based on Equation VIII, α 
can be obtained through the least squares regression of Kstiff.
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With the rock only including minerals and stiff pores 
as the background medium, the effective bulk and shear 
moduli are expressed as follows by considering the effect 
of soft micro-cracks:
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Where νstiff = (3Kstiff - Gstiff)/(6Kstiff + 2Gstiff) is the Poisson’s 
ratio of stiff pores. And Γ is the cumulative micro-crack 
density.

Given that the pressure-dependent effective moduli are 
closely related to the micro-crack density, the cumulative 
micro-crack density Γₚ(α) at each pressure can be fitted 
based on the measured elastic moduli and Equations XIII 
and XIV with the least-square regression method. Then, 
the quantitative relationship between micro-crack density 
and the effective pressure46 is expressed as:

� �p
i p pe( ) / ˘� � � � (XV)

Where Γi represents the initial micro-crack density at 
zero effective pressure; and p̆ is a pressure constant with 
the same order of magnitude as the effective pressure p, 
which can be obtained by fitting data with Equations XIII 
and XIV.

We can obtain the distribution characteristics of micro-
crack porosity and density based on the lab-measured 
P- and S-wave velocities. The relationship between micro-
crack porosity ϕc and crack density Γ p  is described by 
David and Zimmerman41 as follows:

�
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p�
4

3
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In addition, the relationship between pore aspect ratio 
and the effective pressure is expressed as:
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Where E Keff eff eff� �3 1 2[ ]�  is the effective Young’s 
modulus under high confining pressure; and 
�eff eff eff eff effK G K G� � �( ) / ( )3 2 6 2  is the effective 
Poisson’s ratio under high confining pressure.

4.2. Inversion of micro-crack parameters

According to Equations VIII-IX, we first inverted the 
high-pressure velocities of three shale samples with 
different structures to estimate the aspect ratios of stiff 
pores. Since the measured velocities of the samples did 
not fully reach asymptotic values at 35 MPa, exponential 
curve fitting of the measured data was performed to 
estimate the high-pressure velocities. The confining 
pressure (P)-velocity fitting relationship of sample G1 
is VP = 2628*P0.03116, Vs = 1681*P0.01215. The confining 
pressure-velocity fitting relationship of sample G2 is VP 
= 2284*P0.08616, Vs = 1676*P0.0318. The confining pressure-
velocity fitting relationship of sample G3 is VP = 4040*P0.0341, 
Vs = 2338*P0.0356. The porosity of the laminated sample G1 
is 6.5%, that of the bedded sample G2 is 1.5%, and that 
of the massive sample G3 is 1.2%. The elastic moduli of 
grains (K0, G0) were obtained using the Voigt-Reuss-Hill 
theory for inverting high-pressure data, and the inversion 
parameters of high-pressure velocities are listed in Table 2. 
As expected, the inversion crack density/crack porosity 
is much higher for laminated shale than for bedded and 
massive shales, as shown in Table 2. The primary causes of 
crack development in laminated shale are as follows: Silt 
and clay laminae creates weak planes prone to forming 
bedding cracks, and oil expulsion during the thermal 
maturation of organic matter generates micro-cracks 
arranged parallel to bedding planes as shown in Table 1. 
Figure 6 shows the effective medium simulation results of 
P-wave and S-wave velocities for the laminated shale G1, 
bedded shale G2, and massive shale G3. The P-wave and 
S-wave velocities inverted based on the M-T theoretical 
model are in good agreement with the measured data 
within the error range. Notably, the model’s predictions are 
more accurate for P-waves for than S-waves. These results 
validate the reliability of the model in predicting shale 
micro-crack parameters and demonstrate its effectiveness 

in characterizing the elastic properties of shales with 
different structure types.

Figure  7 illustrates the porosity distribution of 
soft pores across aspect ratios for shales with distinct 
structures. The laminated shale (red) features the highest 
peak crack porosity, occurring at a relatively larger crack 
aspect ratio. The bedded shale (green) has a lower peak 
crack porosity than the laminated shale, while the massive 
shale (blue) shows the lowest peak crack porosity among 
the three. Across all aspect ratios shown, the laminated 
shale consistently maintains higher crack porosity than the 
bedded and massive shales. Figure 8 displays the cumulative 
crack density distribution of soft pores for the three shale 
types. The laminated shale has the largest cumulative crack 
porosity (6.38 × 10−3%), followed by the bedded shale 
(4.49 × 10−3%), and the massive shale (1.01 × 10−3%) due 
to its slowest crack development and the lowest cumulative 

Table 2. Inversion result for the high‑pressure velocities

Sample 
ID

Type Porosity 
(%)

K0 
(GPa)

G0 
(GPa)

α Crack 
density

Crack 
porosity

G1 Laminated 
shale

6.5 21.5 11 0.09 0.0051 6.38E−05

G2 Bedded 
shale

1.5 38 13 0.02 0.0042 4.49E−05

G3 Massive 
shale

1.2 39 21 0.16 0.0021 1.01E−05
Figure 6. A comparison between the measured pressure-P-wave and 
S-wave velocities of the samples G1/G2/G3 and those inverted by the 

Mori-Tanaka model

B

A
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porosity. Overall, cumulative crack porosity rises initially 
and stabilizes, with the laminated shale having the highest 
values, the bedded shale intermediate, and the massive 
shale the lowest. As shown in Figure  4, the laminated 
shale exhibits a non-linear stress-sensitive curve (steep 
velocity-pressure response), while the bedded and massive 
shales show gentler stress-sensitive curve changes (gradual 
velocity-pressure response), reflecting their structural and 
mineralogical differences in pore compressibility.

Figure  9 illustrates the relationship between crack 
density and crack porosity for three different shale 
structures. Data points for the laminated shale are widely 
distributed, with crack porosity reaching approximately 
0.015% and corresponding crack density around 0.012. 
This indicates extensive crack development in laminated 
shale. In contrast, data for the bedded shale cluster more 

tightly in the medium-to-low range, with crack porosity 
mostly below 0.006% and crack density typically below 
0.006, suggesting moderate crack development. For the 
massive shale, data points concentrate near the origin, 
with crack porosity values mostly below 0.003% and crack 
density consistently below 0.003, indicating the poorest 
crack network development among the three types. As 
shown in Figure  1 and Table  1, the high clay mineral 
content in laminated shale (G1) results in strong clay 
orientation, forming bedding weak planes. In addition, 
during hydrocarbon generation and expulsion from 
organic matter maturation, pressure release along these 
weak planes generates numerous bedding-parallel cracks, 
leading to high crack porosity (reflecting interlaminar 
pores and cracks). Bedded shale (G2) exhibits distinct 
mud-sand interbedding but with slightly poorer bedding 
continuity and slightly higher mineral content (e.g., silty 
quartz) than G1. Bedding weak planes still dominate 
crack development (primarily bedding-parallel), but 
some cracks form due to stress concentration at mineral 
interfaces, resulting in lower crack and total porosity 
(1.5%) compared to laminated shale. Finally, massive shale 
(G3) lacks distinct bedding, is dominated by rigid minerals 
(quartz, feldspar), has low clay content, and exhibits dense 
intergranular cementation—all of which inhibit crack 
development, resulting in the lowest crack and total 
porosity. These results highlight the significant influence 
of shale structural differences on crack development 
characteristics, which cannot be overlooked.

4.3. Effects of micro-cracks on shale anisotropy

Analysis of the influencing factors of anisotropy in shale 
(Figures 10 and 11) reveals two distinct controlling patterns 
of shale anisotropy: One dominated by micro-crack 

Figure 8. The relationship between cumulative crack porosity and crack 
aspect ratio for different structures

Figure 7. Crack porosity distribution as a function of aspect ratio for 
different structures Figure 9. Crossplot of the relationship between crack density and crack 

porosity
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development and the other by composition. As shown 
in Figure  10A and B, the Thomsen parameters ε and γ 
exhibit a clear positive correlation with TOC, particularly 
in laminated and bedded shales, indicating that organic 
matter content enhances intrinsic anisotropy. Similarly, 
Figures 10C and D demonstrate a strong dependence of ε 
and γ on clay content, highlighting the essential role of clay 
mineral orientation in forming anisotropic backgrounds. 
Within this compositional framework, micro-crack 
porosity further differentiates the anisotropy degree 
among shale structures (Figure  11). Laminated shale, 
characterized by high clay content (average 40%) and 
moderate TOC, exhibits the strongest positive correlation 
between crack porosity (up to 0.015%) and Thomsen 
parameters (ε = 0.3–0.8; γ = 0.2–1.0). Results presented in 
Figure 1 and Table 1 suggest a synergistic effect between 
clay-induced intrinsic anisotropy and crack-related 
extrinsic anisotropy. The preferred orientation of clay 
minerals resulting from smectite-to-illite transformation 
establishes a foundation of intrinsic anisotropy,47,48 while 
hydrocarbon-expulsion-induced micro-cracks, aligned 
parallel to bedding, further amplify the anisotropic 
expression.4,49 Bedded shale, with slightly lower clay 

content (average 32%), comparable TOC, and lower crack 
porosity (<0.006%), shows moderate anisotropy (ε = 0.2–
0.6; γ = 0.3–0.6). Its interlayered silty quartz disrupts clay 
fabric continuity, leading to less aligned micro-cracks and 
thus reduced anisotropy. In contrast, massive shale, with 
low clay content and minimal TOC, and the lowest crack 
porosity (<0.003%) exhibits near isotropy (ε, γ → 0). The 
dominance of rigid minerals (quartz + feldspar >60%) and 
the absence of continuous bedding or organic alignment 
result in an isotropic elastic response, as predicted by 
Backus averaging theory for homogeneous media.50,51 
Thus, shale anisotropy is co-controlled by composition 
(TOC and clay) and micro-structure (micro-crack 
development), with laminated shales exhibiting the most 
significant combined effect.

This study investigates the correlation between 
anisotropy and micro-cracks using the M-T theoretical 
model, providing valuable insights for exploration and 
development of lacustrine shale reservoirs. Specifically, 
in seismic data interpretation, integrating shale 
anisotropy characteristics and dynamic effects of micro-
cracks can improve reservoir prediction accuracy. For 
example, the significant anisotropy and bedding-parallel 

Figure 10. The influence of total organic carbon (TOC)/clay on anisotropic parameters. (A) The relationship between the anisotropy parameter ε and 
the TOC. (B) The relationship between the anisotropy parameter γ and the TOC. (C) The relationship between the anisotropy parameter ε and the clay. 
(D) The relationship between the anisotropy parameter γ and the clay.

B

C D

A

https://dx.doi.org/10.36922/JSE025340060


Journal of Seismic Exploration Effects of micro-cracks on anisotropy

Volume 34 Issue 4 (2025)	 38� doi: 10.36922/JSE025340060 

micro-cracks in laminated shale highlight the need 
for targeted exploration focus on such intervals. In 
addition, optimizing well locations to match dominant 
micro-cracks directions and considering anisotropy 
in fracturing designs can significantly enhance 
hydrocarbon recovery efficiency. Collectively, these 
findings provide critical, practice-oriented guidance for 
the efficient development of unconventional resources 
like shale oil and gas.

However, this study has some limitations. Firstly, 
due to limited core availability, only 4–6  samples were 
available for each structural type, potentially resulting in 
uncertainty when extrapolating to the entire reservoir. 
Future work should increase the sample size and combine 
digital rock physics to reduce statistical bias. Then, the 
model assumes an ideal uniform distribution of micro-
cracks in the medium, which fundamentally differs from 

the complex heterogeneous fracture networks observed in 
real shales. This may lead to prediction biases in anisotropy 
characteristics. Therefore, future research could refine 
the model by incorporating both uniformly distributed 
random fractures and preferentially oriented bedding-
parallel cracks, thereby capturing the heterogeneous 
characteristics of real reservoirs more accurately.

5. Conclusion
In this study, 17 shale samples from a Cretaceous 
lacustrine reservoir were classified into three structural 
types: Laminated, bedded, and massive, based on 
their micro-fabric characteristics. Ultrasonic velocity 
measurements were performed on 17 pairs of shale 
plugs under varied confining pressures to quantitatively 
analyze the relationship between micro-crack parameters 
and elastic anisotropy. The results indicate that the 
stress sensitivity of bedding-normal velocities relies on 
rock sedimentary structure, in the order of: laminated 
> bedded > massive. Specifically, laminated shales exhibit 
the most pronounced anisotropic properties, followed by 
bedded shales, while massive shales display the weakest 
anisotropic characteristics. Measured velocities showed 
good agreement with predictions from the M-T model, 
validating its applicability for structurally diverse shales. 
Furthermore, a trend was observed where a higher crack 
aspect ratio correlates with higher crack porosity in non-
closable pores, a feature predominantly found in laminated 
samples. As crack density and porosity increase, the degree 
of anisotropy in lacustrine shales intensifies. Among the 
three structural types, laminated shales exhibit the highest 
crack porosity, which is consistent with their pronounced 
anisotropic characteristics. Within the studied lacustrine 
shales, sedimentary structure appears to be the dominant 
factor controlling micro-crack development and 
anisotropy, although clay and TOC also play contributory 
roles. This study has specific guiding significance for 
seismic anisotropy inversion, hydraulic fracturing design, 
or well logging interpretation.
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Abstract
Suppressing complex mixed noise in seismic data poses a significant challenge for 
conventional methods, which often cause signal damage or leave residual noise. While 
sparse basis learning is a promising approach for this task, traditional data-driven 
learning methods are often insensitive to the physical properties of seismic signals, 
leading to incomplete noise removal and compromised signal fidelity. To address 
this limitation, we propose a physics-constrained sparse basis learning method for 
mixed noise suppression. Our method integrates local dip attributes—estimated 
and iteratively refined by a plane-wave destructor filter—as a physical constraint 
within the dictionary learning framework. This constraint guides the learning 
process to achieve high-fidelity signal reconstruction while effectively suppressing 
multiple noise types. Tests on complex synthetic and real data demonstrate that 
the proposed method outperforms conventional techniques and industry-standard 
workflows in attenuating mixed noise, including strong anomalous amplitudes, 
ground roll, and random and coherent components, thereby significantly enhancing 
the signal-to-noise ratio and imaging quality.

Keywords: Multiple-type noise suppression; Dictionary learning; Physical constraint; 
Plane-wave destructor filter

1. Introduction
The evolution of seismic data denoising techniques reflects a deepening understanding 
of signal and noise characteristics and the continuous refinement of processing 
methodologies.1 Early methods primarily relied on fixed-basis transforms, such as the 
Fourier transform (F-K filtering) and the wavelet transform. These approaches operate 
on the assumption that effective signals and noise exhibit distinct characteristics in the 
transformed domain, allowing for their separation through filtering or thresholding.2
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The underlying principle for many of these techniques 
is sparse representation, which aims to find the most 
compact signal representation within an overcomplete 
dictionary, thereby enabling effective compression, 
feature extraction, and denoising.3,4 Transforms such 
as the curvelet and shearlet were developed to better 
represent the linear and curvilinear features common in 
seismic wavefields, offering improved performance over 
traditional wavelets in preserving edges and suppressing 
coherent noise.5-7 However, the efficacy of these fixed-basis 
methods is inherently limited; they may introduce artifacts 
or damage signals when the characteristics of the signal 
and noise overlap in the transform domain.8,9 To overcome 
the rigidity of fixed bases, adaptive dictionary learning 
methods such as K-singular value decomposition (K-SVD) 
and the method of optimal directions were introduced. 
These techniques learn the dictionary atoms directly 
from the data, allowing the basis to adapt to the specific 
morphological features of seismic signals.10,11

In recent years, deep learning (DL) has been 
widely applied to seismic data denoising due to its 
powerful nonlinear modeling and feature learning 
capabilities.12 Initial supervised models, such as the 
denoising convolutional neural network, demonstrated 
state-of-the-art performance by using residual learning to 
focus on noise components.13 However, their reliance on 
large volumes of paired clean and noisy data for training 
significantly increases the preprocessing workload and 
limits their application in scenarios where clean reference 
data is unavailable.13 To address this, recent research 
has shifted toward more flexible DL paradigms. Self-
supervised learning models, for instance, can be trained 
effectively on noisy data alone, eliminating the need 
for clean labels by leveraging the statistical properties 
of the data and noise.14 Furthermore, physics-informed 
neural networks (PINNs) have emerged as a promising 
direction. By incorporating physical laws, such as the 
acoustic wave equation, directly into the network’s loss 
function, PINNs ensure that the denoising process 
respects the underlying wave propagation physics, which 
enhances generalization and produces more physically 
plausible results.15

Despite these advancements, significant challenges 
remain. Data-driven dictionary learning, if unconstrained, 
is prone to learning non-physical features that mimic noise, 
leading to incomplete noise suppression and signal damage. 
DL models, while powerful, often lack interpretability, and 
their performance can be unreliable when applied to data 
with characteristics different from the training set.9,16,17 
To address these issues, this paper proposes a physics-
constrained sparse basis learning method for mixed noise 

suppression. This method constructs a joint optimization 
model that introduces a dip regularization term, penalizing 
components in the reconstructed signal that do not 
conform to local coherence. By simultaneously imposing a 
smoothness constraint on the dictionary atoms, the learned 
basis is guided to be more physically meaningful. A plane-
wave destructor (PWD) filter is used to iteratively estimate 
and update the local dip field, ensuring that the physical 
constraint adapts to the progressively refined signal. Tests 
on synthetic and real data demonstrate that our method 
outperforms conventional techniques in suppressing 
complex mixed noise while preserving the integrity of the 
effective signal.

2. Materials and methods
2.1. Dip-constrained and gradient-optimized 
learning framework

The core idea of the novel prestack seismic data joint 
denoising framework proposed in this study is to 
combine the signal representation capability of sparse 
transforms with the dip attributes of effective signals. This 
integration aimed to achieve high-fidelity, effective signal 
reconstruction while simultaneously performing multi-
type noise suppression.18

Prestack seismic data Y N Nt z� �  (where Nt represents 
the number of time samples and Nz represents the number 
of traces) can be expressed as the sum of effective seismic 
signals X N Nt z� � and multiple types of noise N N Nt z� � :

Y=X+N� (I)

The primary goal of denoising was to estimate the 
effective signal X from the raw data Y. Within the 
framework of basis learning, we assume that the effective 
signal X can be approximately represented by a dictionary 
(set of basis functions) D N Nt z� �  and its corresponding 
sparse coefficient matrix A N Nt z� � :

X=≈DA� (II)

Here, the column vectors of D = [d1,d2...,dNk)], denoted 
as dj, are referred to as atoms or basis functions, and Nk 
is the number of atoms. Each column ai of the sparse 
coefficient matrix A represents the sparse representation 
of the corresponding trace xi under the dictionary D. The 
core challenge is to learn a dictionary D that provides a 
compact representation of the effective signal features and 
to solve for the corresponding sparse coefficients A.

Conventional basis function learning is achieved by 
solving the following optimization problem:

D A

min

F s sY DA R A
,

( ),� �
2

� � (III)
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where Y DA Y DA
F i j i ji j

� � �� ��2 2

, ,,
( )  represents the 

data fidelity term, which measures the error between 
the reconstructed data DA and the Raw data Y. Rs (A) is the 
regularization term for the sparse coefficients A, used to 
introduce a sparsity prior. The L1-norm regularization, i.e., 
s i ji j

A A A( ) ,,
� ��1

, is commonly used to induce 
sparse solutions, meaning that the information for each 
seismic trace can be represented by a linear combination of 
a few atoms from the dictionary.6 λs > 0 represents the 
weighting balance between the data fidelity term and the 
sparse regularization term. The selection of an appropriate 
value for the hyperparameter λs is critical to the success of 
the denoising task, as it governs the trade-off between 
fitting the data and enforcing sparsity. A  very small λs 
would cause the optimization to prioritize the data fidelity 
term, leading the model to fit the noisy data Y too closely 
and fail to remove noise. Conversely, a very large λs would 
heavily penalize non-sparse solutions, forcing the 
coefficient matrix A to be extremely sparse, at the risk of 
over-smoothing the data and removing important features 
of the effective signal. Therefore, an optimal λs must be 
chosen to ensure that the sparsity constraint is strong 
enough to separate noise, while the data fidelity term 
preserves the integrity of the underlying signal. The 
optimal value is data-dependent, influenced by factors 
such as the noise level, and is typically determined 
empirically.

In prestack data, effective reflection signals typically 
exhibit good spatial coherence and predictable dips within 
local regions. For instance, in common midpoint gathers 
or common offset gathers, reflection events possess specific 
kinematic characteristics. This coherence is a key feature 
that distinguishes signals from various interferences such 
as random noise, linear noise, anomalous amplitudes, 
and ground roll. To make the basis learning framework 
more suitable for seismic data denoising and to enhance 
denoising performance by incorporating physical 
meaning, this study introduced local dip attributes as a 
physical constraint within the learning framework.16

This research presents a dip regularization term to 
penalize components in the reconstructed signal DA that 
does not conform to local coherence. This constraint was 
built upon the local dip P = {pi,j} (the local dip at data point 
(i,j)). First, we defined a linear operator Lp, which depends 
on the local dip field P and is used to enhance signal 
smoothness along the dip direction or to suppress different 
components. Ideally, if the signal DA is perfectly aligned 
along the dip P, then the value of Lp (DA) will be close to 
zero. This constraint term can be expressed as:

will be close to R DA P L DAcoh p F
( , ) ( ) ,=

2
� (IV)

where the local dip field P can be estimated, computed, 
and updated during the iterative process based on the 
current reconstructed signal DA, allowing this constraint 
to adaptively match the local structural features of the data.

This paper posits that the basic building blocks of 
effective signals (atoms in the dictionary D) inherently 
possess certain physical properties. For example, 
they should exhibit smoothness and band-limited 
characteristics, rather than containing excessive high-
frequency noise or irregular oscillations. To ensure that the 
learned atoms are more physically meaningful, this method 
imposes a smoothness constraint on the dictionary D itself 
by penalizing its gradient:

D A P
min

F s coh p F

atom F

j D A P Y DA A L DA

D

, , ( , , ) ( )� � � �

� �

2

1

2

2

� �

� � (V)

where λs, λcoh, and λatom are regularization parameters 
used to balance the weights of different constraints. 
The local dip field P, as part of the regularization term, 
reflects the model’s adaptability to data characteristics. 
The objective function above, by jointly optimizing the 
dictionary D, sparse coefficients A, and physical parameter 
P, yields a solution that fits the effective signal while 
satisfying both sparsity and physical priors.

Given that the objective function j (D, A, P) is non-
convex with respect to D, A, and P, we employed an 
alternating iterative optimization strategy that decomposes 
the problem into the following four sub-steps:

Sub-step one: Initialization
(i)	 Initialize dictionary D(0): Randomly select data 

patches from the raw data Y or use Ricker wavelets for 
initialization

(ii)	 Initialize sparse coefficients A(0): Use a zero matrix or 
small random values

(iii)	Initialize local dip field P(0): Estimate from the raw 
data Y using the PWD method

(iv)	 Set current iteration t = 0 and maximum iterations Tmax.

Sub-step two: Updating sparse coefficients
(i)	 Fix D(t) and P(t) and establish the objective function for 

solving A:

A Y D A A L D At
A

argmin t

F s coh P
t

F
t

( ) ( ) ( )
( ) ( )� � � � �1 2

1

2
� � �(VI)

(ii)	 The function above is an L1-norm minimization 
problem with a quadratic regularization term. 
Assuming LP(t) is a linear operator, let Q Dt

P
t

t
( ) ( )

( )= . 
Then, this subproblem can be rewritten as:

A Y D A A Q At
A

argmin t

F s coh
t

F

( ) ( ) ( )� � � � �1 2

1

2
� � � (VII)
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This can be transformed into:

A
Y D

Q
At

A

argmin
t

coh
t

F

s
( )

( )

( )
� �

�

�
��

�

�
�� �

�

�
�
�

�

�
�
�

�1

2

0 �
� � (VIII)

This problem can be efficiently solved using methods 
such as the fast iterative shrinkage-thresholding algorithm 
or the alternating direction method of multipliers.

Sub-step three: Updating the dictionary
(i)	 Fix A(t+1) and P(t) and solve the subproblem for D:

D Y DA DA Dt
D

argmin t

F coh P
t

F atom Ft
( ) ( ) ( )

( ) ( )� �� � � � �1 2 1 2 2
� � �

� (IX)
(ii)	 The equation above is a quadratic programming problem 

with respect to D. If optimized column-by-column dk, it 
can be simplified as:

D

min
t T

coh P A

atom

Y I A

M t t0
0

1

1

�

�

�
�
�

�

�

�
�
�
�

��

�

�
�
�
�

��

�

( )( )

,( ) ( )�

� � ��

�
�
�
�

vec D( )

2

2

� (X)

where M and N are matrix forms of expressing 


P
t

F
t DA( ) ( )( )+1 2

and ∇D
F

2
 as quadratic forms with 

respect to vec(D); ⨂ denotes the Kronecker product; and 
vec(.) is the vectorization operator. This results in a large-
scale least squares problem that can be solved using 
iterative methods such as gradient descent or the conjugate 
gradient method.9

Sub-step four: Local dip field update

Fix D(t+1) and A(t+1) to obtain the current effective signal 
estimate X(t+1)=D(t+1) A(t+1). Then, update the local dip field 
X(t+1) based on P:

P(t+1) = PWD(X(t+1))� (XI)

2.2. Plane-wave deconstruction filtering dip angle 
estimation

In the aforementioned constrained learning framework, 
the core of the physical constraint lies in the quantification 
and utilization of seismic signal local coherence. The PWD 
filter, proposed and developed by Sergey Fomel, cannot 
only be used to estimate the local dip field but also directly 
serve as a coherence constraint operator, providing strong 
support for this objective.17

The PWD theory assumes that, within a local time-
space window, seismic data can be approximately viewed 
as a superposition of a series of plane waves. A 2D plane 
wave can be expressed as:

d(t,x) = f(t-σx),� (XII)

where σ represents the local dip of the plane wave. 
PWD is essentially a steerable prediction-error filter. The 
prediction error at the filter’s output is minimized when the 
correct local dip is applied. Any components that do not 
conform to this local plane wave model (such as various 
types of noise) cannot be effectively predicted and thus 
manifest as larger energy at the filter output. Assuming a 
2D seismic data d(t,x), the theory aims to predict the value 
of d(t,x), based on information from neighboring traces. 
According to the plane wave assumption, the following 
differential relationship is derived:

�
�

�
�
�

�
d
x

d
t

� 0 � (XIII)

The above equation indicates that the directional 
derivative along the plane wave direction (t,x) domain is 
zero. PWD is the discrete realization of this differential 
operator. A first-order PWD operator can be used to predict 
the value at a central point di,j. Its predicted value dEi,j is 
calculated from two neighboring points di,j−1 and di,j+1 in 
the x-direction. To introduce the dip σ into the prediction, 
a shift in the time direction needs to be considered:

d d dEi j i round j i round j, ( ), ( ),� ��� ��� � � �

1
2 1 1� � � (XV)

To address the precision issue caused by the integer 
shifts in the above equation, Fomel proposed more accurate 
Taylor expansion and finite-difference methods:

ei,j = di,j−[c−1(σ)di,j−1+c1(σ)di,j+1],� (XV)

where ei,j represents the prediction error of di,j. c−1 (σ) and 
c1 (σ) are functions of the local dip σ, used to perform data 
interpolation or extrapolation along the dip direction. In 
practical applications, a separable approximation is commonly 
used, where a three-point PWD operator Fσ applied to a data 
point di,j can be approximated as: can be approximated as

F d
d d

x
D di j

i j i j
i j t i j� �( ) ( ),

, ,
, ,�

�
�� �1 1

2�
� (XVI)

where Dt is a differential operator in the time direction, 
and σi,j is the local dip at point (i,j). The output energy reflects 
the degree to which the data deviates from the local plane 
wave assumption. Conversely, this can be used to find a dip 
value σ that minimizes the output energy of the PWD filter. 
For each local window in the data, the optimal local dip σ is 
estimated by solving the following minimization problem:

σ σ

min

F
d ( ) ,

2
� (XVII)

where d represents the data within the local window, 
and Fσ is the PWD operator parameterized by the dip σ.
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The PWD theory aligns well with the joint denoising 
framework proposed in this study, providing a concrete 
implementation for crucial steps of the algorithm. In our 
objective Equation (VI), the local coherence constraint 
term is λcoh P F

DA ( )
2

. We define the PWD operator as LP, 
so this constraint term becomes:

R DA P F DAcoh P F
( , ) ( )� �

2
� (XVIII)

where, P ≡ σ(t,x) represents the local dip field required 
by the PWD, and Fσ is the PWD operator guided by this 
dip field. It constrains all components in the reconstructed 
signal DA that cannot be predicted by the local plane wave 
model.

Furthermore, for sub-step four predicted by the local 
plane (Equation VI)—this can be achieved by solving the 
PWD-based dip estimation problem:

P Xt

P

argmin

P
t

F

( ) ( )( )� ��1 1 2
 � (XIX)

This process ensures that the dip field consistently 
aligns with the continuously improving signal estimation 
throughout the iterative process, thereby guiding the entire 
optimization toward clearer physical meaning and a more 
distinct signal structure.

2.3. Learning-based seismic data denoising 
framework

Unlike the training phase, where D, A, and P are optimized 
simultaneously, in the denoising phase, the dictionary 
Dopt and the dip field Popt are treated as known optimal 
parameters. The objective function for solving the sparse 
coefficient matrix Af is:

A

min

opt F s coh P opt
F

Y D A A L D A
opt

� � �
2

1

2
� � ( ) , � (XX)

where Y D Ao pt F
−

2
 is the data fidelity term, which 

ensures that the sparse representation, after reconstruction 
using the optimal dictionary Dopt, has minimal error with 
respect to the raw data Y, thus preserving the fidelity of the 
denoising process. The term λs A

1
 is the sparse 

regularization term, encouraging the solution to be 
represented sparsely using only a few atoms from Dopt.
λcoh P opt

Fopt
D A ( )

2
 is the dip constraint term, which uses the 

estimated dip field Popt to enforce structural constraints on 
the denoised data, requiring that the final denoising result 
conforms to the local coherence structure defined by Popt.

By solving the optimization problem in Equation I, we 
obtain the sparse coefficient matrix Af. Combining it with 
Dopt yields the final denoising result:

Xf = DoptAf� (XXI)

The proposed method achieves a relative balance 
among data fidelity, sparse representation, and structural 
constraint. The estimated noise Ne = Y−Xf includes 
interference components that are neither effectively 
represented by the dictionary nor conform to the local 
coherence constraint. The proposed method comprises 
two distinct phases within a single workflow, as illustrated 
in Figure  1: A  learning phase and an application phase. 
The “iterative optimization” block constitutes the learning 
phase, during which the optimal dictionary (Dopt) and dip 
field (Popt) are learned from the raw data. The subsequent 
steps form the application phase, in which these learned 
parameters are used to process the raw data once to 
obtain the final denoised result. Unlike the learning phase, 
where D, A, and P need to be optimized simultaneously, in 
the application phase, the dictionary Dopt and dip field Popt 
are treated as known, optimal parameters.

3. Results
3.1. Synthetic data example

To validate the proposed method, we conducted 
comparative denoising experiments on three synthetic 
datasets (Blocks A, B, and C), derived from a complex 
physical model based on a block in Western China. The 
performance of our method was benchmarked against 
three techniques: shearlet transform, DL model (a classic 
supervised learning framework based on the denoising 
convolutional neural network), and traditional dictionary 
learning. The first dataset, Block A, was contaminated with 
strong anomalous amplitude interference, random noise, 
and coherent noise, as shown in the raw shot gather in 
Figure 2A. Figure 2 compares the denoising results, where 
the proposed method (Figure  2E) effectively removes 
vertical interference while preserving signal continuity, 
outperforming the shearlet (Figure  2B), DL (Figure  2C), 
and traditional dictionary learning (Figure 2D) methods, 
which exhibit residual noise or signal loss. The removed 
noise profiles are displayed in Figure 3. The results from 
the comparative methods show significant signal leakage 
(Figure  3A-C), whereas the noise removed by our 
method consists primarily of interference, with almost 
no effective signal components, demonstrating superior 
signal preservation (Figure  3D). Figure  4 presents the 
final constrained dip fields, where the result from our 
method (Figure  4E) exhibits weaker residual noise and 
better preservation of effective signal features compared 
to the raw data and other results (Figure  4A-D). Finally, 
the dictionary iteration process is shown in Figure  5. 
Compared to the initial dictionary (Figure  5A) and the 
traditional result (Figure  5B), the dictionary learned 
by the proposed method (Figure  5C) more effectively 
captures signal features while discarding noise elements. 
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The second dataset, Block B, was characterized by strong 
ground roll, as depicted in Figure  6A. The results in 
Figure 6 demonstrate that while the benchmark methods 
(Figure 6B-D) struggled to suppress the ground roll, our 
proposed method (Figure  6E) achieved excellent multi-
type noise removal while preserving the underlying 
signal. The removed noise sections in Figure  7 confirm 
this: While the other methods showed significant signal 
leakage (Figure 7A-C), our method successfully isolated 
the ground roll (Figure 7D). The corresponding dip fields 
and dictionary iterations are shown in Figures  8 and 9, 
respectively. The conclusions are consistent with those of 
the first experiment: In contrast to the dip fields of the raw 
data (Figures 8A), the shearlet result (Figures 8B), the deep 
learning result (Figures 8C), and the traditional dictionary 
learning result (Figures  8D), our method produced a 
much cleaner dip field (Figures  8E). Additionally, when 

compared with the initial dictionary (Figure 9A) and the 
result from traditional dictionary learning (Figure  9B), 
our method yielded a dictionary more representative of 
the true signal structure (Figure  9C). The third dataset, 
Block C, contained a complex mix of strong noise, 
including intermixed vertical amplitudes and coherent 
acquisition noise (Figure 10A). As illustrated in Figure 10, 
the comparative methods (Figure 10B-D) had a minimal 
effect on this complex noise, while the proposed method 
(Figure  10E) effectively resolved the issue. Figure 11 
further depicts that the other techniques showed a 
mixture of noise and signal in the removed components 
(Figure 11A-C), whereas our method cleanly separated the 
complex noise structures (Figure 11D). These findings are 
further validated in Figure 12 and Figure 13. In contrast 
to the dip fields of the raw data (Figure 12A), the shearlet 
result (Figure 12B), the deep learning result (Figure 12C), 

Figure 1. Flowchart of the proposed method
Abbreviation: PWD: Plane-wave destructor.
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Figure 2. Raw data and denoised data of Block A. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional 
dictionary learning. (E) Result using the proposed method.

D E
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Figure 3. Removed noise using different methods for Block A. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed 
noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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and the traditional dictionary learning result (Figure 
12D), our method yields a cleaner final dip field (Figure 
12E). Similarly, when compared with the initial dictionary 
(Figure 13A) and the result from traditional dictionary 
learning (Figure 13B),our method produces a more signal-
focused dictionary (Figure 13C). Finally, the stacked 
sections for all three blocks are presented. For Block A 
(Figure 14), Block B (Figure 15), and Block C (Figure 16), 
the stacks processed by our method consistently 
demonstrated significant improvements in signal-to-noise 
ratio and continuity of geological events compared to the 
raw data and the results from the benchmark methods. 

In all cases, weak signals previously masked by strong 
noise were effectively recovered, highlighting the practical 
applicability of the proposed approach.

3.2. Real data example

To further validate the effectiveness and applicability of our 
method, we processed real seismic data from a work area in 
Western China. The performance was benchmarked against 
a DL method and a conventional industrial workflow.

A raw shot gathered from the dataset is shown in 
Figure 17A, which is heavily contaminated by severe ground 

Figure 4. Dip fields of raw data and denoised data for Block A. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using 
deep learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.

D E

B CA

Figure 5. Initial dictionary and final learned dictionary of Block A. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result using 
the proposed method.

B CA
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Figure 6. Raw data and denoised data for Block B. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional 
dictionary learning. (E) Result using the proposed method.
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Figure 7. Removed noise using different methods for Block B. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed 
noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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roll and random noise. This results in a low signal-to-noise 
ratio, where effective signals are obscured. Figure 17 presents 
the denoising results, displaying that all three methods 
removed a substantial amount of noise (Figure  17B-D). 
For a more detailed comparison of signal preservation, a 
partial enlargement is provided in Figure  18. In contrast 
to the raw data (Figure 18A), the DL method produced a 
cleaner result but with subtle smearing along the reflections 
(Figure 18B), and the conventional workflow left noticeable 
residual noise and compromised the continuity of reflection 
events (Figure 18C). The result from our proposed method 
(Figure 18D), however, shows superior noise removal while 

preserving signal integrity. The noise profiles for each 
method are depicted in Figure 19A-C. The coherence plots19-

21 for the DL method (Figure  19D) and the conventional 
workflow (Figure  19E) exhibit higher coherence values 
along noise and main reflection events, indicating weaker 
denoising and poorer signal preservation. The plot for our 
method (Figure  19F) demonstrates significantly lower 
correlation between the removed noise and the denoised 
result, confirming higher-fidelity separation of signal from 
noise. Finally, we evaluated the impact of denoising on 
seismic imaging by comparing stacked sections for two 
sub-regions. For region A, shown in Figure 20, the stacked 

Figure 8. Dip fields of raw and denoised data from Block B. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using deep 
learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.
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Figure 9. Initial dictionary and final learned dictionary of Block B. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result using 
the proposed method.

B CA
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Figure 10. Raw data and denoised data of Block C. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional 
dictionary learning. (E) Result using the proposed method.
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Figure 11. Removed noise using different methods for Block C. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed 
noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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Figure 14. Stacked sections comparing raw data, traditional method results, and the proposed method for Block A. (A) Stack of raw data. (B) Stack of shearlet-
denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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Figure 13. Initial dictionary and final learned dictionary for Block C. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result 
using the proposed method.

B CA

Figure 12. Dip fields of raw data and denoised data from Block C. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using 
deep learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.
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Figure 16. Stacked sections comparing raw data, traditional method, and the proposed method for Block C. (A) Stack of raw data. (B) Stack of shearlet-
denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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Figure 15. Stacked sections comparing raw data, traditional method, and the proposed method for Block B. (A) Stack of raw data. (B) Stack of shearlet-
denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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Figure 18. Partial enlarged image of raw data and denoised data. (A) Raw data. (B) Result using deep learning. (C) Result using conventional industrial 
workflow. (D) Result using the proposed method.
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Figure 17. Raw data and denoised results. (A) Raw data. (B) Result using deep learning. (C) Result using conventional industrial workflow. (D) Result 
using the proposed method.
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Figure 20. Stacked sections of raw data and denoised data in Region A. (A) Raw data. (B) Result using deep learning. (C) Result using conventional 
industrial workflow. (D) Result using the proposed method.
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Figure 19. Removed noise and local coherence analysis. (A) Removed noise using deep learning. (B) Removed noise using a conventional industrial 
workflow. (C) Removed noise using the proposed method. (D) Local coherence between the removed noise and the denoised result using deep learning. 
(E) Local coherence between the removed noise and the denoised result using a conventional industrial workflow. (F) Local coherence between the 
removed noise and the denoised result using the proposed method and raw data.
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section from the raw data (Figure 20A) suffers from low 
SNR and poor reflector continuity. While the results from 
deep learning (Figure 20B) and the conventional industrial 
workflow (Figure 20C) offer improvements, the result from 
the proposed method (Figure 20D) demonstrates the most 
significant enhancement, with clearer, more continuous 
reflectors and more prominent structural features such as 
faults and pinch-outs. A similar conclusion is drawn from 
the stacked results for Region B, presented in Figure 21. 
Compared to the raw data stack (Figure 21A) and the results 
from both deep learning (Figure 21B) and the conventional 
industrial workflow (Figure 21C), the proposed method’s 
result (Figure 21D) again exhibits substantial improvement. 
In both regions, our method effectively recovered weak 
signals previously masked by strong noise, confirming its 
superior capability and practical value.

4. Discussion
The physics-constrained sparse basis learning approach 
for seismic data processing holds significant potential for 

future research. Future research will focus on exploring 
more advanced methods of incorporating physical 
attributes, such as geological models, velocity fields, or 
wavefield propagation theories. These additions could 
further enhance the recognition and preservation of valid 
seismic signals. Another promising direction involves 
integrating the powerful feature extraction capabilities of 
DL with the theoretical strengths of sparse representation. 
Hybrid models that combine these elements could lead to 
more efficient and higher-fidelity adaptive seismic data 
processing while maintaining physical interpretability.

5. Conclusion
In this study, we proposed a physics-constrained sparse 
basis learning method to address the critical challenge of 
suppressing complex, mixed noise in seismic data without 
damaging effective signals. The primary advantage of our 
method lies in the integration of local dip information, 
derived from a PWD filter, as a physical constraint within 
the dictionary learning framework. This innovation 

Figure  21. Stacked section of raw data and denoised data in Region B. (A) Raw data. (B) Result using deep learning. (C) Result using conventional 
industrial workflow. (D) Result using the proposed method.
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effectively overcomes a key limitation of traditional data-
driven approaches by preventing the learned basis from 
incorporating non-physical, noise-like features, thereby 
ensuring high-fidelity signal preservation. Our extensive 
experiments on both synthetic and real data demonstrated 
that this approach provides superior suppression of mixed 
noise—including anomalous amplitudes, ground roll, 
random, and coherent noise—compared to conventional 
techniques and other learning-based techniques. 
Ultimately, the enhanced clarity and continuity of reflectors 
in the final seismic images confirm the practical value of 
our method for improving the delineation of geological 
structures and recovering weak signals.
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Abstract
The Hessian matrix, though computationally expensive, plays a critical role 
in ensuring inversion accuracy and mitigating cross-talk in multi-parameter 
inversion. The well-known wavefield reconstruction inversion (WRI) or extended 
space full-waveform inversion can reduce nonlinearity and mitigate cycle skipping 
in traditional FWI. However, most implementations omit the Hessian. In this study, 
the Hessian—formulated as a function of measurement and theoretical covariance 
matrices—is incorporated into WRI within a Bayesian inference framework. 
Furthermore, the connections between the data-  and model-domain Hessian 
equations are discussed, leading to a simplified calculation method for the extended 
source. Based on this approach, a new definition for the theoretical covariance 
matrix is proposed and validated through numerical tests, demonstrating its 
accuracy.

Keywords: Inversion; Bayesian inference; Theory covariance matrix

1. Introduction
Full-waveform inversion (FWI),1,2 a tool commonly used to invert subsurface structures, 
has been widely used in geophysics exploration.3,4 However, as a data-fitting algorithm in 
the least squares sense, FWI suffers from cycle skipping and nonlinearity, primarily due 
to the difficulty of predicting the data resulting from the inexpressive wave equation and 
the limited acquisition aperture.5

There are methods specifically designed to address cycle skipping, which generally 
involves a complex operation for each trace6,7 or shot8 to achieve accurate matching. 
An advanced method for measuring distance using optimal transport distances has 
garnered the attention of a wide range of researchers and has been well-developed.9-12 
As for nonlinearity, the multi-scale strategy,12,13 changing the inversion domain,14 or 
modifying the objective function form15 can help alleviate this limitation.
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In addition to the above methods, two other directions 
have been proposed and developed into relatively mature 
methods. One is an extended space FWI (ES-FWI), which 
introduces another search space in the inversion.

There are two ways to build the ES-FWI method. The 
first approach is to add non-physical degrees of freedom 
to the model, thereby pushing the synthetic data to better 
fit the observed data.16 However, new space introduces 
additional computational costs through either increased 
calculation time for the new forward operator or more 
storage requirements for new variables. Various methods 
have been proposed to reduce computational cost,17,18 
in which the extended source FWI19 is a more efficient 
method, as it only inverts the extended source and the 
model parameters. A study by Symes20 provided a detailed 
analysis of why the extended source FWI is effective.

The other method is the wavefield reconstruction 
inversion (WRI), which starts by incorporating the wave 
equation into the objective function to reduce nonlinearity 
and computational cost.21 Leeuwen and Herrmann22 
conducted a more mathematical analysis of the proposed 
method and carefully analyzed the selection strategy of the 
penalty scalar.22 However, it was initially proposed in the 
frequency domain, requiring an augmented wave equation 
that is challenging to solve in the time domain. In addition, 
the physical meaning of certain variables (reconstructed 
wavefield, penalty scalar) and the tuning method for the 
penalty scalar when solving WRI require clarification.

Several studies have been conducted to address the 
above challenge, including rough approximations that 
enable WRI in the time domain,23,24 resulting in more 
precise solutions proposed. Rizzuti et al.25 proposed 
a data-dual formulation of WRI, where the Lagrange 
formula is used to reformulate the WRI, making it easier 
to apply to large three-dimensional models in the time 
domain.25,26 Moreover, the iterative refining-WRI method 
was proposed, in which an enhanced Lagrange method 
equipped with operator splitting is used instead of the 
penalty method, with its regularization and corresponding 
expansion in other media investigated accordingly.27-29 
For the adjustment of the penalty scalar, a rough local 
optimization method was used.30 Gholami et al.31 treated 
the penalty scalar as a variable that needs to be inverted. In 
addition, Gholami et al.32 discussed the physical meaning 
of the reconstructed wavefield, while Lin et al.33 elucidated 
the mechanism of low-wavenumber update in WRI.

In general, although both extended FWI and WRI are 
essentially ES-FWI, there are apparent differences between 
them. Extended FWI expands space by introducing 

seismic-related variables (e.g., offset, wavelet) into model 
space, while WRI uses model space in the sense of the 
wavefield. Extended FWI utilizes the introduced space 
or variables to achieve an accurate data fit, while WRI 
reduces the impact of non-linearity and non-physical 
data through wavefield matching. However, both methods 
require delicate settings of the inversion parameters. 
Operto et al.34 reviewed the above ES-FWI methods within 
the framework of inverse scattering theory, in which 
the Lippmann–Schwinger equation was used to govern 
modeling.34 In addition to ES-FWI, the Hessian is typically 
used to ensure inversion accuracy in traditional FWI. 
However, computing the Hessian remains challenging due 
to its large scale. Furthermore, the Hessian is commonly 
not included in WRI or ES-FWI.

In this paper, we analyze these inversion methods 
using the Bayesian inference theory. Notably, all inversion 
methods can be formulated uniformly using Bayesian 
inference theory, which can bring substantial advantages.3,35 
First, deriving inversion methods from Bayesian inference 
can provide a more accurate representation of the problem. 
Figueiredo et al.36 and Huang et al.37 used the Bayesian 
theory to develop a more precise inversion method for 
an anisotropic medium.36,37 Furthermore, a reduced non-
linear inversion can be obtained. Moreover, Leeuwen38 
and Lin et al.39 re-derived WRI from Bayesian inference 
and accelerated the inversion by redefining the theoretical 
covariance matrix.38,39

The main contribution of this paper is a simplified 
theoretical definition of the covariance matrix to alleviate 
the computational problem of WRI. This paper is organized 
as follows: first, the WRI is re-derived from Bayesian 
inference to illustrate how the statistical variables included 
in the model or data domain Hessian affect or improve the 
inversion methods. Next, by comparing the data and model 
domain methods, we provide a simplified extended source 
calculation method. Finally, corresponding numerical tests 
are shown to demonstrate the effectiveness of different 
theoretical covariance matrix definitions.

2. Theory
2.1. Seismic inversion based on Bayesian inference

Various ES-FWI methods have been developed for different 
concerns. In this section, we derive the original WRI from 
Bayesian inference, in which the Hessian is naturally 
introduced. First, the wavefield term u is introduced into 
the Bayesian inference (Equation I):39

� � �post like prioru m d d m u u m, , ,| |� � � � � � � � (I)
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Where the likelihood of probability density function is:

like obs

syn

d m u exp d Pu d Pu

exp q Au

| , ( ) ( )

( )

*

*

� � � � � � �

� �

�

�

1

2

1

2

1

1

�

� (( )q Au�

�

� (II)

in which m denotes the interested model parameters, 
d represents the observed data, P is the sampling operator, 
u denotes the seismic source, A is the forward operator, and 
∑obs, ∑syn are the measurement and theoretical covariance 
matrices, respectively (Equation II). ρprior denotes the prior 
knowledge of the wavefield and model parameters, which 
will be excluded in this paper to simplify the calculation. 
Maximizing the posterior leads to the following 
minimization problem:

* 1

* 1

( , )  ( ) ( )

                                  ( ( ) ) ( ( )
obs

syn

m u d Pu d Pu

q A m u q A m u

φ −

−

= − Σ − +

− Σ −
�(III)

There are two ways to solve Equation III, which will be 
discussed in the following section.

2.2. WRI based on the data-domain Hessian

We assumed the measurement uncertainty is random, and 
the measurement covariance matrix is �obs obs I

� �1  . 
Then, by keeping the model m fixed and setting the 
derivative of Equation III with respect to the wavefield to 
zero, we obtain Equation IV:

* * ˆ obs synAu q A P dλ δ−= + Σ � (IV)

Where  ˆ d d Puδ = −  and û  denotes the reconstructed 
wavefield. The reconstructed wavefield on both sides 
makes the above equation challenging to solve, and 
moving the reconstructed wavefield to one side is difficult 
to perform due to the complex combination of the forward 
operators. Approximate or alternative measurements have 
been proposed by Lin et al.12 to address these challenges.12 
Essentially, the above equation involves the data-domain 
Hessian, where δd can be solved by Equation V:

0
    dH d dδ δ= � (V)

where δd0 = d−Pu, u is the background or current 
wavefield, and

H PA PA Id obs syn� �� � ( ) ( )*1 1� � (VI)

as in Gholami et al.40 (Equation VI).

With the reconstructed wavefield, û  we can obtain 
an update for the model parameters by calculating the 
derivative of the objective function with respect to 

the model, and replacing the latter term according to 
Equation IV, we have Equation VII:

* 1 * * *( ) ( ) (ˆ )
ˆ ˆ

syn obs
Au Aug Au q A P d
m m

λ δ− −∂ ∂
= − Σ − = −

∂ ∂ � (VII)
The gradient is a zero-lag correlation between the 

reconstructed wavefield and the back-propagated residual 
blurred by the data-domain Hessian with the theoretical 
covariance matrix. The calculation of the data-domain 
Hessian is computationally infeasible due to its large 
scale. Lin et al.39 proposed a point spread function-based 
method to alleviate this challenge. Furthermore, a proper 
theoretical covariance matrix definition has been proven 
to be another way to mitigate the computational problem.39

2.3. WRI based on the model-domain Hessian

Clearly, the data-domain Hessian is challenging to compute; 
however, it remains essential for achieving accurate WRI. 
An alternative is to reformulate the problem in a different 
domain. By starting with the data-domain Hessian and 
the weighted residual in WRI and FWRI, and multiplying 
(PA−1)* on both sides of Equation V, we transform it into 
the model-domain equation (Equation VIII):

1 * 1
0[ ( ) ( ) ]ˆ  obs synPA PA I s sλ − − Σ + = � (VIII)

where 1 * 1 *  0
0  ( ) ,   (ˆ )obss PA d s PA dδ λ δ− −= = , similar 

to the adjoint state definitions.41 In this case, instead 
of inverting the data-domain Hessian, we consider the 
inversion of the model-domain Hessian (Equation IX):

H PA PA Im obs syn� �� � ( ) ( )*1 1 � � (IX)

In this case, the wavefield reconstruction process 
becomes Equation X:

1 ˆ ˆ obs synAu q sλ −= + Σ � (X)

The transformation significantly alleviates the 
computation memory problem, and the model gradient can 
be simplified into a straightforward form (Equation XI):

* *ˆ  ( ) ( , )ˆ ˆAg u q s s
m
∂

=
∂ � (XI)

Next, we can divide the gradient into two terms by 
separating the wavefields excited by different sources q 
(d ŝ ). The first term (Equation XII):

* *
1 0   ( ) ˆ ( ) ˆuAg q s

m
∂

=
∂ � (XII)

Which is also the traditional FWI gradient, except for 
the blurred residual. The second term is (Equation XIII):
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* *
2   ( ) (ˆ ˆ)ˆAg u s s

m
∂

=
∂

� (XIII)

The above two terms are identical to the FWRI gradients 
developed in Lin et al.,33 and its original Equation XI is 
directly derived from WRI, similar to the source extended 
FWI except for the source or data differences.

By comparison, we can see that the only difference 
between the data-domain and model-domain solutions 
is the extended source calculation, and the gradient 
calculation can be made through Equations XII and XIII.

2.4. The comparison between the two Hessian 
matrices

Here we write the two Hessian-based equations as follows 
(Equations XIV & XV):

1 1 *  0[ ( ) ( ) ]   obs synPA PA I d dλ δ δ− −Σ + = � (XIV)

1 * 1  0[ ( ) )   ˆ( ]obs synPA PA I s sλ − − Σ + = � (XV)

Both equations are challenging to solve: Equation XIV 
involves a largeale matrix inverse calculation for the data 
residual, and Equation IV needs to operaten each wavefield 
or the extended source at each time step or frequency slice. 
A  source-based definition of the theoretical covariance 
matrix has been proposed to alleviate the data-domain 
computation problem. Similarly, a proper definition of the 
theoretical covariance matrix should simplify the model-
domain calculation problem.

Assuming the determinant of the first part of the 
model domain Hessian is significantly larger than the 
identity matrix, and all variables can be inverted, we 
have an approximated extended source expression 
(Equation XVI):

1 1 1 * * 0 ˆ obs syns AP P A sλ− − − −≈ Σ � (XVI)

Substituting the s0 definition into Equation XVI, we 
have Equation XVII:

1 1 1 * * * * 0 1 1 1  0    ˆ  obs syn obs syns AP P A A P d AP dλ δ λ δ− − − − − − − −= Σ = Σ

� (XVII)

Notably, the derivation of the above equations relies on 
rough approximations and extreme assumptions. For the 
first part, the value of the first term of the Hessian, which is 
larger than the identity matrix, can be easily satisfied since 
it is a diagonal domain matrix and can be scaled by the 
theoretical matrix. We selected an exponential function, 
which can ensure this assumption. As for the second 
assumption, it essentially used the inverse of two operators. 

One is the forward operator A, which is commonly used 
in inversion and imaging methods and applicable in the 
frequency codes. The other is the sampling operator P, 
which is mathematically incorrect to approximate the 
inverse of the adjoint P−1 = P*.

However, the sampling operator is a dimensionality 
reduction operator that reduces the whole model 
space data to the receiver points, which is inevitable in 
seismic exploration. Therefore, one can only hope that 
the reduced data can recover the wavefield in the whole 
model space through the forward operator. In other 
words, the approximation of the sampling operator 
is mathematically incorrect but physically applicable. 
Although Equation XVII is similar to the extended source 
Equation  XI in Huang et al.,18 the specific calculation is 
different: The SE-FWI method is a more accurate solution 
that requires additional calculation and storage of the Green 
function, while the proposed method in this paper is based 
on an approximation that only requires one additional 
partial differential equation (PDE) solver. In general, the 
extended source can be considered an operator on the 
receiver residual, where the operator is a function of the 
theoretical covariance matrix and the forward operator. 
The overall operator may help us to define the theoretical 
covariance matrix (Equation XVIII):

2
1 1

2
ˆ

syn syn synA m L
t

− −  ∂
∑ = Σ = Σ −  ∂ 

� (XVIII)

Where L is the Laplacian operator, the above 
equation reduces to a function in the receiver size due 
to the invertible assumption of the sampling operator P. 
Furthermore, the model-domain Hessian operates on each 
wavefield, while the original data comes from the source or 
receiver locations.

In general, through a series of approximations, 
assumptions, and derivations, we provide a straightforward 
method to define the theoretical covariance matrix, 
which ensures an accurate inversion with an affordable 
computational cost (Equation XIX):

( ) ( ) ( )
2

1
 2

ˆ  ,syn syn r r r rx x m x L x
t

−  ∂
∑ =Σ − 

∂  
� (XIX)

where xr denotes the receiver locations.

Next, various theoretical covariance matrix definitions 
were given according to the inversion problem. Notably, 
through the above derivation, the calculation of the 
extended source was made simpler and more cost-effective 
(Equation XX), which is a simple operation for the original 
data residual at the receiver location.
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r obs syn r r r r

r

s x t x x m x L x
t

d x t

λ

δ

− −  ∂
= Σ − 

∂   � (XX)

Various theoretical covariance matrix definitions are 
given and discussed in the following numerical test section. 
This part is only used for the wavefield reconstruction; the 
model gradient is calculated using Equation VII.

3. Numerical tests
3.1. Inversion test with smoothed initial model

In this section, we applied the proposed method to the 
classical Marmousi model. The size of the Marmousi model 
in Figure 1 is 250 × 767 with a 10 m space interval in each 
direction. A  Ricker wavelet with 8  Hz central frequency 
with 2 Hz cutoff was used to simulate data in Figure 2. The 
recorded time was 3 s with a sampling of 1 ms. A total of 
30 shots with 200 m intervals were set at a depth of 10 m 
beginning at 340 m, and the receivers were evenly distributed 
at a depth of 10 m at every grid point. The smoothed initial 
model is shown in Figure  3, which can be obtained by 
tomography or velocity analysis.

First, we presented the extended source used in WRI 
in Figure 4, where Figure 4A is the classical data residual 
used in the traditional WRI, and Figure 4B is the extended 
source calculated by Equation XX. We can see that the 
derived extended source exhibited a wider wavelength, 
making the misfit easier.

The final inversion results are shown in Figure 5, where 
Figure 5A is the traditional FWI result, Figure 5B plots the 
traditional WRI result, and Figure  5C is the WRI result 
based on the extended source (WRI-I). Due to the severely 
smoothed initial model, the traditional FWI failed to recover 
part of the key structures, especially in the deep parts. By 
comparison, the classical WRI provided a relatively accurate 
inversion result, where all structures were accurately located 
and inverted with limited artifacts. The WRI-I provided 
an accurate inversion result, where all the structures are 
recovered (especially the middle complex part) with fewer 
artifacts. Moreover, the computational cost of the new WRI 
is cheaper than that of the classical WRI. Both WRI results 
provided a more accurate inversion result at the deep part. 
For a clearer comparison, we extracted two traces from the 
true velocity and inversion results (Figure 6).

3.2. Inversion test with linear initial model

The basic parameters for the modeling and inversion were 
the same, except for the initial model, which is linear in 
Figure  7, causing more nonlinearity for the inversion. 
Furthermore, unlike other inversion tests, the initial 

Figure 3. The smoothed Marmousi model

Figure 1. The Marmousi model

Figure 4. Extended source comparison between (A) the data resource 
calculated based on the identity matrix definition, and (B) the extended 

source calculated by Equation XX

BA

Figure 2. (A and B) Wavelet used for modeling and inversion

B

A
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model was significantly different from the true velocity, 
particularly in the deeper region. Therefore, we provided 
a new theoretical covariance matrix definition to aid the 
inversion (Equation XXI):

� � � � �
syn

g rexp
�

� (XXI)

Where g is a manually picked function, and r denotes the 
distance between an arbitrary point and the source location: 
g(r) = 1/r. This equation is essentially an exponential 
function to emphasize the source distance, which is a 
known and relatively clear variable that can be used as an 
additional quantity for assistance in extended FWI or WRI.

Naturally, the extended sources used in WRI are shown 
in Figure 8, where Figure 8A is the classical data residual 
used in the traditional WRI, Figure  8B is the extended 
source calculated by Equation ⅩⅩ, and Figure  8C is 
the extended source calculated by Equation ⅩⅩⅠ. We 
can see that the data residual calculated by the newly 
defined theoretical covariance matrix is more structured 

at the waveform edges, and the deep reflections are more 
significant.

Due to the strong non-linearity caused by the initial 
model, the traditional FWI failed to perform an effective 
inversion and still showed no sign of convergence at 
the 50th  iteration. The result (Figure  9A) contained 
many artifacts and was different from the true model. 
However, the traditional WRI (Figure  9B) produced an 
accurate inversion result, but with stronger artifacts that 
contaminated the shallow layers. Figure 9C plots the WRI-I, 

Figure 7. Linear initial model

Figure  8. Extended source comparison. (A) Identity matrix definition, 
(B) calculated by Equation ⅩⅩ, and (C) calculated by Equation ⅩⅩⅠ.

CBA

Figure  6. Comparison of vertical velocity profiles at different depths. 
(A) x = 3,800 m and (B) x = 6,500 m.
Abbreviations: FWI: Full-waveform inversion; WRI: Wavefield 
reconstruction inversion.

BA

Figure 5. Inversion results. (A) Traditional full-waveform inversion result, (B) traditional wavefield reconstruction inversion (WRI) result, and (C) WRI 
result based on extended source.

CB

A
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and Figure 9D is the WRI-I calculated by Equation ⅩⅩⅠ. 
Both WRI methods based on the extended source yielded 
accurate inversion results. Meanwhile, the traditional 
one, that is, WRI-I, was still unable to obtain an accurate 
model in the middle. Furthermore, with a carefully defined 
theoretical covariance matrix, the WRI-I calculated by 
Equation ⅩⅩⅠ provided a very accurate inversion result 
that is very close to the true model without any evident 
artifacts. A curve comparison (Figure 10) is also provided 
to support the above claims.

Furthermore, a noisy test was conducted to highlight 
the robustness of the proposed method with respect to 
noise and to clarify the determination of the measurement 
constant. Figure 11 is the extended source used in WRI. 
An identity measurement covariance matrix can be used 
to describe random noise. Considering the role of the 
measurement constant λobs in the extended source equation 
and gradient formula, a subjectively determined constant 
that preserves modeling stability is sufficient, as was done 
in the previous tests. In the noise test, the constant was the 
same as the signal-to-noise ratio, which is estimated using 
the amplitude spectrum method.

As for the final inversion results (Figure  12), we 
observed that the noise in the extended source was entirely 
random and therefore did not form coherent wavefields 
capable of generating artifacts. However, the final results 
based on different theoretical covariance matrices showed 
slight deviations compared to the noise-free tests.

4. Discussion
The assumptions and approximations used in this study 
are generally applied in seismic inversion or imaging. 
For example, in most WRI methods, in which the penalty 
scalar is subjectively defined, the constant is commonly 
very large,22 which is consistent with our assumption that 
the main body of the model domain Hessian is larger than 
the identity matrix. Moreover, the sampling operator is also 

defined subjectively, which can be the size of Nmodel × Nreceiver 
or Nmodel × Nmodel. Furthermore, Equation ⅩⅩ provided 
the final calculation method for the extended source used 
in this paper, ensuring the accuracy of the reconstructed 
wavefield. However, this series of approximations mainly 
focused on the computational time by transforming the 
space calculation to the receiver calculation, which weakens 
the potential of WRI in the model space, making it more 
applicable in complex cases with accurately calculated 
extended sources. Notably, the theoretical covariance 
matrix was defined before performing inversion, while 
most Bayesian-based inversion methods use the covariance 
matrix to evaluate the accuracy or resolution of the final 
results. The main difference between the two methods is the 
different definitions of the covariance matrix. In our method, 
the covariance matrix is separated into measurement and 
theoretical covariance matrices, representing different error 
distributions, respectively, while the other Bayesian-based 
method combines the two covariance matrices into one. 
However, according to the covariance matrix definition 

Figure 10. Trace comparison. (A) Located at x = 3,800 m, and (B) located 
at x = 6,500 m.
Abbreviations: FWI: Full-waveform inversion; WRI: Wavefield 
reconstruction inversion.

BA

Figure 9. Inversion results. (A) Traditional FWI result, (B) traditional WRI result, (C) WRI result based on the extended source, and (D) WRI result based 
on the defined extended source.
Abbreviations: FWI: Full-waveform inversion; WRI: Wavefield reconstruction inversion.
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in the Bayesian-based methods, the proposed method can 
be further evaluated based on the combined covariance 
matrix. Regarding the computational cost, the traditional 
WRI requires three PDE solvers, while the proposed 
method only requires two, similar to the traditional FWI. In 
addition, the source-extended FWI also needed three PDE 
solvers, the same as the fast WRI proposed by Lin et al.33

5. Conclusion
This study introduced the Hessian, a function of the 
measurement and theoretical covariance matrices, into 
WRI based on Bayesian inference. Furthermore, the 
connections between the data and model domain equations 
were discussed, which led to a simplified extended source 
calculation method for the extended source. A theoretical 
covariance matrix definition based on the new calculation 

method was proposed and validated through numerical 
tests. Further research may focus on more theoretical 
covariance matrix definitions and their effect on inversion.
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Abstract
Accurate prediction of reservoir porosity is fundamental for hydrocarbon resource 
evaluation and development planning, yet traditional methods struggle with spatial 
heterogeneity and complex geological structures. This study proposes a hybrid deep 
learning framework that integrates U-Net++ with an attention-guided graph neural 
network to simultaneously capture multiscale well logging data features and non-
Euclidean spatial dependencies. The model incorporates dense skip connections, deep 
supervision, and dual-channel attention mechanisms to enhance both local feature 
extraction and global topological modeling. Experiments on a real-world continental 
sedimentary basin dataset (26 wells, ~40 km2) demonstrated that the proposed method 
achieved a mean squared error (MSE) of 4.62, mean absolute error of 1.24, coefficient of 
determination (R2) of 0.912, and structural similarity index measure of 0.831, representing 
a 14.9–38.7% reduction in prediction errors relative to widely used deep learning and 
graph-based baselines. Statistical tests (p<0.05) confirmed the significance of the 
improvements. The model was particularly robust in extreme porosity ranges (>16% or 
<8%), reducing errors by 23.1–42.6% compared to U-Net++. Ablation studies highlighted 
the contribution of graph structure (19.0% MSE reduction), attention mechanism 
(15.0%), and deep supervision (12.5%). Beyond predictive accuracy, attention-weight 
analysis revealed strong alignment with geologically meaningful features, such as faults 
and sedimentary facies boundaries, thereby enhancing interpretability. The proposed 
framework offers a scalable and interpretable solution for reservoir characterization, 
with broad potential applications in heterogeneous and faulted reservoirs.
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1. Introduction
Reservoir porosity is a core parameter that characterizes 
the capacity of rock storage space and directly affects the 
reserve assessment, development potential analysis, and 
development plan optimization of oil and gas reservoirs.1 
In oil and gas exploration and development, accurately 
obtaining the porosity distribution of underground 
reservoirs is of great significance for reducing exploration 
risks and improving recovery rates.2

However, due to the complexity of geological structures 
and the indirectness of underground information, 
traditional porosity prediction methods, such as seismic 
inversion and well logging data interpretation, often 
have limitations in data accuracy, resolution, and 
modeling capabilities. In particular, it is difficult to 
accurately characterize the spatial variation of porosity in 
heterogeneous reservoirs and fault development areas.3 
This challenge is particularly prominent in the exploration 
of unconventional oil and gas resources, and there is an 
urgent need to develop more intelligent and precise 
prediction technologies.

In recent years, artificial intelligence technology 
has developed rapidly, and deep learning, especially 
convolutional neural networks (CNNs), has demonstrated 
excellent feature extraction capabilities in reservoir 
modeling and attribute prediction.4 The U-Net structure 
has been widely used in geological image segmentation 
and attribute prediction because it can effectively capture 
multiscale spatial information.5 However, such methods 
usually rely on regular grid data, and their ability to model 
unstructured and highly spatially heterogeneous geological 
data is still insufficiently studied. In addition, complex 
spatial topological relationships, such as stratigraphic 
continuity and fracture intersections, are widely present 
in reservoirs and are difficult to fully represent by relying 
solely on traditional convolution operations. Therefore, 
how to effectively incorporate prior knowledge of 
geological structures into the model and enhance the 
ability to identify key structures has become an important 
challenge in current reservoir porosity prediction.6

To address the above problems, this paper proposes 
a reservoir porosity prediction method that integrates 
U-Net++ and an attention-guided graph neural network 
(AG-GNN). This method utilizes the enhanced multiscale 
feature extraction and fusion capabilities of U-Net++ to 
process spatial hierarchical information in seismic and well 
logging data; at the same time, it introduces non-Euclidean 
relationships between graph neural network (GNN) 
modeling nodes and achieves adaptive enhancement of 
key geological areas through the attention mechanism, 
thereby improving the recognition and prediction 

performance of the model in complex structural areas. 
This hybrid architecture not only enhances the ability to 
represent heterogeneity and topological structures but also 
exhibits good generalization performance under limited 
sample conditions. It is also applicable to a variety of actual 
geological scenarios.

The main contributions of this study include:
(i)	 A hybrid modeling framework combining AG-GNN 

and deep convolutional structures is proposed, 
significantly improving the accuracy and robustness 
of porosity prediction under complex geological 
conditions.

(ii)	 The applicability and superiority of the model in 
different geological regions are verified through 
multiple sets of real data experiments.

(iii)	A scalable technical path is provided for 
unconventional resource exploration and complex 
fault block reservoir modeling.

(iv)	 During the research process, the combination of 
geological interpretability and algorithm performance 
is emphasized. Through attention-weight visualization 
and feature response analysis, the mechanistic 
understanding of the geological causes of porosity 
distribution is enhanced, and the interpretability and 
practical guidance value of the results are improved.

2. Overview of related work
As an important parameter reflecting the spatial structure 
of underground reservoirs, reservoir porosity has long 
been a key research object in the field of oil and gas 
exploration and development.7,8 Traditional porosity 
prediction methods mainly rely on geostatistical methods 
and seismic attribute inversion technology.9 Geostatistical 
methods, such as Kriging interpolation technology, 
estimate porosity spatially based on the spatial correlation 
of sample data, but their accuracy is often low when dealing 
with nonlinear relationships and complex geological 
environments.10 Seismic attribute inversion methods use 
seismic data to invert underground porosity. Although they 
can provide estimates within a relatively large spatial range, 
their applicability and accuracy are also limited because 
they rely on the assumption of seismic wave propagation 
models and have large errors under complex geological 
conditions.11 In general, traditional methods are difficult 
to provide sufficient accuracy and robustness when faced 
with complex spatial structures and high-dimensional 
features.

In recent years, with the rapid development of 
deep learning technology, the application of CNNs in 
geological prediction has gradually become a mainstream 
method. CNNs have made significant progress in porosity 
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prediction due to their powerful feature extraction 
capabilities.12 In particular, U-Net and its variants, 
through their unique encoder–decoder structure and skip 
connection mechanism, can extract multiscale spatial 
features while ensuring spatial resolution, thus achieving 
successful applications in fields such as medical image 
segmentation.13 However, the structure of the U-Net still 
has certain limitations in processing large-scale high-
dimensional spatial data. In particular, when geological 
data have a complex topological structure, traditional 
CNNs are difficult to effectively capture the global spatial 
dependencies between data.14

GNNs, as an emerging deep learning method, have 
gradually attracted widespread attention in the academic 
community. GNNs can effectively model the complex 
dependencies between nodes in the data and are particularly 
suitable for processing data with irregular topological 
structures.15 Variants such as graph convolutional networks 
(GCNs) and graph attention networks (GATs) have further 
improved the performance of the model in learning 
relationships between nodes through graph convolution 
operations and attention mechanisms.16-19 The application 
of GNN in geology is mainly reflected in underground 
structure modeling and prediction tasks. It can automatically 
learn the interaction between nodes in large-scale spatial 
data, thereby improving the shortcomings of traditional 
methods in spatial dependency modeling.20-22 However, 
although GNNs have advantages in processing complex 
spatial structures, how to effectively integrate them into 
porosity prediction tasks remains a challenge, especially 
how to deal with noise and sparsity in geological data.

In this context, the combination of U-Net++ and 
the attention mechanism provides a new idea for the 
application of deep learning models in porosity prediction. 
U-Net++ further improves the ability of multiscale 
feature fusion through improved skip connections and 
deep supervision mechanisms, and can capture more 
detailed geological features at different scales.23 At the 
same time, the introduction of the attention mechanism 
enables the model to automatically focus on key areas that 
have an important impact on porosity prediction during 
the prediction process, thereby effectively improving 
the prediction accuracy. Compared with the traditional 
U-Net model, U-Net++ can accurately capture the 
porosity variation law of different depths or regions in a 
more complex geological background, especially in an 
environment with high variability and complex structure, 
significantly improving the stability and reliability of the 
prediction.

Although the current deep learning models have made 
some progress in porosity prediction, there are still some 

shortcomings. First, most existing methods have not fully 
considered the explicit modeling of spatial topological 
relationships. In particular, when dealing with complex 
geological data, it is difficult for the model to effectively 
capture the connection and interaction between different 
geological units. Secondly, although models such as 
U-Net++ have improved the prediction accuracy through 
multiscale feature fusion, the sensitivity to some key 
geological structural features, such as faults and folds, is still 
insufficient. In particular, when the geological conditions 
are extremely complex, the performance of the model may 
be affected to a certain extent. Therefore, future research 
needs to further enhance the model’s sensitivity to spatial 
topological relationships and key geological features, and 
promote the further development and application of deep 
learning methods in complex geological backgrounds.

3. Methods
3.1. Overall architecture design of the model

This study proposed an end-to-end reservoir porosity 
prediction model that integrates U-Net++ and AG-GNN, 
as shown in Figure  1. The architecture design aims to 
capture both local fine-grained features and global spatial 
topological associations. Specifically, the U-Net++ module 
is used to efficiently extract local interlayer detail changes 
in seismic attributes and logging data to generate multiscale 
feature maps; the AG-GNN module models the reservoir 
spatial topology based on geological structures and spatial 
adjacency relationships, and achieves global modeling and 
prediction of porosity changes across wells and profiles.

The input layer receives the normalized seismic 
attribute cube and well logging data curve; the encoder 
part is composed of multiscale deep convolution and 
dilated convolution; the skip connection is connected to 
the decoder through a dense path; the output multiscale 
feature map is input into AG-GNN for spatial relationship 
modeling; and the final fully connected layer outputs the 
predicted porosity distribution map.

3.2. U-Net++ improvement details

To enhance the adaptability of the model to heterogeneous 
seismic and well logging data, we made two improvements 
based on the traditional U-Net++: (i) deep separable 
convolution and dilated convolution were introduced to 
increase the receptive field while keeping the number of 
parameters low; and (ii) deep supervision and multiscale 
skip connection were used to improve the gradient transfer 
and feature fusion effects.

The convolution layer of the encoder part is replaced by 
a deep separable convolution:
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Figure 1. Overall architecture of the U-Net++ and attention-guided graph neural network (GNN) fusion model
Abbreviation: Conv: Convolutional layer.

Y X K Kdw dw pw pw= ( * ) * � (I)

where dw is channel-by-channel convolution, pw is a 
1×1 convolution, and Kdv and Kpw are convolution kernels, 
respectively.

The decoder introduces dilated convolution:

Y p W d X p r d
d D

( ) ( ) ( )� � � �
�
� � (II)

where r is the dilation rate. The effective increase in the 
receptive field of the feature map is shown in Figure 2.

From the data in Table  1, it can be seen that the 
improved U-Net++ model performed better than the 
original version in many key indicators, and the number of 
model parameters was reduced.

The number of parameters of the improved model 
was reduced from 5.2 M to 4.8 M, a decrease of 
approximately 7.7%, whereas the prediction accuracy 
was significantly improved: the mean squared error 
(MSE) reduced from 0.022 to 0.017 (decrease of 
22.7%), the mean absolute error (MAE) reduced from 
0.103 to 0.085 (decrease of 17.5%), the coefficient 
of determination (R2) increased from 0.847 to 0.895 
(increase of 5.7%), and the structural similarity index 
measure (SSIM) increased from 0.789 to 0.832 (increase 
of 5.4%). In addition, the inference time was shortened 
from 0.84 s to 0.79 s, an improvement of approximately 
6.0%. These data show that the improved model not only 

reduces the computational complexity but also further 
improves the accuracy and efficiency of the prediction, 
achieving a balance between lightweight and high 
performance.

3.3. Design of attention-guided GNN

The AG-GNN design includes three parts: node feature 
encoding, adjacency relationship construction, and 
attention mechanism fusion:24

(i)	 Node feature encoding: geological attributes, such 
as well logging data porosity, seismic reflection 
coefficient, strike-slip fault index, and lithology mark, 
are spliced into node vectors:

F f f fi i i i N= [ , , , ], , ,1 2  � (III)

(ii)	 Adjacency relationship construction: Based on the 
spatial coordinates of the well location (xi, yi, zi) and 

Table 1. Comparison of the complexity and prediction 
performance of the U‑Net++model before and after 
improvement

Model Parameter 
quantity (M)

MSE MAE R2 Reasoning 
time (s)

SSIM

Original 
U‑Net++

5.2 0.022 0.103 0.847 0.84 0.789

Improved 
U‑Net++

4.8 0.017 0.085 0.895 0.79 0.832

Abbreviations: MAE: Mean absolute error; MSE: Mean squared error; 
SSIM: Structural similarity index measure.
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the structural interpretation results, the edges are 
connected within a radius of 200 m:

A
d r

elseij
ij�
��

�
�

��

1
0
,
,
       
        

� (IV)

where dij is the well distance.
(iii)	Attention mechanism: Combining channel attention 

and spatial attention. Channel attention calculates 
channel weight (wc):

w F Fc � �� ( ( ( )) ( ( )))MLP AvgPool MLP MaxPool 	 (V)

Spatial attention calculates the spatial weight (αij) 
between nodes:

�ij
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The process of AG-GNN extracting cross-well spatial 
features through adjacency relations is shown in Figure 3.

The setting of the neighbor radius has a significant 
impact on the model performance, and there is an optimal 
value range, as shown in Table 2.

When the neighbor radius was 200 m, the model reached 
the optimal balance, with an MSE of 0.017, R2 of 0.895, and 
SSIM of 0.832—all indicators were better than other radius 
settings. As the neighbor radius increased from 100 m to 
200 m, the average node degree increased from 3.2 to 5.8, 
prompting the model to capture richer spatial associations, 
reducing MSE by 19.0% and increasing R2 by 4.3%. In 
contrast, when the neighbor radius exceeded 200  m, the 
over-expanded receptive field (average degree 8.1 at 300 m 
and 11.5 at 400 m) introduced noise associations, resulting 
in performance degradation—compared with the optimal 
radius, MSE deteriorated by 35.3% and SSIM decreased by 
4.8% at a neighbor radius of 400 m. The calculation time 
showed a monotonically increasing trend, from 0.64 s at 
a neighbor radius of 100 m to 1.02 s at 400 m, an increase 
of 59.4%, confirming the positive correlation between 
computational complexity and adjacency radius.

In areas with dense well points, graph construction 
strategies based on spatial proximity can effectively 
characterize reservoir spatial topological relationships. 
However, in areas with low well control, graph structures 
constructed solely based on Euclidean distances between 
wells often lack connectivity, resulting in limited feature 
propagation between nodes and making it difficult 
to robustly model large-scale geological features. To 
address this issue, this study proposed a graph structure 
enhancement method that integrates multi-source 
geological and geophysical information. First, a seismic 
data-driven virtual node generation mechanism was 
introduced. Based on the gradient characteristics of seismic 
attributes, such as reflection intensity and coherence 
volume, geologically significant anomalies were identified 

Figure  2. Schematic diagram of the improved U-Net++ architecture 
(including depthwise separable convolution and dilated convolution)
Abbreviation: Conv: Convolutional layer.

Figure 3. Attention-guided graph neural network’s spatial topology 
modeling diagram
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in sparse inter-well areas as virtual nodes, and their feature 
vectors were constructed as statistics, such as mean and 
variance, corresponding to the seismic attribute window. 
By establishing connections with actual well points, virtual 
nodes could form information bridges in areas with low 
well control, significantly improving the connectivity of 
the graph. Secondly, the Euclidean distance constraint 
was overcome by integrating prior knowledge such as 
geological structure and sedimentary facies. Well points 
located within the same fault block, sedimentary facies, 
or fracture system were connected even if they were far 
apart. Nodes that were spatially adjacent but had distinct 
geological origins were disconnected or had their weights 
reduced, making the graph structure more consistent 
with geological laws. Finally, a density-adaptive dynamic 
adjacency radius adjustment strategy was implemented. 
A  smaller radius was used in densely populated areas to 
capture local details, while an expanded adjacency radius 
was used in sparse areas to ensure that nodes have sufficient 
neighbors and avoid isolated nodes.

3.4. Model training and loss function

The combined loss function was used in end-to-end model 
training:25

total y y y y� � � � � � �� � � �MSE SSIM L( , ) ( ( , )) ( )˘ ˘1 2 � (VII)

where α (0.7), β (0.3), 𝛾 (10−4) are weights, and θ is a 
model parameter. Regularization uses L2 regularization 
and dropout (p = 0.3) to prevent overfitting; the optimizer 
uses AdamW, the initial learning rate is 1 × 10−3, and the 
learning rate scheduler StepLR decays to 0.5  times every 
20 epochs.

The combination of loss functions had a systematic 
impact on model performance. The experimental results 
are shown in Table 3.

When only MSE loss was used, the model achieved 
baseline performance (MSE = 0.020, R2 = 0.861). After 
the introduction of SSIM loss, various indicators were 
significantly improved, among which MSE was reduced 

by 15.0%, R2 increased by 3.4%, and SSIM increased 
from 0.805 to 0.832, an increase of 3.4%. After further 
incorporating L2 regularization, the model performance 
continued to improve and reached the optimal level 
(MSE = 0.016, R2 = 0.902), which was 20.0% lower than 
the single MSE loss scheme, and R2 was increased by 
4.1%. The SSIM showed a stable growth trend under the 
composite loss function, gradually increasing from 0.805 
to 0.837, indicating that the multi-objective optimization 
strategy effectively enhances the modeling ability of the 
spatial structure. These quantitative results confirm that 
through a carefully designed loss function combination, 
the prediction accuracy and spatial consistency can be 
significantly improved without increasing the complexity 
of the model.

3.5. Model fusion and end-to-end prediction process

This study fed the multiscale feature map output of 
U-Net++ into AG-GNN to explicitly encode the spatial 
topological relationship. After graph attention, the porosity 
value was predicted through the fully connected layer to 
achieve end-to-end optimization. The prediction process 
is shown in Figure 4.

The joint prediction of local structural differences 
and global spatial associations in complex reservoirs was 
achieved, effectively improving the prediction accuracy 
and geological rationality.

4. Data and experimental design
4.1. Data source and description

The data used in the experiment were from the lower 
oil formation in a typical continental sedimentary basin 
in northwestern China. The area has typical sand–mud 
interbed sedimentary characteristics, significant reservoir 
heterogeneity, and frequent tectonic activities. The study 
area contains 26 wells, covering an area of approximately 
40 km2. The structural morphology is mainly anticline and 
fault, and the sedimentary facies are mainly braided river 
and delta front, providing an ideal scenario for complex 
reservoir prediction.

Table 2. Analysis of the impact of the neighbor radius on the 
performance of the AG‑GNN model

Adjacent 
radius, r (m)

MSE R2 Average SSIM Number 
of nodes

Computation 
time (s)

100 0.021 0.858 3.2 0.801 125 0.64

200 0.017 0.895 5.8 0.832 125 0.72

300 0.019 0.884 8.1 0.817 125 0.89

400 0.023 0.841 11.5 0.792 125 1.02

Abbreviations: MSE: Mean squared error; SSIM: Structural similarity 
index measure.

Table 3. Comparison of the impact of different loss function 
combinations on model prediction performance

Loss combination MSE MAE R2 SSIM

MSE only 0.020 0.092 0.861 0.805

MSE+SSIM 0.017 0.085 0.895 0.832

MSE+SSIM+L2 0.016 0.083 0.902 0.837

Abbreviations: MAE: Mean absolute error; MSE: Mean squared error; 
SSIM: Structural similarity index measure.
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This study used three types of data:
(i)	 Well logging data: Encompassing five types of curves, 

including acoustic time difference, natural gamma, 
resistivity, neutron porosity, and bulk density. The 
sampling interval was 0.1  m, and the data coverage 
depth range was 1,000–2,500  m. Some wells had 
significant intervals of missing log data.

(ii)	 Seismic attribute data: Extracted based on three-
dimensional seismic data, including 12 types of 
structural and stratigraphic attributes, such as 
reflection coefficient, instantaneous amplitude, 
frequency, and phase. The sampling resolution is 25 m 
× 25 m, and the vertical resolution corresponds to the 
well depth.

(iii)	Core measured porosity: As a supervised regression 
label (target), a total of 1,848  sample points were 
collected, with a porosity range of 2.1–21.4% and 
an average of 12.7%, which was used as the training 
target of this study.

Figure  5 shows the spatial distribution of 26 wells in 
the study area. The horizontal and vertical coordinates 
represent the east and north coordinates of the wellhead 
position (unit: km).

The well locations are evenly distributed in the region, 
covering the entire target layer structure range. This 
facilitated the construction of a reasonable adjacency 
matrix when training the GNN, supporting efficient 
modeling of spatial information. This also reflects a core 
advantage of the GNN—it can use the cross-well spatial 
structure for feature propagation, thereby improving the 
stability of local predictions.

4.2. Data preprocessing

4.2.1. Spatial alignment and interpolation

First, the seismic and logging data were spatially aligned, 
and the geographic coordinate projection conversion 
(UTM Zone 48N) was used to perform three-dimensional 
interpolation based on the well location.26 The interpolation 
used the spline-based local weighting method to ensure 
that each well point has a corresponding multiscale seismic 
attribute sample.

4.2.2. Feature normalization and missing value 
processing

Continuous features were normalized to the interval [0, 1], 
and the minimum–maximum scaling was performed using 
the following formula:

x x min x
max x min x

’ �
�

�
( )

( ) ( )
� (VIII)

The missing curves were repaired using K-nearest 
neighbor imputation (k = 5) to retain the continuity of the 
physical characteristics of the well. Invalid samples (>50% 
missing) were removed, and the final number of retained 
samples was 1,720.

4.2.3. Feature selection

Through the Pearson correlation coefficient and variance 
analysis (ANOVA), the top eight seismic attribute features 
highly correlated with porosity were retained, as shown in 
Table 4.

Figure  4. End-to-end process from seismic and well logging data to 
porosity prediction
Abbreviation: AG-GNN: Attention-guided graph neural network.

Figure 5. Well location and sample spatial distribution map
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Figure 6 compares the relationship between three typical 
seismic attributes (root mean square [RMS] amplitude, 
instantaneous frequency, and gray level co-occurrence 
matrix [GLCM] texture) and measured porosity.

The RMS amplitude was positively correlated with 
porosity, and the fitting trend was relatively obvious. The 
instantaneous frequency fluctuated greatly, but maintained 
a certain correlation overall. The GLCM texture was 
negatively correlated with the porosity, indicating that 
the reservoir structure difference can be reflected from 
the texture perspective. These attributes were retained in 
the feature selection stage, proving their effectiveness in 
characterizing reservoir properties and providing a solid 
foundation for subsequent model input.

4.3. Experimental settings

4.3.1. Dataset division

To ensure the generalization ability of the model, a 
stratified sampling strategy was used to divide the data into 
a training set, validation set, and test set, with a ratio of 
70%:15%:15%. The division results are shown in Table 5.

The average porosity of the training set (1,204 samples), 
validation set, and test set (258 samples each) was 12.73%, 
12.68%, and 12.71%, respectively, with a difference of no 
more than 0.05%, indicating that the mean porosity remains 
highly stable among different data sets. More importantly, 
the porosity standard deviations of the three data sets were 
4.22, 4.31, and 4.19, respectively, with a range of only 0.12, 
and a coefficient of variation difference of no more than 
2.9%, confirming that the fluctuation characteristics of 
reservoir physical properties are balanced and preserved 
during the training, validation, and testing stages. When 
the validation set and the test set had the same sample size 
(258 samples each), the difference in statistical parameters 

was negligible: the average porosity difference was 0.03%, 
and the standard deviation difference was 0.12. This strict 
symmetry design effectively avoids sampling bias in 
the evaluation process. Although the sample size of the 
training set was 4.67 times that of the validation and test 
sets, its standard deviation (4.22) was only 0.03 different 
from that of the test set (4.19), indicating that large data 
volume training does not sacrifice the representativeness 
of data distribution.

4.3.2. Hardware and software environment

All experiments were run on Ubuntu 20.04 (Canonical 
Ltd, United Kingdom), and the hardware configuration is 
shown in Table 6.

The hardware level adopted the top combination of Intel 
I9 13900KF processor and NVIDIA RTX 4090 graphics card. 
The RTX 4090 graphics card has 24 GB GDDR6X video 
memory and 16,384 CUDA cores, thereby providing hardware 
acceleration guarantee for large-scale matrix operations of 
GNNs; the configuration of 256 GB DDR4 memory effectively 
supports the efficient access of graph structure data of complex 
geological models in memory, avoiding the common memory 
bottleneck problem in traditional geological modeling. In 
terms of software ecology, the combination of PyTorch 2.1 
and DGL 1.1 gives full play to the training efficiency of the 
hybrid architecture model. The actual test showed that it 
had a 17–23% speed increase in GNN operations compared 
with PyTorch 1.13. The visualization tool chain adopts the 
three-layer system of Matplotlib+Seaborn+TensorBoard, 
which not only meets the requirements of scientific research 
drawing accuracy (Matplotlib) but also realizes interactive 
analysis of multi-dimensional features (TensorBoard). Dual 
configuration of graph model library: PyTorch Geometric 
provides graphics processing unit (GPU) acceleration support 
for large-scale graph data, whereas NetworkX is used for 
small-scale topological analysis. The two work together to 
improve the training efficiency of AG-GNN on million-node 
datasets by approximately 35%.

4.4. Comparison of baseline models

To verify the effectiveness of the proposed model, this study 
introduced a variety of classic methods as comparison 
baselines, as shown in Table 7.

Table 4. Pearson correlation analysis of seismic attributes 
and porosity

Serial 
number

Attribute name Correlation 
coefficient (r)

Retain

1 Reflection coefficient 0.81 Yes

2 RMS amplitude 0.76 Yes

3 Instantaneous frequency 0.68 Yes

4 Absorption attenuation coefficient −0.63 Yes

5 Amplitude envelope 0.59 Yes

6 Multiscale GLCM texture 0.53 Yes

7 Main reflection direction 0.49 Yes

8 Inter‑layer reflection difference −0.45 Yes

Abbreviations: GLCM: Gray level co‑occurrence matrix; RMS: Root 
mean square.

Table 5. Sample division results

Dataset Number of 
samples

Average 
porosity (%)

Standard deviation 
of porosity

Training set 1,204 12.73 4.22

Validation set 258 12.68 4.31

Test set 258 12.71 4.19
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Figure 6. Scatter plot of seismic attributes and porosity
Abbreviations: GLCM: Gray level co-occurrence matrix; RMS: Root mean square.

Table 6. Experimental platform configuration

Hardware/software Description

Central processing unit Intel I9 13900KF

Graphics processing unit NVIDIA RTX 4090

RAM 256 GB DDR4

Deep learning Library PyTorch 2.1, DGL 1.1

Visualization tools Matplotlib, Seaborn, TensorBoard

Graph model library PyTorch Geometric (PyG), NetworkX

Table 7. Overview of the baseline models and comparison of structural parameters

Model Type Feature extraction 
structure

Whether to model 
spatial structure

Number of 
parameters (M)

Training 
time (min)

CNN Convolutional neural 
network (CNN)

3‑layer standard Conv No 1.2 5.6

U‑Net Encoder–decoder UNet‑5 level No 7.8 11.3

U‑Net++ Improved U‑Net Dense skip+nested No 12.5 14.1

GCN Graph neural network 2‑layer GCN Yes 0.9 6.2

GAT Attention graph network 2‑layer GAT, 8‑head Yes 1.1 8.4

AG‑GNN (ours) Fusion model U‑Net++ + GNN+attention 
mechanism

Yes 14.9 15.6

Abbreviations: AG‑GNN: Attention‑guided graph neural network; GAT: Graph attention networks; GCN: Graph convolutional network; GNN: Graph 
neural network.

The basic CNN had only 1.2 M parameters, the 
standard U-Net increased to 7.8 M, and U-Net++ 
further expanded to 12.5 M through dense connections; 
the AG-GNN model proposed in this paper had 14.9 M 
parameters—15.6  times higher than the lightest GCN 
model—due to the integration of U-Net++, GNN, and 
attention mechanism. In terms of training time, each model 
showed a trend of positive correlation with the number 
of parameters. Among them, CNN only took 5.6  min to 
complete training, the U-Net series took 11.3–14.1  min, 
and AG-GNN took 15.6 min to train due to its complex 

hybrid architecture—178% more than the fastest CNN. 
Although GCN and GAT are both GNNs with similar 
parameters (0.9 M vs. 1.1 M), GAT increases the training 
time by 35.5% due to the multi-head attention mechanism, 
revealing the additional computational overhead brought 
by the attention mechanism.

4.5. Validation indicators

To comprehensively evaluate the performance of the model, 
the following indicators were set from multiple dimensions, 
such as prediction accuracy, spatial consistency, and model 
efficiency:27-29

(i)	 Mean squared error:
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(iii)	Coefficient of determination:
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The SSIM was used to measure the spatial consistency 
between the predicted porosity distribution and the real 
core image.
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Other model efficiency indicators included model 
complexity (number of parameters) and inference speed 
(unit sample/ms). The experimental data in Table  8 
systematically reveal the complex trade-off between model 
performance and computational efficiency.

The proposed AG-GNN model led in all four core 
indicators: its MSE (4.62) was 14.9% lower than the 
second-best U-Net++, MAE (1.24) was 19.0% lower than 
GAT, R2  (0.912) and SSIM (0.831) were 2.6% and 3.7% 
higher than U-Net++, respectively. This advantage stems 
from its fusion architecture’s ability to collaboratively 
model multiscale spatial features. Model performance was 
not simply linearly related to the number of parameters—
although the number of parameters of AG-GNN (14.9 M) 
was 16.6 times that of GCN (0.9 M), its MSE decreased by 
25.2%; whereas U-Net++ had only improved its MSE by 
9.8% when the number of parameters increased by 60.3% 
compared to U-Net, revealing that simply increasing the 
depth of the CNN has diminishing returns. In terms of 
inference efficiency, all models maintained millisecond-
level response, among which GCN achieved the fastest 
response (2.0 ms) with its simple graph structure operation. 
Although AG-GNN (3.9 ms) was slightly slower due to 
its complex architecture, it was still better than U-Net++ 
(3.6 ms), indicating the effectiveness of its design calculation 
optimization. GAT’s SSIM (0.777) was significantly better 

than GCN (0.744) with similar parameter volume (1.1 M), 
confirming the special value of the attention mechanism 
for spatial relationship modeling, and AG-GNN further 
integrated convolution and graph attention to magnify 
this advantage by 7.1%. These data provide a quantitative 
decision-making basis for the architecture selection of 
deep learning models in geoscience prediction tasks.

Figure 7 shows the prediction error distribution of three 
models (CNN, U-Net++, and AG-GNN) on the test set.

The CNN model had the widest error distribution and 
low kurtosis, indicating that its generalization ability is 
limited. U-Net++ was significantly improved, with higher 
error concentration. Meanwhile, AG-GNN presented 
the narrowest error distribution, with errors mainly 
concentrated in the range of ±1.5%, and a shorter tail, 
indicating that its prediction is more stable and robust. 
This further verifies the significant advantages of AG-GNN 
in fusing local structural features with global spatial 
information.

5. Experimental results and analysis
This chapter systematically evaluates the performance of 
the proposed U-Net++ and AG-GNN, from quantitative 
comparison, spatial visualization, module ablation, 
parameter sensitivity, and error statistics, aiming to fully 
reveal its effectiveness and advantages in reservoir porosity 
prediction.

5.1. Quantitative evaluation

Table 9 presents the accuracy indicators of the six models 
on the test set, including MSE, MAE, R2, and SSIM.

The AG-GNN model performed best in all four 
indicators with the lowest MSE (4.62) and the highest 
R2  (0.912), indicating that its prediction accuracy and 

Table 8. Evaluation indicators of each model in the test set

Model MSE MAE R2 SSIM Parameter 
quantity (M)

Inference 
speed (ms)

CNN 7.54 1.92 0.832 0.712 1.2 2.1

U‑Net 6.02 1.67 0.864 0.759 7.8 3.2

U‑Net++ 5.43 1.48 0.889 0.801 12.5 3.6

GCN 6.18 1.69 0.857 0.744 0.9 2.0

GAT 5.71 1.53 0.873 0.777 1.1 2.5

AG‑GNN 4.62 1.24 0.912 0.831 14.9 3.9

Abbreviations: AG‑GNN: Attention‑guided graph neural network; 
CNN: Convolutional neural network; GAT: Graph attention networks; 
GCN: Graph convolutional network; MAE: Mean absolute error; 
MSE: Mean squared error; SSIM: Structural similarity index measure.

Figure 7. Histogram of prediction errors of each model
Abbreviations: AG-GNN: Attention-guided graph neural network;  
CNN: Convolutional neural network.

https://dx.doi.org/10.36922/JSE025300044


Journal of Seismic Exploration Attention-guided reservoir porosity prediction

Volume 34 Issue 4 (2025)	 80� doi: 10.36922/JSE025300044

Table 9. Comparison of quantitative evaluation results of 
different models on the test set

Model MSE MAE R2 SSIM

CNN 7.54 1.92 0.832 0.712

U‑Net 6.02 1.67 0.864 0.759

U‑Net++ 5.43 1.48 0.889 0.801

GCN 6.18 1.69 0.857 0.744

GAT 5.71 1.53 0.873 0.777

AG‑GNN 4.62 1.24 0.912 0.831

Abbreviations: AG‑GNN: Attention‑guided graph neural network; 
CNN: Convolutional neural network; GAT: Graph attention networks; 
GCN: Graph convolutional network; MAE: Mean absolute error; 
MSE: Mean squared error; SSIM: Structural similarity index measure.

spatial consistency are significantly better than the other 
models.

5.2. Spatial distribution visualization

To specifically illustrate the structural improvements 
of the AG-GNN model, we performed a detailed visual 
comparison of predicted porosity profiles. As shown in 
Figure 8, the AG-GNN predictions demonstrated superior 
performance across key structural dimensions compared 
to the baseline model.

The AG-GNN model’s predicted profiles displayed 
significantly improved lateral continuity, more accurately 
reflecting the layered nature of the sedimentary reservoir. 
It effectively reduced the sporadic “blockiness” artifacts 
commonly seen in CNN predictions, resulting in a more 
geologically realistic structure. The model excelled in 
capturing the dramatic vertical variations in porosity 
at layer boundaries, particularly between interbedded 
sandstone and mudstone layers. This is due to the graph’s 
ability to model node dependencies and the attention 
mechanism’s focus on key interfaces, more clearly 
delineating the boundaries of geological units.

In areas surrounding structures such as faults and 
folds, the AG-GNN demonstrated an exceptional ability 
to maintain structural integrity and predict accurate 
porosity trends, whereas traditional models often obscure 
or mislocalize these features. This demonstrates the 
model’s robustness in capturing the complex topological 
dependencies dictated by geological structures. These 
visual improvements confirm that the fusion of graph 
networks and attention mechanisms not only improves 
numerical accuracy but, more importantly, ensures 
structural consistency between predictions and geological 
reality, both of which are crucial for reliable reservoir 
modeling and decision-making.

5.3. Ablation experiment analysis

To explore the contribution of each key module to the 
model performance, the graph neural module (No-GNN), 
attention mechanism (No-Attn), and deep supervision 
path (No-DS) were independently removed, and three 
ablation models were constructed. The comparison results 
are shown in Table 10.

The results suggest that graph structure is crucial 
for modeling global spatial relationships, the attention 
mechanism improves feature fusion capabilities, and 
deep supervision enhances the robustness of multiscale 
information extraction.

5.4. Parameter sensitivity analysis

This section analyzes the impact of two key hyperparameters 
on model performance: (i) graph adjacency radius (r) and 
(ii) learning rate (η). Figure 9 shows the MSE changes of 
the model under different r values, and Figure 10 shows the 
convergence trend of different η.

Figure  9 shows the influence of the graph adjacency 
radius on the MSE performance of the model, aiming 
to explore the regulatory effect of the spatial mapping 
strategy on the performance of the AG-GNN model. As 
the adjacency radius gradually increased from 0.2  km 
to 1.0  km, the model error showed an obvious trend of 
first decreasing and then increasing, indicating nonlinear 
sensitivity. The optimal performance occurred at a radius of 
0.6 km, where the MSE was the lowest at 4.62. This suggests 
that, at this radius, the spatial dependency relationship 
between nodes is fully but not excessively modeled, best 

Figure 8. Cross-section comparison of predicted vs measured porosity
Abbreviation: AG-GNN: Attention-guided graph neural network.
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Table 10. Quantitative comparison of ablation experiments 
of each module of AG‑GNN

Model Module removal MSE MAE R2

AG‑GNN None 4.62 1.24 0.912

No‑Attn Attention mechanism 5.28 1.42 0.883

No‑GNN Graph neural network architecture 5.94 1.61 0.861

No‑DS Deep supervision path 5.37 1.49 0.874

Abbreviations: AG‑GNN: Attention‑guided graph neural network; 
MAE: Mean absolute error; MSE: Mean squared error.

reflecting the expression advantage of the graph structure. 
When r < 0.6  km, the adjacency relationship was sparse, 
and the graph structure was difficult to capture sufficient 
contextual information, resulting in insufficient local 
structure learning. When r > 0.6 km, excessive connections 
introduced redundant or even interfering information, 

reducing the generalization ability and expression accuracy 
of the model.

Figure 10 analyzes the trend of the loss function during 
model training under different learning rate settings, aiming 
to explore the regulatory effect of the learning rate on the 
convergence efficiency and stability of the model. When 
the learning rate was at 0.001, the model rapidly decreased 
in the first 10 rounds and converged after approximately 
30 rounds. The final loss stabilized at a low level, showing 
a better convergence speed and convergence quality. In 
contrast, although the training process was smoother with 
a smaller learning rate (η = 0.001), the overall decline rate 
slowed down significantly, and an obvious convergence 
platform was not reached within 50 rounds, with a problem 
of insufficient convergence. The moderate to small learning 
rate (η = 0.0005) showed medium speed and stability, and 
the final loss was slightly higher than when η was 0.001. 
Comprehensively comparing the final loss values and the 
number of convergence rounds under different learning 
rates, an η of 0.001 achieved a good balance between 
accuracy and efficiency—its final training error was less 
than 0.12 and was basically stable at approximately 35 
rounds. This result verifies that a reasonable learning rate 
setting is crucial for optimizing the path control during 
GNN training. Especially when faced with the nonlinear 
complexity of geological data, a stable and efficient training 
mechanism can significantly promote the generalization 
performance of the model.

5.5. Statistical tests

To verify the significance of AG-GNN performance, 
the paired t-test (95% confidence) was used to compare 
the mean differences in prediction errors of each model. 
Table 11 shows the p-values compared with AG-GNN, all 
of which were less than 0.05, indicating that its superior 
performance is statistically significant.

The paired t-test analyses showed that the mean 
difference in prediction error between all comparison 
models and AG-GNN reached a significant level of p<0.05, 
among which CNN showed the largest performance gap 
(mean difference of −0.68), with an extremely low p-value 
(0.00012) that statistically rejects the null hypothesis with 
99.988% confidence. Although the gap between U-Net++ 
and AG-GNN was relatively small (−0.24), the p-value 
(0.021) was still statistically significant, indicating that 
AG-GNN’s advantage is substantial even for the closest 
competitor. The mean differences of GCN and U-Net were 
−0.45 and −0.43, respectively, with a statistical confidence 
of more than 99.7% (p=0.0036 and 0.0028, respectively). 
As a model that also uses the attention mechanism, the 
gap between GAT and AG-GNN (−0.29) was significant 

Figure 10. Training loss under different learning rates
Abbreviation: lr: Learning rate.

Figure 9. Effect of graph adjacency radius on mean squared error
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(p=0.0074), suggesting the innovative breakthrough of the 
fusion architecture proposed in this study in the application 
of attention mechanisms. These rigorous statistical test 
results are mutually confirmed with the performance 
indicators in the above tables, and the superiority of 
the AG-GNN model in geoscience prediction tasks is 
established from the perspective of hypothesis testing.

5.6. Error analysis

Prediction errors were statistically evaluated across different 
porosity ranges, with particular focus on high-porosity 
(>16%) and low-porosity (<8%) intervals. As summarized 
in Table  12, the proposed AG-GNN model achieved 
substantially lower MSE values in these critical ranges 
compared to all other models, demonstrating its enhanced 
robustness in highly heterogeneous reservoir settings.

The proposed AG-GNN model achieved an MSE of 
5.41 in the high-porosity range, representing reductions 
of 42.6% and 23.1% compared to CNN and U-Net++, 
respectively. In the low-porosity range, its MSE of 5.21 
corresponded to error reductions of 40.7% and 24.9% 
relative to the same benchmarks. The model also excelled 
in medium-porosity predictions, with an MSE of 3.92—
18.7% lower than that of U-Net++ (4.82), the second-best 
performer.

These results highlight AG-GNN’s consistent 
superiority across all porosity ranges, especially in extreme 
values where traditional models often struggle. Notably, 
the error inflation observed in CNN models—56.9% 
for high porosity and 46.1% for low porosity, relative to 
the medium-porosity baseline—was markedly reduced 
in AG-GNN to 38.0% and 32.9%, respectively. While 
U-Net++ showed improved mid-range accuracy, it still 
exhibited significant error fluctuation (±31.5%) in extreme 
ranges. In contrast, AG-GNN narrowed this fluctuation to 
±24.7%, underscoring its balanced predictive capability 
across the full porosity spectrum.

Figure  11 shows the comparison of the prediction 
residual distribution between the AG-GNN model 

and the benchmark model. Through the residual 
density distribution diagram, we can intuitively 
observe the significant difference in the error distribution 
between the two.

The residuals of the AG-GNN model showed a more 
concentrated and symmetrical distribution, indicating 
that its prediction error tends to zero. Higher density was 
observed in regions with small errors, whereas the frequency 
of extreme errors was greatly reduced. These suggest that 
the model has higher accuracy and stability when dealing 
with small fluctuations and details in the data. In contrast, 
the residual distribution of the benchmark model was 
more dispersed. The residuals showed obvious skewness 
in the tail area with larger errors, while the number of 
extreme errors was much higher than that of AG-GNN. 
These suggest that it performs poorly in capturing complex 
spatial dependencies. Further quantification, the MAE of 
the AG-GNN model was 0.016, and the standard deviation 
was 0.034, indicating that its error control is more precise. 
The MAE of the benchmark model was 0.045, and the 
standard deviation was 0.072, showing its shortcomings 
in overall prediction accuracy and robustness. Overall, 
Figure  11 fully demonstrates the ability of AG-GNN in 
capturing spatial structural relationships and reducing 

Table 11. Statistical test results of AG‑GNN with other models

Model Mean difference p‑value

CNN −0.68 0.0001*

U‑Net −0.43 0.0036*

U‑Net++ −0.24 0.0210*

GCN −0.45 0.0028*

GAT −0.29 0.0074*

Note: *p<0.05. Abbreviations: AG‑GNN: Attention‑guided graph 
neural network; CNN: Convolutional neural network; GAT: Graph 
attention networks; GCN: Graph convolutional network.

Figure 11. Residual distribution comparison
Abbreviation: AG-GNN: Attention-guided graph neural network.

Table 12. Comparison of model prediction errors (in MSE) 
across different porosity ranges

Model High porosity 
section

Medium 
porosity section

Low porosity 
section

CNN 9.42 6.01 8.78

U‑Net++ 7.03 4.82 6.94

AG‑GNN 5.41 3.92 5.21

Abbreviations: AG‑GNN: Attention‑guided graph neural network; 
CNN: Convolutional neural network.
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prediction errors through the comparison of residual 
distributions, and verifies the advantages and reliability of 
the model in the prediction of complex geological data.

5.7. Geological significance analysis based on 
attention weights

To quantitatively evaluate the geological patterns captured 
by the attention mechanism, this study statistically 
analyzed the channel attention weights and the spatial 
coupling relationship between regions with high attention 
weights (>90th percentile) and key geological features. The 
results are shown in Tables 13 and 14.

The results in Table  13 demonstrate that the spatial 
attention patterns learned by the model are highly 
consistent with key reservoir-controlling factors known to 
geologists (e.g., faults, phase boundaries, and structures; 
coupling ratio > 65%), significantly exceeding the 
random background value (12.3%). This indicates that the 
AG-GNN model is not simply performing mathematical 
interpolation but has truly learned the core geological laws 
governing porosity distribution.

The results in Table  14 show that the reflection 
coefficient was assigned the highest importance by the 
model, which is consistent with geophysical principles, as 
it most directly reflects lithology and porosity information. 
Attributes related to fluid effects, such as RMS amplitude 
and instantaneous frequency, rank highly, suggesting that 
the model may indirectly capture signals related to oil and 

gas distribution in the study area when predicting porosity. 
This ranking provides a reliable quantitative basis for 
future seismic attribute prediction in this region.

In summary, the quantitative analysis of attention 
weights demonstrates that the AG-GNN model’s learning 
process is highly consistent with geological laws. Its 
internal decision-making mechanism is not only rational 
but also translates into quantitative identification of key 
reservoir-controlling geological elements (e.g., faults 
and phase boundaries) and effective seismic attributes. 
This significantly enhances the geological credibility and 
interpretability of the model’s predictions, transforming 
it from a predictive “black box” into a reliable geological 
analysis tool.

6. Discussion
In this study, a reservoir porosity prediction method based 
on U-Net++ and an AG-GNN demonstrated significant 
advantages and innovations. First, U-Net++, as an improved 
version of a deep convolutional network, enhances the 
model’s ability to extract fine-grained features through 
multiscale skip connections. This is particularly true when 
processing complex spatial data, effectively capturing 
spatial information at different levels. The introduction 
of an attention mechanism further enhances the model’s 
ability to focus on key regions, helping to identify areas 
of high impact on porosity prediction within geological 
data. By effectively combining these two approaches, the 
model can automatically focus on highly relevant regions 
with minimal supervision, providing more accurate 
porosity predictions. Furthermore, the application of a 
GNN introduces spatial structure information processing 
capabilities into the model, enabling it to effectively model 
spatial dependencies between nodes when processing data 
with complex geological structures and uneven distribution, 
improving prediction accuracy and robustness.

Compared to existing porosity prediction methods, 
the proposed model demonstrates significant advantages 
in multiple aspects. Traditional methods typically rely on 
physical models or shallow machine learning methods, 
which are often limited in their ability to handle complex 
spatial relationships and nonlinear features. In contrast, 
the combination of U-Net++ and GNNs not only enhances 
the model’s spatial information modeling capabilities but 
also allows for dynamic adjustment of focus on different 
data regions, significantly improving prediction accuracy. 
Comparisons with baseline models demonstrate that the 
proposed model achieves superior performance across 
multiple evaluation metrics, such as MSE, R2, and the 
centrality of the residual distribution. This improvement 
not only demonstrates the algorithm’s advanced nature but 

Table 13. Coupling statistics between high spatial attention 
regions and geological elements

Geological elements Coupling ratio of high 
attention areas (%)

Both sides of the fault zone (200 m buffer) 85.4

Boundary of the main channel sand body 78.2

Axis of the anticline structure 65.1

Random distribution throughout the area 12.3

Table 14. Ranking of seismic attributes based on channel 
attention weights

Ranking Seismic attributes Channel attention weight

1 Reflection coefficient 0.251

2 RMS amplitude 0.198

3 Instantaneous frequency 0.163

4 Absorption coefficient 0.142

5 Amplitude envelope 0.112

6 GLCM texture 0.086

7 Main reflection direction 0.048
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also provides new insights and methodologies for solving 
similar geological problems in the future.

Compared with the methods used in recent studies that 
combine deterministic seismic inversion with attribute 
interpretation,30 or rely on technical approaches such 
as 3D seismic attribute enhancement and geological 
illumination,31 as well as 3D automatic interpretation 
strategies based on relative geological models and 
stratigraphic slices,32 the AG-GNN model in this study has 
achieved a fundamental breakthrough. Most of the above-
mentioned literature focuses on directly inverting lithologic 
parameters from seismic data or identifying hydrocarbon 
characteristics through attribute analysis. Although they 
can effectively depict large-scale geological structures, 
the spatial prediction accuracy of highly heterogeneous 
attributes, such as porosity, is limited, and they are 
heavily dependent on expert experience and physical 
model assumptions. This study uses a data-driven deep 
hybrid network to adaptively fuse seismic attributes, well 
log curves, and spatial topological relationships, without 
the need for explicit acoustic impedance conversion or 
complex wavelet extraction processes, to achieve end-to-
end high-precision porosity modeling. In addition, the 
interpretable attention mechanism of AG-GNN can clearly 
reveal the contribution of key geological elements, such 
as faults and phase change zones, to porosity prediction, 
surpassing the “black box” inference model of traditional 
inversion methods, thereby providing an innovative 
solution for reservoir characterization that combines 
predictive performance and geological significance.

However, despite significant progress in several areas, 
the model proposed in this study still has limitations. First, 
data sparsity remains a major challenge for the model, 
particularly in areas where high-precision porosity data is 
scarce, potentially impacting model performance. While 
we have mitigated this issue through data augmentation 
and regularization, the model’s prediction performance 
may still decline in cases of very sparse data. Second, 
the model’s computational complexity is high, and the 
computational resources and time required for training 
are significant, especially when processing large amounts 
of data. Specifically, on a workstation equipped with an 
NVIDIA RTX 4090 graphics card, the AG-GNN model 
achieved an inference time of approximately 3.9 ms for a 
single well and completed porosity prediction for all 26 
wells in the entire region in approximately 0.1 s. Model 
training took approximately 15.6 min, which is expected 
to be reduced to less than 10  min using professional-
grade  GPUs, such as V100 or A100. While current 
performance meets the requirements of practical 
exploration cycles, further optimization of computational 

efficiency is needed for larger areas or higher-resolution 
data scenarios.

Furthermore, geological data are inherently uncertain, 
and robust decision-making requires quantifying the 
uncertainty of predictions. The deterministic prediction 
framework currently employed in this study does not 
provide uncertainty bands, confidence intervals, or 
Bayesian inference results, thereby limiting the model’s 
application in risk-sensitive scenarios. Understanding the 
reliability and range of variation of predictions is crucial 
for practical oil and gas exploration decisions. Future 
improvements will consider incorporating methods such 
as Monte Carlo dropout or Bayesian neural networks to 
generate probability distributions and confidence intervals 
for each prediction point, thereby enabling a quantitative 
assessment of prediction uncertainty and providing 
decision makers with a more comprehensive basis for risk 
analysis.

Although the model performs well in local areas, its 
generalization capabilities still need to be improved. The 
current model is primarily trained and validated based on 
data from specific oil and gas blocks. When applied to other 
regions with significantly different geological backgrounds, 
predictive performance may decline. This indicates that the 
model is sensitive to differences in data distribution when 
transferred across regions, making it difficult to maintain 
stable prediction accuracy in situations with significant 
differences in lithology, reservoir formation conditions, 
and sedimentary environments. Furthermore, because the 
training data are primarily derived from a limited sample, 
the model still has shortcomings in capturing universal 
geological characteristics and is prone to overfitting 
to local features. Future research should consider 
incorporating methods such as transfer learning, multi-
source data fusion, and domain adaptation to enhance the 
model’s generalization capabilities across different regions 
and complex geological conditions, thereby expanding its 
application value in a wider range of oil and gas exploration 
scenarios.

In terms of potential engineering applications, the 
reservoir porosity prediction method based on U-Net++ 
and AG-GNN offers valuable insights for oil and gas 
exploration and development. Accurately predicting 
reservoir porosity distribution provides crucial geological 
evidence for reservoir evaluation and development 
decisions. This is particularly true in the early stages 
of oil and gas field exploration, helping to determine 
optimal drilling locations and development strategies, 
thereby optimizing resource utilization. Furthermore, 
the model offers significant flexibility, allowing for 
adjustment and optimization based on diverse geological 
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conditions and data characteristics, providing a viable 
technical approach for reservoir prediction in complex 
geological settings.

Future research will focus on expanding and optimizing 
several key areas. First, multimodal data fusion is a key 
research direction. By combining multiple sources of 
information, such as core images, well logging data, and 
seismic data, we can more comprehensively characterize 
reservoir porosity and enhance the model’s predictive 
capabilities. Second, we will focus on developing a 
probabilistic prediction framework. Using ensemble 
learning or Bayesian methods, we can quantify uncertainty 
in prediction results, output confidence intervals, and 
generate probability distribution plots, thereby enhancing 
the model’s practicality and reliability in exploration 
decision-making. Reservoir porosity not only exhibits 
spatial distribution characteristics but also displays 
temporal evolution patterns. Predicting porosity evolution 
trends using time-series data will provide more accurate 
long-term forecasts for oil and gas field development. 
Finally, in terms of model expansion, improving the model’s 
generalization capabilities to adapt to porosity prediction 
needs in diverse geological environments will be a core 
topic for future research. Further research in these areas 
will further promote the application and development of 
porosity prediction technology based on deep learning and 
GNNs in oil and gas exploration.

7. Conclusion
This study addressed the challenge of fine-scale reservoir 
porosity prediction in geologically heterogeneous settings 
and proposed a hybrid framework integrating U-Net++ 
with an AG-GNN. By combining multiscale convolutional 
feature extraction, explicit graph-based spatial topology 
modeling, and dual-channel attention mechanisms, 
the model achieves significant improvements in both 
predictive accuracy and geological interpretability.

Quantitative experiments on a continental sedimentary 
basin dataset (26 wells, ~40 km2) demonstrated the 
effectiveness of the proposed method. The AG-GNN 
achieved an MSE of 4.62, MAE of 1.24, R2 of 0.912, and 
SSIM of 0.831, representing improvements of 14.9–38.7% 
in error reduction compared with widely adopted 
deep learning models, such as U-Net++ and graph-
based methods. Particularly, the model showed robust 
performance in extreme porosity intervals (>16% and 
<8%), where prediction errors were reduced by 23.1–
42.6%, addressing a long-standing weakness of traditional 
methods. Ablation studies further confirmed the 
contribution of each module: the graph structure reduced 
MSE by 19.0%, the attention mechanism by 15.0%, and 

deep supervision by 12.5%, underscoring the synergistic 
effect of the hybrid architecture.

Beyond numerical superiority, the interpretability 
analysis based on attention weights revealed strong 
alignment between high-weight regions and geologically 
meaningful structures, such as faults, channel 
boundaries, and anticline axes. This not only validates 
the physical plausibility of the model’s decision-making 
process but also provides an advantage over previous 
“black-box” approaches, which often lack geological 
transparency. Compared with prior studies that rely 
heavily on deterministic seismic inversion or geostatistical 
interpolation, our method demonstrates superior 
adaptability to complex, nonlinear, and sparse datasets, 
offering a scalable and data-driven alternative.

Looking forward, challenges remain in improving 
cross-regional generalization under heterogeneous 
geological backgrounds and in incorporating uncertainty 
quantification for risk-sensitive decision-making. Future 
work will focus on multi-source data fusion, temporal 
modeling of porosity evolution, and transfer learning 
strategies to extend applicability across diverse reservoirs. 
With the continued growth of computational resources and 
geoscience datasets, the proposed AG-GNN framework 
holds strong potential to become a practical and reliable 
tool for hydrocarbon exploration, unconventional reservoir 
evaluation, and data-driven reservoir management.
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AI techniques, such as ML, search, reasoning, planning, and knowledge 
representation, will further accelerate advances in scientific discoveries, 
engineering excellence and the future of cyber-physical systems manufacturing. 
 
     International Journal of AI for Materials and Design covers the following 
topics: AI or machine learning for material discovery, AI for process 
optimization, AI and data-driven approaches for product or systems design, 
application of AI in advanced manufacturing processes such as additive 
manufacturing, IoT, sensors, robotics, cloud-based manufacturing, intelligent 
manufacturing for various applications, autonomous experiments, material 
intelligence, energy intelligence, and AI-linked decarbonization technologies. 
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