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ARTICLE

A precise picking method for seismic first arrivals 
based on the residual long short-term memory 
network driven by time-frequency dual domain 
data

Ziyu Qin1 , Xianju Zheng1* , and Wenhua Wang2

1Department of Software Engineering, School of Computer Engineering, Chengdu Technological 
University, Chengdu, Sichuan, China
2Department of Intelligence Science and Technology, School of Computer Science, Chengdu 
Normal University, Chengdu, Sichuan, China

Journal of Seismic Exploration

Abstract
First-arrival picking of seismic data is one of the key steps in seismic data processing. 
When seismic data have low signal-to-noise ratio (SNR) and weak first-arrival energy, 
accurately and efficiently picking first arrivals remain a critical challenge for most 
automatic picking methods. To address this issue, this paper proposes a Multi-
perspective Residual Long Short-Term Memory (M-Res-LSTM) network. This network 
integrates the spatial feature extraction advantage of Residual Networks and the 
temporal dynamic modeling capability of LSTM networks, while introducing a 
coordinate attention mechanism. Through multi-perspective learning in both time 
and frequency domains, it effectively improves the reliability of automatic first-arrival 
picking. First, this paper elaborates on the core principle of the M-Res-LSTM network 
for automatic first-arrival picking: the amplitude, frequency, and phase features 
of seismic data are used as network inputs, and the accurately picked first arrivals 
manually serve as network outputs. After training the network using a supervised 
learning approach, the well-trained model is applied to perform automatic first-
arrival picking. Second, an analysis of the network’s hyperparameters is conducted 
to determine the optimal parameter configuration. Finally, automatic first-arrival 
picking tests are carried out on seismic datasets with different characteristics, and 
the picking results are compared with those obtained by the energy ratio method, 
single-input Res-LSTM, and Swin-Transformer. The results demonstrate that the 
proposed M-Res-LSTM method maintains good stability and accuracy even in 
complex scenarios with low first-arrival energy and poor SNR.

Keywords: Automatic first-arrival picking; Time-frequency dual domain; 
Multi-perspective learning; Res-LSTM; Attention mechanism

1. Introduction
First-arrival waves refer to the seismic waves that propagate through subsurface media 
and reach geophones first, typically existing in the form of direct waves or refracted 
waves. In the seismic data processing workflow, the travel time of first-arrival waves is 
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of crucial significance, as it can provide core foundational 
data for near-surface inversion work. Although the 
method of manual picking of the first arrival has high 
accuracy, it is time-consuming and labor-intensive. 
Moreover, the accuracy of the picking is also affected by 
the experience of the interpreters.1 To pick the first arrivals 
efficiently and accurately and reduce the workload of data 
processing personnel, scholars have proposed different 
semi-automatic or automatic first-arrival picking methods.

Given the similar characteristics of adjacent traces, 
existing studies have proposed a method to determine 
the first-arrival time through cross-correlation operations 
between adjacent traces.2-4 The selection of the standard 
trace has a great influence on the first-arrival picking results 
of this type of method, and its effect needs to be further 
improved when the signal-to-noise ratio (SNR) of the 
data is low. The algorithm based on energy characteristics 
possesses robust anti-noise performance and achieves 
favorable automatic picking results, and has also achieved 
good results in the processing of actual data.5-8 Since this 
method is greatly affected by the window length, many 
picking methods based on multiple time windows have also 
been developed.9,10 Another common method is the Akaike 
Information Criterion (AIC), which discriminates the first 
arrivals using the difference in AIC values between the 
seismic signal and the noise.11-13 However, the picking results 
are not satisfactory under a low SNR. The fractal dimension 
algorithm14-17 has relatively good anti-noise ability, but it 
does not take into account the similarity between seismic 
traces. Clustering-based methods identify first arrivals in an 
unsupervised manner based on the characteristic differences 
between first arrivals and noise. However, the inherent 
temporal connections between different subsequences 
are not considered, making it difficult to distinguish low-
amplitude signals from noise under low SNR conditions.18,19

Transforming seismic signals into other domains or 
spaces can further highlight the differences between first-
arrival waves and noises. Performing τ-p transformation,20 
wavelet transformation,21 shearlet transformation,22-24 etc., 
are also commonly used means to enhance the precision 
of first-arrival picking; Beyond the common shot gather, 
picking first arrivals on common offset gathers and 
common receiver gathers also offers distinct advantages.5,25 
In addition to time-space domain signals, neural networks 
incorporate attributes such as amplitude, frequency, time-
frequency characteristics, short-term average/long-term 
average (STA/LTA) ratios, and data distribution skewness 
as inputs,26-31 thereby facilitating more effective capture of 
relevant features by the networks.

Deep learning can efficiently extract the internal laws 
of data, construct multi-level data representations, and is 

more friendly to massive data. Leveraging the capabilities 
of generative adversarial networks,32 convolutional neural 
networks,1,33 UNet,34-37 recurrent neural networks, meta-
learning,38,39 transformers,40-42 transfer learning,43 and 
various hybrid networks38,44 in extracting complex features 
from seismic data, deep learning algorithms have emerged 
as a critical force in the picking of seismic first arrivals. 
Similar to conventional methods, to further improve the 
picking accuracy, scholars have attempted to input data 
with different attributes into the network, such as time-
frequency domain data and STA/LTA feature maps.44,45 The 
rich data features provide more information references for 
the model.

Studies indicate that current first-arrival picking 
operations are typically performed exclusively within either 
the time-space domain or a single transformed domain. 
The energy features and time-frequency features of seismic 
data serve as valid criteria for first-arrival identification, 
and the integration of multiple sets of feature data can, 
further, enhance the precision of first-arrival extraction. 
Building on this insight, this study comprehensively 
leverages the data features from both the time domain and 
frequency domain, proposes a Multi-perspective Residual 
Long Short-Term Memory (M-Res-LSTM) network 
tailored for first-arrival picking, and elaborates in detail on 
the complete workflow of automatic first-arrival picking. 
Finally, experiments on automatic first-arrival picking 
were conducted on real seismic datasets with distinct 
characteristics using this network, thereby verifying the 
effectiveness of the proposed method.

2. Methods
2.1. Network architecture

To fully leverage the spatiotemporal and time-frequency 
characteristics of seismic signals, this study proposes the 
M-Res-LSTM network for automatic first-arrival picking. 
Figure 1 shows its structural schematic with key features.

2.1.1. Branch structure

The network comprises four parallel branch modules, 
each consisting of m residual modules and n residual 
LSTM modules. These branches process four types of two-
dimensional (2D) input data, namely, time-space domain 
seismic signals, instantaneous amplitude, frequency, 
and phase features, thereby enabling multi-perspective 
extraction of seismic information. A  parameter-sharing 
mechanism between LSTM branches enhances training 
efficiency and generalization.

Residual modules retain spatial information through 
shortcut paths, mitigating degradation in deep networks 
through direct gradient flow.46 For seismic data, this 
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preserves inter-trace correlations and nonlinear spatial 
features. For input data X R kk H W� �� , , , ,1 2 3 4 , the output 
of the i-th residual layer is:

Z X F X i mi
res

k i k res
i� � � � �, , ,� 1 2 � (I)

Where Fi denotes nonlinear transformations 
(convolution, batch normalization, and activation) with 
parameters θres

i .

Following residual processing, outputs are converted 
to sequences for residual LSTM modules. LSTM’s gating 
mechanisms (input, forget, and output) capture temporal 
dynamics. For n residual LSTM layers, the recurrence 
relation is:

h x LSTM x x j nj
t

j
t

t
j

j
t

j� � � � ��1 1 2, , , ,�  � (II)

where hj
t is the hidden state of the j-th layer at time t, ϕj 

are layer parameters, and the n-th layer output hn
t represents 

temporal features, which are reshaped to 2D for fusion.

2.1.2. Coordinate attention module

To adapt to the requirements of the first-arrival picking task, 
multi-domain features extracted from the four branches 
are fused through the coordinate attention mechanism.47 
Unlike the standard coordinate attention, the proposed 

method first extracts multi-dimensional visual features 
tailored to the task characteristics, then assigns adaptive 
weights to enhance critical information. Meanwhile, 
it not only additionally designs a convolutional gating 
structure specifically for suppressing high-amplitude 
noise in seismic data but also further integrates a residual 
connection to prevent first-arrival signals from being 
excessively suppressed. The detailed process is as follows:

First, global pooling is performed on the concatenated 
feature F RH W C� � �  along the width (W) and height (H) 
directions:

z k
W

F h i k z
H

F j kh w j Hj W� � � � � � � � � �� �� � ��1 1
00

, , , , ,� � �
� (III)

After aligning the dimensions of xw with xh through a 
transposition operation, the two are concatenated along 
the height direction. The concatenated result is processed 
by a custom activation function and 1×1 convolution to 
obtain the feature m. The processed feature m is split into 
height-related and width-related components. Meanwhile, 
a convolutional gating structure is designed based on the 
original branch features to generate a screening mask gi. 
Finally, branch attention weights are generated and fused:

branch att
a a

gh w
i_ �

�
2

� � (IV)

Figure 1. Schematic diagram of the M-Res-LSTM network model structure. “m” and “n” represent the numbers of Residual Networks and LSTM modules, 
respectively.
Abbreviation: LSTM: Long Short-Term Memory; M-Res-LSTM: Multi-perspective Residual Long Short-Term Memory; Res-LSTM: Residual Long Short-
Term Memory.
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Here, ah and aw are the branch attention weights, 
respectively; and e denotes element-wise multiplication.

Each branch feature is multiplied by its corresponding 
attention weight, and the weighted branch features are 
summed to obtain a fused representation:

( )=
=∑ 4

1
_fused i ii

F b branch att• � (V)

Where bi is the feature of the i-th branch, and branch_
atti is its corresponding attention weight.

This process not only retains the feature advantages 
of each branch in specific domains but also mitigates the 
interference of redundant information and noise through 
weight modulation.

To further focus on regions with concentrated first-
arrival wave energy, coordinate attention computation 
is re-applied to Ffused: first, global average pooling is 
performed along the width and height directions, with the 
pooling formulas as follows:

� � � � � � � � � � � �� �� � ��z k
W

F h i k z
H

F j kh fused w fusedj Hj W

1 1
00

, , , , ,� �  
� (VI)

After dimension alignment, feature concatenation, 
channel compression, and component splitting, the 
base spatial attention weights ch and cw are obtained. 
Concurrently, a convolutional gating structure is designed 
based on Ffused to generate the spatial screening mask gs. The 
spatially attentive weights with enhanced noise robustness 
are derived through the following formulas:

� �� �c g c gh s w s� �, � (VII)

Finally, the spatial attention weights are combined with 
Ffused through residual connection to enhance the signals in 
key regions. The calculation formula for the final output 
feature F̂  is as follows:
˘ , , , , , , , ,F h k F h i k F h i k h k kfused fused� � � �� � � � � � � � � � � � � � �

� (VIII)

By generating screening masks with the same dimension 
as the attention weights through convolutional gating, this 
method can effectively suppress high-amplitude noise in 
seismic data, accurately focus on regions with significant 
first-arrival wave energy variations, and remarkably 
improve the processing performance of seismic data with 
low SNR.

2.1.3. Output layer

Fused features F̂ are passed through two convolution layers 
and a Softmax activation to predict first-arrival positions:

( )( )( )ω ω= 2 1 1 2
ˆmax , ,P Soft Conv Conv F � (IX)

Where ω1, ω2 are convolution parameters.

The network takes the amplitude, frequency, and phase 
characteristics of seismic data as inputs and incorporates 
a coordinate attention mechanism to achieve feature 
fusion across different branches. By assigning distinct 
weights to multiple features, it allocates varying levels of 
attention to them, thereby enhancing task-critical features 
while suppressing those irrelevant to the current task. This 
mechanism effectively mitigates the mispicking of first 
arrivals.

In recent studies, a multitude of innovative networks 
have been proposed for seismic first-arrival picking, 
including those based on Transformer,40 meta-learning,38 
and multi-stage network45 architectures. Table  1 presents 
a comparison between the method proposed in this study 
and the aforementioned methods, focusing on their 
characteristics including network architecture, input, 
advantages, and dependency conditions.

Compared with other networks, M-Res-LSTM still 
possesses unique characteristics and advantages:
(i)	 In terms of feature input types, M-Res-LSTM 

innovatively incorporates amplitude, frequency, and 
phase information, providing more comprehensive 
feature support for first-arrival picking

(ii)	 M-Res-LSTM introduces the coordinate attention 
mechanism, which includes a time-frequency domain 
weight allocation layer. By calculating the weights of 
time-domain and frequency-domain features, it can 
more accurately capture key information in the time-
frequency domain and improve the ability to identify 
weak first-arrival signals and the like

(iii)	In terms of feature fusion methods, M-Res-LSTM 
employs parallel branches and adaptive weight fusion, 
enabling collaborative optimization of multi-domain 
features such as time and frequency, thus enhancing 
the effectiveness and flexibility of feature fusion.

2.2. Dataset and training

To apply the M-Res-LSTM network for automatic first-
arrival picking, seismic data are first transformed to 
generate profiles containing amplitude, phase, and 
frequency features. Subsequently, these feature profiles are 
partitioned into three subsets: the training set, validation 
set, and test set, with the respective proportions accounting 
for 80%, 10%, and 10% of the total dataset, respectively. 
Finally, the network is trained using the training set, the 
optimal generalization of the model is achieved on the 
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validation set, and the first-arrival picking test is carried out 
on the test set. In this study, common shot gather records 
are selected as the original seismic data. Theoretically, 
common receiver gather records, common offset gather 
records, and common midpoint gather records are all 
optional. The main steps of the model training process are 
described as follows.

2.2.1. Generation of feature profiles

The three instantaneous profiles calculated using the Hilbert 
transform can reflect various characteristics of seismic data. 
The analytic signal of a seismic signal can be expressed as:48

x t x t ix t� � � � � � � �* � (X)

Where x(t) denotes the real component of the complex 
trace, corresponding to the actual seismic record trace; 
x* (t) represents the imaginary component of the complex 
trace, which is orthogonal to the real component.

Instantaneous amplitude reflects the energy intensity 
of a seismic signal at a certain moment, which is usually 
related to the reflection coefficient of the stratum. A high 
instantaneous amplitude may indicate lithologic abrupt 
changes or the presence of fluids.49 Instantaneous amplitude 
can be expressed as:

A t x t x t� � � � � � � �2 2* � (XI)

Instantaneous phase describes the phase state of 
a signal, which can identify stratal continuity and 

structural features. Abrupt changes may indicate faults or 
unconformities:

� t tg x t x t� � � � � � ��� ��
�1 * / � (XII)

Instantaneous frequency is the time rate of change 
of the phase and can assist in identifying lithology and 
predicting reservoirs:

� �t d t dt� � � � � / � (XIII)

In the first-arrival picking process, the energy 
mutation points of instantaneous amplitude facilitate 
the identification of the first-arrival wavefront; the jump 
characteristics of instantaneous phase can enhance the 
identification of interfaces at the first-arrival time; and 
the high-frequency concentration characteristics of 
instantaneous frequency help distinguish signal differences 
between first-arrival waves and subsequent reflected waves, 
thereby providing abundant information for improving the 
accuracy of first-arrival picking.

Since first arrivals correspond to the high-amplitude 
signals first received by geophones in seismic records, 
amplitude serves as their primary characteristic. However, 
seismic data may contain noise with frequency and phase 
similar to those of effective signals. To suppress such noise, 
it is necessary to constrain the instantaneous frequency 
and instantaneous phase through amplitude (i.e., seismic 
data) to obtain frequency and phase characteristic data.

Table 1. Comparison of different network features

Comparison M‑Res‑LSTM Res‑LSTM Swin‑Transformer40 Meta‑learning38 MSSPN45

Architecture Multi‑branch parallel 
architecture and realizing 
dynamic fusion of 
time‑frequency dual‑domain 
features via the coordinate 
attention mechanism

Single‑branch 
cascaded 
architecture

U‑shaped hierarchical 
self‑attention architecture

Dual‑loop 
meta‑training 
framework

Four‑stage cascaded 
segmentation architecture

Input Spatiotemporal signals, 
amplitude, frequency, phase

Spatiotemporal 
domain signals

Spatiotemporal domain 
signals

Spatiotemporal domain 
signals

Spatiotemporal domain 
signals and STA/LTA 
feature maps

Advantages Multi‑input supports the 
attention mechanism for 
accurate noise suppression; 
residual‑temporal modeling 
adapts to seismic wave 
propagation

Concise architecture, 
low computational 
overhead, and easy 
reproduction

SW‑MSA adapts to 
drastic changes in local 
first arrivals; Dilated 
convolution expands the 
receptive field

Only 5–20% of manual 
labels are required, 
reducing costs; weight 
matrix filters label noise

VCTE effectively narrows 
the first‑arrival range; 
mixed loss enhances the 
continuity of first arrivals

Dependency 
Conditions

High‑quality labels High‑quality labels High‑quality labels Allowing partial 
low‑quality labels

Requiring prior 
information and 
high‑quality labels

Abbreviations: LTA: Long‑term average; LSTM: Long‑Short‑Term Memory; M‑Res‑LSTM: Multi‑perspective Residual Long‑Short‑Term Memory; 
MSSPN: Multistage segmentation picking network; Res‑LSTM: Residual Long‑Short Term Memory; SW‑MSA: Shifted window‑multihead 
self‑attention; STA: Short‑term average; VCTE: Velocity‑constrained trend estimation.
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2.2.2. Data normalization and cropping

Seismic data and feature data exhibit differences in 
dimensions and numerical magnitudes, so it is necessary 
to normalize all types of data to enable the network to 
better capture the first-arrival features. In this study, 
the maximum absolute value normalization method is 
adopted, defined as follows:

x x abs x= / max( ( )) � (XIV)

Before the network training, the seismic data are 
segmented into a size of 256 × 256, so as to speed 
up the training process and eliminate unnecessary 
information.

2.2.3. Network training

Typically, identifying the actual location of the first arrivals 
(i.e., the onset) poses a challenge. Therefore, in practical 
processing, a fixed phase (such as a wave crest or a wave 
trough) is selected as the first-arrival position.5 In this 
study, the network treats first-arrival picking as a binary 
segmentation task. During sample preparation, the first 
peak value of the first-arrival wave is taken as the first-
arrival position and labeled as 1 (the first category), while 
positions corresponding to all other time points are labeled 
as 0 (the second category). Accordingly, the network 
employs a binary cross-entropy loss function to quantify 
the discrepancy between the network output and the labels 
for classification purposes. The loss is defined as the sum 
of the losses of all pixels in the training samples within a 
mini-batch, expressed as follows:

Loss
N

y p y y p yi
i

N

i i� � � �� � � �� � � � �� �
�
�1 1 1

1

log log � (XV)

Where y stands for the binary label (either 0 or 1), while 
p(y) denotes the probability that the output corresponds to 
label y.

The network undergoes training through the Adaptive 
Moment Estimation (Adam) algorithm,50 combined with 
the back-propagation approach. When the validation set 
loss decreases and stays stable over a certain number of 
iteration cycles, training halts, and the weights are saved 
as training results. The saved optimal weights are then 
applied to predict the first arrivals in the test set according 
to a specific formula:

y xtest opt test� � �� � ,  (XVI)

With Φ representing the function of the network.

2.2.4. Performance evaluation

Pixel accuracy serves as a widely used indicator in semantic 
segmentation,51 defined as the proportion of correctly 
labeled pixels relative to the total number of pixels:
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Where pii represents the quantity of pixels for which 
class i is inferred as class i, and pij

j
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i
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00

 represents all the 
pixel points.

After processing by the deep learning network, the 
probability of a point being a first arrival ranges from 
0 to 1 (with a maximum of 1 and a minimum of 0). To 
determine the first-arrival position, thresholding is first 
applied to all seismic traces: if a trace contains no points 
with probability exceeding the threshold, the entire trace 
is discarded. For traces containing points with probability 
exceeding the threshold, the position corresponding to the 
original maximum probability is designated as the first-
arrival position. Verified through tests on multiple datasets 
with distinct characteristics, the model achieves optimal 
overall performance when the threshold is set to 0.4.

2.2.5. Hyperparameter analysis

The first-arrival picking results of the M-Res-LSTM network 
are affected by hyperparameters. Therefore, during the 
process of training the model, we conducted experiments 
on some parameters, including the learning rate, the size 
of the kernel matrix, batch size, and the network depth. 
During the experiments, only the parameter being tested 
was changed while other parameters remained the same, 
and the optimal parameters were determined according 
to the pixel accuracy value of the validation set. The test 
results are shown in Figure 2.

Through the experiments, it can be seen that an overly 
large learning rate will make it difficult for the network 
to converge, and the phenomenon of back-and-forth 
oscillation will occur. For this data, a learning rate of 
0.005 has the best effect, as shown in Figure  2A; as 
illustrated in Figure  2B, when the kernel matrix size is 
5 × 5 of Residual Networks (ResNet), the model achieves 
the highest accuracy along with a fast convergence rate; 
Figure 2C shows that a larger batch size results in better 
generalization performance, though it accordingly 
demands more computation time and memory capacity. 
Using the network structures of 4×ResNet + 4×lstm 
and 5×ResNet + 5×lstm can both achieve relatively 
good accuracy, but a deeper network means that more 
memory will be occupied (Figure 2D). Table 2 shows the 
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pixel accuracy values obtained with different parameters 
when 50 epochs of iteration are carried out. Considering 
comprehensively the changing trend of the pixel accuracy 
value with the epoch (Figure  2) and the final accuracy 
(Table 2), the network will be trained with the parameters 
of kernel size = 5×5, learning rate = 0.005, batch size = 4, 
and 4×ResNet + 4×lstm. This parameter combination is 
expected to obtain the optimal convergence effect.

Table 3 elaborates on the parameter configurations of 
each module within the M-Res-LSTM network, including 
the input/output dimensions, channel numbers, and kernel 
sizes for submodules such as ResNet, LSTM, and coordinate 
attention. It provides a detailed technical blueprint for the 
network’s architecture, with a total parameter quantity of 
5.73 million, thus enabling the network to efficiently tackle 
seismic data processing tasks.

3. Results and discussion
We utilized the M-Res-LSTM network to perform first-
arrival picking on three sets of real seismic data with 
distinct characteristics, and compared its prediction 
results with those from manual picking and the traditional 
energy ratio method. All the training was conducted on 
a single NVIDIA GeForce GTX 1080 Ti GPU, using the 
TensorFlow framework.

3.1. Data 1

Data 1 consists of small-scale 3D seismic data acquired 
in a plain area using dynamite sources. For each shot, 10 
receiver arrays were designed, with 60 geophones deployed 
in each array, and the maximum offset is 1200 m. Each trace 
of the acquired data contains 501 sampling points, with a 
sampling interval set to 4 ms, and the effective recording 
duration of each trace is 2 s. The work area features hilly 
terrain, with surface elevation varying in the range of 
92–160 m. Due to the limited coverage range of a single 
shot, the impact of topographic relief is relatively minor, 
and the first arrivals of seismic waves exhibit an overall 
smooth characteristic, providing a favorable foundation 
for first-arrival picking. It should be specifically noted 

Figure 2. Pixel accuracy curves corresponding to various hyperparameters. (A) Curves of accuracy under different learning rates. (B) Accuracy curves with 
varying kernel matrix sizes. (C) Accuracy curves for different batch sizes. (D) Accuracy curves across different model depths.
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Table 2. Experimental results of hyperparameters at the 
50th epoch

Hyperparameters Variants PA

Learning rate 0.01 0.981

0.005 0.987

0.001 0.984

0.0005 0.977

Batch size 1 0.976

2 0.987

4 0.987

8 0.986

Kernel size (3,3) 0.982

(5,5) 0.987

(7,7) 0.985

Network depth 2+2 0.979

3+3 0.976

4+4 0.987

5+5 0.984

Notes: Values in boldface represent the values corresponding to the 
optimal performance for each hyperparameter.
Abbreviation: PA: Pixel accuracy.
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that the acquired seismic data contain strong industrial 
electrical interference and mechanical interference, and 
such interference signals have exerted a significant impact 
on first-arrival picking for some seismic traces.

The results of the energy ratio method (blue circles), 
manual picking (green triangles), and M-Res-LSTM 
(red triangles) are displayed on a representative single 
shot record, as shown in Figure  3. When the seismic 
trace contains clear first arrivals that can be identified 
manually, the results of M-Res-LSTM are consistent 
with those of manual picking. When the first arrivals are 
indistinguishable even to human interpreters (often due to 
strong abnormal noise), the model fails to pick them. This 
is because training labels cannot provide corresponding 
first-arrival positions for such unidentifiable traces. The 
energy ratio method attempts to pick every seismic trace, 
resulting in messy outputs for traces with unrecognizable 
first arrivals. It is reasonable to abandon picking for traces 
where first arrivals are unidentifiable (even manually) 
than to generate incorrect picks, as erroneous first arrivals 
significantly impact velocity modeling, while the absence of 
a small number of picks has minimal effect on subsequent 
processing.

Figure 4 shows the projections of the first-arrival time 
on the seismic data, instantaneous amplitude, frequency 
characteristic profile, and phase characteristic profile. 
After zooming in on the data in the red box, it can be seen 
that the first arrivals are located at the position of the first 

continuous strong amplitude and has similar phase and 
frequency characteristics. The method proposed in this 
paper can accurately pick the first arrivals through these 
characteristics. Figure 5 shows the absolute error of each 
seismic trace relative to the result of manual picking (only 
comparing the picked seismic traces). It can be seen from 
the absolute error that the picking effect of the energy ratio 
method is not as good as that of M-Res-LSTM.

3.2. Data 2

Data 2 used in this study is 2D seismic data acquired in a 
loess tableland area with dynamite sources. Each shot has 
800 receiver channels, and the maximum offset is 8000 m. 
Each trace contains 751 sampling points with a sampling 
interval of 2 ms. From the perspective of the work area’s 
geological conditions and data characteristics, the thickness 
of the loess layer in the work area varies significantly, with 
surface elevation ranging from 1200 to 1800  m and a 
maximum elevation difference of 600 m in the region. The 
severe topographic relief exerts a significant impact on the 
propagation path of seismic waves—not only causing the 
first-arrival phase within a single shot to be significantly 
disturbed by terrain but also leading to a large first-arrival 
time difference between adjacent receiver channels, which 
increases the basic difficulty of first-arrival picking. More 
critically, affected by the strong scattering of the loess layer 
itself and the energy attenuation of seismic waves, the 
first-arrival energy of the acquired data is generally weak, 
with unobvious onset characteristics. This has become the 

Figure 3. Data 1. (A) Original seismic record. (B) Picking results.

BA

Table 3. Detailed parameter table of each module in the M‑Res‑LSTM network

Network module Submodule Input dimension Output dimension Channel Kernel size

Branch 1/2/3/4 ResNet 256×256×1 256×256×2 [256,128,64,32,16,8,4,2] 5×5

LSTM 256×512 256×256×2 ‑ ‑

Feature fusion Coordinate attention 4×[256×256×2] 256×256×4 4 1×1

Output layer Convolutional Layer1 256×256×4 256×256×2 2 3×3

Convolutional Layer2 256×256×2 256×256×1 1 1×1

Note: Parameter quantity=5.73 million.
Abbreviation: LSTM: Long Short‑Term Memory.
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core difficulty in first-arrival picking for this dataset: most 
conventional picking methods tend to mistakenly identify 
subsequent phases after the first arrival as the first arrival, 
resulting in deviations in picking results.

Figure  6A presents a typical original profile, while 
Figure  6B displays the picking results obtained through 
manual picking (green triangles), the energy ratio method 

(blue circles), and the method proposed in this paper 
(red triangles). As observed from the picking results, the 
proposed method exhibits high consistency with manual 

Figure 5. Absolute errors of the picking results between the energy ratio 
method and the method proposed in this paper (for Data 1)

Figure 6. Data 2. (A) Original seismic record. (B) Picking results.

B

A

Figure 4. Projections of the seismic first arrivals on Data 1. (A) Original seismic record. (B) Instantaneous amplitude. (C) Frequency characteristic data. 
(D) Phase characteristic data.
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picking, whereas the energy ratio method erroneously 
identifies the position of the second peak (with stronger 
energy) as the first arrival. In addition, the proposed 
method successfully picks a small number of noisy traces in 
the seismic profile (at the position of the red arrow). This is 
attributed to the adoption of multi-trace input for training, 
enabling the network to infer first-arrival positions based 
on the characteristics of adjacent traces—analogous to the 
logic of manual picking. Figure  7 illustrates the absolute 

errors of the picking results of the two methods. Since the 
energy ratio method regards the second peak as the first 
arrivals, it has a relatively large absolute error. Similarly, 
by projecting the first-arrival time onto the seismic data, 
instantaneous amplitude, frequency characteristic profile, 
and phase characteristic profile (Figure 8), it can be seen 
that the first arrivals exhibit good consistency with these 
profiles. On magnification (within the white square), the 
proposed network is shown to accurately capture the 
amplitude, phase, and frequency characteristics of the first 
arrivals. Under the joint constraints of these three aspects, 
the accuracy of the picking is ensured.

3.3. Data 3

Data 3 is 3D seismic data acquired in the marginal area 
of a basin using a vibroseis source. For each shot, 30 
receiver arrays were designed, with each array containing 
170 receiver channels; the maximum offset exceeds 
5000 m, enabling wide-range coverage of deep geological 
structures. However, due to the inherent limitation of the 
vibroseis source, namely, its limited excitation energy, the 
effective seismic wave energy received by geophones far 
from the source is significantly weakened, resulting in a 
relatively low overall SNR of the data. From the perspective 
of the work area’s geological and topographic conditions, 
this region features a typical piedmont zone landscape, 
with extremely severe surface elevation relief: the elevation 

Figure 7. Absolute errors of the picking results between the energy ratio 
method and the method proposed in this paper (for Data 2)

Figure 8. Projections of the seismic first arrivals on Data 2. (A) Original seismic record. (B) Instantaneous amplitude. (C) Frequency characteristic data. 
(D) Phase characteristic data.
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ranges from 300 to 1500 m, and the maximum elevation 
difference in the area reaches 1200  m. Such severe 
topographic relief leads to a significant increase in the first-
arrival time difference between adjacent receiver channels. 
Combined with the data’s inherent issues—weak first-
arrival energy and strong noise interference—this further 
complicates first-arrival picking.

To verify the cross-work area generalization ability 
of M-Res-LSTM, the model trained on Data 1 and Data 
2 was directly transferred to Data 3 without any fine-
tuning. Figure  9A shows a typical shot gather of Data 3, 
from which it can be seen that the first-arrival signals of 
some receiver channels are completely submerged in noise, 
and the energy difference between the first arrivals and 
background noise is small. Figure 9B compares the picking 
results of manual picking (yellow triangles), the energy 
ratio method (green triangles), and the proposed M-Res-
LSTM in this study (red triangles). In Data 3, the energy 
ratio method is significantly affected by noise; in contrast, 
relying on the time-frequency dual-domain multi-feature 
constraint and coordinate attention mechanism, M-Res-
LSTM still achieves favorable picking performance.

Figure 10 presents the absolute errors of the proposed 
method relative to manual picking (only valid picked 
channels are counted). The average absolute error of the 
energy ratio method reaches 5.9 ms, with the maximum 
error exceeding 150 ms, which is far beyond the acceptable 
range for seismic processing. In contrast, the average 
absolute error of M-Res-LSTM is only 1.34 ms, and 
the error of more than 87% of the gathers is controlled 
within 5 ms, which meets the accuracy requirements 
for near-surface inversion. These results indicate that by 
virtue of multi-domain feature learning and the attention 
mechanism, M-Res-LSTM effectively avoids overfitting 
to the features of the training work areas and can adapt 
to new work areas with significantly different geological 
conditions and noise levels.

3.4. Comparison against deep learning-driven first-
arrival picking methods

To further verify the effectiveness of the proposed method, 
this study conducted deep learning-based tests on 
1,000,000 seismic traces collected from multiple distinct 
work areas, in addition to testing traditional methods. 
The evaluation metrics selected include pixel accuracy, 
F1-score, first-arrival time deviation (characterized by 
mean absolute error, MAE), picking rate, and single-trace 
picking time (unit: milliseconds per trace),40,45 which 
are used to comprehensively assess the performance of 
different networks in the seismic first-arrival picking task. 
Table  4 presents the performance differences between 

Table 4. Comparison of picking results of different networks

Network PA F1‑score MAE 
(ms)

Picking 
rate (%)

Time 
(ms/trace)

Res‑LSTM 0.975 0.942 7.8 92.1 0.65

Swin‑Transformer 0.983 0.965 6.5 92.7 0.77

M‑Res‑LSTM 0.985 0.964 5.9 93.4 0.73

Abbreviation: M‑Res‑LSTM: Multi‑perspective Residual Long 
Short‑Term Memory; MAE: Mean absolute error; PA: Pixel accuracy; 
Res‑LSTM: Residual Long‑Short Term Memory.

Figure 10. Absolute errors of the picking results between the energy 
ratio method and the method proposed in this paper (for Data 3)

Figure 9. Data 3. (A) Original seismic record. (B) Picking results.
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the proposed M-Res-LSTM network, Res-LSTM-based 
networks, and Swin-Transformer-based networks40 in 
seismic first-arrival picking.

Although Res-LSTM integrates the advantages of 
ResNet and LSTM networks, its simple cascaded structure 
prevents it from fully exploiting multi-dimensional 
information, resulting in limited overall performance and 
the lowest values across all metrics. Swin-Transformer 
achieves the highest F1-score by virtue of its self-attention 
mechanism; however, its single-input design restricts 
multi-domain feature fusion capability, and the high 
computational complexity of the self-attention mechanism 
causes it to underperform M-Res-LSTM in both first-
arrival time accuracy and picking comprehensiveness.

The proposed M-Res-LSTM network in this study 
processes spatiotemporal signals, amplitude, frequency, 
and phase features in parallel through its multi-branch 
structure and coordinate attention mechanism, enabling 
comprehensive capture of spatiotemporal features. As 
shown in the table data, except for a slightly lower F1-score 
than Swin-Transformer, M-Res-LSTM outperforms 
Swin-Transformer in PA, picking rate, and single-trace 
picking time, with the first-arrival time deviation as low 
as 5.9 ms. This indicates that while ensuring classification 
accuracy comparable to Swin-Transformer, M-Res-LSTM 
achieves better performance in picking efficiency, picking 
comprehensiveness, and time accuracy through multi-
domain feature parallel processing and efficient structural 
design. It fully verifies the effectiveness of the multi-branch 
structure and coordinates attention mechanism in the 
seismic first-arrival picking task, and can better balance 
accuracy, efficiency, and robustness.

4. Conclusion
The M-Res-LSTM network enables high-precision 
automatic picking of seismic first arrivals using time-
frequency dual-domain features and an attention 
mechanism. Its multi-branch architecture supports 
parallel processing of amplitude, frequency, and phase 
features, thereby fully exploiting the multi-dimensional 
discriminative information inherent in seismic signals. 
The combination of residual modules and LSTM not only 
solves the degradation problem of deep networks but also 
strengthens the joint capture of spatiotemporal features. 
The coordinate attention mechanism effectively suppresses 
noise interference by dynamically adjusting feature 
weights, reducing the impact of incorrect first arrivals on 
subsequent velocity modeling.

Compared with traditional methods, manual picking 
achieves relatively high accuracy but suffers from the 
drawbacks of being time-consuming and labor-intensive. 

Furthermore, its results are significantly influenced by the 
experience of interpreters, making it difficult to meet the 
requirements of large-scale data processing. In contrast, 
the traditional energy ratio method enables automated 
processing yet is highly sensitive to the SNR of data, 
and tends to produce disorganized picking results or 
misjudgments in low-SNR scenarios. When compared 
with existing deep learning methods, the M-Res-LSTM 
network, leveraging a multi-feature parallel processing 
mechanism, exhibits superior robustness in practical 
applications compared to the single-branch Res-LSTM 
network. Meanwhile, in comparison with the Swin-
Transformer network, although the M-Res-LSTM is 
slightly inferior in terms of pixel accuracy, it demonstrates 
distinct advantages in the average deviation of first-arrival 
time, picking rate, and single-trace computation time, 
thereby effectively balancing the accuracy and efficiency 
of first-arrival picking. Verified through data processing 
across different work areas, the proposed method can 
still obtain relatively ideal picking results even in complex 
scenarios with low SNR and weak first-arrival energy.

M-Res-LSTM adopts an end-to-end training mode, 
requiring no manual intervention. Moreover, as the 
amount of training data increases, its transfer ability to 
data from new work areas is expected to further improve. 
However, the complexity of the network structure makes 
its computation time slightly longer than that of simple 
models. In the future, efficiency can be optimized through 
model lightweighting. In addition, this paper verifies the 
effectiveness of time-frequency dual-domain features. 
Future research can explore fusion methods of more 
features or combine transfer learning to solve the training 
problems in small-sample work areas, promoting the large-
scale application of this method under complex surface 
conditions.
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Abstract
Seismic full-waveform inversion (FWI) is a powerful technique used in geophysical 
exploration to infer subsurface properties. However, FWI often suffers from 
challenges such as cycle skipping and sensitivity to uncertainties in seismic 
observations. This study aims to tackle these challenges by developing a novel 
fully automatic differentiation (AD) strategy for seismic FWI, coupling U-Net-based 
reparameterization inspired by the deep image prior concept into a reformulated 
wave equation simulation framework utilizing recurrent neural networks (RNNs). 
We demonstrate that the U-Net reparameterization serves as a form of implicit 
regularization for FWI, mitigating the ill-posed nature of the inversion problem and 
enhancing the stability of the optimization process. In addition, the RNN reformulation 
offers a flexible approach for backpropagating the FWI misfit, allowing the gradient 
with respect to the velocity parameters to be computed using the AD capabilities 
inherent in deep learning frameworks. Through extensive experiments on synthetic 
datasets, we showcase the regularization effect of our proposed method, leading to 
improved inversion results in terms of accuracy and robustness. This study offers a 
promising avenue for enhancing the reliability and accuracy of FWI through the lens 
of deep learning methodologies.

Keywords: Full-waveform inversion; U-Net; Deep image prior; RNN-based FWI

1. Introduction
Seismic full-waveform inversion (FWI) stands out as a crucial method in geophysical 
exploration, allowing for high-resolution reconstruction of subsurface properties.1-3 
FWI iteratively refines velocity models by minimizing the difference between synthetic 
and observed data, employing gradient descent algorithms with gradients computed 
through the adjoint-state method.4,5 Despite its significance, traditional FWI methods 
face challenges such as cycle-skipping and ill-posedness, making it difficult to accurately 
represent complex subsurface velocity models when initial models are inaccurate and 
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observations are incomplete or contaminated with noise.6-8 
Moreover, computation of gradients in traditional FWI 
through the adjoint state method can be cumbersome, 
requiring formulation for each wave equation, making 
numerical implementation challenging and prone to 
errors.9,10

Deep learning has emerged as a promising approach 
in seismic FWI, offering novel solutions to longstanding 
challenges in conventional seismic inversion.11,12 By 
leveraging annotated seismic data pairs consisting of 
observed seismogram and corresponding subsurface 
models, supervised learning-based FWI methods train 
neural networks to learn the complex mapping between 
seismic data and subsurface properties.13,14 However, 
supervised learning FWI heavily relies on the availability 
of large volumes of labeled training data. Obtaining such 
datasets can be challenging and resource-intensive. Apart 
from directly mapping seismic data to inverted models, the 
integration of deep learning to aid seismic FWI has been 
intensively explored over the recent years. This includes 
employing deep learning techniques for tasks such as data 
augmentation, model initialization, optimization, misfit 
function design, and learned regularization.15-20 Supervised 
learning FWI shows promise but comes with limitations, 
such as reliance on high-quality labeled data and potential 
overfitting to specific datasets. In addition, its generalization 
to diverse geological settings can be problematic, limiting 
its effectiveness in real-world applications.21,22

Recent research has shifted toward physics-based deep 
learning FWI, where the neural network architecture 
or loss function encodes underlying physical principles. 
This approach aims to enhance the interpretability 
and generalization capabilities of FWI models by 
explicitly incorporating prior knowledge of the physics 
governing seismic wave propagation.22-24 Physics-based 
deep learning for FWI can be approached in various 
ways. First, the utilization of deep learning tools like 
automatic differentiation (AD) and optimization methods 
has streamlined the FWI process, making it more 
straightforward and robust.9,10,23,25-27 These techniques 
reformulate the time-marching finite-difference 
discretized wave equation as a recurrent neural network 
(RNN), which is often referred to as RNN-based FWI. This 
approach allows for the automatic calculation of gradients 
and facilitates efficient model updates. Second, integrating 
the wave equation into neural networks, as demonstrated 
by physics-informed neural networks (PINNs), enhances 
the ability of neural networks to grasp the fundamental 
physics of wave propagation, thereby improving inversion 
accuracy.22,28,29 This approach allows the model to leverage 
known physical principles, reducing the reliance on large 

datasets and improving generalization across different 
scenarios. As a result, PINNs-based FWI can offer more 
robust solutions in complex subsurface environments, 
addressing some of the limitations faced by traditional 
methods. Third, the recently developed neural operator 
learning methods aim to approximate implicit operators 
defined by partial differential equations (PDEs) between 
functional spaces.30,31 These methods can serve as a rapid 
surrogate for the wave equation, enhancing the efficiency 
of seismic inversion by reducing the need for multiple 
wave equation simulations.24,32 In addition, the concept 
of deep image prior suggests that the architecture of a 
neural network itself can act as a potent prior for inversion 
tasks.33-35 In the realm of linear inversion, the deep neural 
network (DNN) parameterization method is referred 
to as regularization by architecture, where the spatial 
and temporal features of DNNs are harnessed to adjust 
inversion results to meet specific expectations.34 The 
efficacy of regularization by architecture relies, to some 
extent, on the meticulous design of network architectures. 
In the geophysics community, the use of DNNs, particularly 
convolutional neural networks (CNNs), has gained 
traction for regularized estimation in FWI. This approach 
leverages the inherent structure of CNNs to capture spatial 
dependencies in geophysical data, improving the accuracy 
and robustness of subsurface model estimations.36-41

In this study, we propose a novel seismic FWI 
framework with coupling DNNs for reparameterization 
and reformulation, termed fully automatic differentiation-
based FWI (FAD-FWI). In this approach, the subsurface 
velocity models are reparameterized by the weights of 
DNNs and then fed into an RNN-based FWI module. 
The seamless integration of these two neural networks 
enables FAD, allowing the weights of the DNNs to be 
updated by backpropagating the misfit between synthetic 
and observed seismograms. The integration of DNNs 
and RNNs enhances inversion outcomes by eliminating 
the need for manual tuning of regularization parameters 
and the reliance on error-prone adjoint state methods. 
In addition, the FAD-FWI framework offers flexibility 
in handling complex geological structures and can 
potentially outperform traditional FWI techniques by 
exploiting the strengths of deep learning for regularization 
and optimization. By harnessing the hierarchical feature 
extraction capabilities of the U-Net, our proposed FAD-
FWI method can effectively map a Gaussian random field 
(GRF) input to the inverted velocity model, aligning it with 
seismic observations through RNN-based FWI. FAD-FWI 
outperforms traditional FWI with lower dependency on 
initial model estimations and better robustness in the face 
of uncertainties in seismic observations. Through extensive 
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experiments on synthetic seismic datasets, we demonstrate 
that FAD-FWI provides more accurate subsurface models 
and offers greater computational flexibility compared 
to conventional FWI methods. The main contributions 
of this work are twofold. We propose the FAD-FWI 
architecture, which overcomes a key limitation of prior 
deep learning-based FWI methods. By employing a linear 
activation in the final layer, our model directly outputs 
velocity values in a physically realistic range, eliminating 
the need for a problem-dependent scaling factor. In 
addition, we develop a fully AD framework that seamlessly 
integrates a DNN-based model parameterization with 
the physics of wave propagation. This unified approach 
automatically computes the gradients of the FWI objective 
function through both the U-Net and the wave equation 
solver, removing the dependency on manually derived and 
implemented adjoint-state equations.

2. Methodology
2.1. FWI with regularization

Seismic FWI seeks to estimate subsurface properties by 
iteratively updating the velocity model until synthetic 
seismic data closely match the observed seismic data.
FWI minimizes an objective function that measures the 
discrepancy between recorded and simulated seismic data. 
This function typically combines a data-misfit term with 
regularization to ensure stability and to guide the solution.
Mathematically, the objective function can be expressed as:

J Rm d x t x d x t x m mobs r s cal r ss r� � � � � � � � ��1
2

2( , ; ) , ; ;
,

λ �
� (I)

Where dobs and dcal are observed wavefield and the 
calculated wavefield recorded at receivers associated 
with sources , respectively. R  denotes the regularization 
term on velocity model m with weighting coefficient λ. 
The handcrafted regularization terms, often based on 
expert knowledge or empirical observations, help guide 
the inversion process toward solutions that are physically 
plausible and consistent with prior expectations. However, 
these priors can sometimes be overly general, as the 
models generated using their associated probability density 
functions may encompass a broader range of possibilities 
than those specifically relevant to geophysics. As a result, 
there is a risk of introducing biases or inaccuracies into 
the inversion results, particularly when the priors do not 
accurately capture the true distribution of subsurface 
properties in the study area.42,43 This limitation has 
prompted researchers to explore alternative approaches 
to regularization that can adaptively incorporate domain-
specific knowledge and better capture the complexities of 
subsurface structures in geophysical inversion tasks.

2.2. FWI with U-Net reparameterization

As demonstrated in the seminal work of deep image 
prior, a randomly-initialized neural network can serve as 
effective prior in inverse problems.33,34 In this study, we 
employ U-Net reparameterization for seismic FWI with 
the following objective function:
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Where velocity model is reparameterized by a U-Net 
N (z; θ) with weights θ and fixed latent variable z. In this 
study, we use a latent variable z generated by GRF. In 
contrast to traditional FWI with the velocity m updated in 
model space, the proposed FAD-FWI updates the U-Net 
weights θ iteratively to match the observed data dobs using 
a gradient-based optimization method with the gradient 
computed through the chain rule as follows:
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Here, we assume the time-marching finite-difference 
discretization of the wave equation ut = A(m) ut-1 + st-1 
with A(m) being the finite difference coefficient matrix. 
In general, regularization by U-Net architecture ensures 
that the inverted subsurface models maintain consistency 
with observed seismic data while also achieving desired 
properties such as spatial coherence and smoothness.36,38,41 
The input to the U-Net-reparameterized FWI consists 
of GRF realizations of random latent variables, with 
dimensions matching those of the velocity model. In this 
study, GRF has a covariance kernel function as follows:
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Where σ is the variance of the Gaussian process, α is 
known as the smoothness of GRF.44,45 The constants used 
in the GRF kernel are determined by the complexity of the 
velocity model. Figure 1 presents the GRF latent variables 
with different smoothness, (a) α = 1.0, (b) α = 3.0, and 
(c) α = 5.0, respectively. In this study, we let α = 3.0 for 
all experiments. The U-Net architecture consists of an 
encoder-decoder structure: the encoder extracts features 
through a series of convolutional and downsampling 
layers, while the decoder upsamples the features to 
recover spatial resolution. Skip connections between 
corresponding layers in the encoder and decoder allow for 
detailed feature preservation.46,47 The output of the U-Net 
is the predicted velocity model, which is subsequently fed 
into the FWI module to ensure that the synthetic data 
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match the observed data. In this U-Net reparameterization 
scheme, the U-Net serves as a regularizer, leveraging 
its inductive biases, such as spatial consistency and 
hierarchical feature extraction. These biases help preserve 
important structural patterns in the velocity model, 
promoting smoother and more geologically plausible 
solutions. By incorporating this learned regularization, 
the FWI process becomes more stable and less prone to 
overfitting, improving the accuracy and robustness of the 
inversion results.

2.3. FAD-based FWI

U-Net-reparameterized FWI leverages the inductive biases 
of the U-Net architecture, enhancing the accuracy and 
robustness of the inversion process. However, challenges 
arise when coupling the gradients of DNNs ∂m/∂θ with 
that of the PDEs ∂J/∂m, where the former is typically 
computed using backpropagation by AD within deep 
learning framework,48 whereas the latter is commonly 
derived through the adjoint-state method.4 Fortunately, 
the recently developed RNN-based FWI reformulates FWI 

into an RNN, enabling the gradient calculation of velocity 
parameters using AD as well.23,25 The schematic architecture 
of the proposed FAD-FWI is shown in Figure  2, which 
seamlessly integrates two parts, with a U-Net architecture 
playing a pivotal role in reparameterizing the velocity 
model and an RNN enabling the gradients with respect 
to inversion parameters calculated by AD in a modern 
deep learning framework. This integrated approach holds 
promise for overcoming traditional FWI limitations 
and advancing the capabilities of seismic imaging in 
characterizing subsurface properties. In our proposed 
framework, two neural networks are combined, allowing 
the gradient of the cost function with respect to the U-Net 
weights to be fully computed through AD. This seamless 
gradient calculation eliminates the need for manual 
derivation of adjoint equations, enabling efficient updates 
to the U-Net weights during the inversion process. This 
is why we refer to the method as FAD-FWI, as it takes 
advantage of AD to optimize both the velocity model and 
neural network parameters simultaneously, streamlining 
the FWI workflow.

Figure 2. The schematic architecture of the proposed FAD-FWI. The GRF latent variable is fed into an encoder to generate a fused feature map, which 
is decoded and subsequently directed into an RNN-FWI module. The gradient of the cost function with respect to the U-Net weights is fully computed 
through AD. The plot of the RNN-based FWI module is adopted from Ref.25

Abbreviations: AD: Automatic differentiation; FAD: Fully automatic differentiation; FWI: Full-waveform inversion; GRF: Gaussian random field; 
RNN: Recurrent neural network.

Figure 1. The Gaussian random field latent variables with different smoothness: (A) α = 1.0, (B) α = 3.0, and (C) α = 5.0, respectively

CBA
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3. Numerical examples
3.1. FAD-FWI regularized by U-Net architecture

In the first experiment, we aim to demonstrate the 
advantages of our proposed FAD-FWI framework 
regularized by the U-Net architecture compared to 
generative neural networks (GNNs). Specifically, we seek to 
verify that the inductive biases of U-Net, such as its ability 
to capture spatial hierarchies and maintain structural 
consistency, provide more robust regularization, and lead 
to more accurate velocity model predictions. By comparing 
the performance of FAD-FWI with U-Net regularization 
against GNN, we will highlight its effectiveness in 
producing geologically plausible models while improving 
the stability and convergence of the inversion process. 
The optimization configuration is consistent across all 
experiments. We use the Adam optimizer to minimize 
the objective function. The learning rate is set to 0.01 and 
kept constant throughout the inversion process. Each 
experiment is run for a fixed budget of 2000 iterations, 
which is empirically determined to be sufficient for the loss 
to converge in all tested scenarios.

We utilize an angular unconformity geological model 
shown in Figure  3A to demonstrate the superiority of 
our proposed FAD-FWI framework, regularized by the 
U-Net architecture (FAD-FWI-U-Net), in comparison to 

the version regularized by a GNN (FAD-FWI-GNN) with 
varying scaling factors as developed by Zhu et al.38 The 
scaling factors are critical for mapping the bounded output 
of the neural network to the physically meaningful range of 
velocity models. As pointed by Zhu et al.,38 applying scaling 
factors to the output of neural networks depends on the 
physical parameters and units. The final layer of the neural 
network used a Tanh activation function, which constrains 
its output to the range [-1, 1]. To map this bounded output 
to a meaningful velocity perturbation, a scaling factor is 
required. In contrast, our primary proposed method, FAD-
FWI-U-Net, uses a linear activation (i.e., no activation 
function) in its final layer. This is a significant advantage, 
as it allows the network to output velocity values in an 
unbounded range directly, without the need to assume or 
tune a predefined scaling factor. This makes FAD-FWI-U-
Net more robust and easier to apply to new datasets where 
the appropriate velocity range may not be known a priori.

Figure  3A and B present the velocity model and a 
homogeneous initial model for FWI, respectively. The 
seismic acquisition configuration includes a total of 20 
shots indicated by red stars and 256 receivers indicated 
by white dots, as shown in Figure  3B. The inverted 
velocity model obtained by FAD-FWI-U-Net is displayed 
in Figure  3C, showcasing good agreement with the true 
model in Figure  3A. Figure  3D-F depicts the recovered 

Figure 3. Comparison of inverted velocity models obtained using the proposed FAD-FWI-U-Net and FAD-FWI-GNN with different scaling factors. 
(A) The angular unconformity geological model; (B) homogeneous initial model; (C) inverted model by FAD-FWI-U-Net, and the inverted models by 
FAD-FWI-GNN with scaling factor of 100 (D), 1000 (E), and no scaling (F).
Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform inversion; GNN: Generative neural network.
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velocity models obtained by FAD-FWI-GNN with scaling 
factors of 100, 1000, and no scaling, respectively. Our 
results illustrate that FAD-FWI-U-Net can accurately 
reconstruct the velocity model without the need for 
predefined scaling, whereas FAD-FWI-GNN requires 
appropriate scaling for successful inversion; otherwise, it 
fails to accurately recover the velocity model. In addition, 
even after removing the Tanh activation in FAD-FWI-
GNN, the inversion result shown in Figure  3F remains 
inferior to that of our proposed FAD-FWI-U-Net shown 
in Figure 3C. This difference is primarily due to the U-Net 
architecture, which effectively captures spatial hierarchies, 
preserves structural consistency, and offers more robust 
regularization for FWI. Figure 4 shows the loss curves for 
the proposed FAD-FWI-U-Net and FAD-FWI-GNN with 
scaling factors of 100, 1000, and no scaling. The results 
indicate that our proposed FAD-FWI-U-Net achieves a 
faster convergence rate after 500 iterations and a lower 
L1 error compared to FAD-FWI-GNN across different 
scaling factors. The impact of DNN architecture on 
parameterized FWI is a promising area for exploration in 
future work.

3.2. FAD-FWI across initial models

The second experiment focuses on evaluating the 
sensitivity of the proposed FAD-FWI method to the initial 
model estimation. Traditional FWI methods are often 
highly dependent on an accurate initial model; they tend to 
perform poorly when initialized with a less accurate model. 
In contrast, our FAD-FWI method, utilizing U-Net for 
parameterization, provides a strong regularizer that helps 
mitigate this dependency, enhancing inversion results even 
with suboptimal initial models. This robustness highlights 
the potential of our framework to improve inversion 
accuracy in challenging scenarios where initial model 
quality is compromised. In this experiment, we compare 
our proposed FAD-FWI method with traditional FWI 
implemented using Deepwave (https://ausargeo.com/
deepwave/) and referred to as DW-FWI for simplicity.

Figure 5 presents the Marmousi velocity model, along 
with three different initial velocity models: smoothed 
model, smoothed 1D model, and homogeneous model, 
respectively. The acquisition configuration consists of 20 
shots and 256 receivers, positioned at a depth of 85  m. 
Figure  6 presents the inverted velocity models obtained 
by DW-FWI and the proposed FAD-FWI with three 
different initial velocity models as shown in Figure 5. As 
the accuracy of the initial models decreases, the inversion 
results from DW-FWI deteriorate significantly. In contrast, 
our FAD-FWI approach achieves acceptable inversion 
results even when starting from a homogeneous initial 
model. Figure  7 depicts the comparison of the extracted 

traces from Figure  6 at 0.25  km, 0.5  km, 0.75  km, and 
1.0  km. It indicates that DW-FWI struggles to recover 
the velocity model when provided with an inaccurate 
homogeneous initial model, while the proposed FAD-FWI 
method still achieves satisfactory results, although with a 
slightly degraded quality. Figure 8 depicts the loss curves 
of DW-FWI and the proposed FAD-FWI with different 
initial velocity models. It is evident that conventional 
FWI without regularization exhibits a faster convergent 
rate at the early stages. However, the proposed FAD-FWI, 
which incorporates regularization by U-Net architecture, 
demonstrates lower L1 errors overall. We further conduct 
sensitivity analysis of DW-FWI and the proposed FAD-
FWI given a smoothed 1D initial model with different 
velocity perturbations from −30% to +30%. The inverted 
velocity models are displayed in Figure 9. The implication is 

Figure 4. Comparison of the loss curves of the proposed FAD-FWI-U-
Net and FAD-FWI-GNN with scaling factors of 100, 1000, and no scaling. 
We observe that FAD-FWI-GNN with a scaling factor of 100 fails to 
converge to lower L1 errors due to improper scaling.
Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform 
inversion; GNN: Generative neural network.

Figure 5. The Marmousi velocity model (A), along with three different 
initial velocity models: (B) smoothed model, (C) smoothed 1D model, 
and (D) homogeneous model. The acquisition configuration consists of 
20 shots marked by red stars and 256 receivers by white dots, positioned 
at a depth of 85 m.
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that DW-FWI is more susceptible to velocity perturbations 
compared to FAD-FWI. This experiment demonstrates the 
robustness of the proposed FAD-FWI to variations in the 
initial model estimation.

3.3. FAD-FWI across uncertainties in seismic 
observations

In our third experiment, we apply FAD-FWI to the 2D 
Overthrust velocity model, as depicted in Figure  10, in 
the presence of uncertainties in seismic observations such 
as noise and incomplete frequency components. We use 
a smoothed 1D initial model shown in Figure 10B for all 
tests. The acquisition configuration for this experiment 
is the same as in the previous experiments, with 20 shots 
and 256 receivers positioned at a depth of 85 m. Figure 11 
presents shot gathers under various uncertainties in 
seismic observations, including clean and noisy data, 
as well as complete and incomplete data with missing 
frequencies below 2.5  Hz. The extracted traces at the 
left-most position, along with their spectra, are displayed 
alongside the shot gathers.

In this experiment, we perform FWI under conditions 
of uncertainty in seismic observations, including noise and 
incomplete frequency components. Figure  12 compares 
the inverted velocity models obtained by DW-FWI using 
different seismic observations with clean and noisy data, 
as well as complete and incomplete data with missing 
frequencies below 2.5  Hz. In this scenario, DW-FWI 
demonstrates acceptable performance with clean 

Figure  6. Comparison of inverted velocity models obtained using 
DW-FWI (A, C, E) and the proposed FAD-FWI (B, D, F) with different 
initial velocity models shown in Figure 5. From top to bottom, the rows 
correspond to inverted models with the smoothed model, smoothed 1D 
model, and the homogeneous model.
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; 
FWI: Full-waveform inversion.
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Figure 7. Comparison of the traces extracted from the inverted velocity models shown in Figure 6 at four trace locations. From top to bottom, the rows 
correspond to trace positions at 0.25 km (A, B, C), 0.5 km (D, E, F), 0.75 km (G, H, I), and 1.0 km (J, K, L). From left to right, the columns correspond to 
smoothed model (A, D, G, J), smoothed 1D model (B, E, H, K), and homogeneous model (C, F, I, L).
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; FWI: Full-waveform inversion.
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observations; however, its accuracy declines significantly 
when the seismic data are contaminated with random 
noise. It fails to recover the velocity model effectively when 
faced with both noisy data and missing low-frequency 
components. Figure  13 compares the inverted velocity 
models obtained using the proposed FAD-FWI with 
different seismic observations. The FAD-FWI method 

demonstrates robust performance, maintaining high-
quality inversion results even as data quality degrades 
due to noise or incomplete frequency information. 
This resilience highlights the effectiveness of FAD-FWI 
in handling challenging data conditions. We provide 
quantitative evaluation metrics in Table  1 to assess the 
performance of the proposed FAD-FWI. The quantitative 
metrics mean squared error (MSE), structural similarity 
index measure (SSIM), and peak signal-to-noise ratio 
(PSNR) are defined by:
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Where μx and μy are the mean intensities, and σ x
2  and 

σ y
2  are the variances of true model and the inverted model, 

Figure 8. Comparison of the loss curves of DW-FWI and the proposed 
FAD-FWI with different initial velocity models.
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; 
FWI: Full-waveform inversion.

Figure 9. Sensitivity analysis of DW-FWI and the proposed FAD-FWI given smoothed 1D initial model with different velocity perturbations. The first 
column denotes the inverted models from DW-FWI with −10% (A), −20% (E), and −30% (I) deviated from the smoothed 1D initial model shown in 
Figure 5C. The second column denotes the inverted models from FAD-FWI with velocity perturbations of −10% (B), −20% (F), and −30%(J). The third 
and fourth columns correspond to the inverted models from DW-FWI and FAD-FWI with velocity perturbations of +10% (C and D), +20% (G and H), 
and +30% (K and L), respectively.
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; FWI: Full-waveform inversion.

D

H

L

B CA

E

I

F

J

G

K

https://dx.doi.org/10.36922/JSE025410085


Journal of Seismic Exploration FAD with coupling DNN for FWI

Volume 34 Issue 6 (2025)	 24� doi: 10.36922/JSE025410085

Figure 10. The Overthrust velocity model (A) and the smoothed 1D initial 
model (B). The acquisition configuration consists of 20 shots marked by 
red stars and 256 receivers by white dots, positioned at a depth of 85 m.

BA

Figure 12. Comparison of inverted velocity models obtained using DW-FWI given different observations with clean data (A), clean data with missing 
frequencies below 2.5 Hz (B), noisy data with random noises σ = 0.5σ0 (C), and noisy data with missing frequencies below 2.5 Hz (D).
Abbreviations: DW: Deepwave; FWI: Full-waveform inversion.
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Figure 11. Shot gathers under various uncertainties in seismic observations, including clean data (A), clean data with missing frequencies below 2.5 Hz 
(B), noisy data with random noises σ = 0.5σ0 (C), and noisy data with missing frequencies below 2.5 Hz (D). The extracted traces at the left-most position, 
along with their spectra, are displayed alongside the shot gathers.
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respectively. C1 and C2 are small constants stabilizing the 
division. The overall SSIM index is the mean of the SSIM 
values across all windows. The SSIM value ranges from −1 
to 1, and a value of 1 indicates perfect structural similarity. 
This quantitative comparison suggests that the proposed 
FAD-FWI is more robust than DW-FWI in scenarios 
where observations lack low-frequency components and 
are contaminated by noise. In addition, we compare the 
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runtime and memory usage for both DW-FWI and 
FAD-FWI. On an NVIDIA GeForce RTX 3080Ti (12 GB) 
GPU, the traditional DW-FWI method completed in 8 min 
and 31 s with a peak memory usage of 5.3 GB. In 
comparison, our proposed FAD-FWI method required 
9  min and 6 s and 6.4 GB of memory. This represents a 
modest increase in runtime and memory usage for FAD-
FWI, which is a reasonable trade-off given its significant 
improvements in accuracy and stability, as demonstrated 

by the quantitative metrics in Table 1.

4. Discussion
Our study proposes the FAD-FWI framework, an 
innovative approach to FWI that leverages U-Net 
reparameterization within an RNN-based paradigm. 
This approach demonstrates potential in handling 
challenging scenarios where conventional FWI struggles, 
such as noisy seismic data with missing low-frequency 
components and imprecise initial models. While the 
results affirm the robustness and flexibility of FAD-FWI, 
the method also presents some limitations and potential 
areas for enhancement. The primary bottleneck of the 
proposed FAD-FWI framework lies in the memory 
requirements associated with the RNN-based FWI. Using 
reverse-mode AD to compute gradients requires storing 
intermediate variables at each step, which significantly 
increases memory demands.9,25,49 This constraint can 
be addressed by employing efficient boundary-saving 
techniques and checkpointing, which reduce memory 
requirements by selectively saving intermediate steps at 
the cost of increased computational overhead.49 Balancing 
this trade-off between memory and computational 
demand is crucial for scaling FAD-FWI to larger, more 
complex models.

Furthermore, our FAD-FWI framework is general and 

Figure 13. Comparison of inverted velocity models obtained using FAD-FWI given different observations with clean data (A), clean data with missing 
frequencies below 2.5 Hz (B), noisy data with random noises σ = 0.5σ0 (C), and noisy data with missing frequencies below 2.5 Hz (D).
Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform inversion.
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Table 1. Quantitative evaluation metrics of the inverted 
velocity models obtained using DW‑FWI and the proposed 
FAD‑FWI under varying uncertainties in seismic 
observations

Methods Metrics MSE SSIM PSNR

DW‑FWI Full data 113.94 0.99 50.55

Filtered data 200.87 0.98 48.09

Noisy data 317.46 0.96 46.10

Filtered noisy data 318.96 0.96 46.08

FAD‑FWI Full data 124.59 0.99 50.16

Filtered data 132.03 0.99 49.91

Noisy data 186.22 0.98 48.41

Filtered noisy data 180.29 0.98 48.55

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; 
FWI: Full‑waveform inversion; MSE: Mean squared error; PSNR: Peak 
signal‑to‑noise ratio; SSIM: Structural similarity index measure.
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flexible, providing a foundation for integrating DNN-
based parameterization and reformulation within FWI 
workflows. This versatility suggests promising applications 
beyond single-physics inversion. The framework can be 
extended to multi-physics coupled inversion and multi-
data joint inversion, allowing for the incorporation 
of complementary data types (e.g., electromagnetic, 
gravitational) to improve the resolution and accuracy of 
subsurface models.9,50,51 Such extensions could enhance 
imaging and characterization in diverse geophysical 
applications, from reservoir monitoring to mineral 
exploration. In summary, the proposed FAD-FWI 
framework addresses some key challenges in FWI and 
shows potential for broad applicability. Future work will 
focus on optimizing memory efficiency and extending the 
FAD-FWI framework to multi-physics and joint inversion 
scenarios, further advancing seismic inversion and 
subsurface imaging capabilities in geophysics.

5. Conclusion
This study introduces a novel FAD-FWI framework 
that couples U-Net reparameterization within an RNN-
based paradigm. Through a series of experiments, we 
demonstrated the superiority of our proposed FAD-FWI 
over conventional DW-FWI approach without DNN 
reparameterization, highlighting its robustness in scenarios 
with inaccurate initial models and in the presence of 
uncertainties in seismic observations, such as noise and 
missing frequency components. Recovering a velocity 
model from noisy seismic observations that lack low-
frequency components and begin with a rough initial model 
is typically very challenging for conventional FWI methods. 
However, our proposed FAD-FWI achieves impressive 
performance in this demanding scenario. Our findings 
underscore the potential of deep learning techniques to 
significantly improve seismic inversion processes, thereby 
advancing subsurface imaging capabilities and contributing 
to more accurate geophysical explorations.
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Abstract
Quantitative prediction of petrophysical parameters, such as porosity, is crucial for 
the evaluation and development of coalbed methane (CBM) reservoirs. However, 
conventional methods based on linear assumptions and empirical formulas often 
fall short due to the strong heterogeneity of coal seams, complex lithologies 
and structures, and the highly non-linear relationship between seismic elastic 
parameters and reservoir properties under deep-buried conditions. While machine 
learning techniques have shown promise in petrophysical prediction, many 
existing approaches struggle to effectively capture long-range dependencies 
within sequential log data. This study proposes a deep learning-based method that 
integrates comprehensive input feature selection with a bidirectional long short-
term memory (Bi-LSTM) network incorporating dropout regularization for enhanced 
petrophysical parameter prediction. The proposed method is designed to fully 
exploit the non-linear mapping between seismic elastic parameters (e.g., P-wave 
velocity, S-wave velocity, density, elastic impedance) and petrophysical parameter 
(porosity). By combining the bidirectional contextual learning capability of Bi-LSTM, 
the model effectively captures feature relationships within depth sequences. 
Comparative analysis against a fully connected neural network and a standard LSTM 
network demonstrates the superiority of the proposed method. The analysis also 
reveals the optimal feature combination and network parameter setting (sequential 
length, sampling interval, etc.). Results indicate that the Bi-LSTM model achieves a 
significant improvement in prediction accuracy, outperforming other models, and 
demonstrating better generalization capability in blind well tests. The method 
provides a reliable and effective tool for quantitative reservoir characterization, 
offering substantial potential for application in deep CBM exploration.

Keywords: Deep coalbed methane; Porosity prediction; Deep learning; LSTM network

1. Introduction
Coalbed methane (CBM), as an important component of unconventional natural gas, 
is currently one of the hotspots in natural gas exploration.1 Its efficient exploration and 
development have become a critical pathway for increasing reserve and optimizing 
energy structure.2 Petrophysical parameters of CBM reservoirs, such as porosity, 
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are key for characterizing reservoir quality, predicting 
production potential, and formulating development 
plans.3,4 Previous studies calculated and predicted 
reservoir porosity in unknown intervals by establishing 
empirical formulas or simplified geological models.5 
However, due to factors such as strong coal heterogeneity, 
complex reservoir structure, and ambiguity in well log 
responses,6,7 conventional seismic prediction methods 
based on linear assumptions or statistical relation are 
limited for detailed quantitative reservoir evaluation.8-11 
Particularly in deep CBM exploration, high temperature 
and pressure conditions further intensify the non-linear 
characteristics of rock physics relationships, making 
conventional prediction methods inadequate for refined 
reservoir characterization.12,13 In general, the heterogeneity 
and complexity of CBM reservoirs cause the relationship 
between porosity and elastic parameters to vary significantly 
under different geological conditions. Traditional linear 
methods are unable to adapt to these variations, resulting 
in reduced prediction accuracy. Therefore, the accurate 
formulation of non-linear relation between seismic elastic 
parameters and petrophysical parameters is crucial for the 
quantitative evaluation of deep CBM reservoirs.

With the rapid development of artificial intelligence, 
an increasing number of machine learning methods have 
been applied to porosity prediction. Wu et al.14 used an 
optimized RBF neural network to predict reservoir porosity 
models from well data, achieving high prediction accuracy. 
Ahmadi et al.15 proposed a GA-LSSVM model optimized 
by a genetic algorithm for reservoir porosity prediction to 
establish more reliable static reservoir simulation models. 
Zerrouki et al.16 employed an artificial neural network 
combined with a fuzzy ranking method to predict fracture 
porosity. Cao et al.17 investigated the use of an extreme 
learning machine for estimating porosity and permeability 
in heterogeneous sandstone reservoirs. Zou et al.18 utilized 
a random forest-based method to predict pore distribution 
in subsurface reservoirs.

In recent years, the rapid development of deep learning 
technology has demonstrated significant potential in 
geophysical exploration.19-22 Deep learning techniques 
possess powerful feature extraction and high-dimensional 
data processing capabilities, enabling effective mining 
of deeper features from large datasets.23-25 Their strong 
ability to learn complex non-linear relationships allows 
for more accurate approximation of the highly non-linear 
relationships between seismic/elastic data and target 
parameters.26 Wang et al.27 employed a Gaussian Mixture 
Model Deep Neural Network for porosity prediction, with 
experimental results showing its capability to reasonably 
estimate porosity distribution across the entire target 

area. Wu et al.28 proposed a joint inversion method based 
on fluid factor and brittleness index. They developed 
a new P-P wave reflection coefficient approximation 
formula specifically for coal-measure gas reservoirs 
and combined it with a Bayesian inversion framework, 
effectively enhancing the comprehensive evaluation 
of gas-bearing potential and fracability.28 Liu et al.29 
incorporated a low-frequency porosity model into a deep 
learning framework, significantly improving the trend 
continuity and generalization ability of porosity prediction 
in carbonate reservoirs. Zhang et al.30 optimized the pore 
aspect ratio using the deep learning network aided by the 
Hunger Games Search algorithm to achieve joint inversion 
of multiple parameters in tight sandstone reservoirs, 
effectively improving the accuracy and reliability of rock 
physics modeling and inversion. Sun et al.31 proposed a 
CNN-Transformer model aimed at improving the accuracy 
and generalizability of log-based porosity prediction. 
Tao et al.32 introduced a UNet-based bidirectional neural 
network method to establish a mapping relationship 
between seismic data and porosity. While these methods 
have, to some extent, improved the accuracy and 
interpretability of porosity prediction under complex 
reservoir conditions, they cannot effectively handle long-
range information in sequence data and fail to capture the 
relationships of reservoir features in deep sequences.

To address the aforementioned issues, this paper 
proposes a method combining input feature selection and a 
bidirectional long short-term memory (Bi-LSTM) network 
for petrophysical parameter prediction. Comparisons are 
made with fully connected neural (FCN) networks and 
unidirectional LSTM networks. The proposed method 
not only fully exploits the non-linear relationship between 
seismic elastic parameters and reservoir petrophysical 
parameters, but is also more sensitive to the contextual 
correlations within reservoir information sequences. 
Consequently, it can accurately capture the relationships 
of reservoir features within depth sequences. Furthermore, 
the analysis on feature selection and network parameter 
setting (such as sequence length and sampling interval) 
also provided practical guidance for deep learning-based 
seismic prediction of CBM reservoirs.

2. Methodologies
2.1. Fully-connected neural network

FCN network is a basic form of deep learning networks. 
FCN is composed of multiple layers of neurons, where 
each neuron in the current layer is connected to every 
neuron in the subsequent layer. A typical neuron receives 
multiple input signals, computes their weighted sum, 
introduces non-linearity through an activation function, 
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and ultimately produces an output signal. This process can 
be mathematically expressed as:

y f w x bi i
i

n

� �
�
�( )

1

� (I)

Where xi represents the input signal; wi denotes the 
weight of the input signal, reflecting its importance to 
the neuron output; b is the bias term, which adjusts the 
activation threshold of the neuron; n is the dimensionality 
of the input features; f(.) is the activation function, which 
provides non-linear transformations; and y is the output 
signal of the neuron. Figure 1 shows a schematic diagram 
of a simple FCN network with an input feature of three 
dimensions, an output of one dimension, and three hidden 
layers.

The training of an FCN network involves four key 
steps.33,34 First, in forward propagation, input feature passes 
through the network, undergoing weighted sums and 
activation functions at each layer to generate a prediction. 
The loss function then compares this prediction to the true 
value. Next, backpropagation calculates the gradient of the 
loss with respect to all network parameters using the chain 
rule. Finally, these gradients are used by an optimization 
algorithm to update the weights and biases. This cycle 
repeats until the loss converges or a maximum iteration is 
reached.

2.2. Long short-term memory

The long short-term memory (LSTM) network is featured 
by capturing long-term dependencies in sequential data by 
introducing a gating mechanism.35 The core component of 
an LSTM is a memory cell, which contains three gates: a 
forget gate, an input gate, and an output gate. These gates 
regulate the flow of information into, within, and out of 
the cell, enabling the network to learn and maintain long-
range dependencies. The structure of a single LSTM cell is 
illustrated in Figure 2.

The procedure of an LSTM network can be summarized 
in the following steps:

Step 1—Compute the forget gate: This gate determines 
what information to discard from the cell state, indicating 
the degree of information retention. It is computed using 
a sigmoid activation function, which produces an output 
between 0 and 1 as:

f W h x bt f t t f� � ��� ( [ , ] )1 � (II)

Where ft is the output of the forget gate; σ is the sigmoid 
activation function; ht-1 and xt represent the hidden state 
from the previous timestep and the input at the current 
timestep, respectively; Wf and bf represent the weight 
matrix and bias term of the forget gate.

Step 2—Compute the input gate: This gate decides 
what new information will be stored in the cell state. The 
calculations take the form as:

i W h x bt i t t i� � ��� ( [ , ] )1 � (III)

c W h x bt c t t c

~
tanh( [ , ] )� � ��1 � (IV)

Where it is the activation vector of the input gate, 
determining which values to update;  

t
C
  is the candidate 

value vector, determining the new values to be added; is 
the hyperbolic tangent activation function; Wi, Wc, bi and bc 
represent the weight matrices and bias terms for the input 
gate and candidate values, respectively.

Step 3—Update the cell state: The cell state, which 
embodies the long-term memory of the model, is updated 
as follows:

c f c i ct t t t t� � � ��1

~
� (V)

Where ct is the current cell state; ft is the output of the 
forget gate, representing the information to be discarded; 
ct-1 is the cell state from the previous timestep; it is the 
activation vector of the input gate, representing the 
information to be updated; and  

t
C
  is the candidate value 

vector.

Step 4—Compute the output gate: This gate determines 
the value of the next hidden state. The hidden state contains 
information about the previous timestep and can be used 
for predicting the output at the next timestep as:

o W h x bt o t t o� � ��� ( [ , ] )1 � (VI)

h o ct t t� � tanh( ) � (VII)

Where ot is the output of the output gate; ht is the hidden 
state at the current timestep; and Wo and bo represent the 
weight matrix and bias term of the output gate.

In particular, the Bi-LSTM network is an extension of the 
standard LSTM. It incorporates two separate LSTM layers: 
One processing the input sequence in the forward direction Figure 1. Structure of a simple fully connected neural network
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Figure 2. Structure of a single long short-term memory cell

and the other processing it in the reverse direction. The 
final output is generated by merging (e.g., concatenating or 
summing) the outputs from both directions (Figure 3). This 
architecture enables the model to capture dependencies 
from both past and future contexts simultaneously.

2.3. Activation and loss functions

The activation function is a crucial component in neural 
networks. Its primary role is to introduce non-linearity, 
enabling neural networks to learn and represent complex 
non-linear relationships. Common activation functions 
include the ReLU function, the Tanh function, and the 
Sigmoid function. Here, we employ the ReLU function as 
the activation function, which takes the form as:

f x x( ) max{ , }= 0 � (VIII)

The loss function, aiming at training neural networks, 
quantifies the discrepancy between model predictions and 
true values, thereby driving the optimization of network 
parameters. Here, we employ the mean squared error to 
formulate the loss function, which takes the form as:

L
N d

y yMSE
i

N

j
i

j
i

j

d

� �
� �
� �1 1

1 1

2

( )( )
^

( ) � (IX)

Where LMSE represents the average loss over the entire 

training batch, 
^
( )i
jy is the predicted value, ( )i

jy  denotes 

the ground truth labels, N is the number of samples in the 
batch, and d indicates the dimensionality of the vectors.

2.4. Workflow

In this study, two different deep learning networks—FCN 
and LSTM—were employed for predicting petrophysical 

parameters from well log data. The overall workflow is 
illustrated in Figure 4. First, after acquiring true log data, 
dataset preparation was conducted, analyzing the effect 
of different intervals and sampling rates on prediction 
accuracy. Subsequently, feature selection was performed 
using various combinations of elastic parameters from 
the log data—such as S-wave velocity, P-wave velocity, 
density, P-to-S-wave velocity ratio, S-wave impedance, and 
P-wave impedance—as inputs, while using porosity as the 
network output, to identify the optimal combination of 
input features for training. Then, the prediction accuracy 
of the two network models was compared to determine 
the more suitable model for petrophysical parameter 
prediction, wherein the effect of sequence length of LSTM 
on prediction accuracy was also analyzed. Finally, blind 
well testing was conducted to evaluate the effectiveness of 
the proposed method. In addition, an attempt was made 
to introduce Bi-LSTM to enhance prediction accuracy and 
incorporate dropout to mitigate overfitting during model 
training.

3. Tests and applications
3.1. Dataset preparation

A total of 45,606 data points from well log measurements 
acquired across six wells in the study area were compiled 
to form the dataset. The data underwent min-max 
normalization, scaling all feature values to the range of 0 
to 1. Outliers were removed based on the 3σ rule. These 
preprocessing steps ensured data quality and provided 
a reliable foundation for model training. The data were 
measured from a deep CBM reservoir in north China, 
with the target coal layer buried at a depth around 2000 m. 
It includes data from different geological settings, such as 
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Figure 3. Structure of bidirectional long short-term memory cell

varying coal thickness, fracture development, and pore 
structures. This diversity provides a solid foundation 
for model training and validation, ensuring prediction 
accuracy and generalization under different geological 
conditions. The log curves and corresponding lithofacies 
interpretations for the selected Well B and Well C are shown 
in Figures 5 and 6, respectively, which exhibit a complex 

relationship between elastic and petrophysical properties, 
especially for coal sections. These data points, which 
include all necessary variables, are suitable for training 
and testing our models. This study used 80% of the data 
for training and 20% for validation, with random splitting 
to ensure consistent distribution between training and 
validation sets, thereby improving model generalization.

Figure 4. Workflow of the study
Abbreviations: Bi-LSTM: Bidirectional long short-term memory; FCNN: Fully connected neural network; LSTM: Long short-term memory
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The selection of the dataset for training plays a crucial 
role in the accuracy and reliability of the network. We 
conducted a preliminary analysis on the effect of using 
different stratigraphic sections and sampling intervals 
on prediction accuracy. The analysis was performed on 
standard FCN networks with P-, S-wave velocities, and 
density as input features and porosity as output. The 
root mean square error (RMSE) and the coefficient of 
determination (R2) from various wells were employed 
as evaluation metrics for prediction performance. As 
evidenced by the data presented in Figure 7 and Table 1, 

utilizing the coal section for training can effectively 
enhance model accuracy. It is due to the highly non-linear 
relation between elastic properties and porosity primarily 
exists in coal sections. Moreover, the analysis suggests that 
appropriately increasing the sampling interval can reduce 
the prediction error (Figure 8 and Table 2).

3.2. Feature selection

To determine the optimal input features for training, we 
evaluated five combinations of elastic parameters, i.e., 
[VP, VS], [VP, VS, ρ], [VP, VS, ρ, VP/VS], [VP, VS, ρ, VP/VS, 

Figure 5. Log curve of P-wave velocity (A), S-wave velocity (B), density (C), porosity (D), and lithofacies interpretation result (E), for Well B

A B C D E

Figure 6. Log curve of P-wave velocity (A), S-wave velocity (B), density (C), porosity (D), and lithofacies interpretation result (E), for Well C

A B C D E
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Table 1. Prediction accuracy with different stratigraphic sections

Stratigraphic section Mean RMSE Mean R2

Entire section 0.0578 0.4429

Coal section 0.0639 0.5714

Abbreviation: RMSE: Root mean square error.

Table 2. Prediction accuracy with different sampling intervals

Sampling interval Mean RMSE Mean R2

0.1 m 0.0578 0.4429

0.5 m 0.0576 0.4706

2.5 m 0.0470 0.6279

Abbreviation: RMSE: Root mean square error.

Zp], and [VP, VS, ρ, VP/VS, ZP, ZS]. Each combination was 
used to train the network, and the model performance was 
validated using test data. When selecting certain wells for 
testing, the remaining wells are used to train the model. In 
this experiment, Wells B, D, and F within the study area 
were selected as the test data, respectively. The true and 
predicted values were recorded, and the corresponding 
scatter plots were shown in Figures 9-11. The RMSE and 

R² were calculated to assess the prediction accuracy and 
identify the optimal input feature combination. To enhance 
the training outcome, data sampled at an interval of 2.5 m, 
as suggested by the analysis in Section 3.1, was adopted as 
the dataset for this experiment.

As observed from the scatter plots in Figures 9-11, the 
prediction accuracy varies with different combinations of 
input features, which can be inferred by comparing the 
predicted against true values with the diagonal reference 
line. Figure  12 and Table  3 present a comparison of 
prediction accuracy under these different combinations. 
The results indicate that using Combination 5—that is, the 
six parameters VP, VS, ρ, VP/VS, ZP, ZS as input features—
yields the best performance, achieving an average RMSE of 
0.0647 and an average R² of 0.6574, which represents the 
highest relative accuracy among the five combinations. To 
better illustrate the prediction performance using different 
combinations, Figure 13 compares the true and predicted 
porosity curves for Well B when using the input feature 
of Combination 1 and Combination 5 with the sampling 
interval of 2.5 m, respectively, which indicates a significant 
reducing of prediction error by the optimal feature selection.

Figure 7. Prediction accuracy in term of root mean square error (A) and R2 (B) using the training data from different stratigraphic sections

Figure 8. Prediction accuracy in term of root mean square error (A) and R2 (B) using the training data with different sampling intervals (0.1, 0.5, and 2.5 m)

A B

A B
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3.3. Model tests

To compare the performance of FCN and LSTM networks 
in petrophysical prediction, we conducted FCN and LSTM 
models and applied them to the prediction, respectively. The 
FCN adopts a 5-layer architecture with hidden layer sizes 
of 32-64-128-64-32 and uses the ReLU activation function. 
The LSTM model has a hidden size of 64, comprises 2 
stacked layers, and is followed by a fully connected layer 
for output. Both networks have a dropout rate set to 0.2 

Figure 9. Prediction results with different input feature combinations for Well B

Table 3. Prediction accuracy with different combinations of 
input feature

Combination Features Mean RMSE Mean R2

1 [VP, VS] 0.0767 0.4078

2 [VP, VS, ρ] 0.0737 0.5117

3 [VP, VS, ρ, VP/VS] 0.0708 0.5710

4 [VP, VS, ρ, VP/VS, ZP] 0.0724 0.6283

5 [VP, VS, ρ, VP/VS, ZP, ZS] 0.0647 0.6574

Abbreviation: RMSE: Root mean square error.

https://dx.doi.org/10.36922/JSE025410087
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Figure 10. Prediction results with different input feature combinations for Well D

and were trained under identical conditions: Each training 
session employed a unified loss function, optimizer, 
learning rate, and batch size. We used the Adam optimizer 
with a learning rate of 0.001. The optimizer is crucial for 
efficiently and stably updating network parameters to 
minimize the loss. The learning rate is adjusted based on 
model convergence speed and stability to ensure optimal 
performance within a reasonable time. The models were 
trained by iteratively updating weights using the same 
training, validation, and test sets. The RMSE and R² for 
each test well were calculated to assess prediction accuracy.

As indicated by the data in Figure  14 and Table  4, 
the LSTM network demonstrates superior performance 

Table 4. Prediction accuracy with different network models

Network model Mean RMSE Mean R2

FCN 0.0691 0.5705

LSTM 0.0621 0.6125

Abbreviations: FCN: Fully connected neural; LSTM: Long Short‑Term 
Memory.

over the FCN network in most wells, with lower RMSE 
and higher R² values, indicating its greater suitability for 
petrophysical parameter prediction, especially for well-
measured sequential data.

When training the LSTM model, the sequence length, 
which defines the number of sequence length in each input 
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Figure 11. Prediction results with different input feature combinations for Well F

Figure 12. Prediction accuracy in term of root mean square error (A) and R2 (B) with different combinations of input feature

A B
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sequence, is a crucial parameter for data processing. Omitting 
this step would prevent the LSTM network from learning 
the influence of historical data on current values. The pore 
structure and fracture networks of coal seams exhibit similarity 
within a certain depth range (e.g., coal seams and surrounding 
rocks), but beyond this range, geological characteristics 
change significantly. The choice of sequence length is related 
to the geological variability with depth. A shorter sequence 
length may overlook the influence of geological layers, while 
an excessively long sequence length increases training time 
and may reduce generalization performance due to noise 
accumulation. Therefore, we analyzed the LSTM network 

using different sequence length values and evaluated the 
prediction accuracy for each test well.

As evidenced by the data in Figures 15, 16, and Table 5, 
a sequence length of 32 yielded the optimal performance in 
this test, resulting in the lowest average RMSE and the highest 
average R2 across all wells. It should also be noted that the 
choice of sequence length significantly impacts the training 
duration, requiring a careful balance between sequence 
length and computational cost (Table  6). If the sequence 
length is too short, the model may fail to capture sufficient 
historical information, leading to issues such as underfitting 
and prediction lag. Conversely, an excessively long sequence 

Figure 13. Comparison between the true and predicted porosity using the input feature of Combination 1 (A) and Combination 5 (B) for Well B, and 
their corresponding absolute residual errors (C and D)

A B C D

Figure 14. Prediction accuracy in term of root mean square error (A) and R2 (B) with different network models
Abbreviations: FCN: Fully connected neural; LSTM: Long short-term memory

A B
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Figure 15. Prediction accuracy in term of root mean square error (A) and R2 (B) with different sequence length for the long short-term memory network

length, while theoretically capable of incorporating richer 
contextual information, can cause an expansion in input 

dimensions and prolong the gradient backpropagation path 
through the LSTM hidden states. This not only substantially 
increases GPU memory usage and training time per 
iteration but may also degrade generalization performance 
due to accumulated noise. To reduce time costs and improve 
engineering feasibility, distributed training with multi-GPU 
acceleration can be used, or the sequence length and input 
dimensions can be reduced to shorten training time.

3.4. Application

To validate the effectiveness of the aforementioned method, 
Well C within the study area was designated as the test well, 

A B

Table 5. Prediction accuracy with different sequence length 
for the long short‑term memory (LSTM) network

Sequence length Mean RMSE Mean R2

Sequence length=1 0.0621 0.6125

Sequence length=8 0.0570 0.6704

Sequence length=32 0.0470 0.7901

Sequence length=64 0.0552 0.7105

Abbreviation: RMSE: Root mean square error.

Figure 16. True and predicted porosity comparison using the long short-term memory model with sequence length of 1(A), 8 (B), 32 (C), and 64 (D), 
for Well D

A B C D
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Table 6. Comparison of training time for different sequence 
lengths

Model Sequence length Training time in seconds (100 epochs)

FCN / 35.8

LSTM Sequence length=1 44.2

Sequence length=8 82.3

Sequence length=32 246.9

Sequence length=64 506.0

Abbreviations: FCN: Fully connected neural; LSTM: Long short‑term 
memory.

while the remaining wells were used for training. Utilizing 
Combination 5 (i.e., the six parameters Vp, Vs, ρ, Vp/Vs, Zp, 
and Zs as input features), the models were trained for 100 
epochs. The remaining hyperparameters were kept at their 
default and identical values, and the sequence length for 
the LSTM network was set to 32. Both the FCN and LSTM 

Table 7. Prediction accuracy with different network models 
for Well C

Network model Mean RMSE Mean R2

FCN 0.0546 0.4104

LSTM 0.0309 0.7972

Bi‑LSTM 0.0279 0.8342

Abbreviations: Bi‑LSTM: Bidirectional Long Short‑Term Memory; 
FCN: Fully connected neural; LSTM: Long Short‑Term Memory; 
RMSE: Root mean square error.

models were trained under these conditions to generate 
and compare their prediction results. Figures 17A and B 
demonstrate the superior prediction performance of the 
LSTM network. As indicated in Table 7, the LSTM model 
achieves a reduction in RMSE of approximately 43.41% and 
an improvement in R2 to 0.7972 compared to the baseline.

Furthermore, we employed a Bi-LSTM model to 
perform the prediction, while keeping all other parameters 
unchanged. The corresponding results are shown in 
Figure  17C. The Bi-LSTM model achieved an RMSE 
of 0.0279, representing a further reduction of 9.71% 
compared to the standard LSTM, and an R2 of 0.8342, 
corresponding to an increase of 0.0370. In Figure 17C, it 
can be observed that the areas with high porosities accord 
with the interpreted coals at the depths around 1980  m, 
2040  m, and 2080  m, which indicates the prediction 
could help identify coal sections in good accuracy. These 
results indicate that the Bi-LSTM model outperforms the 
standard LSTM both in terms of prediction accuracy and 
robustness, demonstrating its effectiveness for the task of 
petrophysical parameter inversion.

4. Discussion
The findings of this study indicate the potential of deep 
learning, especially sequence models such as LSTM and 
Bi-LSTM, in addressing the complex challenge of porosity 
prediction in deep CBM reservoirs. LSTM network 
inherently captures the contextual dependencies and long-

Figure 17. Prediction accuracy with FCN (A), LSTM (B), and Bi-LSTM (C), and the lithofacies interpretation (D) for Well C
Abbreviations: Bi-LSTM: Bidirectional long short-term memory; FCN: Fully connected neural; LSTM: Long short-term memory

A B C D
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range trends within the log curves. This capability is crucial 
for petrophysical prediction, as reservoir parameters 
at a given depth are often geologically influenced by 
the overlying and underlying formations. The further 
improvement by the Bi-LSTM model indicates that 
integrating information from both shallower and deeper 
sections leads to a more accurate prediction. Due to its 
bidirectional learning capability, Bi-LSTM is theoretically 
applicable to other sequence data-driven reservoir 
prediction tasks. For example, shale gas and carbonate 
reservoirs also have complex pore structures and non-
linear relationships. With appropriate feature selection 
and parameter tuning, the Bi-LSTM model can be applied 
to porosity prediction in these reservoirs. However, it 
should be noted that the present study only analyzes the 
FCN and LSTM models, while a more comprehensive 
comparison with other advanced networks, such as 
Temporal Convolutional Networks or Transformer-based 
models, was not conducted. Future work should include 
such comparisons to more fairly evaluate the performance 
of Bi-LSTM model.

Overfitting remains a critical challenge in deep 
learning. This study employed the dropout method to 
mitigate overfitting by randomly dropping some neurons 
during training, thereby reducing the model’s reliance on 
training data. In future research, L2 regularization will 
be introduced to further constrain model complexity and 
reduce overfitting by adding the L2 norm of weights to the 
loss function.

The inherent difficulties in predicting porosity in CBM 
reservoirs extend beyond the selection of an appropriate 
algorithm. The complexities of coal seams also present a 
fundamental task. Coal has a unique dual-porosity system, 
including the cleat/fracture network and the matrix pores, 
which governs the storage and transport mechanisms 
of methane. Porosity measurements and log responses 
are generally affected by this complex pore structure 
and the presence of adsorbed gas. Such inherent pore 
complexities are significant factors influencing the non-
linear and challenging nature of the porosity prediction. 
However, although our data-driven model constructs 
the relationship between elastic parameters and porosity, 
it does not explicitly explain or analyze the influence of 
those pore complexities. A deeper investigation into how 
these dual-porosity characteristics manifest in the seismic 
elastic parameters represents a critical area for further 
research.

Errors may arise from model limitations and the 
complexity of geological characteristics. For example, the 
complex and variable pore structure and fracture networks 
in coal seams result in a highly non-linear relationship 

between porosity and elastic parameters. Although the 
Bi-LSTM model performs well in capturing such non-
linear relationships, prediction errors may still occur in 
certain depth intervals. Future research could reduce 
errors by introducing more complex model structures or 
increasing the amount of training data.

The proposed method is primarily a data-driven 
approach. It takes advantage of the powerful non-
linear mapping capabilities of deep learning to establish 
a relationship between input features and the target 
output, without explicitly considering the governing 
physical laws. It may limit the model generalizability 
and physical interpretability in practical applications. 
To address this issue, our further research will focus on 
developing a physics-guided deep learning model. In 
particular, rock physics models can provide the physical 
relationship between porosity and elastic parameters, 
offering prior knowledge for deep learning models. 
By incorporating a coal-specific rock physics model 
into the network or loss function, we aim to constrain 
the predictions to be not only data-consistent but 
also physically plausible for different CBM fields. In 
addition, rock physics models can supplement labeled 
data, compensating for the problem of overfitting of 
deep learning models in small sample scenarios and 
alleviating the impact of insufficient data.

5. Conclusion
This work proposes a deep learning-based method for 
predicting porosity in deep CBM reservoirs with well 
log data. The study investigates the input features of 
seismic elastic parameters for training, which leads to the 
optimal combination of P-wave velocity, S-wave velocity, 
density, and impedance for predicting porosity. The study 
also focuses on the analysis of network parameters such 
as sampling interval and sequence length, to achieve 
an optimal balance between prediction accuracy and 
computational efficiency. Tests and comparisons indicate 
that the LSTM network demonstrates a reduction in 
RMSE of approximately 43.41% and an improvement in 
R2 from 0.4104 to 0.7972 compared to the FCN network. 
Furthermore, the proposed Bi-LSTM model not only 
enhances bidirectional contextual awareness but also 
significantly improves generalization capability. Compared 
to the standard LSTM, it achieved a further RMSE 
reduction of approximately 9.71% and increased the R2 
to 0.8342. The predictions by the Bi-LSTM model exhibit 
good capability in identifying potential coal layers. The 
proposed method provides a reliable approach for porosity 
prediction with well log data, which could effectively assist 
in seismic exploration for deep CBM reservoirs.
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Abstract
Facies are rock bodies that reflect specific depositional environments and play a 
central role in reservoir characterization. Accurate facies modeling is a key challenge 
in generating realistic geological scenarios that honor sparse well data while 
capturing geological uncertainty. This study introduces FaciesGAN, a novel deep 
learning framework based on conditional generative adversarial networks (cGANs). 
The method employs a hierarchical structure of generators and discriminators that 
progressively refine coarse estimates into high-resolution facies models, ensuring 
consistency with well data and depositional patterns at each stage. FaciesGAN was 
validated using the limited Stanford Earth Science Data dataset, demonstrating 
strong performance even under data scarcity. The quantitative evaluation employed 
multidimensional scaling and yielded an intersection over union index of 99.96% 
relative to the conditioning well data. These results confirmed the model’s ability to 
generate diverse scenarios with high fidelity while preserving statistical distributions. 
Compared with a traditional multiple-point statistics implementation, FaciesGAN 
produced more realistic and varied geological realizations with significantly greater 
computational efficiency. These results indicate that cGAN-based approaches, such 
as FaciesGAN, represent a promising direction for subsurface modeling, offering 
robust tools for data augmentation, improved uncertainty assessment, and enhanced 
reservoir characterization.

Keywords: Conditional generative adversarial network; Facies; Hard data; Geostatistical 
simulations; Seismic inversion

1. Introduction
In the context of reservoir characterization, facies are defined as rock units with 
specific attributes that reflect the depositional environment and directly influence the 
petrophysical properties and heterogeneity of the reservoir.1,2 Facies are essential for 
understanding depositional environments, as they enable geoscientists to correlate these 
units with seismic and well data, thereby playing a crucial role in the seismic inversion 
process.3,4 For example, since sandy facies generally exhibit higher porosity than shale 
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facies, they help identify and distinguish productive 
from non-productive zones.5 From this perspective, the 
integration of facies into seismic inversion algorithms 
provides greater consistency between the models and the 
petrophysical properties obtained, generating more robust 
and reliable models.6-8

The generation of multiple facies scenarios that 
reproduce complex heterogeneous structures plays a key 
role in the characterization and modeling of geological 
reservoirs and the stochastic seismic inversion workflow.9,10 
By enabling multiple plausible realizations of the 
subsurface, facies scenario modeling provides a rigorous 
framework to explicitly capture and quantify geological 
uncertainty.11 This approach reduces biases arising from 
single deterministic interpretations and ensures that the 
resulting reservoir models remain consistent with both 
geological knowledge and observed field data.2,12 This ability 
is particularly critical in seismic inversion workflows, 
where the relationship between well log measurements, 
core analysis, and seismic responses must be established in 
a consistent and geologically meaningful way.13,14

Facies scenario generation can be carried out using 
classical and modern methodologies that combine 
geology, statistics, and artificial intelligence.10,15 Classical 
methodologies include techniques used in geology and 
geostatistics. For example, sequential indicator simulation 
(SIS) uses binary indicators for each facies, generating 
scenarios conditioned on available data.16 SIS is useful 
for modeling facies, but has several limitations. It often 
produces loosely connected patterns and oversimplified 
geological structures,17 making it difficult to represent 
features such as channels or faults. SIS is sensitive to 
variogram fitting, complicating its use with sparse data. 
It allows the quantification of uncertainty; however, if 
not accurately calibrated, it can result in geologically 
inconsistent models.18

Modern methodologies include techniques that have 
revolutionized geological modeling by allowing the 
representation of complex patterns and advanced spatial 
relationships. Multiple-point statistics (MPS) represent 
a significant advance in this area, enabling the capture of 
spatial patterns in geological data and modeling of multi-
location relationships.19,20 These techniques are especially 
useful for simulating facies distributions in regions with 
limited information. They adhere to spatial distributions 
observed in training data, such as geological maps and 
previous simulations.13,21 MPS may face difficulties in 
constructing representative training images, as it relies on 
the analyst’s expertise. Furthermore, conditioning to real 
data may be complex to implement without breaking the 
continuity of the simulated patterns.13,22

In this context, generative adversarial networks 
(GANs) emerge as an innovative methodology for the 
generation of facies scenarios. GANs offer significant 
advantages over traditional geostatistical methods and 
MPS-based simulation. They can learn directly from 
real data, preserving first-order statistical features (facies 
proportions) and second-order statistical features (spatial 
continuity and body geometry).23,24 GANs are capable of 
capturing complex spatial patterns and facies relationships, 
thereby producing more realistic realizations and reducing 
the subjectivity inherent in model design.25-27 Moreover, 
they open the possibility of training networks as a 
complement to stochastic facies simulation.28,29

There are two competing networks in GANs: A generator 
network creates synthetic data, and a discriminator 
network assesses the authenticity of the generated data in 
relation to the real data.22,25 In the context of facies, GANs 
can be used to generate new synthetic records that preserve 
the statistical characteristics of real data, for example, 
facies distributions and the geophysical properties of wells. 
On the other hand, conditional GANs (cGANs) include 
a conditional layer in the data generation process. This 
conditional layer allows the generation of synthetic data 
based on specific previous information, such as the type 
of facies in a particular depth range, providing even more 
control over the generation process.30,31 This characteristic 
allows the assessment of large-scale geological scenarios 
and the validation of hypotheses about reservoir 
connectivity and quality.

In recent years, facies scenario generation has been 
studied through several case studies, showcasing the 
effectiveness of advanced technologies. For example, 
Liu et al.32 proposed an approach for generating 3D 
subsurface facies map models based on GAN. Miele 
et al.33 proposed integrating a GAN with spatially-adaptive 
denormalization (SPADE) to predict realistic facies map 
patterns while adhering to local probabilities. It combines 
with geostatistical methods of sequential simulation to 
model facies-conditioned rock properties. Furthermore, 
Feng et al.23 proposed a GAN-based method in which 
the network is trained on facies map images. Research 
has demonstrated excellent results using facies map 
data and statistical similarity. However, few studies have 
incorporated known hard information from the GAN 
training stage, such as observed facies sequences in wells 
at specific locations. Specifically, no applications have been 
published on facies data in 2D vertical sections.

Considering the current progress, this work aims 
to explore advanced techniques for generating facies 
scenarios, with a particular focus on cGANs. The objective 
is to evaluate the effectiveness of this technique on 2D 
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vertical section facies data conditioned on well data. 
Using a public dataset with a limited number of samples, 
this study aims to demonstrate that the proposed method 
can effectively address one of the main challenges in 
reservoir characterization: data scarcity. This approach 
leverages synthetic training models to enhance the 
integration of well logs, facies distributions, and seismic 
information, producing scenarios that adhere to geological 
conditions and maintain statistical and spatial consistency. 
Accordingly, this study demonstrates that incorporating 
conditioning information enables cGANs to generate more 
accurate and robust models for reservoir characterization. 
cGANs offer an innovative solution to overcome the 
limitations of traditional techniques, contributing to a 
more coherent and efficient reservoir modeling.

2. Methodology
This study followed the workflow provided in Figure 1. The 
methodology comprises several interconnected stages.

2.1. Data collection and preprocessing

The Stanford Earth Science Data dataset was chosen and 
downloaded from the GitHub repository (https://github.
com/SCRFpublic/Stanford-VI-E).4 The database contains 
data from oil well logs, with detailed samples of the 
different facies found in the reservoirs. The facies data 
are stored in.dat format, facilitating preprocessing and 
analysis. From the dataset, the available facies classes 
were floodplain (0), point bar (1), channel (2), boundary 
(3), and deltaic system (Figure 2A). The dataset primarily 
represented meandering channel systems, emphasizing 
facies categories relevant to this study (reservoir and non-
reservoir types). The remaining facies were reclassified to 
simplify the categories into “reservoir” (channel; 1) and 
“non-reservoir” (floodplain, point bar, and boundary; 0), 
as shown in Figure 2B.

2.2. Image generation and data labeling

A Python 3.12 environment was configured using image 
processing and visualization libraries to generate visual 
representations of the filtered and categorized facies. The 
tabular data were subsequently converted into images. The 
3D Stanford VI reservoir model was employed as training 

data for the deep-learning workflow. This reference 
model was defined on a 150×200×200 cell grid, with cell 
dimensions of 25 m in the horizontal (X and Y) directions 
and 1  m in the vertical (Z) direction. This resulted in a 
total physical size of 3,750 m (X-axis) × 5,000 m (Y-axis) 
× 200 m (Z-axis/depth). The 200 m vertical thickness was 
composed of three distinct layers (80 m, 40 m, and 80 m). 
To generate the 2D training images, 200 vertical slices 
(representing X–Z planes) were extracted, corresponding 
to one slice for each of the 200 cell positions along the 
Y-axis. Each slice represented the full horizontal (X-axis) 
distance of 3,750  m and the top 80  m layer (Layer 1). 
Subsequently, this physical section of 3,750  m × 80  m 
was resampled to a 256 × 256-pixel matrix. This process 
resulted in final images with a resolution of approximately 
14.65 m/pixel in the horizontal direction and 0.31 m/pixel 
in the vertical (depth) direction.

A total of 200 divisions in 2D vertical slices were 
generated and extracted from the 3D facies model. These 
were used as training images, with 256 × 256 pixels, and 
categorized according to the corresponding facies class 
(Figure  2C). Each image was annotated with the depth 
condition and used as an external label to guide the 
process. The annotations delineating vertical polygons 
indicated the different facies represented, based on the 2D 
section facies found in the Stanford Earth Science Data 
dataset, and were used as conditioning data for the cGAN.

2.3. Facies scenario generation with the proposed 
cGAN

The proposed cGAN, termed FaciesGAN, features a 
multistage architecture designed to generate geologically 
realistic facies realizations conditioned on well data.

The FaciesGAN model is an adaptation of SinGAN28 
and WGAN-GP.34 SinGAN is a generative model that 
can learn from a single natural image.28 It consists of a 
pyramid of fully convolutional GANs, each modeling the 
distribution of image patches at a distinct spatial scale. 
This allows for generating new samples of arbitrary size 
and proportion. Although the generated samples exhibit 
considerable variability, they retain the overall structure 
and fine textures of the training image.

Figure 1. General proposed methodology
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The FaciesGAN model is structured as a hierarchy of 
generators and discriminators operating at progressively 

higher resolutions, as shown in Figure  3. The process 
begins with a low-resolution generator that produces 

Figure 3. Schematic representation of the proposed cGAN for generating facies scenarios. The generator and discriminator are trained from coarse to fine 
scale (0 to N).
Abbreviations: cGAN: Conditional generative adversarial network; U: Upsampling.

Figure 2. The Stanford Earth Science Data dataset. (A) Multiple sedimentary facies visualization. (B) Facies classification into reservoir (yellow) and 
non-reservoir (gray). (C) 2D slices examples of projection along the depth, differentiating the reservoir (white) from the non-reservoir (black). Image 
reproduced and adapted with permission from Lee and Mukerji.4
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an initial facies image conditioned on well information 
(e.g., facies at well locations). Subsequent stages refine this 
output by adding progressively finer geological details. 
Each generator stage is paired with a corresponding 
discriminator that evaluates the realism of the generated 
facies at its specific resolution while enforcing consistency 
with the conditioning data. Conditioning is maintained 
throughout all stages of the generation pipeline, ensuring 
that the final high-resolution outputs honor well 
constraints. This progressive refinement strategy allows the 
model to capture both large-scale geological structures and 
small-scale heterogeneities, resulting in high-quality, data-
consistent facies simulations.

The pyramid of generators G0,…,Gn,…,GN is a multi-
scale, fully convolutional architecture, as shown in 
Figure 4A. At each scale, the generator considers a resized 
version of the previous output x n’ −1  and a condition zn, 
which are concatenated channel-wise. These are then 
passed through a series of 2D convolutional layers with 
leaky rectified linear unit (LeakyReLU) to produce a 
residual output. This is added to the up-sampled input to 
generate the new 2D section facies map x n’ . Each generator 
Gn is trained to learn the internal structure of the training 
images at different scales. Gn finer details from the training 
images are learned sequentially.23

The discriminators, D0,…,Dn,…,DN, are implemented 
as a convolutional PatchGAN classifier, which assesses the 
realism of local image patches rather than making a single 
global prediction (Figure  4B). The architecture consists 
of a sequence of convolutional blocks, each comprising 
a 2D convolutional layer followed by a LeakyReLU 
activation function.28 The number of feature channels is 
progressively reduced across layers (e.g., from 64 to 1), 
enabling hierarchical feature extraction at multiple spatial 
resolutions. Notably, normalization layers (e.g., batch 
normalization) are applied to preserve the raw feature 
dynamics and stabilize the training process. The final 
output is a single-channel feature map in which each spatial 
location corresponds to the discriminator’s assessment of 
whether a specific image patch is real or synthetic.23,34

At the nth scale level, an adversarial training process is 
performed separately: the generator Gn tries to generate fake 
images xn to fool the discriminator Dn. The discriminator 
Dn attempts to distinguish the real images xn from the fake 
ones.23 This multi-scale approach captures the large-scale 
structures present in the geologic models of interest.35 The 
formulation for generating an image sample at the nth level 
is expressed as follows:

x
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where ∪ represents the upsampling based on 
interpolators in the 2D and 3D cases.

The loss function at the nth scale level for Gn and Dn is 
formulated as:28

minmax , ,
G D n n adv n n rec n

n n

G D G D G  � � � � � � � �� � (2)

where adv  is the adversarial loss for penalizing the 
distribution distance between the down-sampled images xn 
and the generated images xn

’ , α is a weighting factor to 
balance the two loss functions, and rec  is the reconstruction 
loss to ensure that xn can be reproduced given a specific set 
of random noise maps.

The generator Gn and discriminator Dn at each pyramid 
scale n are trained with a combined objective inspired by 
WGAN-GP34 and SinGAN.28 The goal is to simultaneously 
enforce adversarial learning and faithful reconstruction of 
the image at multiple resolutions.

The discriminator Dn is optimized using the Wasserstein 
loss with gradient penalty, ensuring Lipschitz continuity. 
The discriminator loss is formulated as:
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Figure 4. Network architecture at the nth scale level. (A) The generator. (B) The discriminator.
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Where xn denotes a real image at scale n, 
∨ ↑

+

 
 
  
 

1, nn nG z x
 

is the generated image conditioned on noise zn and 
the upsampled output from the next coarser scale, 
and ( )ε ε= + −1 'ˆ

n n nx x x  with ε ~ u[0,1] is the interpolated 
sample used for the gradient penalty.

The generator Gn is trained with two complementary 
objectives: (i) An adversarial loss that encourages generated 
samples to be indistinguishable from real ones at scale n, 
and (ii) a reconstruction loss that ensures faithful 
reproduction of the reference image when a fixed noise 
map zn

*  is used. The generator loss is:
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With the reconstruction loss defined as:
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Where αn is a scale-dependent weighting factor 
balancing adversarial and reconstruction objectives, and 

↑
+1

ˆ
nx  denotes the generated sample from the scale n+1, 

upsampled to match the resolution of scale n.

This hierarchical optimization scheme allows the 
generator to progressively capture global structure at coarse 
scales and fine details at higher resolutions, while the 
reconstruction term stabilizes training and preserves fidelity.

2.4. Algorithm and implementation

The FaciesGAN model is an architecture designed to 
generate geologically consistent facies images from a 
multi-scale noise pyramid. It uses an improved adversarial 
training framework. FaciesGAN’s training loop comprises 
two alternating main stages, which involve updating the 
discriminator and generator parameters. The algorithm 
incorporates additional mechanisms, such as gradient 
penalty, reconstruction, and masking losses that contribute 
to improving training stability and fidelity of the generated 
images. The algorithm and the core procedure for training 
the FaciesGAN model at a single resolution scale are 
presented in Algorithm 1. FaciesGAN core training loop 
(at a single scale).

The training hyperparameters were determined based 
on the original WGAN-GP and SinGAN models, with 
empirical adjustments for our specific application. The 
gradient penalty weight λgp (referred to as λ in WGAN-GP) 
was set to 0.115, a value that we found stabilized training 

effectively for the facies data (in contrast to the λ =10 used 
in the original WGAN-GP). The reconstruction weight αrec 
(referred to as α in Equation [2] and αn in Equation [4]) 
was set to 10, a value commonly used in SinGAN-based 
models that provided an optimal balance between 
adherence to geological structure and training stability.

3. Results
This study evaluated the capability of generative models 
to generate geological facies scenarios. For this purpose, 
FaciesGAN was trained and validated through visual 
inspection and multidimensional scaling (MDS) to 
determine the consistency and representativeness of 
the generated scenarios with the original facies. For 
comparison purposes, the same data were modeled using 
an MPS method, specifically, the single normal equation 
simulation (SNESIM).13 The scenarios generated using 

Algorithm 1. FaciesGAN core training loop (at a single scale)

Input:
xreal ← Real data
M ← Mask
xrecin

←Reconstruction input

Models:
G ← Generator
D ← Discriminator

Hyperparameters:
λgp,αrec, kd ← Discriminator steps
kg ← Generator steps

/*Step 1: Train Discriminator */
1:  for j = 1 to kd do
2:        Sample noise pyramid Z←GETNOISE( )
3:        �Generate fake images xfake←G (Z)//Forward pass‑through Generator

4:        L D xreal real�� � ��� �� //Loss for real data

5:        L D xfake fake� � ��
�

�
� //Loss for fake data

6:        Lgp ← λgp CALCULATEGRADIENTPENALTY (D, xreal, xfake)
7:        LD ← Lreal + Lfake + Lgp //Total Discriminator loss
8:        Update D’s parameters θd by ascending the gradient of LD

9:  end for

/* Step 2: Train Generator */
10:  for j = 1 to kd do
11:        Sample noise pyramid Z←GETNOISE( )
12:        Generate fake images xfake←G (Z)

13:        L D xadv fake�� � ��
�

�
� //Adversarial loss

14:        Sample reconstruction noise Zrec ← GETNOISE (rec=True)
15:        xrec ← G (Zrec, in_facie = xrec_in) //Reconstruction pass
16:        Lrec ←αrec⋅MSE (xrec, xreal) //Reconstruction loss
17:        Lmask ← 100 ⋅ αrec⋅ MSE (xfake ⨀ M, xreal ⨀ M) //Masked loss
18:        LG ← Ladv + Lrec + Lmask //Total Generator Loss
19:        Update G’s parameters θg by ascending the gradient of LG

20: end for
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the two methodologies were compared through visual 
inspection of the spatial continuity of the patterns and the 
facies proportion histogram. This allowed for a qualitative 
and quantitative analysis of the representativeness and 
consistency of the simulated models.

Specifically, FaciesGAN was trained to generate facies 
scenarios using the Stanford Earth Science dataset. The model 
was developed with a limited training set of 200  samples. 
During the inference stage, some samples were analyzed using 
metrics such as visual inspection, average facies proportion, 
and MDS to determine the consistency and representativeness 
of the generated scenarios with the original facies.

For FaciesGAN training, appropriate labels were 
required for each image. The labeling process is shown 
in Figure  5. These labels are important because they 
provide information about the characteristics of each 
image, allowing the model to learn to generate coherent 
and realistic images based on specific conditions. In this 
context, the labels corresponded to hard data derived 
from a simulated well, representing known subsurface 
information used to condition the facies generation process. 
The correctly labeled images were integrated into the 
dataset and associated specifically with each corresponding 
image. The model used the labels as conditioning input to 
generate facies scenarios consistent with the characteristics 
and structures defined by the labels.

The FaciesGAN model was trained for 100 epochs per 
scale across 10 scales, with a gradient penalty weight λgp of 
0.1, using the Adam optimizer with a learning rate of 5e−5 
and β of 0.5. The kernel size for 2D filters was 3 × 3, with a 
stride step of 1 × 1. At the coarser scales, image resolution 
ranged from 16 to 128 pixels. The model was trained on 
the complete dataset using a workstation with an Intel 
i7-8700K CPU (6 cores, 3.7 GHz), an NVIDIA GeForce 
GTX 1080Ti GPU, and 64 GB of RAM.

3.1. Global model evaluation

In the first test, the model generated 1,000 facies scenarios 
in 20 s; twenty randomly selected conditioned realizations 

are shown in Figure  6. It was observed that the facies 
configuration of the conditioning trace, highlighted in 
green to simulate a real drilled and analyzed well, was 
closely reproduced in the images generated by FaciesGAN.

The results are promising considering the limited 
training set, highlighting the applicability of the proposed 
approach in characterizing oil reservoirs, where well 
log and facies data are often scarce, costly to obtain, and 
subject to privacy restrictions. Nevertheless, the model 
showed remarkable consistency in reproducing the facies 
spatial distributions. These findings provide insight into 
the model’s capability to produce images that consistently 
reflect the expected facies proportions. Visual comparisons 
with real distributions confirmed that the model captured 
key features of the input data while generating consistent 
variations. Furthermore, the time required to generate 
facies scenarios was short, highlighting the computational 
efficiency of the proposed approach. The short generation 
time allows for practical integration into workflows that 
require multiple simulations.

Next, MDS was applied to quantitatively evaluate 
the trained model and to compare patterns of spatial 
variability. MDS is a technique commonly used in data 
analysis and visualization. It represents high-dimensional 
data in a lower-dimensional space, usually 2D or 3D, 
while preserving the relative distances (or dissimilarities) 
between data points and the potential differences 
between them.36 The generated facies overlapped closely 
with the training images in 2D space, demonstrating 
excellent similarity, as shown in Figure 7. Regions where 
blue and red overlap indicate highly agreement between 
generated and real images, suggesting robust model 
generalization.

The generated facies (red) effectively covered the 
space of the real facies (blue), indicating the diversity and 
quality of the generator. The real facies (blue) were closely 
surrounded by the generated facies, suggesting that the 
generator interpolates well within the known domain. This 
indicates a high degree of spatial consistency.

Figure 5. Reservoir (in white) and non-reservoir (in black) with drilled-well conditioning. Conditional traces are highlighted in red (reservoir) and green 
(non-reservoir). Note: Each image corresponds to a 2D crossline section represented in the pixel domain (256 × 256 pixels) to an 80 m (depth) × 3,750 m 
(width) vertical section.
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In addition, to validate how effectively the conditioning 
well information was honored by the FaciesGAN model, 

a procedure was designed that reformulates the problem 
as a spatial classification task. Specifically, the generated 
scenarios were compared with their respective original 
images to evaluate how accurately the location and shape 
of the facies were reproduced around the actual wells. 
The intersection over union (IoU) index was used as 
the evaluation metric. This index is defined as the ratio 
between the intersection area and the union area of the 
predicted and reference data:

IoU
GT PD
GT PD

� �
�

� (6)

where PD is the prediction mask and GT is the ground 
truth. In this evaluation, the prediction mask corresponded 
to the pixels generated under hard conditioning by 
FaciesGAN, while the hard-conditioning reference data 
from the original facies image served as the ground truth. 
A total of 1,000 images generated from a set of 200 original 
images were analyzed. The IoU was calculated for each pair 
of images, yielding an overall mean IoU of 99.96%. This 
result indicates exceptionally high fidelity in preserving 
the well-conditioning constraints and demonstrates 

Figure 7. Multidimensional scaling plot of the training images with 
conditional realizations

Figure 6. Twenty randomly selected realizations generated by the proposed cGAN. The generated facies are shown in white, while the conditioning is in 
red (reservoir) and green (non-reservoir). Note: Each image represents a 2D crossline section in the pixel domain (256 × 256 pixels), corresponding to a 
vertical section 80 m deep and 3,750 m wide.
Abbreviation: cGAN: Conditional generative adversarial network.
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that FaciesGAN generates stochastic images that almost 
perfectly adhere to the geological information observed 
in the well. These findings validate its effectiveness as a 
geological conditioning tool.

The effectiveness of the FaciesGAN model was validated 
by comparing its results with synthetic facies scenarios 
generated using MPS. Specifically, SNESIM, an improved 
and scalable extension of the extended normal equation 
simulation (ENESIM) algorithm for multipoint simulation, 
was used to generate 1,000 facies realizations based on 
the 200 training images. The results of 20 representative 
simulations are presented in Figure 8. These results were 
generated in approximately 137 min.

The facies scenarios generated by FaciesGAN (Figure 6) 
exhibited distributions consistent with the expected 
geology. The scenarios accurately respected the conditions 
(in green). These realizations reflect the remarkable ability 
of the model to capture complex spatial patterns with 
high diversity among simulations. In comparison, the 
realizations generated by the MPS SNESIM method also 
preserved the spatial continuity of the facies; however, they 

exhibited less structural variability than those produced by 
FaciesGAN. Visual comparison suggests that FaciesGAN 
accurately reproduced the input conditioning and 
provided greater structural diversity in its realizations. This 
demonstrates that the proposed methodology is a robust 
alternative for generating complex geological scenarios.

Next, we evaluated the overall distribution and class 
balance within the dataset. The histogram of reservoir 
facies proportions is shown in Figure 9. In addition to the 
dataset distribution, the histogram also includes the facies 
proportion results obtained from the FaciesGAN and MPS 
SNESIM simulations. This enables a comparative analysis 
of class balance between the original data and the synthetic 
realizations produced by the two methods.

The distribution of the dataset (in red) showed a 
primary peak near 0.16, representing the dominant facies 
ratio in the real data. The dispersion is moderate, with 
most realizations concentrated between 0.12 and 0.20. 
The distribution generated by FaciesGAN (in green) 
showed a similar behavior, with values concentrated in 
the same range. However, a slight deviation was observed 

Figure 8. Twenty randomly selected realizations generated by the MPS SNESIM algorithm. The generated facies are shown in black, while the conditioning 
is in red (reservoir) and green (non-reservoir). Note: Each image represents a 2D crossline section in the pixel domain (256 × 256 pixels), corresponding 
to a vertical section 80 m deep and 3,750 m wide.
Abbreviations: MPS: Multiple-point statistics; SNESIM: Single normal equation simulation.
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toward higher values, indicating a minor overestimation 
of the proportion in some simulations. In contrast, 
the distribution generated by SNESIM (in blue) was 
significantly dispersed, covering a broader range from 0.10 
to 0.35. A clear trend toward higher proportions implies 
lower statistical fidelity compared to the real data. In 
addition, SNESIM-generated results demonstrated higher 
variability than those by FaciesGAN and the reference, but 
were in a controlled interval.

These results indicate that FaciesGAN provides a closer 
approximation of the observed facies ratios in the reference 
data compared to SNESIM. The higher variability of SNESIM 
results in deviations from the true statistical behavior, which 
can be a major limitation when accurate preservation of 
facies proportions is required. In addition, the computational 
efficiency of FaciesGAN is notably superior: while SNESIM 
took approximately 137 min to generate 1,000 realizations, 
FaciesGAN produced the same number in only 20 s. This 
highlights that FaciesGAN has a greater ability to learn and 
reproduce the distributions observed in real data, enabled 
by its deep learning-based generative process.

3.2. Well-specific conditioning results

In the second test, five conditioning images distributed 
in 2D space were selected. For each image, the trained 
model generated 100  samples at approximately 6 s per 
image. From each image, five generated facies scenarios are 
presented in Figure 10. The figure presents the real facies 
(left column, in green, with the depth condition shown in 
black) and multiple random model-generated realizations 
(five columns per well, in black and white) for five different 
wells, with the depth condition highlighted in green.

The condition incorporated during FaciesGAN training 
was held constant. The generated facies closely surround 
or overlap with the real facies, indicating strong spatial 
consistency between the model realizations and the true 
data. Although variability was present among generated 
facies, most realizations maintained structural patterns 
consistent with the real facies, suggesting that the model 
adequately learned the underlying spatial patterns.

The real facies were closely surrounded by the 
generated facies, demonstrating the model’s capability to 
preserve spatial structures across different realizations. 
This consistency highlights the model’s reliability in 
reproducing subsurface geologic patterns, even under 
stochastic variability. In such cases, the generation of facies 
scenarios was fast.

The percentages of pixels corresponding to each facies 
were compared to evaluate statistical consistency between 
the real images and those generated by FaciesGAN. The 
comparison between the percentages observed in the real 
images and the averages obtained from 100 generated 
scenarios for the five wells shown in Figure 10 is presented 
in Table 1. This comparison analyzed the model’s ability 
to reproduce facies distributions realistically, ensuring 
that the simulations preserve the original geologic 
characteristics.

A strong correspondence was observed between 
the facies percentages of the real and generated images. 
Across all wells, differences between the real values 
and the generated averages were <4%, indicating that 
FaciesGAN maintains high fidelity in reproducing facies 
proportions. For example, in well 181, facies 0 accounted 
for 72.66% in the real image and 72.71% in the generated 
average—a practically insignificant difference. Similar 
cases were observed in the other wells, with the largest 
deviation occurring in well 63, where facies 1 decreased 
by approximately 3%. This minor underestimation remains 
within acceptable ranges for stochastic simulations.

In addition, the IoU metric was calculated for each well 
to further evaluate the fidelity of facies preservation within 
the conditioned zones. Table  1 presents the average IoU 
obtained from each case. The average IoU values ranged 
from 99.37% to 99.66%, indicating an extremely high 
agreement between the generated and original facies in 
the hard-conditioned wells. The results suggest that the 
FaciesGAN maintains near-identical facies proportions 
and effectively reproduces the stratigraphic continuity 
observed in the real data.

The generated scenarios were encouraging, as the model 
demonstrated a high degree of consistency and realism 
in reproducing the spatial distribution of facies from a 

Figure  9. Comparative histogram of reservoir facies proportions 
generated by FaciesGAN and SNESIM
Abbreviations: GAN: Generative adversarial network; SNESIM: Single 
normal equation simulation.
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limited dataset. Furthermore, visual and quantitative 
comparisons with the actual facies distributions confirmed 
the model’s ability to capture key features of the input data, 
integrate conditional information, and generate significant 
variability across realizations. These results suggest 
that the FaciesGAN model generalizes effectively and 
serves as a robust tool for generating 2D facies scenarios 
in petroleum applications, even with limited training 

datasets. This capability can significantly enhance reservoir 
characterization and support operations planning.

4. Discussion
The results demonstrate that FaciesGAN produces 
highly coherent and realistic geological facies scenarios, 
even when trained on a limited dataset. The generated 
realizations captured key geological patterns and spatial 
continuity, showing high fidelity to the conditioning 
information.

The stochastic simulation methodology employed does 
not aim to identify a single, “optimal” scenario but rather 
to quantify geological uncertainty by producing multiple 
realistic representations of the subsurface that respect 
the conditioning data. This approach is crucial for risk-
based decision-making, as the true facies distribution is 
unknown. Accordingly, the workflow uses the full ensemble 
(e.g., as inputs to flow models) to estimate outcome ranges 
(e.g., P10, P50, and P90) rather than a single “best” result. 
The statistical consistency of this ensemble with the 
reference model was evaluated using MDS (Figure 7) and 

Figure 10. Real and generated facies for five different wells. The first column shows the real 2D facies logs (in green) with the conditioning shown in 
black. The five columns (Gen 1 to Gen 5) display different random realizations generated by the model, with facies shown in white. The conditioning is 
highlighted in red (reservoir) and green (non-reservoir).
Note: Each image represents a 2D crossline section in the pixel domain (256 × 256 pixels), corresponding to a vertical section 80 m deep and 3,750 m wide.

Table 1. Averaged facies percentages in real and generated 
scenarios across five selected wells

Well 
number

Real images Generated images IoU (%)

Facies 
0 (%)

Facies 
1 (%)

Facies 
0 (%)

Facies 
1 (%)

30 84.77 15.23 85.16 14.84 99.66

63 69.92 30.08 72.35 27.65 99.42

73 79.30 20.70 80.47 19.53 99.38

175 79.30 20.70 81.35 18.65 99.37

181 72.66 27.34 72.71 27.29 99.43

Abbreviation: IoU: Intersection over union.
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facies proportion histograms (Figure 9), ensuring that the 
generated scenarios were statistically representative and 
effectively explored the geological uncertainty space, as 
detailed in Section 3.1.

Visual inspection confirmed that FaciesGAN 
accurately reproduced facies structures and variability, 
outperforming SNESIM in terms of structural diversity. 
Quantitative metrics further reinforced this result: the 
mean IoU (99.96%) indicates near-perfect preservation 
of well conditioning, and facies-percentage distributions 
closely aligned with the real data, with deviations generally 
<4%.

The comparative histogram highlighted that FaciesGAN 
better approximated the observed facies proportions than 
SNESIM, which tended to generate realizations with 
greater variability and statistical deviation. In addition, 
FaciesGAN demonstrated superior computational 
efficiency, producing 1,000 scenarios in 20 s compared to 
SNESIM’s 137 min.

These results suggest that deep generative approaches, 
such as FaciesGAN, offer a robust alternative for simulating 
geological facies. The model’s ability to learn spatial patterns 
and accurately reproduce conditioning information 
makes it promising for reservoir modeling workflows that 
demand both accuracy and efficiency. The results also 
demonstrate FaciesGAN’s potential for generalization, as 
the model maintained high consistency across different 
conditioning wells, with stochastic variability remaining 
within acceptable geostatistical ranges.

The FaciesGAN model was trained and validated 
exclusively on the Stanford Earth Science Data dataset, 
which represents a particular meandering-channel system. 
While the results are promising, especially under conditions 
of scarce data, further research is necessary to confirm 
the model’s applicability to various geological contexts, 
including turbidite systems, deltaic environments, and 
carbonate platforms, which exhibit distinct spatial patterns 
and heterogeneities.

Furthermore, transfer learning is a promising area 
for future research. A  model pre-trained on a large and 
diverse set of public geological models could be fine-
tuned using smaller, field-specific datasets. This approach 
could enhance the practicality of FaciesGAN in real-world 
reservoir characterization projects, where data availability 
is always limited.

Overall, the tests confirm that FaciesGAN can 
generate realistic, diverse, and conditionally consistent 
facies realizations, offering advantages in terms of speed 
and statistical performance compared with traditional 
MPS methods. While this study primarily compared 

FaciesGAN with the conventional MPS SNESIM method, 
subsequent research should evaluate its performance 
against additional deep generative models. For example, 
variational autoencoders could be explored, although 
cGANs have already demonstrated key advantages in 
generating scenarios with sharper geological boundaries 
and closer alignment to the true statistical distribution of 
reservoir properties37—key attributes for realistic facies 
modeling.

5. Conclusion
The use of artificial intelligence-based techniques to 
generate facies scenarios is an innovative area aimed 
at improving the accuracy and robustness of machine 
learning models in oil exploration and production. 
cGANs are gaining prominence due to their capacity 
to generate high-quality synthetic data that preserves 
known geological characteristics. FaciesGAN was 
successfully trained with a limited number of 2D facies 
images, demonstrating strong performance in data-scarce 
scenarios and offering an effective approach for data 
augmentation with small datasets. The main advantage of 
the model lies in its ability to generate synthetic 2D facies 
scenarios while honoring known conditional information, 
ensuring consistency with real conditions derived from 
drilled and analyzed wells. MDS and facies-proportion 
statistics produced favorable results, highlighting the 
ability of this network to consistently reproduce the 
conditioning data. The generated realizations preserve 
the frequency distributions and spatial correlations 
characteristic of the original images, ensuring visual 
consistency and maintaining statistical and geological 
integrity. Furthermore, a comparative analysis with 
SNESIM demonstrated that FaciesGAN provides a 
more accurate representation of facies proportions, with 
reduced dispersion and skewness relative to the reference 
data, while maintaining higher spatial and statistical 
fidelity. Another significant advantage of FaciesGAN 
is its computational efficiency, which enables the rapid 
generation of multiple scenarios compared with sequential 
simulation methods. These synthetic realizations can be 
integrated into reservoir characterization workflows to 
support uncertainty estimation and enhance the quality of 
results. Finally, the proposed methodology can be extended 
to subsequent workflow steps, such as incorporating 
facies with acoustic and/or elastic properties, generating 
synthetic seismic data, and evaluating consistency with 
actual seismic observations. In particular, future work 
will focus on applying the approach to real-world field 
datasets—a logical and most important next step. This 
extension will enable synthetic seismic generation to be 
combined with seismic inversion. This integration will 
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establish a direct and useful link among facies modeling, 
seismic inversion, and reservoir characterization.
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Abstract
Accurate seismic monitoring is vital for the safe operation of enhanced geothermal 
systems in hot dry rock (HDR) reservoirs; however, robust P- and S-wave classification 
and precise first-arrival picking remain difficult under low signal-to-noise ratios 
and complex noise conditions. Hence, in this study, we present SeisFormer, a 
Transformer-based framework that couples adaptive multi-scale windowing with 
joint time–frequency analysis. It allocates time–frequency resolution on the fly to 
overcome the limitations of a fixed-window short-time Fourier transform and slowly 
extracts varying trends and dominant periodicities from waveform sequences. 
To stabilize the modeling of long-range dependencies, we introduce regularized 
pseudoinverse attention, which retains the speedups of low-rank approximations 
while damping amplification in directions associated with small singular values. We 
evaluated SeisFormer on a unified, multi-site dataset with data from HDR operations 
in the Qinghai Gonghe Basin and from an unconventional hydraulic-fracturing field in 
North China. Compared with baselines (EQTransformer, PhaseNet), it exhibited better 
performance across real-world data, noise-augmented data with non-stationary 
composite noise, and overlapping multi-event scenarios. On real-world data, it 
attained 98.30% classification accuracy, with mean arrival-time errors of 1.42 ms 
(P) and 2.29 ms (S). Ablations show that each component contributes substantially, 
indicating robustness for near-real-time monitoring and deployment.

Keywords: Microseismic monitoring; Hot dry rock hydraulic fracturing; Picking and 
classification; Transformer; Adaptive multi-scale windowing; Time–frequency domain

1. Introduction
As a clean and renewable energy source, geothermal energy offers low carbon emissions, 
environmental friendliness, operational stability, high efficiency, and abundant resources. 
Among geothermal resources, hot dry rock (HDR) has attracted significant attention 
due to its large heat-storage capacity and development potential, and has become a 
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substantial focus of global exploration.1 To efficiently 
extract heat from HDR, hydraulic fracturing is commonly 
employed to increase reservoir permeability, promote heat 
flow, and improve energy recovery. Figure 1 illustrates the 
basic process of heat extraction from HDR:2 High-pressure 
fluid is injected to induce rock failure; fractures propagate 
and release energy, accompanied by microseismic events.

Compared with conventional oil and gas reservoirs, 
hydraulic fracturing in HDR formations is more complex.3,4 
HDR rocks typically exhibit very low permeability and high 
strength, and their microseismic signals are broadband with a 
high-frequency bias. Under high-temperature, high-pressure 
conditions and elevated injection rates, rock strength is 
further reduced and microseismicity becomes more complex 
and heterogeneous in time and space; numerous closely 
spaced events often occur within short time windows, yielding 
intricate source distributions and substantially increasing the 
difficulty of signal processing and interpretation.5-7 Reliable 
microseismic monitoring is therefore crucial for assessing 
fracture-propagation dynamics during HDR stimulation 
and for providing timely feedback for engineered fracture-
extension analysis and field decision-making.8,9

In microseismic signal processing, phase identification 
and first-arrival picking are two core tasks. Traditional 
methods (e.g., short-time average/long-time average 
[STA/LTA],10 and Akaike information criterion11) perform 
well under ideal conditions but are prone to false positives 

and less effective at low signal-to-noise ratios (SNR) and in 
complex noise environments, limiting their suitability for 
HDR field applications.12-16 Recent advances in deep learning 
have substantially improved detection and phase picking 
for seismic and microseismic signals.17-19 Convolutional and 
recurrent architectures, such as PhaseNet,20 PickCapsNet,21 
and a convolutional neural network (CNN) + long short-
term memory (LSTM)22 learn discriminative features but 
still struggle to model long-range dependencies and cross-
scale coupling. Transformer-based models, via self-attention, 
provide global dependency modeling and have become 
an important framework for seismic time-series analysis. 
Representative works include EQTransformer, which 
jointly models detection and phase picking for regional and 
teleseismic catalogs; EQCCT, which couples compact CNNs 
with transformers for efficiency and improves cross-domain 
robustness via basin-scale transfer learning; SeisT, which uses 
multitask learning to unify detection, phase classification, 
and arrival-time estimation; and ICAT-Net, which leverages 
lightweight attention to balance accuracy and efficiency.23-28 
In mining and engineering scenarios, prior work has also 
explored handcrafted feature representations and hybrid 
CNN–transformer classifiers. However, many of these 
methods target conventional seismic catalogs or relatively 
stationary noise. In particular, transformer pipelines trained 
on regional or teleseismic data—characterized by lower event 
density and more stationary backgrounds—generalize poorly 
to HDR wavefields featuring overlapping onsets, narrowband 
harmonics, and low-frequency drift. Moreover, the quadratic 
cost of full attention and fixed analysis windows can introduce 
latency and unstable pick times on long streams sampled at 
1 kHz with rapid cross-scale variability, motivating a time-
frequency-aware architecture with adaptive windowing and 
a stabilized Nyström attention mechanism.

In this context, we propose the SeisFormer, a 
time–frequency transformer framework tailored to HDR 
hydraulic-fracturing microseismic signals. Our main 
contributions are as follows:
(i)	 Time–frequency co-modeling with a transformer. We 

fuse short-time Fourier transform (STFT)-  and two-
dimensional (2D)-convolution-derived time–frequency 
features with self-attention to jointly represent low-
frequency trends and high-frequency transients, 
matching the broadband, high-frequency-biased 
characteristics of HDR microseismic data.

(ii)	 Adaptive multi-scale window selection. We adapt 
window scales based on trend and periodicity cues 
and employ dynamic grouping and routing for 
efficient cross-scale modeling in dense-event, strongly 
non-stationary scenarios.

(iii)	Robust and efficient attention. We incorporate a 
Tikhonov-regularized pseudoinverse into Nyström 

Figure 1. Schematic representation of enhanced geothermal systems 
using hydraulic fracturing in hot dry rock
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attention, delivering low-rank speedups while 
improving numerical stability, thereby supporting 
million-sample sequences for engineering deployment.

1.1. Time–frequency characteristics

Microseismic data from HDR hydraulic fracturing in 
enhanced geothermal system reservoirs are complex, non-
stationary time series with distinct time–frequency structure.29 
Waveforms comprise background noise, P waves, S waves, 
and coda, with phase durations and amplitudes varying 
across operating conditions. In the frequency domain, P 
waves have higher-frequency and lower-amplitude, whereas 
S waves have lower-frequency and higher-amplitude.30,31 
Consequently, models must capture both low-  and high-
frequency content and adapt across multiple time scales to 
distribution shifts and transient changes.

1.2. Challenges in manual labeling

P-  and S-wave arrival times are commonly picked 
manually, which is labor-intensive and susceptible to 
inter- and intra-operator variability. There is a clear need 
for automated classification and picking methods that are 
efficient, robust, accurate, and less labor-intensive.

1.3. Multi-event scenarios

Fracture propagation and injection fluctuations often 
trigger closely spaced, overlapping events. Fixed-window 
approaches are limited in this regime: Short windows 

truncate long events, whereas long windows include 
excessive noise. When signal lengths vary widely and event 
density is high, processing performance degrades and errors 
propagate downstream to subsequent modeling stages.

2. Proposed method
2.1. Model architecture

We propose the SeisFormer, a time–frequency modeling 
framework for P/S classification and first-arrival picking. As 
illustrated in Figure 2, the model (i) performs per-sample 
adaptive window selection to choose the processing scale, 
(ii) derives interpretable time–frequency representations via 
STFT coupled with 2D convolutions, and (iii) models long-
range dependencies with a transformer whose self-attention 
is stabilized by a Tikhonov-regularized pseudoinverse to 
enhance numerical robustness and computational efficiency.

Section 2.2 introduces the trend-  and dominant-
frequency-guided complex routing for window selection. 
Section 2.3 explains how the selected window jointly 
determines the STFT/2D-convolution hyperparameters 
and the construction of the time–frequency tensor. 
Section 2.4 presents Nyström attention with a Tikhonov-
regularized pseudoinverse.

2.2. Adaptive multi-scale time windows

To capture the multi-scale, time-varying characteristics 
of microseismic signals, we proposed a dynamic 

Figure 2. Overview of the SeisFormer model architecture
Abbreviations: Conv2D: Convolutional two-dimensional layer; FFT: Fast Fourier transform; MLP: Multilayer perceptron; STFT: Short-time Fourier 
transform.

https://dx.doi.org/10.36922/JSE025290036


Journal of Seismic Exploration Microseismic event picking with SeisFormer

Volume 34 Issue 6 (2025)	 63� doi: 10.36922/JSE025290036 

window-selection method that fuses trend and periodicity 
cues. The technique first extracts multi-scale trend and 
periodicity representations from the input sequence and 
compresses them along the temporal axis to obtain a 
compact indicator vector f. We then scored a pre-defined 
candidate window set {W1,…Wn} with f; during training, 
light Gaussian noise was injected into the scores to improve 
generalization. During inference, a hard-routing strategy 
(k = 1) selected the optimal window length Wi\* to drive the 
subsequent time–frequency modeling.

Let the input be z∈RB×W×D, where B is the batch size, 
W is the maximum observation window considered by 
the selector, and D = 1 is the channel dimension. Given a 
scale set K={k1|,…,km| }, we computed multi-scale moving 
averages using Equation (I):

z MAtrend
k� � � �� � �� � �z k kB W D; ,  � (I)

The per-scale trend components were fused with 
learnable weights, as shown in Equation (II):
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Where AvgPool(⋅) denotes temporal average pooling 
and {ak} are softmax-normalized scale weights.

In terms of periodicity features, for each sample, 
we applied a fast Fourier transform to obtain a complex 
spectrum ZFFT. The magnitude was calculated using 
Equation (III):

Z Re Z Im ZFFT FFT FFT� � � � � �2 2 � (III)

To emphasize dominant periodic components, we 
selected the top-𝜅 frequency indices by magnitude and 
retained the corresponding real-valued magnitude 
features, yielding Zfreq

κ� � . This reduces dimensionality while 
preserving the principal periodic structure.

For fusion and selection, we performed temporal 
average pooling on the trend and periodicity features 
separately and used additive fusion to obtain the indicator 
vector, as shown in Equation (IV):

f AvgPool z AvgPool Ztrend freq� � � � � �� �κ � (IV)

Candidate windows were scored by logits = Wgf + bg. 
During training, we added zero-mean Gaussian noise 
N (0, σ2) to the logits (with σ selected on the validation 
set) to mitigate overfitting near decision boundaries and 
improve out-of-distribution robustness. During inference, 

we adopted hard routing by choosing a single window via 
i\* = arg maxi logitsi, and used Wi\* for subsequent time–
frequency modeling. The fusion and routing procedure is 
summarized in Algorithm 1.

For dynamic bucketing and end alignment, since 
samples within the same batch can select different window 
lengths, we dynamically grouped (bucketed) samples by 
their chosen window and formed sub-batches per window. 
For each group, a sample was fed to the segment obtained 

Algorithm 1. Trend‑period fusion and hard routing

Inputs: z∈RB×W × 1, kernel set K = {k1|,…, km|}, top−κ

Outputs: selected index i* and window length Wi*

1:
   

//Multi‑scale trend extraction

2 
   

For each k∈K do

3:         ( )(k)|
trend z  MovingAverage ;  win w k| do← =z

4:   end for

5:
   

//Learnable weighting across scales (softmax on pooled cues)

6: 
   

for each k∈K do

7:       
  (k)

trendu         AvgPool(z ) / /   pool along timek ←

8: 
        

trend trend         W ·u   bk k← +α

9:
   

end for

10:α ω� �softmax([ ] ) / /k k B m , along k

11:
 
Z ztrend trend

k� � ��k k B Wα ( ) / / 1

12: //Periodicity via FFT (keep Top‑k complex components)

13: fftZ             FFT(z)←

14:
 
mag           Z Zfft fft� �R I( ) ( )2 2

15: idx                ←TopK (mag,κ)//per−sample

16: Zfreq                         ←Gather (mag, idx)

17: //Additive fusion and hard routing

18:
 

f                 AvgPool Z AvgPool Ztrend freq� �( ) ( )

19: logits            ←Wgf+bg

20: if training then

21:  
         

   logits    ←logits+ε//ε∼N (0,σ2)

22: P                     ←softmax (logits)//optional: for logging/analysis

23: i*                   ←arg maxi pi

24: else

25: V//Hard routing at inference: k=1

26: i*              ←arg maxi (logits)

27: end if
28: return i*, Wi*
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by slicing from the sequence end leftward with length 
Wi\*; the supervision signal (class label and/or arrival-time 
label) was aligned to the window end. This ensured a one-
to-one correspondence among “context length–feature 
extraction–supervision” while preserving batch efficiency. 
The selector consisted only of linear transforms and 
pooling, and dynamic grouping was a tensor reindexing/
slicing operation; the overall computational overhead was 
negligible.

2.3. Time–frequency feature extraction based on 
STFT and 2D convolution

The STFT preserves both temporal and spectral information 
and is therefore well suited to low-SNR, compositionally 
similar, time-varying microseismic signals.32 In this work, 
we mapped the input microseismic sequence from the 
time domain to the time–frequency domain to extract 
more discriminative spectral features and characterize 
energy evolution across time. The STFT window length is 
a key hyperparameter: Increasing the window improves 
frequency resolution (smaller Δf = fs|/nfft) but reduces 
time resolution (larger Δt = H/fs)and increases temporal 
smoothing τwin = nwin/fs; the converse holds for shorter 
windows.

Let fs| be the sampling rate, nfft the DFT size, nwin the 
window length (we set nfft = nwin), and Hthe hop size. 
For a discrete signal z[n], the STFT was calculated using 
Equation (V):

Z t f z n n tH e
n

N
j fn, /� � � �� �� ��� ��

�

�
��

0

1
2� � N � (V)

Where ω[⋅] is the analysis window (we used a Hann 
window), t indexes time frames, and f indexes frequency 
bins. For a batch z∈RB×T, the STFT produced Equation (VI):
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with the Nyquist limit fs|/2. To retain both magnitude 
and phase while matching a 2D CNN, we stacked the real 
and imaginary parts along the channel dimension, forming 
stack [Zreal, Zimag]∈RB×2×F×T’, which was then passed to a 2D 
convolution followed by ReLU, as shown in Equation (VII):

Zconv = ReLU(W⊛stack[Zreal, Zimag]+b)	 (VII)

where ⊛ denotes 2D convolution on the frequency–
time plane. The 2D CNN captures local structures within 
a single band and cross-band/time dependencies, enabling 
short-term spectral trend modeling and inter-band 
coordination.

Following the hard-routing selection in Section 2.2, 
once the sample-level optimal window Wi

* ∈{128,256,512} 

was chosen, we adapted nfft and the hop size H accordingly 
(50% overlap, H ≈ nfft/2), and proportionally adjusted the 
number of 2D convolution channels to achieve comparable 
time–frequency resolution and controlled computation 
across scales. The mapping used in this paper is shown in 
Equation (VIII):
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W
Wfft

i

i, ,
, , ,
, , ,
,

*

*� � �
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�
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�(VIII)

motivated by setting n Wifft ≈
* / 2  to align Δf = fs|/nfft 

across scales. Larger windows increase frequency 
resolution but also the number of frequency bins FFF; 
hence, we reduced the convolution channels inversely 
(12→6→3) to offset the growth in feature-map size and 
stabilize throughput. Modern fast Fourier transform 
implementations handle non-power-of-two lengths 
efficiently, so the above choices were numerically and 
computationally sound. This parameterization was 
empirically validated as the best-performing configuration, 
yielding the strongest trade-off among arrival-time 
accuracy, classification metrics, and efficiency on the 
validation set, and demonstrating stable behavior in 
ablation studies.

2.4. Nyström attention with Tikhonov-regularized 
pseudoinverse

After the 2D convolution, the frequency–time maps were 
reshaped to form a sequence for the transformer. Let 
Zconv

B C F T’’

� � � � denote the convolutional output (batch B, 
channels C, frequency bins F, frames T″). We flatten 
the (C, F) axes to obtain Equation (IX):

X∈RB×n×d, n ≔ T’’, d ≔ C×F� (IX)

and fed X to the transformer (SeisFormer) for further 
sequence modeling. Multi-head self-attention captured 
long-range temporal–spectral dependencies, improving 
microseismic event discrimination.

For notation unification, we set n ≔ T’’ (sequence 
length after 2D CNN) and d ≔ C×F (embedding width 
before head-splitting). With h heads, the per-head width 
was dh = d/h. Given X∈RB×n×d, after linear projections and 
head splitting, we have Q K V B h n dh, , � � � � . In Equation (X), 
the scaling d  refers to the per-head width, that is, d ≡ dh.

SeisFormer alternates between self-attention and 
feed-forward neural network (FFN) blocks and, unlike a 
standard transformer, employs a Nyström approximation 
to self-attention for efficiency on long sequences.33-37 In 
conventional attention, the row-wise scaled dot-product 
was calculated using Equation (X):
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S Q K softmax QK
d
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�


 � (X)

We chose m ≪ T landmarks with index set M, and 
defined it as Equation (XI):

A ≜ S(QM, KM)∈Rm×m, B ≜ S(Q, KM)∈Rn×m, C ≜ S(QM, 
K)∈Rm×n� (XI)

The classical Nyström approximation is shown in 
Equation (XII):

+=Ŝ BA C � (XII)

where A+ is the Moore–Penrose pseudoinverse. If the 
true attention S has rank at most m and the landmark 
submatrices are full rank, we can write S = UV⊤ with U, 
V∈Rn×m, which yields B UV C U VM M= = ,  and A U VM M=  .  
Using (XY)+ = Y+ X+under the usual full-rank side 
conditions, we obtain Equation (XIII):
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Hence, the Nyström reconstruction is exact in this 
ideal case. In general, Ŝ still preserves the landmark rows/
columns ( :, ,:, ˆ ˆ

M MS B S C= = )and gives the minimum-norm 
solution consistent with them.

For numerical stability, we replaced A+ with a Tikhonov-
regularized pseudoinverse A�

� . Let the SVD of A be the 
formula shown in Equation (XIV):

A U V A V U diagA A A A i i� � � � �� � � �
�� �� � � , , �

�
1

01 �
� (XIV)

When the landmarks are highly correlated or the subset 
is skewed, small singular values make the plain inverse 
amplify noise along those directions. In practice, we used 
the Tikhonov-regularized pseudoinverse, as shown in 
Equation (XV):

A A A I A V diag UA
i

i
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Whose operator norm satisfies Equation (XVI):
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thereby avoiding the 1
σ i

 blow-up as σi→0. The 

resulting stable reconstruction is shown in Equation (XVII):

S BA C� �

�
� � � (XVII)

Spectrally, the regularization acts as a smooth shrinkage 
on each singular direction, as seen in Equation (XVIII):

AA A U diag V A AA A

U diag

A
i

i
A

A
i

i

� �

�
� �

��
� �

� ��
�

�

�
��

�

�
�� �

�
�

�

�
��

3

2

2

 ,

��

�
��VA

 � (XVIII)

Hence, the approximation-bias trade-off is monotone 
in λ. This shrinkage bounds the amplification of 
perturbations and yields smoother gradients during back-
propagation, as the Lipschitz constant along the landmark 
path is controlled by � �A�

�
2 .

In terms of complexity, exact attention incurs O(n2d) 
time and O(n2)memory, whereas the Nyström scheme 
requires O(nmd) + O(m3) to construct B and Cand to solve 
a single m × m system. Under the common regime, m << n, 
the O(m3)term is negligible, and the overall complexity is 
effectively O(nmd). Replacing A+ with A�

�  preserved this 
low-rank acceleration while improving numerical stability 
for long-range dependency modeling in microseismic 
signals; this matches our implementation, which computes 
the (regularized) pseudoinverse on the landmark attention 
block.

The processed sequence features were flattened and 
passed to each transformer layer. In each layer, the features 
were further optimized through the FFN, which consists 
of linear layers and GELU activations to extract non-linear 
relationships and enhance feature representation. Residual 
connections and layer normalization were applied to 
both self-attention and FFN blocks to accelerate training 
and prevent gradient vanishing, ensuring stable signal 
propagation through the network and better adaptation 
to complex time–frequency structure. The output features 
then pass through three linear transformations with ReLU 
and dropout, followed by a final linear layer that maps to 
the task space; finally, scores were normalized to predict 
probabilities for P-waves, S-waves, and noise, completing 
the microseismic event classification.

3. Experimentation
3.1. Parameter configuration

To enhance data representativeness and rigorously 
evaluate cross-site generalization, we merged data from 
two independent sites into a joint dataset under a unified 
organization and labeling protocol: An HDR project in the 
Gonghe Basin, Qinghai, China, and an unconventional 
hydraulic-fracturing site in North China. The Qinghai data 
were acquired in 2020 using an in-house system. Monitoring 
at well GR-1 (approximately 2 km from GH-02/3) used a 
12-level, three-component downhole array (1,100–1,400 m 
depth; 20 m inter-level spacing) together with a “surface–
shallow-well–deep-well” joint layout: 12 surface lines 
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within an 8 × 8 km area centered on GH-02/3 (25 m station 
spacing; at least 1,512 channels) and 60 three-component 
shallow-well instruments (10–25  m installation depth), 
providing coverage to a target depth of ~4,000 m. At the 
North China site, production wells were arranged in belts, 
targeting formations at depths of ~3,700–4,300 m. The two 
sites shared a consistent data organization and labeling 
protocol: Both used a 1 ms sampling interval, and phases 
were labeled as noise = 0, P = 1, and S = 2 (Figure 3). Across 
all annotated frames, class proportions were 70.01% noise, 
13.70% P, and 16.29% S.

Modeling was conducted on the joint dataset, comprising 
a total of 4,000 single-channel time series (Δt = 1 ms)as 
inputs. Each channel was demeaned and standardized via 
z-score using statistics computed from the training split of 
the joint dataset to ensure comparability across sites and 
channels. Unless otherwise stated, the data were split in a ratio 
of 8:1:1 into training/validation/test sets. We adopted Adam 
(initial learning rate 1 × 10−4) with ReduceLROnPlateau 
(factor = 0.1, patience = 5) based on validation metrics 
to promote stable convergence. The training objective 
combined cross-entropy with L2 regularization (weight 
decay = 0.003). After each epoch, the model was evaluated 
on the validation set, and early stopping was applied to curb 
overfitting and improve generalization.

Given the high noise fraction (70.01%) in the joint 
dataset, we employed class-weighted cross-entropy during 
training and assigned a weight of 1.2 to P-  and S-phase 
frames to strengthen discrimination around arrivals, 
thereby improving picking sensitivity and robustness. 
All training and evaluation settings were applied 
uniformly across both sites to ensure fair comparison and 
reproducibility.

3.2. Comprehensive experimental evaluation

To comprehensively evaluate model performance under 
different conditions, we designed a series of experiments 
on a strictly held-out test set from the joint dataset. This 
test set consisted of 200 data segments from each site 
(400 in total) and was entirely non-overlapping with 
the training/validation data. The evaluation scenarios 
included the real environment, the noise environment, and 
multi-event cases. To ensure fairness and reproducibility, 
all methods followed a unified pre-processing pipeline 
before entering their respective models/algorithms. 
The evaluation protocol then proceeded in four stages: 
(i)  Multiple methods were compared under the real 
scenario; (ii) better-performing methods were included 
in the noise tests; (iii) complex-signal handling was 
assessed via the multi-event scenario; and (iv) ablation 
studies were conducted to quantify the contributions of 
key components.

The class set be {0:Noise, 1:P, 2:S}. Define the confusion 
matrix be C∈N3×3 with entries Cii = #{samples with true 
class i predicted as j}, i, j∈{0,1,2}.Then, the overall accuracy 
is calculated using Equation (XIX):

Accuracy � �

� �

�
� �

i ii

i j ij

C

C
0

2

0

2

0

2 � (XIX)

For class i, Equation (XX) was used:

TP C FP C FN Ci ii i
k i

ki i
k i

ik� � �
� �
� �, , � (XX)

Class-wise precision, recall, and F1 are shown in 
Equation (XXI):

Figure 3. Manual annotation process
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Weighted aggregates used for class support ni = TPi + FNi 
(i.e., the number of true samples in class i) with N = ∑ini, as 
shown in Equation (XXII):
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We also reported mean absolute error (MAE)-P and 
MAE-S for P/S arrival times, defined as the sample-wise 
mean absolute difference between the predicted and 
manually annotated arrivals. Together, these metrics and 
visualizations quantified both classification and arrival-
time picking performance and enabled a consistent 
comparison of methods across the three scenarios.

3.2.1. Real environment experiment

We evaluated classification performance on real 
microseismic signals using SeisFormer, EQTransformer,23 
PhaseNet,20 generalized phase detection (GPD),38 LSTM, 
CNN, and STA/LTA.10 Unless otherwise stated, all models 
were trained from scratch under a unified pre-processing 
pipeline, with a sampling rate of 1  kHz, identical train/
validation/test splits, and identical label definitions. 
Model configurations were as follows: SeisFormer—an 
8-layer Transformer with eight attention heads, model 
dimension 64, FFN/multilayer perceptron hidden size 
256, dropout 0.5 on attention and FFN, and a multilayer 
perceptron head with 128 hidden units. EQTransformer 
was implemented following the public release and original 
architecture (convolutional encoder, residual CNN stack, 
3×BiLSTM, detection decoder branch with multi-stage 
upsampling). PhaseNet is a one-dimensional U-Net with 
four down- and upsampled stages (downsampling kernel 
length 7, stride 4). GPD used four Conv1D layers plus two 
fully connected layers. The LSTM baseline used a two-layer 
bidirectional LSTM with 100 hidden units per direction. 
The CNN baseline is a lightweight one-dimensional CNN 
with three convolutional blocks and a fully connected 
head (kernel length 7; channels 32/64/128). STA/LTA is a 
short/long-window energy-ratio trigger under the same pre-
processing/segmentation as the deep models (short/long 
windows 0.2s/2.0s; threshold tuned on the validation set). 
For fairness, we used matched optimization, regularization, 
learning-rate scheduling, early stopping, and random seeds 
across methods, without modifying baseline architectures.

As shown in Figure  4, SeisFormer, EQTransformer, 
and PhaseNet clearly outperformed the other baselines. 
Representative numbers are reported in Table 1: SeisFormer 
(Accuracy: 98.30%, precision: 97.40%, recall: 97.92%, 
F1:  97.66%; MAE-P: 1.42 ms, and MAE-S: 2.29  ms), 
EQTransformer (Accuracy: 96.90%; MAE-P: 1.90 ms, 
and MAE-S: 3.18 ms), PhaseNet (Accuracy: 94.80%; 
MAE-P: 4.76 ms, and MAE-S: 6.95 ms), while the remaining 
baselines lagged substantially behind. Overall, these three 
models constituted the first tier, with SeisFormer leading in 
both classification and arrival-time accuracy.

We also benchmarked forward-pass latency on an RTX 
4060  (8 GB) + Intel i9-13900HX using single-channel 
1 kHz/3 s input (the three-second window was used solely 
to standardize the latency benchmark), FP32, batch = 1. 
Results were the median of 100 runs after 20 warm-up 
iterations, measuring wall-clock time for the model forward 
only—including in-graph STFT and hard routing, and 
excluding data loading and disk I/O: SeisFormer ≈ 4.2 ms 
(GPU)/43 ms (CPU), PhaseNet ≈ 5.1 ms (GPU)/55 ms 
(CPU), EQTransformer ≈ 8.5 ms (GPU/94 ms (CPU). 
Under this accuracy–latency trade-off, SeisFormer is the 
most suitable for near–real-time deployment on the target 
hardware.

Confusion matrices for each method in Figure  5 
further illustrate their strengths and weaknesses. 
SeisFormer attained an overall true-positive rate of 
98.1%, with class-wise rates of 96.1% (P-wave) and 94.3% 
(S-wave), outperforming all other methods. Notably, 
most SeisFormer errors arise from small discrepancies 
between predicted and manually labeled endpoints of 
P-  and S-wave arrivals; such endpoint disagreements 
have limited impact on microseismic monitoring and are 
therefore of low significance to the overall evaluation. To 
further substantiate SeisFormer’s advantages, Figure 6A-D 
shows predictions on representative waveforms from the 
test sets of both datasets, visually demonstrating efficient 
classification and accurate arrival-time calibration.

3.2.2. Noise environment experiment

To more faithfully emulate field disturbances and align the 
evaluation with picking/classification objectives, we 
calibrated noise intensity using an event-referenced SNR 
(ER-SNR) and conducted stress tests with non-stationary 
composite noise that included low-frequency drift, power-
line fundamentals and harmonics, impulsive interference, 
and colored background noise. This design better reflected 
real HDR noise characteristics than conventional whole-
trace SNR and enabled an objective assessment of model 
robustness under realistic conditions. Concretely, for each 
record, we constructed an event window E (labels >0) and 
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Figure 4. Comparison of classification and picking results from different methods. The same waveform was used to test each model, with the classification 
results for the 0–500 ms segment extracted to showcase performance in P-wave classification and arrival-time picking, and the 1,500–2,100 ms segment 
extracted to highlight performance in S-wave classification and arrival-time picking. SeisFormer, EQTransformer, and PhaseNet demonstrated strong 
performance; further comparisons and evaluations will be conducted in subsequent noise experiments. Classification results of the (A) SeisFormer model, 
(B) the EQTransformer model, (C) the PhaseNet model, (D) the GPD model, (E) the long short-term memory (LSTM) model, (F) the convolutional neural 
network (CNN) model, and (G) the short-term average/long-term average (STA/LTA) method.

B

C

D

E

F

G

A

https://dx.doi.org/10.36922/JSE025290036


Journal of Seismic Exploration Microseismic event picking with SeisFormer

Volume 34 Issue 6 (2025)	 69� doi: 10.36922/JSE025290036 

Table 1. Comparison of classification performance and arrival time calibration errors for different models

Model Accuracy (%) Precision (%) Recall (%) F1 (%) Mean P‑wave arrival error Mean S‑wave arrival error

SeisFormer 98.30 97.40 97.92 97.66 1.42 ms 2.29 ms

EQTransformer 96.90 96.15 96.48 96.31 1.90 ms 3.18 ms

PhaseNet 95.80 95.02 95.71 95.36 4.76 ms 6.95 ms

GPD 83.70 81.80 82.45 82.12 24.9 ms 30.6 ms

LSTM 85.90 85.10 85.35 86.10 15.1 ms 45.3 ms

CNN 82.10 80.10 81.95 81.30 21.4 ms 54.9 ms

STA/LTA 68.79 61.60 66.42 64.63 152 ms 224 ms

Abbreviations: CNN: Convolutional neural network; GPD: Generalized phase detection; LSTM: long short‑term memory; STA/LTA: Short‑term 
average/long‑term average.

Figure 5. Comparison of confusion matrices for SeisFormer, EQTransformer, PhaseNet, GPD, LSTM, CNN, and STA/LTA on microseismic signal classification
Abbreviations: CNN: Convolutional neural network; GPD: Generalized phase detection; LSTM: long short-term memory; STA/LTA: Short-term 
average/long-term average.

https://dx.doi.org/10.36922/JSE025290036


Journal of Seismic Exploration Microseismic event picking with SeisFormer

Volume 34 Issue 6 (2025)	 70� doi: 10.36922/JSE025290036 

a pre-event baseline window B from the second-column 
labels. The event mask was dilated by approximately 
±100 samples to cover onsets and coda. The waveform was 
then baseline-centered using �B

i BB
s i�

�
�1

| |
[ ],  yielding 

s i s i B[ ] [ ]� � � , which suppresses low-frequency drift in 
power estimation. In the presence of impulses and non-
stationarity, we obtained stable energy estimates by 
combining trimmed mean of squares with baseline 
bootstrap length-matching: For any segment we averaged 
the squared amplitudes after two-sided 10% trimming to 
reduce the leverage of outliers; as ∣B∣≫∣E∣ for most records, 
we repeatedly sampled from B subsegments of length |E|, 
computed trimmed power for each replicate, and averaged 
across K = 30 replicates to remove biases due to unequal 
window lengths. This yielded Equation (XXIII):
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and the ER-SNR (in dB) was defined as Equation (XXIV):
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P
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�

�
�

�

�
�10 10log � (XXIV)

Figure 6. Classification results of the SeisFormer model on representative waveforms from the training set, verifying performance across different data 
types. (A and B) Qinghai site. (C and D) North China site.
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To match the field noise spectra, we did not add 
stationary Gaussian white noise. Instead, we synthesized 
a non-stationary composite of four components—baseline 
drift (random walk or 1/f  -like), power-line harmonics 
(50/60  Hz and overtones with slow AM/PM), sparse 
impulsive spikes, and colored AR (1) background—and 
linearly mixed them with fixed relative weights, as shown 
in Equation (XXV):

n w n w n w n w nraw d drift h harm i imp c col� � � � � (XXV)

using wd = 1.0, wh = 1.0, wi = 0.6, and wc = 0.8. The 
noise powers within E and B, PnE0| and PnB0, were estimated 
with the same robust procedure. Given a target ER-SNR 
level (let γ = 10ER−SNRdB/10, the composite noise was scaled 
and added as x = s + αnraw so that the post-augmentation 
event/baseline power ratio met the target, as shown in 
Equation (XXVI):

�
�

�
2

0 0

�
�

�

P P
P P

E B

nB nE

� (XXVI)

If PE|−γPB ≤ 0 (the trace is already cleaner than the 
target) or PnB0−PnE0 ≤ 0 (the noise recipe concentrates 
relatively more energy in E than in B, contradicting the 
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target balance), we kept the original waveform to avoid 
unrealistic distortion. All augmentations used fixed 
random seeds for reproducibility and fairness, and for each 
record and level, we computed and logged the achieved 
ER-SNR to verify calibration error against the target.

We adopted three ER-SNR levels (10  dB, 5  dB, and 
2  dB), corresponding to moderate, strong, and extreme 
degradation, with a no-noise condition as the baseline. For 
each level, waveforms, spectrograms, and augmented samples 
were generated under fixed random seeds for inference and 
visualization. To provide representative comparisons, we 
selected two records from Figure 6 (panel A: Qaidam; panel 
D: North China) and evaluated SeisFormer, EQTransformer, 
and PhaseNet across the four noise conditions (no noise, 

10 dB, 5 dB, 2 dB). All results were reported as raw values 
(accuracy, precision, recall, F1, and P/S arrival MAE), 
accompanied by corresponding waveforms and STFT 
spectrograms to visually demonstrate the degradation 
trend with increasing noise. Spectrograms used frame-wise 
adaptive STFT: At each time position, the window length was 
chosen by the selector in Section 2.2, and the STFT for that 
frame was computed as in Section 2.3; frames from different 
windows are interpolated onto a unified time–frequency 
grid and concatenated to form a continuous spectrogram. 
We also overlaid a window-identifier ribbon aligned to the 
time axis to indicate the time–frequency resolution used per 
segment. Related visualizations and noise-robustness curves 
are shown in Figures 7 and 8.

Figure  7. Phase classification and arrival-time picking across event-referenced signal-to-noise ratio (ER-SNR) levels. (A, C, and E) Qinghai. 
(B, D, and F) North China. Each column shows the same representative record under three noise settings (10/5/2 dB); rows are, from top to bottom, 
raw/noisy waveform (with ER-SNR), SeisFormer, EQTransformer, and PhaseNet. Performance degrades as ER-SNR decreases; SeisFormer consistently 
exhibits more precise and temporally coherent P/S predictions, smaller picking bias, and slower growth in false/missed detections across both datasets.
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As shown in Figure  7A-F, when ER-SNR decreased 
from 10 dB to 5 dB and 2 dB, the classification and arrival-
time accuracy of all three methods degraded: Baseline 
elevation and impulsive interference raised false alarms on 
non-event segments and introduced systematic delays in 
the picks. In contrast, SeisFormer consistently produced 
more temporally coherent and better-aligned P/S 
predictions on both datasets while maintaining a tighter 
temporal window—at 10 dB it nearly coincided with the 
annotations; at 5 dB it still stably covered the main energy 
of the events with markedly fewer false positives than 
EQTransformer and PhaseNet; and under the extreme 

2  dB condition, although slightly contracted, its onset/
offset remained broadly consistent with the labels, whereas 
the baselines exhibited fragmented or drifting predictions, 
leakage of energy into the baseline, or P/S confusion. 
Detailed metrics are presented in Table 2.

The STFT spectrograms in Figure  8 make the non-
stationarity and narrowband harmonics, as well as their 
evolution with SNR, visually explicit, and empirically 
demonstrate that frame-wise adaptive windowing dynamically 
allocated time–frequency resolution: Under high noise it 
favored longer windows to enhance frequency resolution 

Figure  8. Adaptive short-time Fourier transform (STFT) time–frequency spectrograms with window-selection indicator bars. (A-D) Qinghai. (E-H) 
North China. Shown are the adaptive STFT magnitude spectra of the same two records as in Figure 7 under different noise/scenario settings (vertical axis: 
Frequency/Hz; horizontal axis: time/s; color scale: magnitude/dB). Below each spectrogram, the colored bar indicates the frame-wise window selection 
(green = 128, blue = 256, red = 512) with pixel-wise alignment to the spectrogram’s time axis.
Abbreviation: SNR: Signal-to-noise ratio.
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and suppressed harmonics and low-frequency drift, whereas 
at higher SNR it adopted shorter windows to preserve onset 
transients—thereby highlighting the band-limited event 
energy even at low SNR. These visualizations provide direct and 
interpretable evidence for the robustness of the proposed time–
frequency strategy. Overall, as noise intensifies, SeisFormer 
exhibited slower growth in false/missed detections and smaller 
arrival-time drift, indicating stronger noise resilience.

3.2.3. Multi-event scenario experiment

To assess the model’s adaptability in complex signal 
conditions, we evaluated it on a dense-event window 
containing multiple consecutive P/S arrivals. As shown 
in Figures 9 and 10, the proposed model preserved clear 
P/S boundaries between adjacent events, with onsets and 
offsets closely matching the annotations. When inter-
event intervals shortened and energy overlaps arose, it 
still robustly localized phase breakpoints and effectively 

suppressed cross-segment leakage. The spectrogram reveals 
that the model adaptively switches to shorter windows at 
rapid energy transitions to retain transient details, while 
favoring longer windows in regions with background 
undulations or strong narrowband interference to stabilize 
spectral structure. Consequently, in dense multi-event 
scenarios, the model achieved a favorable balance between 
arrival-time accuracy and noise robustness.

3.2.4. Ablation experiment

To quantify the contribution of each component to 
overall performance, we conducted ablation studies 
under realistic settings with a unified training/evaluation 
protocol (Table  3). Replacing Nyström attention with 
exact dot-product attention (without Nyström) reduced 
accuracy/F1 to 91.72%/91.93% and increased P/S arrival 
MAE to 6.36/7.71 ms, indicating that the Tikhonov-
regularized pseudoinverse within the Nyström block 

Table 2. Classification performance and arrival time calibration errors of the SeisFormer under different signal‑to‑noise ratios

Event‑referenced signal‑to‑noise ratio Accuracy (%) Precision (%) Recall (%) F1 (%) Mean P‑wave arrival error Mean S‑wave arrival error

None 98.30 97.40 97.92 97.66 1.42 ms 2.29 ms

10dB 95.73 94.75 94.69 95.38 3.02 ms 5.37 ms

5dB 92.88 93.13 92.90 93.96 6.33 ms 8.41 ms

2dB 87.02 86.76 87.06 87.17 12.48 ms 18.49 ms

Figure 9. Classification results of the SeisFormer model in scenarios with multiple events occurring within a short time window. Each waveform segment 
has a duration of 3,000–4,000 ms.

BA

Table 3. Comparison of classification performance and arrival time calibration errors under different model configurations

Method Accuracy (%) Precision (%) Recall (%) F1 (%) Mean P‑wave arrival error (%) Mean S‑wave arrival error (%)

SeisFormer 98.30 97.40 97.92 97.66 1.42 ms 2.29 ms

Without Nyström 91.72 92.05 91.68 91.93 6.36 ms 7.71 ms

Frequency domain only 90.21 92.11 92.41 92.16 4.79 ms 5.34 ms

Time domain only 86.02 87.77 88.32 89.18 8.81 ms 9.05 ms

Without an adaptive window 93.82 92.19 90.71 90.30 10.21 ms 14.16 ms
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Figure 11. Comparison of classification and picking results across ablation variants. (A) SeisFormer; (B) without Nyström; (C) frequency domain only; 
(D) time domain only; and (E) without adaptive window.

B

C

D

E

A

Figure 10. Adaptive short-time Fourier transform time–frequency spectrogram with frame-level window-selection indicator bars 
(corresponding to Figure 9)
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Figure 12. Distribution of average P-wave arrival time errors across 
different model configurations

Figure 13. Distribution of average S-wave arrival time errors across 
different model configurations

(in the full model) constrained small-singular-value 
directions, suppressed noise amplification, and stabilized 
the weight distribution. Restricting the representation to 
a single domain markedly weakened modeling capacity: 
The frequency domain only variant, while closer to the full 
model, attained only 90.21%/92.16% (accuracy/F1) with 
MAE 4.79/5.34 ms; the time domain only variant further 
degraded to 86.02%/89.18% with MAE 8.81/9.05 ms, 
underscoring that a single domain cannot simultaneously 
capture transient onsets and band-limited structure—joint 
time–frequency modeling is critical for robust picking 
and classification. Removing the adaptive windowing 
mechanism (without adaptive windowing) still yielded 
93.82% accuracy, but F1 dropped to 90.30% and arrival 
errors increased to 10.21/14.16 ms, demonstrating that 

frame-wise window selection, in combination with 
STFT/convolutional parameters, is essential for mitigating 
low-frequency drift and harmonic interference while 
preserving onset alignment.

As shown in Figure 11, the ablated variants exhibited 
more diffuse probability responses, window spillover, and 
larger onset drifts relative to the baseline. Figures 12 and 13 
further corroborate this trend quantitatively: Per-trace 
error curves showed systematic increases in P/S arrival 
errors whenever a component was removed, with the 
largest growth observed without an adaptive window. 
Taken together, Nyström with a Tikhonov-regularized 
pseudoinverse + joint time–frequency representation 
+ adaptive windowing acted synergistically: Adaptive 
windowing yielded the most significant gains in arrival-time 
precision, the regularized pseudoinverse secured numerical/
training stability, and time–frequency complementarity set 
the upper bound and robustness of both classification and 
picking.

4. Conclusion
We proposed SeisFormer, a P/S-wave classification 
and first-arrival picking network for HDR hydraulic 
fracturing. SeisFormer combines adaptive multi-scale 
windowing with joint time–frequency modeling and 
introduces a stabilized Nyström attention module to 
enhance long-range dependency modeling and feature 
discriminability. Evaluated on a joint multi-site dataset 
constructed from HDR stimulation in the Qinghai 
Gonghe Basin and unconventional hydraulic fracturing 
in North China, SeisFormer achieved state-of-the-art 
performance on real data, noise-augmented data with 
non-stationary interference, and dense multi-event 
windows, demonstrating robustness across operating 
conditions and strong generalization. In field settings, the 
classification accuracy reached 98.30%, with mean arrival-
time errors of 1.42 ms (P) and 2.29 ms (S). Under low SNR 
and complex signal environments, the model maintained 
stable classification and picking accuracy. Ablation studies 
further confirmed the significant contributions of the key 
components to overall performance.

Based on measured results on a NVIDIA GeForce RTX 
4060 (8 GB) + Intel Core i9-13900HX platform—where the 
method attained P/S arrival-time errors ”.2.5 ms—future 
work can refine the unified pre-processing and end-to-end 
inference pipeline and conduct systematic robustness and 
fault-tolerance evaluations under complex, non-stationary 
noise, and dynamic operating conditions. In parallel, 
SeisFormer can be migrated to edge-computing modules 
and portable platforms to support near-real-time field 
monitoring and facilitate engineering deployment.
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Abstract
In full waveform inversion (FWI), long-wavelength velocity models are essential 
for accurately estimating subsurface physical parameters. However, building long-
wavelength velocity models with low-frequency components is challenging due to 
mechanical limitations in seismic data acquisition. We propose a novel FWI method 
that utilizes a regenerated wavefield derived from the Suppressed Wave Equation 
Estimation of Traveltime (SWEET) algorithm. The regenerated wavefield in our 
approach was obtained by convolving the arbitrary source wavelet with a Green’s 
function, which is represented by the first-arrival traveltime and amplitude extracted 
from the SWEET algorithm. Our approach can build long-wavelength velocity 
models, provided that a low-frequency wavelet is used. Furthermore, the potential 
for multi-scale inversion was demonstrated by gradually increasing the frequency of 
the source wavelet, leading to the acquisition of high-resolution models. In numerical 
examples, our proposed algorithm was validated using both synthetic and field data 
sets. We also assessed the noise sensitivity of the proposed method, confirming its 
applicability in practical scenarios. These results demonstrate that the proposed 
method is a robust and versatile tool for constructing long-wavelength and high-
resolution velocity models from band-limited seismic data.

Keywords: Full waveform inversion; Long-wavelength velocity model; SWEET method; 
Regenerated wavefield; Multi-scale inversion

1. Introduction
Full waveform inversion (FWI) estimates subsurface physical parameters by minimizing 
the misfit between observed and modeled seismic data.1-3 However, successful FWI 
requires addressing nonlinearity, substantial computational demands, and dependence 
on an appropriate initial velocity model.4-6 In particular, a reliable initial velocity is 
essential for avoiding cycle skipping and for robust convergence when applying FWI 
to field data.7 One approach to improving the accuracy of the initial velocity model is 
to build long-wavelength velocity models and use them as the initial velocity model 
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for FWI. Many studies have proposed constructing long-
wavelength velocity models, with first-arrival tomography 
being a commonly used technique,8,9 and a reflection 
tomography approach10 has typically been employed to 
generate initial velocity models for waveform inversion.11-14

Traveltime tomography has been developed to achieve 
progressively higher-resolution models starting from 
long-wavelength models. This method, which relies on 
ray-tracing theory and the high-frequency approximation, 
is less sensitive to the initial velocity model.15,16 However, 
conventional traveltime tomography often falls short 
of the resolution requirements for FWI because it does 
not utilize phase and amplitude information.17,18 Using 
the phase and traveltime of the first-arrival wavefield, 
Liu et al.19 proposed the first-arrival phase-traveltime 
tomography (FPT). Nevertheless, FPT has a drawback in 
that it does not consider the amplitude of the first-arrival 
wavefield, making it difficult to accurately generate detailed 
structures.

Another approach involves transforming the observed 
and modeled seismic data to reconstruct the wavefield 
by utilizing specific waveform attributes, such as 
instantaneous phase, envelope, and Laplace-transformed 
data. For example, Shin and Cha20 proposed a Laplace-
domain waveform inversion to extract low-wavenumber 
components from high-frequency seismic data, thereby 
generating an initial velocity model for FWI. Although 
the Laplace domain, like tomography, does not consider 
phase information,21 by utilizing a multi-scale inversion 
approach with varying damping factors during the Laplace 
transform, it is possible to build relatively high-resolution 
initial velocity models. Moreover, various studies have 
proposed building long-wavelength velocity models using 
envelope data derived through the application of the 
Hilbert transform. Similar to Laplace-domain waveform 
inversion, envelope inversion faces challenges in accurately 
resolving detailed subsurface structures due to the lack of 
phase information.22,23 Notably, recent advancements have 
introduced methods that incorporate phase information 
during the envelope inversion process, thereby improving 
the resolution of the inverted models.24 These approaches 
aim to overcome the lack of low-frequency components 
in the data used for generating long-wavelength velocity 
models.

Recently, several complementary strategies have been 
developed to improve FWI convergence. Reflection 
waveform inversion separates a smooth background 
model from short-wavelength reflectivity, allowing 
reflections to contribute low-wavenumber updates to the 
background model and thereby reducing dependence on 
very low frequencies in the recorded data.25-27 In addition, 

low-frequency extrapolation methods, including global 
multi-scale deep networks, reconstruct sub-band energy 
from band-limited recordings.28 In parallel, improved 
convexity or robust misfit functions and extended search 
spaces mitigate nonconvexity and reduce sensitivity to 
the background model.29-31 Pretrained or self-supervised 
frameworks provide informative priors and warm-
start initialization, which can be coupled with physics-
based optimization.32-34 Despite the progress, most 
long-wavelength building strategies remain limited when 
low frequencies are missing and when phase and amplitude 
along the first-arrival wavefield are not exploited.

Consequently, we introduce an approach that leverages 
traveltime and amplitude information extracted under 
high-damping conditions to reconstruct a reliable long-
wavelength background model for FWI. The approach, 
referred to as FWI using a regenerated wavefield based on 
the Suppressed Wave Equation Estimation of Traveltime 
(SWEET) algorithm (FWI-RWS), utilizes the first-arrival 
traveltime and amplitude to regenerate a wavefield 
that contains low-frequency components. The SWEET 
algorithm is typically employed to derive traveltimes for 
refraction tomography. It uses the characteristics of the 
observed seismic data transformed under high-damping 
conditions in the Laplace domain to approximate the first-
arrival time and amplitude. By integrating this method, 
FWI-RWS aims to enhance the accuracy of the long-
wavelength velocity model and provide robust results for 
subsequent multi-scale FWI on field data.

To implement the proposed method, we regenerated 
the wavefield by convolving the first-arrival traveltimes 
and amplitudes obtained from each receiver with an 
arbitrary source wavelet. This process allows for the 
successful construction of long-wavelength velocity 
models by generating wavefields that contain low-
frequency components. In addition, to effectively 
mitigate nonlinearity, a multi-scale method that starts 
the inversion at low frequencies and fits higher-frequency 
components sequentially was applied.35 We demonstrated 
through preliminary tests that multi-scale inversion is 
possible depending on the frequency characteristics of 
the convolved source wavelet, thereby enabling the stable 
acquisition of long-wavelength models.

The theory and methodology of FWI with the SWEET 
algorithm are presented, and the effectiveness of the 
proposed method is demonstrated using synthetic data. 
We also discuss the robustness of the proposed method 
in noisy environments, which is a known limitation of the 
SWEET algorithm. Finally, field data results are presented 
to verify the applicability of FWI-RWS.
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2. Methodology
2.1. Regenerated wavefield based on the SWEET 
method

In this section, the basic theory of the regenerated 
wavefield based on the SWEET method is reviewed. In the 
time domain, a wavefield 𝑢 can be approximated as a series 
of spikes.36

u t A t t
q

q q� � � �� �� � � (I)

where Aq and tq represent the amplitude and q-th time 
step (counted from the first-arrival event), respectively, and 
𝛿 is the Dirac delta function. By multiplying Equation (I) 
by an exponential damping factor e−st and integrating it, the 
wavefield u  in the Laplace domain can be written as 
follows:36,37

u s u t e dt A est
f

st f� � � � � �
�

� �

�
0

� (II)

where s is a positive real number known as the Laplace 
damping constant, tf is the first-arrival traveltime, and Af is 
the amplitude at the first-arrival traveltime. By taking the 
derivative of Equation (II) with respect to s and dividing it 
by u , the equation becomes:

�
�
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

u s
s

t A e t u sf f
st

f
f( ) � (III)

Therefore, the first-arrival traveltime and amplitude are 
defined as follows:

t
u s

u s
sf � � � �
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�

1



� (IV)

and

A u s ef
st f� � � � (V)

In this study, the wavefield in the time domain was 
regenerated by convolving the traveltime and amplitude, 
calculated from Equations (IV) and (V), with an arbitrary 
source wavelet.

The regenerated wavefield u  is given by:

u t w t A t tf f� � � � � �� ��
�

�
�* � � (VI)

where w is the source wavelet, and ∗ is the convolution 
operator.

2.2. FWI using a regenerated wavefield based on the 
SWEET method (FWI-RWS)

In its classical formulation, FWI is defined as an optimization 
problem that seeks to minimize an objective function, 
and FWI-RWS has a similar form to FWI. The objective 
function E, based on the l2-norm of residuals between the 
observed and modeled data, can be expressed as2:

E
i

N

j

N

i j i j

s r

� ���1
2 2

2u d, , � (VII)

where || ||… 2
2  is the l2-norm, ui j,  and di j,  are the 

regenerated traces both for modeled and observed traces 
using Equation (VI), i and j indicating the source and the 
receiver locations, and Ns and Nr are the number of sources 
and receivers, respectively. The gradient with respect to the 
k-th subsurface model parameter mk can be expressed as:

,
,
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where 
∂

∂

ui j

km
,  is the partial derivative wavefield using the 

regenerated wavefield, ri j,  is the data residual calculated by 

u di j i j, ,− , T is transpose, and · is the dot product operator.

In conventional FWI, as calculating Equation (VIII) 
leads to substantial computational cost, the adjoint-state 
method is used to reduce the computational burden 
associated with the partial derivative wavefield.38 Similarly, 
we aim to apply the adjoint-state method to the proposed 
approach. By substituting Equation (VI) into Equation 
(VIII), the partial derivative wavefield can be expressed as 
follows:
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with
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p

fm m w t A t t
,
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where fi is the source wavelet, indicating the use of the 
i-th source wavelet. In Equation (IX), the first-arrival 
traveltime tf remains the same regardless of ∆m, while Af

p  
and Af

b  denote the first-arrival amplitudes computed from 
the perturbed model mk+∆m and background model mk, 
respectively. Therefore, the partial derivative wavefield can 
be further simplified as follows:

( ) ( )
( ) ( )
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, , ,
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u u u
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f f f i f

k

i j k i j k i j
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Through Equations (VIII), (IX), and (XII), we 
can confirm that applying Equation (VI) to the partial 
derivative wavefield yields results identical to the 
regenerated wavefield. To verify Equation (XII), we 
used a homogeneous velocity model of 1.5 km/s on a 201 
× 101 grid (Figure  1A). The grid size was 10  m and the 
time interval was 1 ms. Figure 1A shows a single shot at 
800  m and a single receiver at 1,200  m, both positioned 
on the surface. The point-scatterer was located at (1,000 m, 
500  m) at the center of the velocity model. The source 
signature was a Ricker wavelet with a dominant frequency 
of 5  Hz. The partial derivative wavefield at the point-
scatterer within a simple subsurface model was compared 
with results obtained from numerical differentiation. In 
Figure 1B, the comparison of the results from convolving 
the same sources with Equation (XII) indicates excellent 
agreement between the two approaches.

To reduce the computational burden of FWI-RWS, the 
adjoint-state method was applied. The partial derivative 
wavefield for the regenerated wavefield in Equation (VIII) 
can be expressed as follows:

�
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where G is Green’s operator, 
∂

∂

ui j

km
,  is the regenerated 

partial derivative wavefield, and v i j,  is the regenerated 
virtual source wavefield. To verify Equation (XIII), the 
gradient to a perturbation point within the subsurface 
model (Figure 1A) was examined. This yielded two distinct 
gradient estimates: one calculated using the finite-
difference method and the other obtained using the virtual 
source. Figure  2 shows that the two gradients closely 
match. By substituting Equation (XIII) into Equation 
(VIII), the gradient using the regenerated wavefield can be 
expressed as follows:
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where Bi,j is the backpropagated wavefield with the 
regenerated residual wavefield, and ⨂ denotes the zero-lag 
cross-correlation.

Based on the steepest-descent method, the model 
update at each iteration is expressed as38:

m m ml l� � � ��1 � � (XV)

where ml is the subsurface model parameter for 
l-th iteration, 𝛼 is the step length, and ∆m is the update 
direction.

In this study, the diagonal term of a pseudo-Hessian was 
used as a preconditioner for the gradient21. Furthermore, 
to mitigate model dependence in seismic imaging, a 
multi-scale strategy was employed, applying the FWI 
method across a spectrum of frequencies, progressing 
from low-frequency to high-frequency components.39 
The conventional multi-scale FWI approach enhances 
resolution by progressively incorporating the low-
frequency to high-frequency components of the observed 
data.1-3 Overall, a multi-scale FWI-RWS approach 
was introduced by gradually increasing the maximum 
frequency of the source wavelet used in Equation (VI). 
Figure  3 shows the workflow of multi-scale FWI-RWS, 
which can be divided into eight steps:
(i)	 Set initial velocity model parameters and source 

wavelet for low frequencies.
(ii)	 Perform forward propagation modeling.
(iii)	Extract the traveltime and amplitude of the shot 

gathers.
(iv)	 Convolve the arbitrary source wavelet with the 

extracted traveltime and amplitude to regenerate the 
wavefield.

(v)	 Use the calculated regenerated wavefield, virtual 
source, and residual to perform backward propagation 
modeling.
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Figure 2. A comparison of the gradient between the finite-difference method (Equation [IX]; solid black line) and the adjoint formulation (Equation 
[XIII]; dashed red line)
Abbreviation: FDM: Finite-difference method.

Figure 1. Geometry of the homogeneous model and validation of Equation [XII]. (A) The homogeneous velocity model illustrates the source, receiver, 
and point-scatterer locations. (B) Comparison of results obtained by convolving the same source wavelet with the first-arrival amplitude obtained from the 
differentiated trace (solid black line) and the derivative of the first-arrival amplitudes from the point-scatterer and background models (dashed red line).
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(vi)	 Update the velocity model using the regenerated 
wavefield.

(vii)	Check the error curve convergence and increase the 
frequency of the source wavelet.

(viii) Build a long-wavelength velocity model.

3. Results
3.1. Analysis of the regenerated wavefield and 
gradient using a three-layer velocity model

In the numerical tests, we solved the 2D isotropic, 
constant-density acoustic wave equation in the time 
domain. The propagator employed second-order central 
differences in space and a second-order three-level time 
scheme. To analyze how the maximum frequency of the 
arbitrary source wavelet in Equation (VI) affects the shot 
gathers and the corresponding gradients, we designed a 
synthetic experiment using a three-layer model (Figure 4). 
The initial velocity model was homogeneous with a 
velocity of 1.5  km/s. The top boundary was treated as a 
free surface boundary, while the remaining sides employed 

convolutional perfectly matched layers.40 The model grid 
comprised 601 × 201 points with 10.0 m spacing in both 
directions. The time sampling interval was 1 ms, and 
the recording length was 5.0 s. A  total of 57 shots were 
deployed from x = 0.2 to x = 5.8 km at 100 m spacing. For 
each shot, 601 receivers were distributed along the velocity 
model surface, with a receiver interval of 10 m. The source 
signature was a Ricker wavelet with a dominant frequency 
of 5  Hz. Shot gathers were generated by propagating 
wavefields induced by the arbitrary source wavelet and 
subsequently used to compute and analyze the gradients 
within the multi-scale FWI-RWS workflow.

Figure  5A-C shows the modeled data, observed data, 
and residuals obtained by forward modeling. Figure 5D-L 
illustrates the regenerated modeled data, observed data, 
and residuals after convolution with Ricker wavelets at 
three different maximum frequencies: 15 Hz (Figure 5D-F), 
1 Hz (Figure 5G-I), and 0.5 Hz (Figure 5J-L). As frequency 
decreased, the observed and modeled data became 
smoother, and the residuals grew broader and less detailed. 

Figure 3. Workflows of multi-scale FWI-RWS
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Based on Equations (IV) and (V), the first-arrival 
traveltime and amplitude of the wavefield, as shown in 
Figure 6, were obtained with a Laplace damping constant 
of 15. As the maximum frequency of the convolved source 
decreased, the regenerated wavefield contained more low-
frequency information.

In FWI-RWS, the gradient was calculated by regenerating 
the virtual source and the backward-propagated wavefields. 
To compare the inversion capabilities of conventional FWI 
and FWI-RWS on the three-layer model, we examined 
gradients at various frequencies: the gradient of FWI 
(Figure 7A) and the gradient of FWI-RWS using maximum 
frequencies of 15 Hz (Figure 7B), 1 Hz (Figure 7C), and 
0.5  Hz (Figure  7D). The gradient of conventional FWI 
significantly updated the upper part of the high-velocity 
layer. In contrast, FWI-RWS, utilizing arbitrary source 
wavelets at low frequencies, updated the lower and internal 
parts of the high-velocity layer.

3.2. FWI-RWS using the SEG/EAGE salt model

The FWI-RWS was tested using a 2D section of the Society 
of Exploration Geophysicists/European Association of 
Geoscientists and Engineers (SEG/EAGE) salt model.41 
The model size was 676 × 210 points with 10.0 m spacing 
(Figure 8A). The synthetic dataset consisted of 186 shots, 
with a shot interval of 400 m. For each shot, 676 receivers 
were distributed along the velocity model surface, with a 
receiver interval of 10 m. The data recording time was 5.0 s, 

with a time interval of 1.0 ms. The source signature was 
a Ricker wavelet with a dominant frequency of 5 Hz. The 
initial velocity model was a linear model, with a velocity 
range of 1.5 km/s at the surface to 2.5 km/s at the bottom, 
as shown in Figure  8B. The FWI-RWS algorithm used a 
Laplace damping constant of 15 to extract first-arrival 
traveltime and amplitude.

In this case, the multi-scale FWI-RWS was performed 
in three steps to update the velocity model, where each step 
involved repeating the process across a specified frequency 
band. It progressively increased the maximum frequency of 
the source wavelet used in Equation (VI) from 0.05 Hz to 
1 Hz, with a frequency interval of 0.05 Hz. Figure 8C shows 
the inverted velocity model for the 103rd  iteration. The 
FWI-RWS results enabled the updating of broad regions 
of the salt body and the acquisition of a more reliable 
initial velocity model. When the iteration termination ε is 
satisfied:

� �
� �E E
E

l l 1

1 � (XVI)

where El represents the evaluated objective function 
at the 𝑙-th iteration. In our test, we set ε to 0.02. The 
updated images for FWI-RWS from these inversion results 
(Figure  8C) demonstrated the potential of a multi-scale 
strategy. The inversion quality improved by iteratively 
processing the inversion from low to high frequencies of the 
source. Then, multi-scale FWI-RWS was used to improve 

Figure 4. Test velocity models. (A) The three-layer velocity model. (B) The initial velocity model.
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the resolution of inverted salt structures. To evaluate the 
dependency of FWI results on the initial velocity model, 

FWI results obtained using a linear velocity model 
(Figure 8B) were compared with those obtained using the 

Figure 5. Comparison of the modeled data, observed data, and residuals. (A–C) Original wavefield. Regenerated wavefield using a maximum frequency of 
(D–F) 15 Hz, (G–I) 1 Hz, and (J–L) 0.5 Hz. The red dashed lines denote the first-arrival traveltime of the modeled data, and the blue dashed lines denote 
the first-arrival traveltime of the observed data.
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FWI-RWS results (Figure 8C). The model parameters used 
for modeling and FWI were the same as those used in the 
previous example.

After 200 iterations, the FWI results using the linear 
velocity model as the initial velocity model only recovered 
the shallow part of the salt due to a lack of low-frequency 
information (Figure  9A). It is difficult to obtain the 
reflection information of the salt bottom and subsalt when 
there is insufficient low-frequency information. However, 
FWI using FWI-RWS results as the initial velocity model 
showed improvement with the same number of iterations 
(Figure  9B), showing the effectiveness of the proposed 
method. The proposed method allows for estimating long-
wavelength components when using low-frequency source 
wavelets, and, as the frequency increases, it progressively 
recovers finer details, such as the salt boundaries shown 
in Figure 9B.

The analysis of the depth–velocity profiles (Figure 10) 
demonstrated that the proposed algorithm not only 
updates the model to closely resemble the true velocity but 
also accurately adjusts both the boundaries and internal 
velocities of the high-velocity layers. Figure 11 shows the 
history of root mean square error (RMSE) with respect to 
the number of iterations to assess convergence. The RMSE 
values were normalized by dividing the error obtained 
from the first iteration by the total RMSE value. As shown 
in Figure  11, we noted that the RMSE of the FWI using 
FWI-RWS results reached 0.2 of the initial value, whereas 
the RMSE of the FWI using the linear velocity model 
reached over 0.6 compared to the initial result.

3.3. Field data test

The application of the multi-scale FWI-RWS strategy 
was further extended to a 2D marine profile to evaluate 
its robustness. The 2D active seismic dataset was acquired 
offshore Yeosu in the South Sea by the Korea Institute 
of Geoscience and Mineral Resources. Seismic data 

acquisition was performed using a 1,050 m streamer and 
an airgun source. Additional acquisition parameters are 
shown in Table 1.

Field seismic data were first conditioned by estimating 
an effective source wavelet from high-signal-to-noise ratio 
(SNR) early arrivals. We then applied an eighth-order, 
zero-phase Butterworth low-pass filter (80  Hz cutoff) to 
limit bandwidth and resampled the data from 0.5 ms to 
0.25 ms to match the modeling grid. Finally, to stabilize 
the multi-scale FWI-RWS updates and to comply with 
the regenerated-wavefield formulation, the records were 
convolved with a 40 Hz dominant Ricker wavelet to achieve 
a controlled low-frequency target wavelet. All steps were 
applied consistently to all shots.

Finite-difference modeling used a 0.25 ms time step 
with second-order accuracy in space and time. The initial 
velocity model was a homogeneous model with a velocity 
of 1.5 km/s. The model size was 8,951 × 151 grid points 
with 1.25 m spacing in both directions. The towed streamer 
had 84 channels at a 12.5 m group interval, towed at 7 ± 
1 m depth, and shots were spaced 12.5 m apart with 3 s 
records sampled at 1 ms.

Figure  12 presents the estimated source and the 
Ricker wavelets (with maximum frequencies of 1, 5, 
and 10  Hz) used for constructing the long-wavelength 
velocity model. Figure  13A showcases the results of the 
FWI-RWS, demonstrating the construction of a long-
wavelength velocity model. To achieve this, wavefields 
were regenerated using arbitrary sources with maximum 
frequency components ranging from 1  Hz to 10  Hz, 
incremented at 1  Hz intervals. Then, the applicability 
of the proposed method to field data was evaluated by 
applying reverse time migration (RTM) with different 
initial velocity models, including a homogeneous velocity 
model and a model derived from the FWI-RWS method. 
Figure  13B and C shows migration images from RTM 
obtained using a homogeneous model and FWI-RWS 

Figure 6. Spatial patterns of first-arrival traveltime and amplitude across sources and receivers. (A) First-arrival traveltime, and (B) amplitude.

A B

https://dx.doi.org/10.36922/JSE025370071


Journal of Seismic Exploration FWI-RWS for long-wavelength velocity model

Volume 34 Issue 6 (2025)	 87� doi: 10.36922/JSE025370071

results. The RTM images generated using the FWI-RWS 
results (Figure 13C) showed improved amplitude balance 
compared to those using a homogeneous model. Compared 
with the RTM results using a homogeneous model, this 
approach also produced more accurate and high-resolution 
images with better continuity of subsurface structures.

For an additional analysis, the subsurface offset domain 
common image gather (SODCIG) obtained by RTM using 
the homogeneous model and the FWI-RWS results as 
initial velocity models were compared. Common image 
gathers (CIGs) are generally used as a primary criterion 
for validating the velocity model, with moveout guiding 

Figure 7. Gradients of (A) FWI using a maximum frequency of 15 Hz, FWI-RWS using a maximum frequency of (B) 15 Hz, (C) 1 Hz, or (D) 0.5 Hz. The 
red dashed lines denote the first-arrival traveltime of the modeled data, and the blue dashed lines denote the first-arrival traveltime of the observed data.
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the velocity updates.42-45 One type of CIG, known as 
the SODCIG, is characterized by accurately migrated 
transmitted events that are vertically aligned at zero-

offset along the depth axis, while any defocusing indicates 
inaccuracies in the migration velocity.46-49 Figure  14 
presents SODCIGs at depths of 1, 2, and 5  km in the 
migration image. When using a homogeneous velocity 
model, most reflectors shift upward as the offset increases, 
indicating that the background velocity is slower than the 
actual velocity. In contrast, the FWI-RWS velocity model 
focuses the reflection energy near zero offset, though some 
reflectors still exhibit curvature with increasing offset. 
These results suggest that using the FWI-RWS model as 
the background velocity enhances the recovery of long-
wavelength structures, leading to more accurate alignment 
of reflectors than using the homogeneous velocity model.

4. Discussion
When estimating the first-arrival traveltime, the Laplace 
transformation is sensitive to the first-arrival noise, as 
noted by Shin and Cha.20 Therefore, if noise precedes the 

Table 1. Seismic data acquisition parameters

Parameters Description Value

Streamer Streamer length (m) 1,050

Number of channels 84

Group interval (m) 12.5

Streamer depth (m) 7±1

Recording Recording length (s) 3

Sampling rate (ms) 1

Source Source type Bolt long‑life air guns

Source volume (cu. in.) 269

Source depth (m) 5

Source interval (m) 12.5

Figure 8. The 2D SEG/EAGE salt model. (A) True, (B) initial velocity model, and (C) long wavelength model of FWI-RWS results.
Abbreviation: SEG/EAGE: Society of Exploration Geophysicists/European Association of Geoscientists and Engineers.
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Figure 9. Full waveform inversion (FWI) results using (A) linear velocity model, and (B) FWI-RWS result as initial velocity model

A

B

Figure 10. Comparison of depth-velocity profiles at horizontal position of (A) 1 km, (B) 3.5 km, and (C) 4.5 km. The true velocity (solid black lines), the 
initial velocity model (doted cyan lines), full waveform inversion (FWI) result obtained using linear velocity model (dashed red lines) and FWI-RWS result.
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Figure 11. Root mean square error (RMSE) history of the full waveform inversion (FWI) started from the linear velocity model (solid black line) and 
that of the FWI started from the FWI-RWS results (dashed red line)

Figure 12. Estimated source analysis and band-limited convolution in time and frequency domains. (A) Estimated source using filtered data in the time 
domain. (B) Convolved sources with maximum frequencies of 1, 5, and 10 Hz in the time domain. (C) Frequency domain analysis of the estimated source 
shown in (A) and the convolved sources in (B). (D) Zoomed-in view of the frequency domain up to 20 Hz.
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first-arrival signal, the transform assigns it significant 
weight, necessitating the removal of first-arrival noise 
before applying the Laplace transform. To further test the 
applicability of the algorithm to noisy data, we analyzed 
the first-arrival traveltime and amplitude as a function 
of the SNR to assess noise sensitivity. The first-arrival 
traveltime and amplitude of the observed data using 
a strong Laplace damping factor e−st are calculated as 
follows:

d s d t e dt A est
f

st f� � � � � �
�

� �

�
0

� (XVII)

where d  is the Laplace-transformed observed data.

Therefore, to analyze the noise sensitivity of the 
proposed method, tests were conducted with varying 
Laplace damping constants and intervals. For the noise 
test, arbitrary seismic signals were generated, and 
noise was added to achieve SNRs of 10  dB, 20  dB, and 
30  dB (Figure  15). When the first-arrival traveltime 
was unknown, the error in first-arrival traveltime and 
amplitude increased at low SNR levels (Figure  16). 
The synthetic test showed results nearly identical 
to situations where the first-arrival traveltime was 
known (Figure  17). When the first-arrival traveltime 
was established, the process tended to yield similar 
outcomes, largely unaffected by the level of noise present. 
Successful application of this technique is anticipated if 

Figure  13. Imaging results from field data. (A) FWI-RWS results using field data. Reverse time migration results post-processing obtained using a 
(B) homogenous model, and (C) FWI-RWS results as the background velocity model.
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Figure 14. Subsurface offset domain common image gathers at (A and B) 1 km, (C and D) 2 km, and (E and F) 5 km. (A), (C), and (E) are obtained by 
reverse time migration (RTM) using FWI-RWS results, while (B), (D), and (F) are obtained by RTM using a homogeneous model. The offset range of 
each common depth point is from −0.2 km to 0.2 km. The white dashed lines mark the common depth point (CDP) location (1 km in [A and B], 2 km 
in [C and D], and 5 km in [E and F]).
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picking is performed for each source, ensuring accurate 
determination of first-arrival traveltime. At very low SNR 
levels, our analysis showed that the first-arrival traveltime 
and amplitude remained consistent across SNRs, 
provided the first-arrival traveltime of the observed data 
was accurately known.

5. Conclusion
We presented FWI-RWS, a physics-guided framework 
that leverages the SWEET method-derived first-arrival 
traveltime and amplitude. This is achieved by convolving a 

target source wavelet and gradually increasing its maximum 
frequency. The potential of the proposed method lies in its 
ability to enhance resolution incrementally through multi-
scale inversion. Both synthetic and field experiments 
show that FWI-RWS recovers a reliable long-wavelength 
background from poor initial models and delivers clear 
RTM focusing improvements when used as the migration 
velocity model. When applied to field data and used as the 
background velocity model for RTM, FWI-RWS yields 
more accurate structural results than a homogeneous 
velocity model. In addition, we examined the sensitivity of 

Figure 15. Seismic trace with low signal-to-noise ratio (SNR; 10–30 dB)

Figure 16. The scenarios with unknown first-arrival traveltime. Variations in the first-arrival traveltime and amplitude in relation to the Laplace damping 
constant, with a Laplace damping constant interval of (A) 0.1, (B) 0.01, (C) 0.001, or (D) 0.0001.
Abbreviations: Amp: Amplitude; FA: First-arrival traveltime; SNR: Signal-to-noise ratio.
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the SWEET algorithm to noise, confirming that accurate 
first-arrival traveltimes and amplitudes can be extracted, 
provided first-arrival picking is performed beforehand, 
regardless of noise. Future research will focus on improving 
the efficiency and applicability of the proposed method 
by analyzing the impact of different source wavelets and 
determining the optimal frequency components for the 
model, with the goal of producing background models that 
better support attribute analysis, diffraction imaging, and 
machine learning-based interpretation. Future work will 
explore adaptive selection of the target-wavelet schedule 
and extensions to anisotropic and elastic settings.
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