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ARTICLE

A precise picking method for seismic first arrivals
based on the residual long short-term memory
network driven by time-frequency dual domain
data

Ziyu Qin'®, Xianju Zheng'*{”, and Wenhua Wang?

'Department of Software Engineering, School of Computer Engineering, Chengdu Technological
University, Chengdu, Sichuan, China

2Department of Intelligence Science and Technology, School of Computer Science, Chengdu
Normal University, Chengdu, Sichuan, China

Abstract

First-arrival picking of seismic data is one of the key steps in seismic data processing.
When seismic data have low signal-to-noise ratio (SNR) and weak first-arrival energy,
accurately and efficiently picking first arrivals remain a critical challenge for most
automatic picking methods. To address this issue, this paper proposes a Multi-
perspective Residual Long Short-Term Memory (M-Res-LSTM) network. This network
integrates the spatial feature extraction advantage of Residual Networks and the
temporal dynamic modeling capability of LSTM networks, while introducing a
coordinate attention mechanism. Through multi-perspective learning in both time
and frequency domains, it effectively improves the reliability of automatic first-arrival
picking. First, this paper elaborates on the core principle of the M-Res-LSTM network
for automatic first-arrival picking: the amplitude, frequency, and phase features
of seismic data are used as network inputs, and the accurately picked first arrivals
manually serve as network outputs. After training the network using a supervised
learning approach, the well-trained model is applied to perform automatic first-
arrival picking. Second, an analysis of the network’s hyperparameters is conducted
to determine the optimal parameter configuration. Finally, automatic first-arrival
picking tests are carried out on seismic datasets with different characteristics, and
the picking results are compared with those obtained by the energy ratio method,
single-input Res-LSTM, and Swin-Transformer. The results demonstrate that the
proposed M-Res-LSTM method maintains good stability and accuracy even in
complex scenarios with low first-arrival energy and poor SNR.

Keywords: Automatic first-arrival picking; Time-frequency dual domain;
Multi-perspective learning; Res-LSTM; Attention mechanism

1. Introduction

First-arrival waves refer to the seismic waves that propagate through subsurface media
and reach geophones first, typically existing in the form of direct waves or refracted
waves. In the seismic data processing workflow, the travel time of first-arrival waves is
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of crucial significance, as it can provide core foundational
data for near-surface inversion work. Although the
method of manual picking of the first arrival has high
accuracy, it is time-consuming and labor-intensive.
Moreover, the accuracy of the picking is also affected by
the experience of the interpreters.! To pick the first arrivals
efficiently and accurately and reduce the workload of data
processing personnel, scholars have proposed different
semi-automatic or automatic first-arrival picking methods.

Given the similar characteristics of adjacent traces,
existing studies have proposed a method to determine
the first-arrival time through cross-correlation operations
between adjacent traces.** The selection of the standard
trace has a great influence on the first-arrival picking results
of this type of method, and its effect needs to be further
improved when the signal-to-noise ratio (SNR) of the
data is low. The algorithm based on energy characteristics
possesses robust anti-noise performance and achieves
favorable automatic picking results, and has also achieved
good results in the processing of actual data.”® Since this
method is greatly affected by the window length, many
picking methods based on multiple time windows have also
been developed.”'® Another common method is the Akaike
Information Criterion (AIC), which discriminates the first
arrivals using the difference in AIC values between the
seismic signal and the noise.'""* However, the picking results
are not satisfactory under a low SNR. The fractal dimension
algorithm'"” has relatively good anti-noise ability, but it
does not take into account the similarity between seismic
traces. Clustering-based methods identify first arrivals in an
unsupervised manner based on the characteristic differences
between first arrivals and noise. However, the inherent
temporal connections between different subsequences
are not considered, making it difficult to distinguish low-
amplitude signals from noise under low SNR conditions.'**

Transforming seismic signals into other domains or
spaces can further highlight the differences between first-
arrival waves and noises. Performing T-p transformation,*
wavelet transformation,? shearlet transformation,?? etc.,
are also commonly used means to enhance the precision
of first-arrival picking; Beyond the common shot gather,
picking first arrivals on common offset gathers and
common receiver gathers also offers distinct advantages.**
In addition to time-space domain signals, neural networks
incorporate attributes such as amplitude, frequency, time-
frequency characteristics, short-term average/long-term
average (STA/LTA) ratios, and data distribution skewness
as inputs,?! thereby facilitating more effective capture of
relevant features by the networks.

Deep learning can efficiently extract the internal laws
of data, construct multi-level data representations, and is

more friendly to massive data. Leveraging the capabilities
of generative adversarial networks,*> convolutional neural
networks,"** UNet,*** recurrent neural networks, meta-
learning,*®* transformers,*** transfer learning,* and
various hybrid networks®* in extracting complex features
from seismic data, deep learning algorithms have emerged
as a critical force in the picking of seismic first arrivals.
Similar to conventional methods, to further improve the
picking accuracy, scholars have attempted to input data
with different attributes into the network, such as time-
frequency domain data and STA/LTA feature maps.**** The
rich data features provide more information references for
the model.

Studies indicate that current first-arrival picking
operations are typically performed exclusively within either
the time-space domain or a single transformed domain.
The energy features and time-frequency features of seismic
data serve as valid criteria for first-arrival identification,
and the integration of multiple sets of feature data can,
further, enhance the precision of first-arrival extraction.
Building on this insight, this study comprehensively
leverages the data features from both the time domain and
frequency domain, proposes a Multi-perspective Residual
Long Short-Term Memory (M-Res-LSTM) network
tailored for first-arrival picking, and elaborates in detail on
the complete workflow of automatic first-arrival picking.
Finally, experiments on automatic first-arrival picking
were conducted on real seismic datasets with distinct
characteristics using this network, thereby verifying the
effectiveness of the proposed method.

2. Methods
2.1. Network architecture

To fully leverage the spatiotemporal and time-frequency
characteristics of seismic signals, this study proposes the
M-Res-LSTM network for automatic first-arrival picking.
Figure 1 shows its structural schematic with key features.

2.1.1. Branch structure

The network comprises four parallel branch modules,
each consisting of m residual modules and » residual
LSTM modules. These branches process four types of two-
dimensional (2D) input data, namely, time-space domain
seismic signals, instantaneous amplitude, frequency,
and phase features, thereby enabling multi-perspective
extraction of seismic information. A parameter-sharing
mechanism between LSTM branches enhances training
efficiency and generalization.

Residual modules retain spatial information through
shortcut paths, mitigating degradation in deep networks
through direct gradient flow.** For seismic data, this
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In this study, with m=4 and n=4, the number of channels F1 is set
as [256, 64, 16, 4] (layer - wise decreasing), and F2 is half of F1 .

Figure 1. Schematic diagram of the M-Res-LSTM network model structure. “m” and “n” represent the numbers of Residual Networks and LSTM modules,

respectively.

Abbreviation: LSTM: Long Short-Term Memory; M-Res-LSTM: Multi-perspective Residual Long Short-Term Memory; Res-LSTM: Residual Long Short-

Term Memory.

preserves inter-trace correlations and nonlinear spatial
features. For input data X, €R,, .,k =1,2,3,4, the output
of the i-th residual layer is:

HxW?>

Z® =X, +F(X,,00, )i=12--m (1)

res

Where F, denotes nonlinear transformations
(convolution, batch normalization, and activation) with
parameters 6, .

Following residual processing, outputs are converted
to sequences for residual LSTM modules. LSTM’s gating
mechanisms (input, forget, and output) capture temporal
dynamics. For n residual LSTM layers, the recurrence
relation is:

B =x\, +LSTM (x/,x,8,),j=1,2--n (I

where h is the hidden state of the j-th layer at time ¢, ¢,
are layer parameters, and the n-th layer output h represents
temporal features, which are reshaped to 2D for fusion.

2.1.2. Coordinate attention module

To adapt to the requirements of the first-arrival picking task,
multi-domain features extracted from the four branches
are fused through the coordinate attention mechanism.*
Unlike the standard coordinate attention, the proposed

method first extracts multi-dimensional visual features
tailored to the task characteristics, then assigns adaptive
weights to enhance critical information. Meanwhile,
it not only additionally designs a convolutional gating
structure specifically for suppressing high-amplitude
noise in seismic data but also further integrates a residual
connection to prevent first-arrival signals from being
excessively suppressed. The detailed process is as follows:

First, global pooling is performed on the concatenated
feature FeR,, .. along the width (W) and height (H)
directions:

HxWx

1 . 1 .
Zy (k) = WZosj<wF(h’l’k)’zw (a)) = EZosj<HF(]’w’k)
(II1)

After aligning the dimensions of x_with x, through a
transposition operation, the two are concatenated along
the height direction. The concatenated result is processed
by a custom activation function and 1x1 convolution to
obtain the feature m. The processed feature m is split into
height-related and width-related components. Meanwhile,
a convolutional gating structure is designed based on the
original branch features to generate a screening mask g.
Finally, branch attention weights are generated and fused:

a +a
branch_att = ——

g (v)
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Here, a, and a, are the branch attention weights,
respectively; and e denotes element-wise multiplication.

Each branch feature is multiplied by its corresponding
attention weight, and the weighted branch features are
summed to obtain a fused representation:

Fri = z;(b,. e branch_att,) V)

Where bl, is the feature of the i-th branch, and branch_
att is its corresponding attention weight.

This process not only retains the feature advantages
of each branch in specific domains but also mitigates the
interference of redundant information and noise through
weight modulation.

To further focus on regions with concentrated first-
arrival wave energy, coordinate attention computation
is re-applied to F, . first, global average pooling is
performed along the width and height directions, with the
pooling formulas as follows:

. 1 SN 1 .
Zy (k) = Wzosj<WFﬁ“ed (h’l’k)’zw (0)) = EZO§j<HFﬁ4$€d (]’w’k)
(VD)

After dimension alignment, feature concatenation,
channel compression, and component splitting, the
base spatial attention weights ¢, and ¢ are obtained.
Concurrently, a convolutional gating structure is designed
basedonF, ,to generate the spatial screening mask g.. The
spatially attentive weights with enhanced noise robustness
are derived through the following formulas:

g-B=c, &, (VID)

Finally, the spatial attention weights are combined with
F, ., through residual connection to enhance the signals in
key regions. The calculation formula for the final output
feature [ is as follows:

F(ho,k)=F,, (hik)+F,,(hik)-a(hk)-B(ok)
(VIII)

a=c,

By generating screening masks with the same dimension
as the attention weights through convolutional gating, this
method can effectively suppress high-amplitude noise in
seismic data, accurately focus on regions with significant
first-arrival wave energy variations, and remarkably
improve the processing performance of seismic data with
low SNR.

2.1.3. Output layer

Fused features F are passed through two convolution layers
and a Softmax activation to predict first-arrival positions:

P = Soft max(Conv2 (Comz1 (I:",a)1 ),a)2 )) (IX)

Where ®,, , are convolution parameters.

The network takes the amplitude, frequency, and phase
characteristics of seismic data as inputs and incorporates
a coordinate attention mechanism to achieve feature
fusion across different branches. By assigning distinct
weights to multiple features, it allocates varying levels of
attention to them, thereby enhancing task-critical features
while suppressing those irrelevant to the current task. This
mechanism effectively mitigates the mispicking of first
arrivals.

In recent studies, a multitude of innovative networks
have been proposed for seismic first-arrival picking,
including those based on Transformer,” meta-learning,*
and multi-stage network® architectures. Table 1 presents
a comparison between the method proposed in this study
and the aforementioned methods, focusing on their
characteristics including network architecture, input,
advantages, and dependency conditions.

Compared with other networks, M-Res-LSTM still

possesses unique characteristics and advantages:

(i) In terms of feature input types, M-Res-LSTM
innovatively incorporates amplitude, frequency, and
phase information, providing more comprehensive
feature support for first-arrival picking

(ii) M-Res-LSTM introduces the coordinate attention
mechanism, which includes a time-frequency domain
weight allocation layer. By calculating the weights of
time-domain and frequency-domain features, it can
more accurately capture key information in the time-
frequency domain and improve the ability to identify
weak first-arrival signals and the like

(iii) In terms of feature fusion methods, M-Res-LSTM
employs parallel branches and adaptive weight fusion,
enabling collaborative optimization of multi-domain
features such as time and frequency, thus enhancing
the effectiveness and flexibility of feature fusion.

2.2. Dataset and training

To apply the M-Res-LSTM network for automatic first-
arrival picking, seismic data are first transformed to
generate profiles containing amplitude, phase, and
frequency features. Subsequently, these feature profiles are
partitioned into three subsets: the training set, validation
set, and test set, with the respective proportions accounting
for 80%, 10%, and 10% of the total dataset, respectively.
Finally, the network is trained using the training set, the
optimal generalization of the model is achieved on the
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Table 1. Comparison of different network features

Comparison M-Res-LSTM Res-LSTM

Swin-Transformer*’

Meta-learning® MSSPN*

Architecture  Multi-branch parallel Single-branch

architecture and realizing cascaded

dynamic fusion of architecture

time-frequency dual-domain

features via the coordinate

attention mechanism
Input Spatiotemporal signals, Spatiotemporal

amplitude, frequency, phase domain signals signals
Advantages ~ Multi-input supports the

attention mechanism for
accurate noise suppression;
residual-temporal modeling
adapts to seismic wave
propagation

low computational
overhead, and easy
reproduction

Dependency  High-quality labels
Conditions

High-quality labels

U-shaped hierarchical
self-attention architecture meta-training

Spatiotemporal domain

Concise architecture, SW-MSA adapts to
drastic changes in local
first arrivals; Dilated
convolution expands the  matrix filters label noise continuity of first arrivals
receptive field

High-quality labels

Dual-loop Four-stage cascaded
segmentation architecture

framework

Spatiotemporal domain Spatiotemporal domain
signals signals and STA/LTA
feature maps

Only 5-20% of manual VCTE effectively narrows
labels are required, the first-arrival range;
reducing costs; weight ~ mixed loss enhances the

Allowing partial
low-quality labels

Requiring prior
information and
high-quality labels

Abbreviations: LTA: Long-term average; LSTM: Long-Short-Term Memory; M-Res-LSTM: Multi-perspective Residual Long-Short-Term Memory;
MSSPN: Multistage segmentation picking network; Res-LSTM: Residual Long-Short Term Memory; SW-MSA: Shifted window-multihead
self-attention; STA: Short-term average; VCTE: Velocity-constrained trend estimation.

validation set, and the first-arrival picking test is carried out
on the test set. In this study, common shot gather records
are selected as the original seismic data. Theoretically,
common receiver gather records, common offset gather
records, and common midpoint gather records are all
optional. The main steps of the model training process are
described as follows.

2.2.1. Generation of feature profiles

The three instantaneous profiles calculated using the Hilbert
transform can reflect various characteristics of seismic data.
The analytic signal of a seismic signal can be expressed as:*

x(t)=x(t)+ix (t) X)

Where x(t) denotes the real component of the complex
trace, corresponding to the actual seismic record trace;
x* (t) represents the imaginary component of the complex
trace, which is orthogonal to the real component.

Instantaneous amplitude reflects the energy intensity
of a seismic signal at a certain moment, which is usually
related to the reflection coefficient of the stratum. A high
instantaneous amplitude may indicate lithologic abrupt
changes or the presence of fluids.* Instantaneous amplitude
can be expressed as:

A()= (1) +x7 (1) (1)

Instantaneous phase describes the phase state of
a signal, which can identify stratal continuity and

structural features. Abrupt changes may indicate faults or
unconformities:

9(1‘)=tg'1 [x‘(t)/x(t)] (X1I)

Instantaneous frequency is the time rate of change
of the phase and can assist in identifying lithology and
predicting reservoirs:

o(t)=do(t)/dt (XIII)

In the first-arrival picking process, the energy
mutation points of instantaneous amplitude facilitate
the identification of the first-arrival wavefront; the jump
characteristics of instantaneous phase can enhance the
identification of interfaces at the first-arrival time; and
the high-frequency concentration characteristics of
instantaneous frequency help distinguish signal differences
between first-arrival waves and subsequent reflected waves,
thereby providing abundant information for improving the
accuracy of first-arrival picking.

Since first arrivals correspond to the high-amplitude
signals first received by geophones in seismic records,
amplitude serves as their primary characteristic. However,
seismic data may contain noise with frequency and phase
similar to those of effective signals. To suppress such noise,
it is necessary to constrain the instantaneous frequency
and instantaneous phase through amplitude (i.e., seismic
data) to obtain frequency and phase characteristic data.
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2.2.2. Data normalization and cropping

Seismic data and feature data exhibit differences in
dimensions and numerical magnitudes, so it is necessary
to normalize all types of data to enable the network to
better capture the first-arrival features. In this study,
the maximum absolute value normalization method is
adopted, defined as follows:

x = x / max(abs(x)) (XIV)

Before the network training, the seismic data are
segmented into a size of 256 x 256, so as to speed
up the training process and eliminate unnecessary
information.

2.2.3. Network training

Typically, identifying the actual location of the first arrivals
(i.e., the onset) poses a challenge. Therefore, in practical
processing, a fixed phase (such as a wave crest or a wave
trough) is selected as the first-arrival position.” In this
study, the network treats first-arrival picking as a binary
segmentation task. During sample preparation, the first
peak value of the first-arrival wave is taken as the first-
arrival position and labeled as 1 (the first category), while
positions corresponding to all other time points are labeled
as 0 (the second category). Accordingly, the network
employs a binary cross-entropy loss function to quantify
the discrepancy between the network output and the labels
for classification purposes. The loss is defined as the sum
of the losses of all pixels in the training samples within a
mini-batch, expressed as follows:

N

Loss=—%2yilog(p(yi))+(l—y)log(l—p(yi)) (XV)

i=1

Where y stands for the binary label (either 0 or 1), while
p(y) denotes the probability that the output corresponds to
label y.

The network undergoes training through the Adaptive
Moment Estimation (Adam) algorithm, combined with
the back-propagation approach. When the validation set
loss decreases and stays stable over a certain number of
iteration cycles, training halts, and the weights are saved
as training results. The saved optimal weights are then
applied to predict the first arrivals in the test set according
to a specific formula:

Fiw =®(0,,,5%,, ) (XVD)

With @ representing the function of the network.

2.2.4. Performance evaluation

Pixel accuracy serves as a widely used indicator in semantic
segmentation,” defined as the proportion of correctly
labeled pixels relative to the total number of pixels:

k Kk k
PA:ZP;‘:‘ /Zzpij

i=0 j=0

(XVID)

Where p, represents the quakntiiy of pixels for which

class i is inferred as class i, and
: . Zz p, represents all the
pixel points. i=0 j=0

After processing by the deep learning network, the
probability of a point being a first arrival ranges from
0 to 1 (with a maximum of 1 and a minimum of 0). To
determine the first-arrival position, thresholding is first
applied to all seismic traces: if a trace contains no points
with probability exceeding the threshold, the entire trace
is discarded. For traces containing points with probability
exceeding the threshold, the position corresponding to the
original maximum probability is designated as the first-
arrival position. Verified through tests on multiple datasets
with distinct characteristics, the model achieves optimal
overall performance when the threshold is set to 0.4.

2.2.5. Hyperparameter analysis

Thefirst-arrival picking results of the M-Res-LSTM network
are affected by hyperparameters. Therefore, during the
process of training the model, we conducted experiments
on some parameters, including the learning rate, the size
of the kernel matrix, batch size, and the network depth.
During the experiments, only the parameter being tested
was changed while other parameters remained the same,
and the optimal parameters were determined according
to the pixel accuracy value of the validation set. The test
results are shown in Figure 2.

Through the experiments, it can be seen that an overly
large learning rate will make it difficult for the network
to converge, and the phenomenon of back-and-forth
oscillation will occur. For this data, a learning rate of
0.005 has the best effect, as shown in Figure 2A; as
illustrated in Figure 2B, when the kernel matrix size is
5 x 5 of Residual Networks (ResNet), the model achieves
the highest accuracy along with a fast convergence rate;
Figure 2C shows that a larger batch size results in better
generalization performance, though it accordingly
demands more computation time and memory capacity.
Using the network structures of 4xResNet + 4xlstm
and 5xResNet + 5xlstm can both achieve relatively
good accuracy, but a deeper network means that more
memory will be occupied (Figure 2D). Table 2 shows the
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Figure 2. Pixel accuracy curves corresponding to various hyperparameters. (A) Curves of accuracy under different learning rates. (B) Accuracy curves with

varying kernel matrix sizes. (C) Accuracy curves for different batch sizes. (D) Accuracy curves across different model depths.

Table 2. Experimental results of hyperparameters at the
50" epoch

Hyperparameters Variants PA
Learning rate 0.01 0.981
0.005 0.987
0.001 0.984
0.0005 0.977
Batch size 1 0.976
2 0.987
4 0.987
8 0.986
Kernel size (3,3) 0.982
(5,5) 0.987
(7,7) 0.985
Network depth 2+2 0.979
3+3 0.976
4+4 0.987
5+5 0.984

Notes: Values in boldface represent the values corresponding to the
optimal performance for each hyperparameter.
Abbreviation: PA: Pixel accuracy.

pixel accuracy values obtained with different parameters
when 50 epochs of iteration are carried out. Considering
comprehensively the changing trend of the pixel accuracy
value with the epoch (Figure 2) and the final accuracy
(Table 2), the network will be trained with the parameters
of kernel size = 5x5, learning rate = 0.005, batch size = 4,
and 4xResNet + 4xIstm. This parameter combination is
expected to obtain the optimal convergence effect.

Table 3 elaborates on the parameter configurations of
each module within the M-Res-LSTM network, including
the input/output dimensions, channel numbers, and kernel
sizes for submodules such as ResNet, LSTM, and coordinate
attention. It provides a detailed technical blueprint for the
network’s architecture, with a total parameter quantity of
5.73 million, thus enabling the network to efficiently tackle
seismic data processing tasks.

3. Results and discussion

We utilized the M-Res-LSTM network to perform first-
arrival picking on three sets of real seismic data with
distinct characteristics, and compared its prediction
results with those from manual picking and the traditional
energy ratio method. All the training was conducted on
a single NVIDIA GeForce GTX 1080 Ti GPU, using the
TensorFlow framework.

3.1.Data 1

Data 1 consists of small-scale 3D seismic data acquired
in a plain area using dynamite sources. For each shot, 10
receiver arrays were designed, with 60 geophones deployed
in each array, and the maximum offset is 1200 m. Each trace
of the acquired data contains 501 sampling points, with a
sampling interval set to 4 ms, and the effective recording
duration of each trace is 2 s. The work area features hilly
terrain, with surface elevation varying in the range of
92-160 m. Due to the limited coverage range of a single
shot, the impact of topographic relief is relatively minor,
and the first arrivals of seismic waves exhibit an overall
smooth characteristic, providing a favorable foundation
for first-arrival picking. It should be specifically noted
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that the acquired seismic data contain strong industrial
electrical interference and mechanical interference, and
such interference signals have exerted a significant impact
on first-arrival picking for some seismic traces.

The results of the energy ratio method (blue circles),
manual picking (green triangles), and M-Res-LSTM
(red triangles) are displayed on a representative single
shot record, as shown in Figure 3. When the seismic
trace contains clear first arrivals that can be identified
manually, the results of M-Res-LSTM are consistent
with those of manual picking. When the first arrivals are
indistinguishable even to human interpreters (often due to
strong abnormal noise), the model fails to pick them. This
is because training labels cannot provide corresponding
first-arrival positions for such unidentifiable traces. The
energy ratio method attempts to pick every seismic trace,
resulting in messy outputs for traces with unrecognizable
first arrivals. It is reasonable to abandon picking for traces
where first arrivals are unidentifiable (even manually)
than to generate incorrect picks, as erroneous first arrivals
significantly impact velocity modeling, while the absence of
a small number of picks has minimal effect on subsequent
processing.

Figure 4 shows the projections of the first-arrival time
on the seismic data, instantaneous amplitude, frequency
characteristic profile, and phase characteristic profile.
After zooming in on the data in the red box, it can be seen
that the first arrivals are located at the position of the first

continuous strong amplitude and has similar phase and
frequency characteristics. The method proposed in this
paper can accurately pick the first arrivals through these
characteristics. Figure 5 shows the absolute error of each
seismic trace relative to the result of manual picking (only
comparing the picked seismic traces). It can be seen from
the absolute error that the picking effect of the energy ratio
method is not as good as that of M-Res-LSTM.

3.2.Data 2

Data 2 used in this study is 2D seismic data acquired in a
loess tableland area with dynamite sources. Each shot has
800 receiver channels, and the maximum offset is 8000 m.
Each trace contains 751 sampling points with a sampling
interval of 2 ms. From the perspective of the work area’s
geological conditions and data characteristics, the thickness
of the loess layer in the work area varies significantly, with
surface elevation ranging from 1200 to 1800 m and a
maximum elevation difference of 600 m in the region. The
severe topographic relief exerts a significant impact on the
propagation path of seismic waves—not only causing the
first-arrival phase within a single shot to be significantly
disturbed by terrain but also leading to a large first-arrival
time difference between adjacent receiver channels, which
increases the basic difficulty of first-arrival picking. More
critically, affected by the strong scattering of the loess layer
itself and the energy attenuation of seismic waves, the
first-arrival energy of the acquired data is generally weak,
with unobvious onset characteristics. This has become the

Table 3. Detailed parameter table of each module in the M-Res-LSTM network

Network module Submodule Input dimension Output dimension Channel Kernel size
Branch 1/2/3/4 ResNet 256x256x1 256x256x2 [256,128,64,32,16,8,4,2] 5x5
LSTM 256x512 256x256x2 -

Feature fusion Coordinate attention 4x[256%256x2] 256x256x4 4 1x1
Output layer Convolutional Layerl 256x256x4 256%256x2 2 3x3
Convolutional Layer2 256x256x2 256x256x1 1 1x1
Note: Parameter quantity=5.73 million.
Abbreviation: LSTM: Long Short-Term Memory.
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Figure 3. Data 1. (A) Original seismic record. (B) Picking results.
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Figure 5. Absolute errors of the picking results between the energy ratio
method and the method proposed in this paper (for Data 1)

core difficulty in first-arrival picking for this dataset: most
conventional picking methods tend to mistakenly identify
subsequent phases after the first arrival as the first arrival,
resulting in deviations in picking results.

Figure 6A presents a typical original profile, while
Figure 6B displays the picking results obtained through
manual picking (green triangles), the energy ratio method
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g% fs' “( g)g

a @
40 60

Trace number

100

80

(blue circles), and the method proposed in this paper
(red triangles). As observed from the picking results, the
proposed method exhibits high consistency with manual
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picking, whereas the energy ratio method erroneously
identifies the position of the second peak (with stronger
energy) as the first arrival. In addition, the proposed
method successfully picks a small number of noisy traces in
the seismic profile (at the position of the red arrow). This is
attributed to the adoption of multi-trace input for training,
enabling the network to infer first-arrival positions based
on the characteristics of adjacent traces—analogous to the
logic of manual picking. Figure 7 illustrates the absolute

r : ™ r
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Figure 7. Absolute errors of the picking results between the energy ratio
method and the method proposed in this paper (for Data 2)
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errors of the picking results of the two methods. Since the
energy ratio method regards the second peak as the first
arrivals, it has a relatively large absolute error. Similarly,
by projecting the first-arrival time onto the seismic data,
instantaneous amplitude, frequency characteristic profile,
and phase characteristic profile (Figure 8), it can be seen
that the first arrivals exhibit good consistency with these
profiles. On magnification (within the white square), the
proposed network is shown to accurately capture the
amplitude, phase, and frequency characteristics of the first
arrivals. Under the joint constraints of these three aspects,
the accuracy of the picking is ensured.

3.3.Data3

Data 3 is 3D seismic data acquired in the marginal area
of a basin using a vibroseis source. For each shot, 30
receiver arrays were designed, with each array containing
170 receiver channels; the maximum offset exceeds
5000 m, enabling wide-range coverage of deep geological
structures. However, due to the inherent limitation of the
vibroseis source, namely, its limited excitation energy, the
effective seismic wave energy received by geophones far
from the source is significantly weakened, resulting in a
relatively low overall SNR of the data. From the perspective
of the work area’s geological and topographic conditions,
this region features a typical piedmont zone landscape,
with extremely severe surface elevation relief: the elevation

—_
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Figure 8. Projections of the seismic first arrivals on Data 2. (A) Original seismic record. (B) Instantaneous amplitude. (C) Frequency characteristic data.

(D) Phase characteristic data.
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ranges from 300 to 1500 m, and the maximum elevation
difference in the area reaches 1200 m. Such severe
topographic relief leads to a significant increase in the first-
arrival time difference between adjacent receiver channels.
Combined with the data’s inherent issues—weak first-
arrival energy and strong noise interference—this further
complicates first-arrival picking.

To verify the cross-work area generalization ability
of M-Res-LSTM, the model trained on Data 1 and Data
2 was directly transferred to Data 3 without any fine-
tuning. Figure 9A shows a typical shot gather of Data 3,
from which it can be seen that the first-arrival signals of
some receiver channels are completely submerged in noise,
and the energy difference between the first arrivals and
background noise is small. Figure 9B compares the picking
results of manual picking (yellow triangles), the energy
ratio method (green triangles), and the proposed M-Res-
LSTM in this study (red triangles). In Data 3, the energy
ratio method is significantly affected by noise; in contrast,
relying on the time-frequency dual-domain multi-feature
constraint and coordinate attention mechanism, M-Res-
LSTM still achieves favorable picking performance.

Figure 10 presents the absolute errors of the proposed
method relative to manual picking (only valid picked
channels are counted). The average absolute error of the
energy ratio method reaches 5.9 ms, with the maximum
error exceeding 150 ms, which is far beyond the acceptable
range for seismic processing. In contrast, the average
absolute error of M-Res-LSTM is only 1.34 ms, and
the error of more than 87% of the gathers is controlled
within 5 ms, which meets the accuracy requirements
for near-surface inversion. These results indicate that by
virtue of multi-domain feature learning and the attention
mechanism, M-Res-LSTM effectively avoids overfitting
to the features of the training work areas and can adapt
to new work areas with significantly different geological
conditions and noise levels.

3.4. Comparison against deep learning-driven first-
arrival picking methods

To further verify the effectiveness of the proposed method,
this study conducted deep learning-based tests on
1,000,000 seismic traces collected from multiple distinct
work areas, in addition to testing traditional methods.
The evaluation metrics selected include pixel accuracy,
Fl-score, first-arrival time deviation (characterized by
mean absolute error, MAE), picking rate, and single-trace
picking time (unit: milliseconds per trace),"** which
are used to comprehensively assess the performance of
different networks in the seismic first-arrival picking task.
Table 4 presents the performance differences between
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Figure 10. Absolute errors of the picking results between the energy
ratio method and the method proposed in this paper (for Data 3)

Table 4. Comparison of picking results of different networks

Network PA  Fl-score MAE Picking Time
(ms) rate (%) (ms/trace)
Res-LSTM 0.975  0.942 7.8 92.1 0.65
Swin-Transformer 0.983  0.965 6.5 92.7 0.77
M-Res-LSTM 0.985  0.964 59 93.4 0.73

Abbreviation: M-Res-LSTM: Multi-perspective Residual Long
Short-Term Memory; MAE: Mean absolute error; PA: Pixel accuracy;
Res-LSTM: Residual Long-Short Term Memory.
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the proposed M-Res-LSTM network, Res-LSTM-based
networks, and Swin-Transformer-based networks® in
seismic first-arrival picking.

Although Res-LSTM integrates the advantages of
ResNet and LSTM networks, its simple cascaded structure
prevents it from fully exploiting multi-dimensional
information, resulting in limited overall performance and
the lowest values across all metrics. Swin-Transformer
achieves the highest F1-score by virtue of its self-attention
mechanism; however, its single-input design restricts
multi-domain feature fusion capability, and the high
computational complexity of the self-attention mechanism
causes it to underperform M-Res-LSTM in both first-
arrival time accuracy and picking comprehensiveness.

The proposed M-Res-LSTM network in this study
processes spatiotemporal signals, amplitude, frequency,
and phase features in parallel through its multi-branch
structure and coordinate attention mechanism, enabling
comprehensive capture of spatiotemporal features. As
shown in the table data, except for a slightly lower F1-score
than Swin-Transformer, M-Res-LSTM outperforms
Swin-Transformer in PA, picking rate, and single-trace
picking time, with the first-arrival time deviation as low
as 5.9 ms. This indicates that while ensuring classification
accuracy comparable to Swin-Transformer, M-Res-LSTM
achieves better performance in picking efficiency, picking
comprehensiveness, and time accuracy through multi-
domain feature parallel processing and efficient structural
design. It fully verifies the effectiveness of the multi-branch
structure and coordinates attention mechanism in the
seismic first-arrival picking task, and can better balance
accuracy, efficiency, and robustness.

4, Conclusion

The M-Res-LSTM network enables high-precision
automatic picking of seismic first arrivals using time-
frequency dual-domain features and an attention
mechanism. Its multi-branch architecture supports
parallel processing of amplitude, frequency, and phase
features, thereby fully exploiting the multi-dimensional
discriminative information inherent in seismic signals.
The combination of residual modules and LSTM not only
solves the degradation problem of deep networks but also
strengthens the joint capture of spatiotemporal features.
The coordinate attention mechanism effectively suppresses
noise interference by dynamically adjusting feature
weights, reducing the impact of incorrect first arrivals on
subsequent velocity modeling.

Compared with traditional methods, manual picking
achieves relatively high accuracy but suffers from the
drawbacks of being time-consuming and labor-intensive.

Furthermore, its results are significantly influenced by the
experience of interpreters, making it difficult to meet the
requirements of large-scale data processing. In contrast,
the traditional energy ratio method enables automated
processing yet is highly sensitive to the SNR of data,
and tends to produce disorganized picking results or
misjudgments in low-SNR scenarios. When compared
with existing deep learning methods, the M-Res-LSTM
network, leveraging a multi-feature parallel processing
mechanism, exhibits superior robustness in practical
applications compared to the single-branch Res-LSTM
network. Meanwhile, in comparison with the Swin-
Transformer network, although the M-Res-LSTM is
slightly inferior in terms of pixel accuracy, it demonstrates
distinct advantages in the average deviation of first-arrival
time, picking rate, and single-trace computation time,
thereby effectively balancing the accuracy and efficiency
of first-arrival picking. Verified through data processing
across different work areas, the proposed method can
still obtain relatively ideal picking results even in complex
scenarios with low SNR and weak first-arrival energy.

M-Res-LSTM adopts an end-to-end training mode,
requiring no manual intervention. Moreover, as the
amount of training data increases, its transfer ability to
data from new work areas is expected to further improve.
However, the complexity of the network structure makes
its computation time slightly longer than that of simple
models. In the future, efficiency can be optimized through
model lightweighting. In addition, this paper verifies the
effectiveness of time-frequency dual-domain features.
Future research can explore fusion methods of more
features or combine transfer learning to solve the training
problems in small-sample work areas, promoting the large-
scale application of this method under complex surface
conditions.
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Abstract

Seismic full-waveform inversion (FWI) is a powerful technique used in geophysical
exploration to infer subsurface properties. However, FWI often suffers from
challenges such as cycle skipping and sensitivity to uncertainties in seismic
observations. This study aims to tackle these challenges by developing a novel
fully automatic differentiation (AD) strategy for seismic FWI, coupling U-Net-based
reparameterization inspired by the deep image prior concept into a reformulated
wave equation simulation framework utilizing recurrent neural networks (RNNs).
We demonstrate that the U-Net reparameterization serves as a form of implicit
regularization for FWI, mitigating the ill-posed nature of the inversion problem and
enhancing the stability of the optimization process.In addition, the RNN reformulation
offers a flexible approach for backpropagating the FWI misfit, allowing the gradient
with respect to the velocity parameters to be computed using the AD capabilities
inherent in deep learning frameworks. Through extensive experiments on synthetic
datasets, we showcase the regularization effect of our proposed method, leading to
improved inversion results in terms of accuracy and robustness. This study offers a
promising avenue for enhancing the reliability and accuracy of FWI through the lens
of deep learning methodologies.

Keywords: Full-waveform inversion; U-Net; Deep image prior; RNN-based FWI

1. Introduction

Seismic full-waveform inversion (FWI) stands out as a crucial method in geophysical
exploration, allowing for high-resolution reconstruction of subsurface properties.'”
FWTI iteratively refines velocity models by minimizing the difference between synthetic
and observed data, employing gradient descent algorithms with gradients computed
through the adjoint-state method.** Despite its significance, traditional FWI methods
face challenges such as cycle-skipping and ill-posedness, making it difficult to accurately
represent complex subsurface velocity models when initial models are inaccurate and
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observations are incomplete or contaminated with noise.*®
Moreover, computation of gradients in traditional FWI
through the adjoint state method can be cumbersome,
requiring formulation for each wave equation, making
numerical implementation challenging and prone to
errors.>'

Deep learning has emerged as a promising approach
in seismic FWI, offering novel solutions to longstanding
challenges in conventional seismic inversion.''? By
leveraging annotated seismic data pairs consisting of
observed seismogram and corresponding subsurface
models, supervised learning-based FWI methods train
neural networks to learn the complex mapping between
seismic data and subsurface properties."*'* However,
supervised learning FWT heavily relies on the availability
of large volumes of labeled training data. Obtaining such
datasets can be challenging and resource-intensive. Apart
from directly mapping seismic data to inverted models, the
integration of deep learning to aid seismic FWT has been
intensively explored over the recent years. This includes
employing deep learning techniques for tasks such as data
augmentation, model initialization, optimization, misfit
function design, and learned regularization.”>* Supervised
learning FWT shows promise but comes with limitations,
such as reliance on high-quality labeled data and potential
overfitting to specific datasets. In addition, its generalization
to diverse geological settings can be problematic, limiting
its effectiveness in real-world applications.*??

Recent research has shifted toward physics-based deep
learning FWI, where the neural network architecture
or loss function encodes underlying physical principles.
This approach aims to enhance the interpretability
and generalization capabilities of FWI models by
explicitly incorporating prior knowledge of the physics
governing seismic wave propagation.””** Physics-based
deep learning for FWI can be approached in various
ways. First, the utilization of deep learning tools like
automatic differentiation (AD) and optimization methods
has streamlined the FWI process, making it more
straightforward and robust.*'**%% These techniques
reformulate  the  time-marching finite-difference
discretized wave equation as a recurrent neural network
(RNN), which is often referred to as RNN-based FWI. This
approach allows for the automatic calculation of gradients
and facilitates efficient model updates. Second, integrating
the wave equation into neural networks, as demonstrated
by physics-informed neural networks (PINNs), enhances
the ability of neural networks to grasp the fundamental
physics of wave propagation, thereby improving inversion
accuracy.**®® This approach allows the model to leverage
known physical principles, reducing the reliance on large

datasets and improving generalization across different
scenarios. As a result, PINNs-based FWT can offer more
robust solutions in complex subsurface environments,
addressing some of the limitations faced by traditional
methods. Third, the recently developed neural operator
learning methods aim to approximate implicit operators
defined by partial differential equations (PDEs) between
functional spaces.’** These methods can serve as a rapid
surrogate for the wave equation, enhancing the efficiency
of seismic inversion by reducing the need for multiple
wave equation simulations.’**? In addition, the concept
of deep image prior suggests that the architecture of a
neural network itself can act as a potent prior for inversion
tasks.”?* In the realm of linear inversion, the deep neural
network (DNN) parameterization method is referred
to as regularization by architecture, where the spatial
and temporal features of DNNs are harnessed to adjust
inversion results to meet specific expectations.** The
efficacy of regularization by architecture relies, to some
extent, on the meticulous design of network architectures.
In the geophysics community, the use of DNNG, particularly
convolutional neural networks (CNNs), has gained
traction for regularized estimation in FWI. This approach
leverages the inherent structure of CNNs to capture spatial
dependencies in geophysical data, improving the accuracy
and robustness of subsurface model estimations.***!

In this study, we propose a novel seismic FWI
framework with coupling DNNs for reparameterization
and reformulation, termed fully automatic differentiation-
based FWI (FAD-FWI). In this approach, the subsurface
velocity models are reparameterized by the weights of
DNNs and then fed into an RNN-based FWI module.
The seamless integration of these two neural networks
enables FAD, allowing the weights of the DNNs to be
updated by backpropagating the misfit between synthetic
and observed seismograms. The integration of DNNs
and RNNs enhances inversion outcomes by eliminating
the need for manual tuning of regularization parameters
and the reliance on error-prone adjoint state methods.
In addition, the FAD-FWI framework offers flexibility
in handling complex geological structures and can
potentially outperform traditional FWI techniques by
exploiting the strengths of deep learning for regularization
and optimization. By harnessing the hierarchical feature
extraction capabilities of the U-Net, our proposed FAD-
FWI method can effectively map a Gaussian random field
(GRF) input to the inverted velocity model, aligning it with
seismic observations through RNN-based FWI. FAD-FWI
outperforms traditional FWI with lower dependency on
initial model estimations and better robustness in the face
of uncertainties in seismic observations. Through extensive
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experiments on synthetic seismic datasets, we demonstrate
that FAD-FWI provides more accurate subsurface models
and offers greater computational flexibility compared
to conventional FWI methods. The main contributions
of this work are twofold. We propose the FAD-FWI
architecture, which overcomes a key limitation of prior
deep learning-based FWI methods. By employing a linear
activation in the final layer, our model directly outputs
velocity values in a physically realistic range, eliminating
the need for a problem-dependent scaling factor. In
addition, we develop a fully AD framework that seamlessly
integrates a DNN-based model parameterization with
the physics of wave propagation. This unified approach
automatically computes the gradients of the FWI objective
function through both the U-Net and the wave equation
solver, removing the dependency on manually derived and
implemented adjoint-state equations.

2. Methodology
2.1. FWI with regularization

Seismic FWI seeks to estimate subsurface properties by
iteratively updating the velocity model until synthetic
seismic data closely match the observed seismic data.
FWI minimizes an objective function that measures the
discrepancy between recorded and simulated seismic data.
This function typically combines a data-misfit term with
regularization to ensure stability and to guide the solution.
Mathematically, the objective function can be expressed as:

J(m) = %Zs,rd"hs (x,,t;x,)—d_, (xr,t;xs;m)2 + kR(m)

@
Where d, and d_, are observed wavefield and the
calculated wavefield recorded at receivers associated
with sources , respectively. R denotes the regularization
term on velocity model m with weighting coefficient A.
The handcrafted regularization terms, often based on
expert knowledge or empirical observations, help guide
the inversion process toward solutions that are physically
plausible and consistent with prior expectations. However,
these priors can sometimes be overly general, as the
models generated using their associated probability density
functions may encompass a broader range of possibilities
than those specifically relevant to geophysics. As a result,
there is a risk of introducing biases or inaccuracies into
the inversion results, particularly when the priors do not
accurately capture the true distribution of subsurface
properties in the study area.”>* This limitation has
prompted researchers to explore alternative approaches
to regularization that can adaptively incorporate domain-
specific knowledge and better capture the complexities of
subsurface structures in geophysical inversion tasks.

2.2. FWI with U-Net reparameterization

As demonstrated in the seminal work of deep image
prior, a randomly-initialized neural network can serve as
effective prior in inverse problems.** In this study, we
employ U-Net reparameterization for seismic FWI with
the following objective function:

j(e):%Zs’rdobs(x,,t;xs)—dml(x,,t;xs;/\/'(Z;G))z (1)

Where velocity model is reparameterized by a U-Net
N (z; 0) with weights 6 and fixed latent variable z. In this
study, we use a latent variable z generated by GRE In
contrast to traditional FWI with the velocity m updated in
model space, the proposed FAD-FWI updates the U-Net
weights 0 iteratively to match the observed data d , using
a gradient-based optimization method with the gradient
computed through the chain rule as follows:

0 \oo) om o0

Here, we assume the time-marching finite-difference
discretization of the wave equation u, = A(m) u_, + s,
with A(m) being the finite difference coefficient matrix.
In general, regularization by U-Net architecture ensures
that the inverted subsurface models maintain consistency
with observed seismic data while also achieving desired
properties such as spatial coherence and smoothness.?****!
The input to the U-Net-reparameterized FWI consists
of GRF realizations of random latent variables, with
dimensions matching those of the velocity model. In this
study, GRF has a covariance kernel function as follows:

S

s> 0J 0A(m) |

am (I1I)

t=1 aut

21—01
r(o)

Where o is the variance of the Gaussian process, a is
known as the smoothness of GRE** The constants used
in the GRF kernel are determined by the complexity of the
velocity model. Figure 1 presents the GRF latent variables
with different smoothness, (a) a = 1.0, (b) « = 3.0, and
(¢) @ = 5.0, respectively. In this study, we let a = 3.0 for
all experiments. The U-Net architecture consists of an
encoder-decoder structure: the encoder extracts features
through a series of convolutional and downsampling
layers, while the decoder upsamples the features to
recover spatial resolution. Skip connections between
corresponding layers in the encoder and decoder allow for
detailed feature preservation.***” The output of the U-Net
is the predicted velocity model, which is subsequently fed
into the FWI module to ensure that the synthetic data

C,(d)=0’ (Iv)
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match the observed data. In this U-Net reparameterization
scheme, the U-Net serves as a regularizer, leveraging
its inductive biases, such as spatial consistency and
hierarchical feature extraction. These biases help preserve
important structural patterns in the velocity model,
promoting smoother and more geologically plausible
solutions. By incorporating this learned regularization,
the FWI process becomes more stable and less prone to
overfitting, improving the accuracy and robustness of the
inversion results.

2.3. FAD-based FWI

U-Net-reparameterized FWI leverages the inductive biases
of the U-Net architecture, enhancing the accuracy and
robustness of the inversion process. However, challenges
arise when coupling the gradients of DNNs om/0d0 with
that of the PDEs 9dJ/0m, where the former is typically
computed using backpropagation by AD within deep
learning framework,*® whereas the latter is commonly
derived through the adjoint-state method.* Fortunately,
the recently developed RNN-based FWI reformulates FWI

Depth (km) >
e
N
w o

o
]

0.0 0.5 1.0 0.0
Distance (km)

Distance (km)

into an RNN, enabling the gradient calculation of velocity
parameters using AD as well.*** The schematic architecture
of the proposed FAD-FWI is shown in Figure 2, which
seamlessly integrates two parts, with a U-Net architecture
playing a pivotal role in reparameterizing the velocity
model and an RNN enabling the gradients with respect
to inversion parameters calculated by AD in a modern
deep learning framework. This integrated approach holds
promise for overcoming traditional FWI limitations
and advancing the capabilities of seismic imaging in
characterizing subsurface properties. In our proposed
framework, two neural networks are combined, allowing
the gradient of the cost function with respect to the U-Net
weights to be fully computed through AD. This seamless
gradient calculation eliminates the need for manual
derivation of adjoint equations, enabling efficient updates
to the U-Net weights during the inversion process. This
is why we refer to the method as FAD-FWI, as it takes
advantage of AD to optimize both the velocity model and
neural network parameters simultaneously, streamlining
the FWI workflow.

1.0 0.0 0.5 1.0
Distance (km)

Figure 1. The Gaussian random field latent variables with different smoothness: (A) a = 1.0, (B) a = 3.0, and (C) a = 5.0, respectively
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Figure 2. The schematic architecture of the proposed FAD-FWI. The GRF latent variable is fed into an encoder to generate a fused feature map, which
is decoded and subsequently directed into an RNN-FWI module. The gradient of the cost function with respect to the U-Net weights is fully computed

through AD. The plot of the RNN-based FWI module is adopted from Ref.?*

Abbreviations: AD: Automatic differentiation; FAD: Fully automatic differentiation; FWI: Full-waveform inversion; GRF: Gaussian random field;

RNN: Recurrent neural network.
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3. Numerical examples
3.1. FAD-FWI regularized by U-Net architecture

In the first experiment, we aim to demonstrate the
advantages of our proposed FAD-FWI framework
regularized by the U-Net architecture compared to
generative neural networks (GNNs). Specifically, we seek to
verify that the inductive biases of U-Net, such as its ability
to capture spatial hierarchies and maintain structural
consistency, provide more robust regularization, and lead
to more accurate velocity model predictions. By comparing
the performance of FAD-FWI with U-Net regularization
against GNN, we will highlight its effectiveness in
producing geologically plausible models while improving
the stability and convergence of the inversion process.
The optimization configuration is consistent across all
experiments. We use the Adam optimizer to minimize
the objective function. The learning rate is set to 0.01 and
kept constant throughout the inversion process. Each
experiment is run for a fixed budget of 2000 iterations,
which is empirically determined to be sufficient for the loss
to converge in all tested scenarios.

We utilize an angular unconformity geological model
shown in Figure 3A to demonstrate the superiority of
our proposed FAD-FWI framework, regularized by the
U-Net architecture (FAD-FWI-U-Net), in comparison to

© Depth (km) >

™ Depth (km)

Depth (km)

the version regularized by a GNN (FAD-FWI-GNN) with
varying scaling factors as developed by Zhu et al.*® The
scaling factors are critical for mapping the bounded output
of the neural network to the physically meaningful range of
velocity models. As pointed by Zhu et al.,’ applying scaling
factors to the output of neural networks depends on the
physical parameters and units. The final layer of the neural
network used a Tanh activation function, which constrains
its output to the range [-1, 1]. To map this bounded output
to a meaningful velocity perturbation, a scaling factor is
required. In contrast, our primary proposed method, FAD-
FWI-U-Net, uses a linear activation (i.e., no activation
function) in its final layer. This is a significant advantage,
as it allows the network to output velocity values in an
unbounded range directly, without the need to assume or
tune a predefined scaling factor. This makes FAD-FWI-U-
Net more robust and easier to apply to new datasets where
the appropriate velocity range may not be known a priori.

Figure 3A and B present the velocity model and a
homogeneous initial model for FWI, respectively. The
seismic acquisition configuration includes a total of 20
shots indicated by red stars and 256 receivers indicated
by white dots, as shown in Figure 3B. The inverted
velocity model obtained by FAD-FWI-U-Net is displayed
in Figure 3C, showcasing good agreement with the true
model in Figure 3A. Figure 3D-F depicts the recovered

"FAD-FWI-GNN (scaling:100) -

0 025 05 075 1
Distance (km)

1.25

0 025 05 075 1
Distance (km)

Figure 3. Comparison of inverted velocity models obtained using the proposed FAD-FWI-U-Net and FAD-FWI-GNN with different scaling factors.
(A) The angular unconformity geological model; (B) homogeneous initial model; (C) inverted model by FAD-FWI-U-Net, and the inverted models by
FAD-FWI-GNN with scaling factor of 100 (D), 1000 (E), and no scaling (F).
Abbreviations: FAD: Fully automatic differentiation; FWT: Full-waveform inversion; GNN: Generative neural network.
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velocity models obtained by FAD-FWI-GNN with scaling
factors of 100, 1000, and no scaling, respectively. Our
results illustrate that FAD-FWI-U-Net can accurately
reconstruct the velocity model without the need for
predefined scaling, whereas FAD-FWI-GNN requires
appropriate scaling for successful inversion; otherwise, it
fails to accurately recover the velocity model. In addition,
even after removing the Tanh activation in FAD-FWI-
GNN, the inversion result shown in Figure 3F remains
inferior to that of our proposed FAD-FWI-U-Net shown
in Figure 3C. This difference is primarily due to the U-Net
architecture, which effectively captures spatial hierarchies,
preserves structural consistency, and offers more robust
regularization for FWI. Figure 4 shows the loss curves for
the proposed FAD-FWI-U-Net and FAD-FWI-GNN with
scaling factors of 100, 1000, and no scaling. The results
indicate that our proposed FAD-FWI-U-Net achieves a
faster convergence rate after 500 iterations and a lower
L1 error compared to FAD-FWI-GNN across different
scaling factors. The impact of DNN architecture on
parameterized FWI is a promising area for exploration in
future work.

3.2. FAD-FWI across initial models

The second experiment focuses on evaluating the
sensitivity of the proposed FAD-FWI method to the initial
model estimation. Traditional FWI methods are often
highly dependent on an accurate initial model; they tend to
perform poorly when initialized with a less accurate model.
In contrast, our FAD-FWI method, utilizing U-Net for
parameterization, provides a strong regularizer that helps
mitigate this dependency, enhancing inversion results even
with suboptimal initial models. This robustness highlights
the potential of our framework to improve inversion
accuracy in challenging scenarios where initial model
quality is compromised. In this experiment, we compare
our proposed FAD-FWI method with traditional FWI
implemented using Deepwave (https://ausargeo.com/
deepwave/) and referred to as DW-FWT for simplicity.

Figure 5 presents the Marmousi velocity model, along
with three different initial velocity models: smoothed
model, smoothed 1D model, and homogeneous model,
respectively. The acquisition configuration consists of 20
shots and 256 receivers, positioned at a depth of 85 m.
Figure 6 presents the inverted velocity models obtained
by DW-FWI and the proposed FAD-FWI with three
different initial velocity models as shown in Figure 5. As
the accuracy of the initial models decreases, the inversion
results from DW-FWI deteriorate significantly. In contrast,
our FAD-FWI approach achieves acceptable inversion
results even when starting from a homogeneous initial
model. Figure 7 depicts the comparison of the extracted
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~——— FAD-FWI-GNN (scaling:100}
—— FAD-FWI-GNN {5¢aling:1000)
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0.030
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L1 Loss
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0.010 1
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Iterations
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Figure 4. Comparison of the loss curves of the proposed FAD-FWI-U-
Net and FAD-FWI-GNN with scaling factors of 100, 1000, and no scaling.
We observe that FAD-FWI-GNN with a scaling factor of 100 fails to
converge to lower L errors due to improper scaling.

Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform
inversion; GNN: Generative neural network.
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Figure 5. The Marmousi velocity model (A), along with three different
initial velocity models: (B) smoothed model, (C) smoothed 1D model,
and (D) homogeneous model. The acquisition configuration consists of
20 shots marked by red stars and 256 receivers by white dots, positioned
at a depth of 85 m.

traces from Figure 6 at 0.25 km, 0.5 km, 0.75 km, and
1.0 km. It indicates that DW-FWI struggles to recover
the velocity model when provided with an inaccurate
homogeneous initial model, while the proposed FAD-FWI
method still achieves satisfactory results, although with a
slightly degraded quality. Figure 8 depicts the loss curves
of DW-FWI and the proposed FAD-FWI with different
initial velocity models. It is evident that conventional
FWI without regularization exhibits a faster convergent
rate at the early stages. However, the proposed FAD-FWI,
which incorporates regularization by U-Net architecture,
demonstrates lower L, errors overall. We further conduct
sensitivity analysis of DW-FWI and the proposed FAD-
FWI given a smoothed 1D initial model with different
velocity perturbations from —30% to +30%. The inverted
velocity models are displayed in Figure 9. The implication is
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that DW-FWT is more susceptible to velocity perturbations
compared to FAD-FWI. This experiment demonstrates the
robustness of the proposed FAD-FWI to variations in the
initial model estimation.

(=}

DW-FWI (Smooth)

FAD-FWI (Smooth)

DW-FWI (Smooth 1D) FAD-FWI (Smooth 1D)

Depth (km) ™M Depth (km) © Depth (km) 3>

0 025 05075 1 125 0 025 05 095 1 125
Distance (km) Distance (km)

Figure 6. Comparison of inverted velocity models obtained using
DW-FWI (A, C, E) and the proposed FAD-FWI (B, D, F) with different
initial velocity models shown in Figure 5. From top to bottom, the rows
correspond to inverted models with the smoothed model, smoothed 1D
model, and the homogeneous model.

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation;
FWTI: Full-waveform inversion.

3.3. FAD-FWI across uncertainties in seismic
observations

In our third experiment, we apply FAD-FWI to the 2D
Overthrust velocity model, as depicted in Figure 10, in
the presence of uncertainties in seismic observations such
as noise and incomplete frequency components. We use
a smoothed 1D initial model shown in Figure 10B for all
tests. The acquisition configuration for this experiment
is the same as in the previous experiments, with 20 shots
and 256 receivers positioned at a depth of 85 m. Figure 11
presents shot gathers under various uncertainties in
seismic observations, including clean and noisy data,
as well as complete and incomplete data with missing
frequencies below 2.5 Hz. The extracted traces at the
left-most position, along with their spectra, are displayed
alongside the shot gathers.

In this experiment, we perform FWI under conditions
of uncertainty in seismic observations, including noise and
incomplete frequency components. Figure 12 compares
the inverted velocity models obtained by DW-FWT using
different seismic observations with clean and noisy data,
as well as complete and incomplete data with missing
frequencies below 2.5 Hz. In this scenario, DW-FWI
demonstrates acceptable performance with clean

- TR
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Figure 7. Comparison of the traces extracted from the inverted velocity models shown in Figure 6 at four trace locations. From top to bottom, the rows
correspond to trace positions at 0.25 km (A, B, C), 0.5 km (D, E, F), 0.75 km (G, H, I), and 1.0 km (], K, L). From left to right, the columns correspond to
smoothed model (A, D, G, J), smoothed 1D model (B, E, H, K), and homogeneous model (C, E I, L).
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; FWI: Full-waveform inversion.
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observations; however, its accuracy declines significantly
when the seismic data are contaminated with random
noise. It fails to recover the velocity model effectively when
faced with both noisy data and missing low-frequency
components. Figure 13 compares the inverted velocity
models obtained using the proposed FAD-FWI with
different seismic observations. The FAD-FWI method
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—— FAD-FWI (Smooth)
‘ —— DW-FWI (Smooth_1D)
0.04 —— FAD FWI {Smooth_1D)
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1%]
g |
-
—
— 0.021
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0.00 . . . . -
0 250 500 750 1000 1250 1500 1750 2000
Iterations

Figure 8. Comparison of the loss curves of DW-FWTI and the proposed
FAD-FWI with different initial velocity models.

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation;
FWI: Full-waveform inversion.
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demonstrates robust performance, maintaining high-
quality inversion results even as data quality degrades
due to noise or incomplete frequency information.
This resilience highlights the effectiveness of FAD-FWI
in handling challenging data conditions. We provide
quantitative evaluation metrics in Table 1 to assess the
performance of the proposed FAD-FWI. The quantitative
metrics mean squared error (MSE), structural similarity
index measure (SSIM), and peak signal-to-noise ratio
(PSNR) are defined by:
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Where _and x are the mean intensities, and o and
O'j are the variances of true model and the inverted model,
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Figure 9. Sensitivity analysis of DW-FWTI and the proposed FAD-FWI given smoothed 1D initial model with different velocity perturbations. The first
column denotes the inverted models from DW-FWI with —10% (A), —20% (E), and —30% (I) deviated from the smoothed 1D initial model shown in
Figure 5C. The second column denotes the inverted models from FAD-FWI with velocity perturbations of —10% (B), =20% (F), and —30%(J). The third
and fourth columns correspond to the inverted models from DW-FWI and FAD-FWI with velocity perturbations of +10% (C and D), +20% (G and H),

and +30% (K and L), respectively.

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; FWI: Full-waveform inversion.
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Figure 10. The Overthrust velocity model (A) and the smoothed 1D initial
model (B). The acquisition configuration consists of 20 shots marked by
red stars and 256 receivers by white dots, positioned at a depth of 85 m.
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respectively. C, and C, are small constants stabilizing the
division. The overall SSIM index is the mean of the SSIM
values across all windows. The SSIM value ranges from -1
to 1, and a value of 1 indicates perfect structural similarity.
This quantitative comparison suggests that the proposed
FAD-FWI is more robust than DW-FWI in scenarios
where observations lack low-frequency components and
are contaminated by noise. In addition, we compare the
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Figure 11. Shot gathers under various uncertainties in seismic observations, including clean data (A), clean data with missing frequencies below 2.5 Hz
(B), noisy data with random noises ¢ = 0.5¢, (C), and noisy data with missing frequencies below 2.5 Hz (D). The extracted traces at the left-most position,

along with their spectra, are displayed alongside the shot gathers.
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Abbreviations: DW: Deepwave; FWI: Full-waveform inversion.
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Figure 13. Comparison of inverted velocity models obtained using FAD-FWI given different observations with clean data (A), clean data with missing
frequencies below 2.5 Hz (B), noisy data with random noises o = 0.560 (C), and noisy data with missing frequencies below 2.5 Hz (D).
Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform inversion.

Table 1. Quantitative evaluation metrics of the inverted
velocity models obtained using DW-FWI and the proposed
FAD-FWI under varying uncertainties in seismic
observations

Methods Metrics MSE SSIM PSNR
DW-FWI Full data 113.94 0.99 50.55
Filtered data 200.87 0.98 48.09
Noisy data 317.46 0.96 46.10
Filtered noisy data 318.96 0.96 46.08
FAD-FWI Full data 124.59 0.99 50.16
Filtered data 132.03 0.99 49.91
Noisy data 186.22 0.98 48.41
Filtered noisy data 180.29 0.98 48.55

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation;
FWI: Full-waveform inversion; MSE: Mean squared error; PSNR: Peak
signal-to-noise ratio; SSIM: Structural similarity index measure.

runtime and memory usage for both DW-FWI and
FAD-FWI. On an NVIDIA GeForce RTX 3080Ti (12 GB)
GPU, the traditional DW-FWI method completed in 8 min
and 31 s with a peak memory usage of 5.3 GB. In
comparison, our proposed FAD-FWI method required
9 min and 6 s and 6.4 GB of memory. This represents a
modest increase in runtime and memory usage for FAD-
FWI, which is a reasonable trade-oft given its significant
improvements in accuracy and stability, as demonstrated

by the quantitative metrics in Table 1.

4. Discussion

Our study proposes the FAD-FWI framework, an
innovative approach to FWI that leverages U-Net
reparameterization within an RNN-based paradigm.
This approach demonstrates potential in handling
challenging scenarios where conventional FWT struggles,
such as noisy seismic data with missing low-frequency
components and imprecise initial models. While the
results affirm the robustness and flexibility of FAD-FWI,
the method also presents some limitations and potential
areas for enhancement. The primary bottleneck of the
proposed FAD-FWI framework lies in the memory
requirements associated with the RNN-based FWI. Using
reverse-mode AD to compute gradients requires storing
intermediate variables at each step, which significantly
increases memory demands.””>* This constraint can
be addressed by employing efficient boundary-saving
techniques and checkpointing, which reduce memory
requirements by selectively saving intermediate steps at
the cost of increased computational overhead.*” Balancing
this trade-off between memory and computational
demand is crucial for scaling FAD-FWT to larger, more
complex models.

Furthermore, our FAD-FWI framework is general and
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flexible, providing a foundation for integrating DNN-
based parameterization and reformulation within FWI
workflows. This versatility suggests promising applications
beyond single-physics inversion. The framework can be
extended to multi-physics coupled inversion and multi-
data joint inversion, allowing for the incorporation
of complementary data types (e.g, electromagnetic,
gravitational) to improve the resolution and accuracy of
subsurface models.”***' Such extensions could enhance
imaging and characterization in diverse geophysical
applications, from reservoir monitoring to mineral
exploration. In summary, the proposed FAD-FWI
framework addresses some key challenges in FWI and
shows potential for broad applicability. Future work will
focus on optimizing memory efficiency and extending the
FAD-FWI framework to multi-physics and joint inversion
scenarios, further advancing seismic inversion and
subsurface imaging capabilities in geophysics.

5. Conclusion

This study introduces a novel FAD-FWI framework
that couples U-Net reparameterization within an RNN-
based paradigm. Through a series of experiments, we
demonstrated the superiority of our proposed FAD-FWI
over conventional DW-FWI approach without DNN
reparameterization, highlighting its robustness in scenarios
with inaccurate initial models and in the presence of
uncertainties in seismic observations, such as noise and
missing frequency components. Recovering a velocity
model from noisy seismic observations that lack low-
frequency components and begin with a rough initial model
is typically very challenging for conventional FWI methods.
However, our proposed FAD-FWI achieves impressive
performance in this demanding scenario. Our findings
underscore the potential of deep learning techniques to
significantly improve seismic inversion processes, thereby
advancing subsurface imaging capabilities and contributing
to more accurate geophysical explorations.
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Abstract

Quantitative prediction of petrophysical parameters, such as porosity, is crucial for
the evaluation and development of coalbed methane (CBM) reservoirs. However,
conventional methods based on linear assumptions and empirical formulas often
fall short due to the strong heterogeneity of coal seams, complex lithologies
and structures, and the highly non-linear relationship between seismic elastic
parameters and reservoir properties under deep-buried conditions. While machine
learning techniques have shown promise in petrophysical prediction, many
existing approaches struggle to effectively capture long-range dependencies
within sequential log data. This study proposes a deep learning-based method that
integrates comprehensive input feature selection with a bidirectional long short-
term memory (Bi-LSTM) network incorporating dropout regularization for enhanced
petrophysical parameter prediction. The proposed method is designed to fully
exploit the non-linear mapping between seismic elastic parameters (e.g., P-wave
velocity, S-wave velocity, density, elastic impedance) and petrophysical parameter
(porosity). By combining the bidirectional contextual learning capability of Bi-LSTM,
the model effectively captures feature relationships within depth sequences.
Comparative analysis against a fully connected neural network and a standard LSTM
network demonstrates the superiority of the proposed method. The analysis also
reveals the optimal feature combination and network parameter setting (sequential
length, sampling interval, etc.). Results indicate that the Bi-LSTM model achieves a
significant improvement in prediction accuracy, outperforming other models, and
demonstrating better generalization capability in blind well tests. The method
provides a reliable and effective tool for quantitative reservoir characterization,
offering substantial potential for application in deep CBM exploration.

Keywords: Deep coalbed methane; Porosity prediction; Deep learning; LSTM network

1. Introduction

Coalbed methane (CBM), as an important component of unconventional natural gas,
is currently one of the hotspots in natural gas exploration.' Its efficient exploration and
development have become a critical pathway for increasing reserve and optimizing
energy structure.” Petrophysical parameters of CBM reservoirs, such as porosity,
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are key for characterizing reservoir quality, predicting
production potential, and formulating development
plans.>* Previous studies calculated and predicted
reservoir porosity in unknown intervals by establishing
empirical formulas or simplified geological models.®
However, due to factors such as strong coal heterogeneity,
complex reservoir structure, and ambiguity in well log
responses,*” conventional seismic prediction methods
based on linear assumptions or statistical relation are
limited for detailed quantitative reservoir evaluation.®!!
Particularly in deep CBM exploration, high temperature
and pressure conditions further intensify the non-linear
characteristics of rock physics relationships, making
conventional prediction methods inadequate for refined
reservoir characterization.'" In general, the heterogeneity
and complexity of CBM reservoirs cause the relationship
between porosityand elastic parameters to vary significantly
under different geological conditions. Traditional linear
methods are unable to adapt to these variations, resulting
in reduced prediction accuracy. Therefore, the accurate
formulation of non-linear relation between seismic elastic
parameters and petrophysical parameters is crucial for the
quantitative evaluation of deep CBM reservoirs.

With the rapid development of artificial intelligence,
an increasing number of machine learning methods have
been applied to porosity prediction. Wu et al.'* used an
optimized RBF neural network to predict reservoir porosity
models from well data, achieving high prediction accuracy.
Ahmadi et al.® proposed a GA-LSSVM model optimized
by a genetic algorithm for reservoir porosity prediction to
establish more reliable static reservoir simulation models.
Zerrouki et al.'* employed an artificial neural network
combined with a fuzzy ranking method to predict fracture
porosity. Cao et al.”” investigated the use of an extreme
learning machine for estimating porosity and permeability
in heterogeneous sandstone reservoirs. Zou et al.*® utilized
a random forest-based method to predict pore distribution
in subsurface reservoirs.

In recent years, the rapid development of deep learning
technology has demonstrated significant potential in
geophysical exploration.?* Deep learning techniques
possess powerful feature extraction and high-dimensional
data processing capabilities, enabling effective mining
of deeper features from large datasets.** Their strong
ability to learn complex non-linear relationships allows
for more accurate approximation of the highly non-linear
relationships between seismic/elastic data and target
parameters.” Wang et al.”’ employed a Gaussian Mixture
Model Deep Neural Network for porosity prediction, with
experimental results showing its capability to reasonably
estimate porosity distribution across the entire target

area. Wu et al.*® proposed a joint inversion method based
on fluid factor and brittleness index. They developed
a new P-P wave reflection coefficient approximation
formula specifically for coal-measure gas reservoirs
and combined it with a Bayesian inversion framework,
effectively enhancing the comprehensive evaluation
of gas-bearing potential and fracability.® Liu et al.”
incorporated a low-frequency porosity model into a deep
learning framework, significantly improving the trend
continuity and generalization ability of porosity prediction
in carbonate reservoirs. Zhang et al.** optimized the pore
aspect ratio using the deep learning network aided by the
Hunger Games Search algorithm to achieve joint inversion
of multiple parameters in tight sandstone reservoirs,
effectively improving the accuracy and reliability of rock
physics modeling and inversion. Sun et al.*' proposed a
CNN-Transformer model aimed at improving the accuracy
and generalizability of log-based porosity prediction.
Tao et al.** introduced a UNet-based bidirectional neural
network method to establish a mapping relationship
between seismic data and porosity. While these methods
have, to some extent, improved the accuracy and
interpretability of porosity prediction under complex
reservoir conditions, they cannot effectively handle long-
range information in sequence data and fail to capture the
relationships of reservoir features in deep sequences.

To address the aforementioned issues, this paper
proposes a method combining input feature selection and a
bidirectional long short-term memory (Bi-LSTM) network
for petrophysical parameter prediction. Comparisons are
made with fully connected neural (FCN) networks and
unidirectional LSTM networks. The proposed method
not only fully exploits the non-linear relationship between
seismic elastic parameters and reservoir petrophysical
parameters, but is also more sensitive to the contextual
correlations within reservoir information sequences.
Consequently, it can accurately capture the relationships
of reservoir features within depth sequences. Furthermore,
the analysis on feature selection and network parameter
setting (such as sequence length and sampling interval)
also provided practical guidance for deep learning-based
seismic prediction of CBM reservoirs.

2. Methodologies
2.1. Fully-connected neural network

FCN network is a basic form of deep learning networks.
FCN is composed of multiple layers of neurons, where
each neuron in the current layer is connected to every
neuron in the subsequent layer. A typical neuron receives
multiple input signals, computes their weighted sum,
introduces non-linearity through an activation function,
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and ultimately produces an output signal. This process can
be mathematically expressed as:

y :f(iwixi +b) D

Where x, represents the input signal; w, denotes the
weight of the input signal, reflecting its importance to
the neuron output; b is the bias term, which adjusts the
activation threshold of the neuron; # is the dimensionality
of the input features; f{") is the activation function, which
provides non-linear transformations; and y is the output
signal of the neuron. Figure 1 shows a schematic diagram
of a simple FCN network with an input feature of three
dimensions, an output of one dimension, and three hidden
layers.

The training of an FCN network involves four key
steps.**** First, in forward propagation, input feature passes
through the network, undergoing weighted sums and
activation functions at each layer to generate a prediction.
The loss function then compares this prediction to the true
value. Next, backpropagation calculates the gradient of the
loss with respect to all network parameters using the chain
rule. Finally, these gradients are used by an optimization
algorithm to update the weights and biases. This cycle
repeats until the loss converges or a maximum iteration is
reached.

2.2. Long short-term memory

The long short-term memory (LSTM) network is featured
by capturing long-term dependencies in sequential data by
introducing a gating mechanism.* The core component of
an LSTM is a memory cell, which contains three gates: a
forget gate, an input gate, and an output gate. These gates
regulate the flow of information into, within, and out of
the cell, enabling the network to learn and maintain long-
range dependencies. The structure of a single LSTM cell is
illustrated in Figure 2.

The procedure of an LSTM network can be summarized
in the following steps:

/

Input layer

Hidden layer

Q,//
N
AN/

Figure 1. Structure of a simple fully connected neural network

Step 1—Compute the forget gate: This gate determines
what information to discard from the cell state, indicating
the degree of information retention. It is computed using
a sigmoid activation function, which produces an output
between 0 and 1 as:

fi=0W, [h_,x]+b)) (I1)

Where f is the output of the forget gate; o is the sigmoid
activation function; h _ and x, represent the hidden state
from the previous timestep and the input at the current
timestep, respectively; W, and b, represent the weight
matrix and bias term of the forget gate.

Step 2—Compute the input gate: This gate decides
what new information will be stored in the cell state. The
calculations take the form as:

i, =c(W,-[h_,x,]+b,) (111)

¢, =tanh(W_-[h_,,x,]+b.) (V)

Where i, is the activation vector of the input gate,
determining which values to update; C, is the candidate
value vector, determining the new values to be added; is
the hyperbolic tangent activation function; W, W, b,and b,
represent the weight matrices and bias terms for the input
gate and candidate values, respectively.

Step 3—Update the cell state: The cell state, which
embodies the long-term memory of the model, is updated
as follows:

G :ft'ct—l_’—lt’ct

V)

Where c, is the current cell state; f, is the output of the
forget gate, representing the information to be discarded;
c., is the cell state from the previous timestep; i, is the
activation vector of the input gate, representing the
information to be updated; and C, is the candidate value
vector.

Step 4—Compute the output gate: This gate determines
the value of the next hidden state. The hidden state contains
information about the previous timestep and can be used
for predicting the output at the next timestep as:

o,=c(W -[h,_,x]+b) (VD)

h, =o, -tanh(c,)

Where o, is the output of the output gate; h is the hidden
state at the current timestep; and W and b represent the
weight matrix and bias term of the output gate.

(VID)

In particular, the Bi-LSTM network is an extension of the
standard LSTM. It incorporates two separate LSTM layers:
One processing the input sequence in the forward direction
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Figure 2. Structure of a single long short-term memory cell

and the other processing it in the reverse direction. The
final output is generated by merging (e.g., concatenating or
summing) the outputs from both directions (Figure 3). This
architecture enables the model to capture dependencies
from both past and future contexts simultaneously.

2.3. Activation and loss functions

The activation function is a crucial component in neural
networks. Its primary role is to introduce non-linearity,
enabling neural networks to learn and represent complex
non-linear relationships. Common activation functions
include the ReLU function, the Tanh function, and the
Sigmoid function. Here, we employ the ReLU function as
the activation function, which takes the form as:

f(x) =max{0,x} (VIII)

The loss function, aiming at training neural networks,
quantifies the discrepancy between model predictions and
true values, thereby driving the optimization of network
parameters. Here, we employ the mean squared error to
formulate the loss function, which takes the form as:

_iilzd:( ?ﬂ_
TN&ag

Where L, represents the average loss over the entire

) (IX)

LMSE

training batch, )’j-i) is the predicted value, yj.i) denotes

the ground truth labels, N is the number of samples in the
batch, and d indicates the dimensionality of the vectors.

2.4. Workflow

In this study, two different deep learning networks—FCN
and LSTM—were employed for predicting petrophysical

parameters from well log data. The overall workflow is
illustrated in Figure 4. First, after acquiring true log data,
dataset preparation was conducted, analyzing the effect
of different intervals and sampling rates on prediction
accuracy. Subsequently, feature selection was performed
using various combinations of elastic parameters from
the log data—such as S-wave velocity, P-wave velocity,
density, P-to-S-wave velocity ratio, S-wave impedance, and
P-wave impedance—as inputs, while using porosity as the
network output, to identify the optimal combination of
input features for training. Then, the prediction accuracy
of the two network models was compared to determine
the more suitable model for petrophysical parameter
prediction, wherein the effect of sequence length of LSTM
on prediction accuracy was also analyzed. Finally, blind
well testing was conducted to evaluate the effectiveness of
the proposed method. In addition, an attempt was made
to introduce Bi-LSTM to enhance prediction accuracy and
incorporate dropout to mitigate overfitting during model
training.

3. Tests and applications
3.1. Dataset preparation

A total of 45,606 data points from well log measurements
acquired across six wells in the study area were compiled
to form the dataset. The data underwent min-max
normalization, scaling all feature values to the range of 0
to 1. Outliers were removed based on the 3o rule. These
preprocessing steps ensured data quality and provided
a reliable foundation for model training. The data were
measured from a deep CBM reservoir in north China,
with the target coal layer buried at a depth around 2000 m.
It includes data from different geological settings, such as
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Output layer

Input layer

Figure 3. Structure of bidirectional long short-term memory cell
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Figure 4. Workflow of the study
Abbreviations: Bi-LSTM: Bidirectional long short-term memory; FCNN: Fully connected neural network; LSTM: Long short-term memory

varying coal thickness, fracture development, and pore
structures. This diversity provides a solid foundation
for model training and validation, ensuring prediction
accuracy and generalization under different geological
conditions. The log curves and corresponding lithofacies
interpretations for the selected Well B and Well C are shown
in Figures 5 and 6, respectively, which exhibit a complex

relationship between elastic and petrophysical properties,
especially for coal sections. These data points, which
include all necessary variables, are suitable for training
and testing our models. This study used 80% of the data
for training and 20% for validation, with random splitting
to ensure consistent distribution between training and
validation sets, thereby improving model generalization.
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Figure 5. Log curve of P-wave velocity (A), S-wave velocity (B), density (C), porosity (D), and lithofacies interpretation result (E), for Well B
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Figure 6. Log curve of P-wave velocity (A), S-wave velocity (B), density (C), porosity (D), and lithofacies interpretation result (E), for Well C

The selection of the dataset for training plays a crucial
role in the accuracy and reliability of the network. We
conducted a preliminary analysis on the effect of using
different stratigraphic sections and sampling intervals
on prediction accuracy. The analysis was performed on
standard FCN networks with P-, S-wave velocities, and
density as input features and porosity as output. The
root mean square error (RMSE) and the coefficient of
determination (R*) from various wells were employed
as evaluation metrics for prediction performance. As
evidenced by the data presented in Figure 7 and Table 1,

utilizing the coal section for training can effectively
enhance model accuracy. It is due to the highly non-linear
relation between elastic properties and porosity primarily
exists in coal sections. Moreover, the analysis suggests that
appropriately increasing the sampling interval can reduce
the prediction error (Figure 8 and Table 2).

3.2. Feature selection

To determine the optimal input features for training, we
evaluated five combinations of elastic parameters, i.e.,
[V, V], [V, Vg pl, [V, Vg po VIV, [V, Vg py VIV,
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Figure 7. Prediction accuracy in term of root mean square error (A) and R* (B) using the training data from different stratigraphic sections
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Figure 8. Prediction accuracy in term of root mean square error (A) and R? (B) using the training data with different sampling intervals (0.1, 0.5, and 2.5 m)

Table 1. Prediction accuracy with different stratigraphic sections

Stratigraphic section Mean RMSE Mean R?
Entire section 0.0578 0.4429
Coal section 0.0639 0.5714

Abbreviation: RMSE: Root mean square error.

Table 2. Prediction accuracy with different sampling intervals

Sampling interval Mean RMSE Mean R?
0.1 m 0.0578 0.4429
0.5m 0.0576 0.4706
2.5m 0.0470 0.6279

Abbreviation: RMSE: Root mean square error.

ZP], and [V, V, p, V/V,, Z, Z]. Each combination was
used to train the network, and the model performance was
validated using test data. When selecting certain wells for
testing, the remaining wells are used to train the model. In
this experiment, Wells B, D, and F within the study area
were selected as the test data, respectively. The true and
predicted values were recorded, and the corresponding
scatter plots were shown in Figures 9-11. The RMSE and

R? were calculated to assess the prediction accuracy and
identify the optimal input feature combination. To enhance
the training outcome, data sampled at an interval of 2.5 m,
as suggested by the analysis in Section 3.1, was adopted as
the dataset for this experiment.

As observed from the scatter plots in Figures 9-11, the
prediction accuracy varies with different combinations of
input features, which can be inferred by comparing the
predicted against true values with the diagonal reference
line. Figure 12 and Table 3 present a comparison of
prediction accuracy under these different combinations.
The results indicate that using Combination 5—that is, the
six parameters V,, V, p, V,/V, Z, Z_ as input features—
yields the best performance, achieving an average RMSE of
0.0647 and an average R” of 0.6574, which represents the
highest relative accuracy among the five combinations. To
better illustrate the prediction performance using different
combinations, Figure 13 compares the true and predicted
porosity curves for Well B when using the input feature
of Combination 1 and Combination 5 with the sampling
interval of 2.5 m, respectively, which indicates a significant
reducing of prediction error by the optimal feature selection.
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Figure 9. Prediction results with different input feature combinations for Well B

Table 3. Prediction accuracy with different combinations of 3.3. Model tests
input feature

To compare the performance of FCN and LSTM networks
Combination _ Features Mean RMSE ~ Mean R* in petrophysical prediction, we conducted FCN and LSTM
1 [Vp Vl 0.0767 0.4078 modelsand applied them to the prediction, respectively. The
2 [V Vo Pl 0.0737 0.5117 FCN adopts a 5-layer architecture with hidden layer sizes
3 [V Vo p Vi/ V] 0.0708 0.5710 of 32-64-128-64-32 and uses the ReLU activation function.
4 [Vy Vop, VIV, Z,) 0.0724 0.6283 The LSTM model has a hidden size of 64, comprises 2
5 Vo Vop VIV Z, Z] 0.0647 0.6574 stacked layers, and is followed by a fully connected layer

Abbreviation: RMSE: Root mean square error.

for output. Both networks have a dropout rate set to 0.2
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Figure 10. Prediction results with different input feature combinations for Well D

and were trained under identical conditions: Each training
session employed a unified loss function, optimizer,
learning rate, and batch size. We used the Adam optimizer
with a learning rate of 0.001. The optimizer is crucial for
efficiently and stably updating network parameters to
minimize the loss. The learning rate is adjusted based on
model convergence speed and stability to ensure optimal
performance within a reasonable time. The models were
trained by iteratively updating weights using the same
training, validation, and test sets. The RMSE and R? for
each test well were calculated to assess prediction accuracy.

As indicated by the data in Figure 14 and Table 4,
the LSTM network demonstrates superior performance

Table 4. Prediction accuracy with different network models

Network model Mean RMSE Mean R?
FCN 0.0691 0.5705
LSTM 0.0621 0.6125

Abbreviations: FCN: Fully connected neural; LSTM: Long Short-Term
Memory.

over the FCN network in most wells, with lower RMSE
and higher R? values, indicating its greater suitability for
petrophysical parameter prediction, especially for well-
measured sequential data.

When training the LSTM model, the sequence length,
which defines the number of sequence length in each input
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Figure 11. Prediction results with different input feature combinations for Well F
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Figure 12. Prediction accuracy in term of root mean square error (A) and R? (B) with different combinations of input feature
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Figure 14. Prediction accuracy in term of root mean square error (A) and R? (B) with different network models
Abbreviations: FCN: Fully connected neural; LSTM: Long short-term memory

sequence, is a crucial parameter for data processing. Omitting
this step would prevent the LSTM network from learning
the influence of historical data on current values. The pore
structure and fracture networks of coal seams exhibit similarity
within a certain depth range (e.g., coal seams and surrounding
rocks), but beyond this range, geological characteristics
change significantly. The choice of sequence length is related
to the geological variability with depth. A shorter sequence
length may overlook the influence of geological layers, while
an excessively long sequence length increases training time
and may reduce generalization performance due to noise
accumulation. Therefore, we analyzed the LSTM network

using different sequence length values and evaluated the
prediction accuracy for each test well.

As evidenced by the data in Figures 15, 16, and Table 5,
a sequence length of 32 yielded the optimal performance in
this test, resulting in the lowest average RMSE and the highest
average R? across all wells. It should also be noted that the
choice of sequence length significantly impacts the training
duration, requiring a careful balance between sequence
length and computational cost (Table 6). If the sequence
length is too short, the model may fail to capture sufficient
historical information, leading to issues such as underfitting
and prediction lag. Conversely, an excessively long sequence
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Figure 15. Prediction accuracy in term of root mean square error (A) and R? (B) with different sequence length for the long short-term memory network
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Figure 16. True and predicted porosity comparison using the long short-term memory model with sequence length of 1(A), 8 (B), 32 (C), and 64 (D),
for Well D

Table 5. Prediction accuracy with different sequence length
for the long short-term memory (LSTM) network

Sequence length Mean RMSE Mean R?
Sequence length=1 0.0621 0.6125
Sequence length=8 0.0570 0.6704
Sequence length=32 0.0470 0.7901
Sequence length=64 0.0552 0.7105

Abbreviation: RMSE: Root mean square error.

length, while theoretically capable of incorporating richer

contextual information, can cause an expansion in input

dimensions and prolong the gradient backpropagation path
through the LSTM hidden states. This not only substantially
increases GPU memory usage and training time per
iteration but may also degrade generalization performance
due to accumulated noise. To reduce time costs and improve
engineering feasibility, distributed training with multi-GPU
acceleration can be used, or the sequence length and input
dimensions can be reduced to shorten training time.

3.4. Application

To validate the effectiveness of the aforementioned method,
Well C within the study area was designated as the test well,
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while the remaining wells were used for training. Utilizing
Combination 5 (i.e., the six parameters V., V, p, V /V, Z,,
and Z_ as input features), the models were trained for 100
epochs. The remaining hyperparameters were kept at their
default and identical values, and the sequence length for
the LSTM network was set to 32. Both the FCN and LSTM

Table 6. Comparison of training time for different sequence
lengths

Model Sequence length Training time in seconds (100 epochs)

FCN / 35.8
LSTM  Sequence length=1 442
Sequence length=8 823
Sequence length=32 246.9
Sequence length=64 506.0

Abbreviations: FCN: Fully connected neural; LSTM: Long short-term
memory.

Table 7. Prediction accuracy with different network models
for Well C

Network model Mean RMSE Mean R?
FCN 0.0546 0.4104
LSTM 0.0309 0.7972
Bi-LSTM 0.0279 0.8342

Abbreviations: Bi-LSTM: Bidirectional Long Short-Term Memory;
FCN: Fully connected neural; LSTM: Long Short-Term Memory;
RMSE: Root mean square error.

models were trained under these conditions to generate
and compare their prediction results. Figures 17A and B
demonstrate the superior prediction performance of the
LSTM network. As indicated in Table 7, the LSTM model
achieves a reduction in RMSE of approximately 43.41% and
an improvement in R* to 0.7972 compared to the baseline.

Furthermore, we employed a Bi-LSTM model to
perform the prediction, while keeping all other parameters
unchanged. The corresponding results are shown in
Figure 17C. The Bi-LSTM model achieved an RMSE
of 0.0279, representing a further reduction of 9.71%
compared to the standard LSTM, and an R* of 0.8342,
corresponding to an increase of 0.0370. In Figure 17C, it
can be observed that the areas with high porosities accord
with the interpreted coals at the depths around 1980 m,
2040 m, and 2080 m, which indicates the prediction
could help identify coal sections in good accuracy. These
results indicate that the Bi-LSTM model outperforms the
standard LSTM both in terms of prediction accuracy and
robustness, demonstrating its effectiveness for the task of
petrophysical parameter inversion.

4, Discussion

The findings of this study indicate the potential of deep
learning, especially sequence models such as LSTM and
Bi-LSTM, in addressing the complex challenge of porosity
prediction in deep CBM reservoirs. LSTM network
inherently captures the contextual dependencies and long-
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Figure 17. Prediction accuracy with FCN (A), LSTM (B), and Bi-LSTM (C), and the lithofacies interpretation (D) for Well C
Abbreviations: Bi-LSTM: Bidirectional long short-term memory; FCN: Fully connected neural; LSTM: Long short-term memory
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range trends within the log curves. This capability is crucial
for petrophysical prediction, as reservoir parameters
at a given depth are often geologically influenced by
the overlying and underlying formations. The further
improvement by the Bi-LSTM model indicates that
integrating information from both shallower and deeper
sections leads to a more accurate prediction. Due to its
bidirectional learning capability, Bi-LSTM is theoretically
applicable to other sequence data-driven reservoir
prediction tasks. For example, shale gas and carbonate
reservoirs also have complex pore structures and non-
linear relationships. With appropriate feature selection
and parameter tuning, the Bi-LSTM model can be applied
to porosity prediction in these reservoirs. However, it
should be noted that the present study only analyzes the
FCN and LSTM models, while a more comprehensive
comparison with other advanced networks, such as
Temporal Convolutional Networks or Transformer-based
models, was not conducted. Future work should include
such comparisons to more fairly evaluate the performance
of Bi-LSTM model.

Overfitting remains a critical challenge in deep
learning. This study employed the dropout method to
mitigate overfitting by randomly dropping some neurons
during training, thereby reducing the model’s reliance on
training data. In future research, L2 regularization will
be introduced to further constrain model complexity and
reduce overfitting by adding the L2 norm of weights to the
loss function.

The inherent difficulties in predicting porosity in CBM
reservoirs extend beyond the selection of an appropriate
algorithm. The complexities of coal seams also present a
fundamental task. Coal has a unique dual-porosity system,
including the cleat/fracture network and the matrix pores,
which governs the storage and transport mechanisms
of methane. Porosity measurements and log responses
are generally affected by this complex pore structure
and the presence of adsorbed gas. Such inherent pore
complexities are significant factors influencing the non-
linear and challenging nature of the porosity prediction.
However, although our data-driven model constructs
the relationship between elastic parameters and porosity,
it does not explicitly explain or analyze the influence of
those pore complexities. A deeper investigation into how
these dual-porosity characteristics manifest in the seismic
elastic parameters represents a critical area for further
research.

Errors may arise from model limitations and the
complexity of geological characteristics. For example, the
complex and variable pore structure and fracture networks
in coal seams result in a highly non-linear relationship

between porosity and elastic parameters. Although the
Bi-LSTM model performs well in capturing such non-
linear relationships, prediction errors may still occur in
certain depth intervals. Future research could reduce
errors by introducing more complex model structures or
increasing the amount of training data.

The proposed method is primarily a data-driven
approach. It takes advantage of the powerful non-
linear mapping capabilities of deep learning to establish
a relationship between input features and the target
output, without explicitly considering the governing
physical laws. It may limit the model generalizability
and physical interpretability in practical applications.
To address this issue, our further research will focus on
developing a physics-guided deep learning model. In
particular, rock physics models can provide the physical
relationship between porosity and elastic parameters,
offering prior knowledge for deep learning models.
By incorporating a coal-specific rock physics model
into the network or loss function, we aim to constrain
the predictions to be not only data-consistent but
also physically plausible for different CBM fields. In
addition, rock physics models can supplement labeled
data, compensating for the problem of overfitting of
deep learning models in small sample scenarios and
alleviating the impact of insufficient data.

5. Conclusion

This work proposes a deep learning-based method for
predicting porosity in deep CBM reservoirs with well
log data. The study investigates the input features of
seismic elastic parameters for training, which leads to the
optimal combination of P-wave velocity, S-wave velocity,
density, and impedance for predicting porosity. The study
also focuses on the analysis of network parameters such
as sampling interval and sequence length, to achieve
an optimal balance between prediction accuracy and
computational efficiency. Tests and comparisons indicate
that the LSTM network demonstrates a reduction in
RMSE of approximately 43.41% and an improvement in
R? from 0.4104 to 0.7972 compared to the FCN network.
Furthermore, the proposed Bi-LSTM model not only
enhances bidirectional contextual awareness but also
significantly improves generalization capability. Compared
to the standard LSTM, it achieved a further RMSE
reduction of approximately 9.71% and increased the R’
to 0.8342. The predictions by the Bi-LSTM model exhibit
good capability in identifying potential coal layers. The
proposed method provides a reliable approach for porosity
prediction with well log data, which could effectively assist
in seismic exploration for deep CBM reservoirs.
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FaciesGAN: A conditional GAN framework for
realistic facies scenario generation as an efficient
alternative to multiple-point statistics
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'Department of Informatics and Statistics, Universidade Federal de Santa Catarina, Floriandpolis,
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Abstract

Facies are rock bodies that reflect specific depositional environments and play a
central role in reservoir characterization. Accurate facies modeling is a key challenge
in generating realistic geological scenarios that honor sparse well data while
capturing geological uncertainty. This study introduces FaciesGAN, a novel deep
learning framework based on conditional generative adversarial networks (cGANSs).
The method employs a hierarchical structure of generators and discriminators that
progressively refine coarse estimates into high-resolution facies models, ensuring
consistency with well data and depositional patterns at each stage. FaciesGAN was
validated using the limited Stanford Earth Science Data dataset, demonstrating
strong performance even under data scarcity. The quantitative evaluation employed
multidimensional scaling and yielded an intersection over union index of 99.96%
relative to the conditioning well data. These results confirmed the model’s ability to
generate diverse scenarios with high fidelity while preserving statistical distributions.
Compared with a traditional multiple-point statistics implementation, FaciesGAN
produced more realistic and varied geological realizations with significantly greater
computational efficiency. These results indicate that cGAN-based approaches, such
as FaciesGAN, represent a promising direction for subsurface modeling, offering
robust tools for data augmentation, improved uncertainty assessment, and enhanced
reservoir characterization.

Keywords: Conditional generative adversarial network; Facies; Hard data; Geostatistical
simulations; Seismic inversion

1. Introduction

In the context of reservoir characterization, facies are defined as rock units with
specific attributes that reflect the depositional environment and directly influence the
petrophysical properties and heterogeneity of the reservoir."” Facies are essential for
understanding depositional environments, as they enable geoscientists to correlate these
units with seismic and well data, thereby playing a crucial role in the seismic inversion
process.>* For example, since sandy facies generally exhibit higher porosity than shale
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facies, they help identify and distinguish productive
from non-productive zones.” From this perspective, the
integration of facies into seismic inversion algorithms
provides greater consistency between the models and the
petrophysical properties obtained, generating more robust
and reliable models.®®

The generation of multiple facies scenarios that
reproduce complex heterogeneous structures plays a key
role in the characterization and modeling of geological
reservoirs and the stochastic seismic inversion workflow.”"°
By enabling multiple plausible realizations of the
subsurface, facies scenario modeling provides a rigorous
framework to explicitly capture and quantify geological
uncertainty.'! This approach reduces biases arising from
single deterministic interpretations and ensures that the
resulting reservoir models remain consistent with both
geological knowledge and observed field data.>'? This ability
is particularly critical in seismic inversion workflows,
where the relationship between well log measurements,
core analysis, and seismic responses must be established in
a consistent and geologically meaningful way.'*!*

Facies scenario generation can be carried out using
classical and modern methodologies that combine
geology, statistics, and artificial intelligence.'®" Classical
methodologies include techniques used in geology and
geostatistics. For example, sequential indicator simulation
(SIS) uses binary indicators for each facies, generating
scenarios conditioned on available data.’® SIS is useful
for modeling facies, but has several limitations. It often
produces loosely connected patterns and oversimplified
geological structures,"” making it difficult to represent
features such as channels or faults. SIS is sensitive to
variogram fitting, complicating its use with sparse data.
It allows the quantification of uncertainty; however, if
not accurately calibrated, it can result in geologically
inconsistent models."®

Modern methodologies include techniques that have
revolutionized geological modeling by allowing the
representation of complex patterns and advanced spatial
relationships. Multiple-point statistics (MPS) represent
a significant advance in this area, enabling the capture of
spatial patterns in geological data and modeling of multi-
location relationships.'** These techniques are especially
useful for simulating facies distributions in regions with
limited information. They adhere to spatial distributions
observed in training data, such as geological maps and
previous simulations.”** MPS may face difficulties in
constructing representative training images, as it relies on
the analyst’s expertise. Furthermore, conditioning to real
data may be complex to implement without breaking the
continuity of the simulated patterns.'>*

In this context, generative adversarial networks
(GANs) emerge as an innovative methodology for the
generation of facies scenarios. GANs offer significant
advantages over traditional geostatistical methods and
MPS-based simulation. They can learn directly from
real data, preserving first-order statistical features (facies
proportions) and second-order statistical features (spatial
continuity and body geometry).”* GANs are capable of
capturing complex spatial patterns and facies relationships,
thereby producing more realistic realizations and reducing
the subjectivity inherent in model design.** Moreover,
they open the possibility of training networks as a
complement to stochastic facies simulation.?®*

There are two competing networks in GANs: A generator
network creates synthetic data, and a discriminator
network assesses the authenticity of the generated data in
relation to the real data.?>* In the context of facies, GANs
can be used to generate new synthetic records that preserve
the statistical characteristics of real data, for example,
facies distributions and the geophysical properties of wells.
On the other hand, conditional GANs (cGANSs) include
a conditional layer in the data generation process. This
conditional layer allows the generation of synthetic data
based on specific previous information, such as the type
of facies in a particular depth range, providing even more
control over the generation process.*®*' This characteristic
allows the assessment of large-scale geological scenarios
and the validation of hypotheses about reservoir
connectivity and quality.

In recent years, facies scenario generation has been
studied through several case studies, showcasing the
effectiveness of advanced technologies. For example,
Liu et al.** proposed an approach for generating 3D
subsurface facies map models based on GAN. Miele
et al.* proposed integrating a GAN with spatially-adaptive
denormalization (SPADE) to predict realistic facies map
patterns while adhering to local probabilities. It combines
with geostatistical methods of sequential simulation to
model facies-conditioned rock properties. Furthermore,
Feng et al.”?® proposed a GAN-based method in which
the network is trained on facies map images. Research
has demonstrated excellent results using facies map
data and statistical similarity. However, few studies have
incorporated known hard information from the GAN
training stage, such as observed facies sequences in wells
at specific locations. Specifically, no applications have been
published on facies data in 2D vertical sections.

Considering the current progress, this work aims
to explore advanced techniques for generating facies
scenarios, with a particular focus on cGANs. The objective
is to evaluate the effectiveness of this technique on 2D
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vertical section facies data conditioned on well data.
Using a public dataset with a limited number of samples,
this study aims to demonstrate that the proposed method
can effectively address one of the main challenges in
reservoir characterization: data scarcity. This approach
leverages synthetic training models to enhance the
integration of well logs, facies distributions, and seismic
information, producing scenarios that adhere to geological
conditions and maintain statistical and spatial consistency.
Accordingly, this study demonstrates that incorporating
conditioning information enables cGANs to generate more
accurate and robust models for reservoir characterization.
cGANs offer an innovative solution to overcome the
limitations of traditional techniques, contributing to a
more coherent and efficient reservoir modeling.

2. Methodology

This study followed the workflow provided in Figure 1. The
methodology comprises several interconnected stages.

2.1. Data collection and preprocessing

The Stanford Earth Science Data dataset was chosen and
downloaded from the GitHub repository (https://github.
com/SCRFpublic/Stanford-VI-E).* The database contains
data from oil well logs, with detailed samples of the
different facies found in the reservoirs. The facies data
are stored in.dat format, facilitating preprocessing and
analysis. From the dataset, the available facies classes
were floodplain (0), point bar (1), channel (2), boundary
(3), and deltaic system (Figure 2A). The dataset primarily
represented meandering channel systems, emphasizing
facies categories relevant to this study (reservoir and non-
reservoir types). The remaining facies were reclassified to
simplify the categories into “reservoir” (channel; 1) and
“non-reservoir” (floodplain, point bar, and boundary; 0),
as shown in Figure 2B.

2.2.Image generation and data labeling

A Python 3.12 environment was configured using image
processing and visualization libraries to generate visual
representations of the filtered and categorized facies. The
tabular data were subsequently converted into images. The
3D Stanford VI reservoir model was employed as training

Data collection

Pre-processing Data Dataset
data labeling training

Image generation

data for the deep-learning workflow. This reference
model was defined on a 150x200x200 cell grid, with cell
dimensions of 25 m in the horizontal (X and Y) directions
and 1 m in the vertical (Z) direction. This resulted in a
total physical size of 3,750 m (X-axis) x 5,000 m (Y-axis)
x 200 m (Z-axis/depth). The 200 m vertical thickness was
composed of three distinct layers (80 m, 40 m, and 80 m).
To generate the 2D training images, 200 vertical slices
(representing X-Z planes) were extracted, corresponding
to one slice for each of the 200 cell positions along the
Y-axis. Each slice represented the full horizontal (X-axis)
distance of 3,750 m and the top 80 m layer (Layer 1).
Subsequently, this physical section of 3,750 m x 80 m
was resampled to a 256 x 256-pixel matrix. This process
resulted in final images with a resolution of approximately
14.65 m/pixel in the horizontal direction and 0.31 m/pixel
in the vertical (depth) direction.

A total of 200 divisions in 2D vertical slices were
generated and extracted from the 3D facies model. These
were used as training images, with 256 x 256 pixels, and
categorized according to the corresponding facies class
(Figure 2C). Each image was annotated with the depth
condition and used as an external label to guide the
process. The annotations delineating vertical polygons
indicated the different facies represented, based on the 2D
section facies found in the Stanford Earth Science Data
dataset, and were used as conditioning data for the cGAN.

2.3. Facies scenario generation with the proposed
cGAN

The proposed cGAN, termed FaciesGAN, features a
multistage architecture designed to generate geologically
realistic facies realizations conditioned on well data.

The FaciesGAN model is an adaptation of SinGAN?*
and WGAN-GP** SinGAN is a generative model that
can learn from a single natural image.”® It consists of a
pyramid of fully convolutional GANs, each modeling the
distribution of image patches at a distinct spatial scale.
This allows for generating new samples of arbitrary size
and proportion. Although the generated samples exhibit
considerable variability, they retain the overall structure
and fine textures of the training image.

+| training

Model Model

inference

=

cGAN for generating facies scenarios

Figure 1. General proposed methodology
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The FaciesGAN model is structured as a hierarchy of higher resolutions, as shown in Figure 3. The process
generators and discriminators operating at progressively begins with a low-resolution generator that produces
BN Boundary B Reservoir
oo
Point bar
2500 - 2500 v
-2600 ..+ -2600 -
2700 .. 2700 J. 5
N 2800 kTSP ) (™ -2800
2900 ;:? 2900
3000 -3000
5000 5000
4000 <
3000
2000 -
1000 1000
Y (m) 0o X (m) Y (m) 00 X (m)

[ Reservoir
[HE Non-reservoir

Figure 2. The Stanford Earth Science Data dataset. (A) Multiple sedimentary facies visualization. (B) Facies classification into reservoir (yellow) and
non-reservoir (gray). (C) 2D slices examples of projection along the depth, differentiating the reservoir (white) from the non-reservoir (black). Image
reproduced and adapted with permission from Lee and Mukerji.*

Training process

Figure 3. Schematic representation of the proposed cGAN for generating facies scenarios. The generator and discriminator are trained from coarse to fine
scale (0 to N).
Abbreviations: cGAN: Conditional generative adversarial network; U: Upsampling.
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an initial facies image conditioned on well information
(e.g., facies at well locations). Subsequent stages refine this
output by adding progressively finer geological details.
Each generator stage is paired with a corresponding
discriminator that evaluates the realism of the generated
facies at its specific resolution while enforcing consistency
with the conditioning data. Conditioning is maintained
throughout all stages of the generation pipeline, ensuring
that the final high-resolution outputs honor well
constraints. This progressive refinement strategy allows the
model to capture both large-scale geological structures and
small-scale heterogeneities, resulting in high-quality, data-
consistent facies simulations.

The pyramid of generators Gp..sGpe. Gy s @ multi-
scale, fully convolutional architecture, as shown in
Figure 4A. At each scale, the generator considers a resized
version of the previous output x°, |, and a condition z,
which are concatenated channel-wise. These are then
passed through a series of 2D convolutional layers with
leaky rectified linear unit (LeakyReLU) to produce a
residual output. This is added to the up-sampled input to
generate the new 2D section facies map x°, . Each generator
G, is trained to learn the internal structure of the training
images at different scales. G, finer details from the training
images are learned sequentially.?

The discriminators, D,...,D,,...,Dy, are implemented
as a convolutional PatchGAN classifier, which assesses the
realism of local image patches rather than making a single
global prediction (Figure 4B). The architecture consists
of a sequence of convolutional blocks, each comprising
a 2D convolutional layer followed by a LeakyReLU
activation function.”® The number of feature channels is
progressively reduced across layers (e.g., from 64 to 1),
enabling hierarchical feature extraction at multiple spatial
resolutions. Notably, normalization layers (e.g., batch
normalization) are applied to preserve the raw feature
dynamics and stabilize the training process. The final
output is a single-channel feature map in which each spatial
location corresponds to the discriminator’s assessment of
whether a specific image patch is real or synthetic.?*

A G, B
IR X'
Mmoo &
9000 g ¥
8888 g W
0ooo QF>u®
g Q Qg -
> > > = 2| T
EESE5E 5| - 7
O O O O .
OO0 O O Yf
ConvBlock

At the n™ scale level, an adversarial training process is
performed separately: the generator G, tries to generate fake
images x, to fool the discriminator D,. The discriminator
D, attempts to distinguish the real images x, from the fake
ones.” This multi-scale approach captures the large-scale
structures present in the geologic models of interest.*® The
formulation for generating an image sample at the n*™ level
is expressed as follows:

G, (zo), n=0
= (1)
G,(zU(¥,,)) 0<n<N

where U represents the upsampling based on
interpolators in the 2D and 3D cases.

The loss function at the n™ scale level for G, and D, is
formulated as:*®

rr(l;inn})?xﬁ(Gn,Dn)zﬁadV(Gn,Dn)+aﬁm(Gn) (2)
where £, is the adversarial loss for penalizing the

distribution distance between the down-sampled images x,,
and the generated images x,, « is a weighting factor to
balancethetwolossfunctions,and £, isthereconstruction

loss to ensure that x, can be reproduced given a specific set
of random noise maps.

The generator G, and discriminator D, at each pyramid
scale n are trained with a combined objective inspired by
WGAN-GP* and SinGAN.? The goal is to simultaneously
enforce adversarial learning and faithful reconstruction of
the image at multiple resolutions.

The discriminator D, is optimized using the Wasserstein
loss with gradient penalty, ensuring Lipschitz continuity.
The discriminator loss is formulated as:

o1
L(;) =-E,_, [Dn (xn )]+Ezn D,| G|z, Xs1

gl [(V&n D,(%,), —1)2} 3)

]

:

Conv2D 64 @ 3x3
Conv2D 32 @ 3x3
Conv2D 16 @ 3x3

Figure 4. Network architecture at the n™ scale level. (A) The generator. (B) The discriminator.
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A

Where x, denotes a real image at scale n, G, | z,,Xn11

is the generated image conditioned on noise z, and
the upsampled output from the next coarser scale,
and x, =¢&x, + (1 —g)x'n with € ~ u[0,1] is the interpolated
sample used for the gradient penalty.

The generator G, is trained with two complementary
objectives: (i) An adversarial loss that encourages generated
samples to be indistinguishable from real ones at scale n,
and (ii) a reconstruction loss that ensures faithful
reproduction of the reference image when a fixed noise
map z, is used. The generator loss is:

.1
4 =-E_|D,| G,|z,xm |||+a,L (4)
With the reconstruction loss defined as:
n) __ At 2
‘C(rec _‘xn _Gn (Zn"xn+1 )2 (5)

Where «, is a scale-dependent weighting factor
balancing adversarial and reconstruction objectives, and
’A‘In denotes the generated sample from the scale n+l1,
upsampled to match the resolution of scale n.

This hierarchical optimization scheme allows the
generator to progressively capture global structure at coarse
scales and fine details at higher resolutions, while the
reconstruction term stabilizes training and preserves fidelity.

2.4. Algorithm and implementation

The FaciesGAN model is an architecture designed to
generate geologically consistent facies images from a
multi-scale noise pyramid. It uses an improved adversarial
training framework. FaciesGAN’s training loop comprises
two alternating main stages, which involve updating the
discriminator and generator parameters. The algorithm
incorporates additional mechanisms, such as gradient
penalty, reconstruction, and masking losses that contribute
to improving training stability and fidelity of the generated
images. The algorithm and the core procedure for training
the FaciesGAN model at a single resolution scale are
presented in Algorithm 1. FaciesGAN core training loop
(at a single scale).

The training hyperparameters were determined based
on the original WGAN-GP and SinGAN models, with
empirical adjustments for our specific application. The
gradient penalty weight A , (referred to as A in WGAN-GP)
was set to 0.115, a value that we found stabilized training

Algorithm 1. FaciesGAN core training loop (at a single scale)

Input:

X, < Real data

M « Mask

x,,, <« Reconstruction input
Models:

G < Generator

D <« Discriminator
Hyperparameters:

/\gp,ocm(, k,< Discriminator steps

k, < Generator steps

/*Step 1: Train Discriminator */

1: forj=1tok,do

2: Sample noise pyramid Z¢ GETNOISE( )

3:  Generate fake images x;,,<G (Z)//Forward pass-through Generator

real

4 L <«-E [D(x,m[ )} //Loss for real data

L. < E[D (x Jake )} //Loss for fake data

5

6 L,<\, CALCULATEGRADIENTPENALTY (D, X,,,5, X;..)
7: Ly« L,y + Ly, + Ly, //Total Discriminator loss

8 Update D’s parameters 0, by ascending the gradient of L,
9: end for

/* Step 2: Train Generator */

10: forj=1to k,do

11: Sample noise pyramid Z«GETNOISE( )
12: Generate fake images x;,, <G (Z)

13: L, «-E [D (xfake )} //Adversarial loss

14: Sample reconstruction noise Z,,. ¢ GETNOISE (rec=True)
15: X, < G(Z,,, in_facie = x,,, ) //Reconstruction pass

16: L, <a, MSE (x,, x,,) //Reconstruction loss

17: Ly € 100 - o, - MSE (X7, © M, X,,,© M) //Masked loss
18: L;¢ L+ L, +L,,//Total Generator Loss

19:  Update Gs parameters 6, by ascending the gradient of L

20: end for

effectively for the facies data (in contrast to the A =10 used
in the original WGAN-GP). The reconstruction weight «,,
(referred to as « in Equation [2] and «, in Equation [4])
was set to 10, a value commonly used in SinGAN-based
models that provided an optimal balance between
adherence to geological structure and training stability.

3. Results

This study evaluated the capability of generative models
to generate geological facies scenarios. For this purpose,
FaciesGAN was trained and validated through visual
inspection and multidimensional scaling (MDS) to
determine the consistency and representativeness of
the generated scenarios with the original facies. For
comparison purposes, the same data were modeled using
an MPS method, specifically, the single normal equation
simulation (SNESIM).” The scenarios generated using

Volume 34 Issue 6 (2025)

50

doi: 10.36922/JSE025370069


https://dx.doi.org/10.36922/JSE025370069

Journal of Seismic Exploration

FaciesGAN: a cGAN for Facies Generation

the two methodologies were compared through visual
inspection of the spatial continuity of the patterns and the
facies proportion histogram. This allowed for a qualitative
and quantitative analysis of the representativeness and
consistency of the simulated models.

Specifically, FaciesGAN was trained to generate facies
scenarios using the Stanford Earth Science dataset. The model
was developed with a limited training set of 200 samples.
During the inference stage, some samples were analyzed using
metrics such as visual inspection, average facies proportion,
and MDS to determine the consistency and representativeness
of the generated scenarios with the original facies.

For FaciesGAN training, appropriate labels were
required for each image. The labeling process is shown
in Figure 5. These labels are important because they
provide information about the characteristics of each
image, allowing the model to learn to generate coherent
and realistic images based on specific conditions. In this
context, the labels corresponded to hard data derived
from a simulated well, representing known subsurface
information used to condition the facies generation process.
The correctly labeled images were integrated into the
dataset and associated specifically with each corresponding
image. The model used the labels as conditioning input to
generate facies scenarios consistent with the characteristics
and structures defined by the labels.

The FaciesGAN model was trained for 100 epochs per
scale across 10 scales, with a gradient penalty weight A, of
0.1, using the Adam optimizer with a learning rate of 5~
and f3 of 0.5. The kernel size for 2D filters was 3 x 3, with a
stride step of 1 x 1. At the coarser scales, image resolution
ranged from 16 to 128 pixels. The model was trained on
the complete dataset using a workstation with an Intel
i7-8700K CPU (6 cores, 3.7 GHz), an NVIDIA GeForce
GTX 1080Ti GPU, and 64 GB of RAM.

3.1. Global model evaluation
In the first test, the model generated 1,000 facies scenarios

in 20 s; twenty randomly selected conditioned realizations

Image 1 Image 2

are shown in Figure 6. It was observed that the facies
configuration of the conditioning trace, highlighted in
green to simulate a real drilled and analyzed well, was
closely reproduced in the images generated by FaciesGAN.

The results are promising considering the limited
training set, highlighting the applicability of the proposed
approach in characterizing oil reservoirs, where well
log and facies data are often scarce, costly to obtain, and
subject to privacy restrictions. Nevertheless, the model
showed remarkable consistency in reproducing the facies
spatial distributions. These findings provide insight into
the model’s capability to produce images that consistently
reflect the expected facies proportions. Visual comparisons
with real distributions confirmed that the model captured
key features of the input data while generating consistent
variations. Furthermore, the time required to generate
facies scenarios was short, highlighting the computational
efficiency of the proposed approach. The short generation
time allows for practical integration into workflows that
require multiple simulations.

Next, MDS was applied to quantitatively evaluate
the trained model and to compare patterns of spatial
variability. MDS is a technique commonly used in data
analysis and visualization. It represents high-dimensional
data in a lower-dimensional space, usually 2D or 3D,
while preserving the relative distances (or dissimilarities)
between data points and the potential differences
between them.* The generated facies overlapped closely
with the training images in 2D space, demonstrating
excellent similarity, as shown in Figure 7. Regions where
blue and red overlap indicate highly agreement between
generated and real images, suggesting robust model
generalization.

The generated facies (red) effectively covered the
space of the real facies (blue), indicating the diversity and
quality of the generator. The real facies (blue) were closely
surrounded by the generated facies, suggesting that the
generator interpolates well within the known domain. This
indicates a high degree of spatial consistency.

Image 4 Image 5

Figure 5. Reservoir (in white) and non-reservoir (in black) with drilled-well conditioning. Conditional traces are highlighted in red (reservoir) and green
(non-reservoir). Note: Each image corresponds to a 2D crossline section represented in the pixel domain (256 x 256 pixels) to an 80 m (depth) x 3,750 m
(width) vertical section.
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Figure 6. Twenty randomly selected realizations generated by the proposed cGAN. The generated facies are shown in white, while the conditioning is in
red (reservoir) and green (non-reservoir). Note: Each image represents a 2D crossline section in the pixel domain (256 x 256 pixels), corresponding to a

vertical section 80 m deep and 3,750 m wide.
Abbreviation: cGAN: Conditional generative adversarial network.
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Figure 7. Multidimensional scaling plot of the training images with

conditional realizations

In addition, to validate how effectively the conditioning
well information was honored by the FaciesGAN model,

a procedure was designed that reformulates the problem
as a spatial classification task. Specifically, the generated
scenarios were compared with their respective original
images to evaluate how accurately the location and shape
of the facies were reproduced around the actual wells.
The intersection over union (IoU) index was used as
the evaluation metric. This index is defined as the ratio
between the intersection area and the union area of the
predicted and reference data:

GTﬁPD
GTuPD

where PD is the prediction mask and GT is the ground
truth. In this evaluation, the prediction mask corresponded
to the pixels generated under hard conditioning by
FaciesGAN, while the hard-conditioning reference data
from the original facies image served as the ground truth.
A total of 1,000 images generated from a set of 200 original
images were analyzed. The IoU was calculated for each pair
of images, yielding an overall mean IoU of 99.96%. This
result indicates exceptionally high fidelity in preserving
the well-conditioning constraints and demonstrates

IoU = (6)
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that FaciesGAN generates stochastic images that almost
perfectly adhere to the geological information observed
in the well. These findings validate its effectiveness as a
geological conditioning tool.

The effectiveness of the FaciesGAN model was validated
by comparing its results with synthetic facies scenarios
generated using MPS. Specifically, SNESIM, an improved
and scalable extension of the extended normal equation
simulation (ENESIM) algorithm for multipoint simulation,
was used to generate 1,000 facies realizations based on
the 200 training images. The results of 20 representative
simulations are presented in Figure 8. These results were
generated in approximately 137 min.

The facies scenarios generated by FaciesGAN (Figure 6)
exhibited distributions consistent with the expected
geology. The scenarios accurately respected the conditions
(in green). These realizations reflect the remarkable ability
of the model to capture complex spatial patterns with
high diversity among simulations. In comparison, the
realizations generated by the MPS SNESIM method also
preserved the spatial continuity of the facies; however, they

exhibited less structural variability than those produced by
FaciesGAN. Visual comparison suggests that FaciesGAN
accurately reproduced the input conditioning and
provided greater structural diversity in its realizations. This
demonstrates that the proposed methodology is a robust
alternative for generating complex geological scenarios.

Next, we evaluated the overall distribution and class
balance within the dataset. The histogram of reservoir
facies proportions is shown in Figure 9. In addition to the
dataset distribution, the histogram also includes the facies
proportion results obtained from the FaciesGAN and MPS
SNESIM simulations. This enables a comparative analysis
of class balance between the original data and the synthetic
realizations produced by the two methods.

The distribution of the dataset (in red) showed a
primary peak near 0.16, representing the dominant facies
ratio in the real data. The dispersion is moderate, with
most realizations concentrated between 0.12 and 0.20.
The distribution generated by FaciesGAN (in green)
showed a similar behavior, with values concentrated in
the same range. However, a slight deviation was observed

Figure 8. Twenty randomly selected realizations generated by the MPS SNESIM algorithm. The generated facies are shown in black, while the conditioning
is in red (reservoir) and green (non-reservoir). Note: Each image represents a 2D crossline section in the pixel domain (256 x 256 pixels), corresponding

to a vertical section 80 m deep and 3,750 m wide.

Abbreviations: MPS: Multiple-point statistics; SNESIM: Single normal equation simulation.
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Figure 9. Comparative histogram of reservoir facies proportions
generated by FaciesGAN and SNESIM

Abbreviations: GAN: Generative adversarial network; SNESIM: Single
normal equation simulation.

toward higher values, indicating a minor overestimation
of the proportion in some simulations. In contrast,
the distribution generated by SNESIM (in blue) was
significantly dispersed, covering a broader range from 0.10
to 0.35. A clear trend toward higher proportions implies
lower statistical fidelity compared to the real data. In
addition, SNESIM-generated results demonstrated higher
variability than those by FaciesGAN and the reference, but
were in a controlled interval.

These results indicate that FaciesGAN provides a closer
approximation of the observed facies ratios in the reference
data compared to SNESIM. The higher variability of SNESIM
results in deviations from the true statistical behavior, which
can be a major limitation when accurate preservation of
facies proportions is required. In addition, the computational
efficiency of FaciesGAN is notably superior: while SNESIM
took approximately 137 min to generate 1,000 realizations,
FaciesGAN produced the same number in only 20 s. This
highlights that FaciesGAN has a greater ability to learn and
reproduce the distributions observed in real data, enabled
by its deep learning-based generative process.

3.2. Well-specific conditioning results

In the second test, five conditioning images distributed
in 2D space were selected. For each image, the trained
model generated 100 samples at approximately 6 s per
image. From each image, five generated facies scenarios are
presented in Figure 10. The figure presents the real facies
(left column, in green, with the depth condition shown in
black) and multiple random model-generated realizations
(five columns per well, in black and white) for five different
wells, with the depth condition highlighted in green.

The condition incorporated during FaciesGAN training
was held constant. The generated facies closely surround
or overlap with the real facies, indicating strong spatial
consistency between the model realizations and the true
data. Although variability was present among generated
facies, most realizations maintained structural patterns
consistent with the real facies, suggesting that the model
adequately learned the underlying spatial patterns.

The real facies were closely surrounded by the
generated facies, demonstrating the model’s capability to
preserve spatial structures across different realizations.
This consistency highlights the model’s reliability in
reproducing subsurface geologic patterns, even under
stochastic variability. In such cases, the generation of facies
scenarios was fast.

The percentages of pixels corresponding to each facies
were compared to evaluate statistical consistency between
the real images and those generated by FaciesGAN. The
comparison between the percentages observed in the real
images and the averages obtained from 100 generated
scenarios for the five wells shown in Figure 10 is presented
in Table 1. This comparison analyzed the model’s ability
to reproduce facies distributions realistically, ensuring
that the simulations preserve the original geologic
characteristics.

A strong correspondence was observed between
the facies percentages of the real and generated images.
Across all wells, differences between the real values
and the generated averages were <4%, indicating that
FaciesGAN maintains high fidelity in reproducing facies
proportions. For example, in well 181, facies 0 accounted
for 72.66% in the real image and 72.71% in the generated
average—a practically insignificant difference. Similar
cases were observed in the other wells, with the largest
deviation occurring in well 63, where facies 1 decreased
by approximately 3%. This minor underestimation remains
within acceptable ranges for stochastic simulations.

In addition, the IoU metric was calculated for each well
to further evaluate the fidelity of facies preservation within
the conditioned zones. Table 1 presents the average IoU
obtained from each case. The average IoU values ranged
from 99.37% to 99.66%, indicating an extremely high
agreement between the generated and original facies in
the hard-conditioned wells. The results suggest that the
FaciesGAN maintains near-identical facies proportions
and effectively reproduces the stratigraphic continuity
observed in the real data.

The generated scenarios were encouraging, as the model
demonstrated a high degree of consistency and realism
in reproducing the spatial distribution of facies from a
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Gen 4

Figure 10. Real and generated facies for five different wells. The first column shows the real 2D facies logs (in green) with the conditioning shown in
black. The five columns (Gen 1 to Gen 5) display different random realizations generated by the model, with facies shown in white. The conditioning is

highlighted in red (reservoir) and green (non-reservoir).

Note: Each image represents a 2D crossline section in the pixel domain (256 x 256 pixels), corresponding to a vertical section 80 m deep and 3,750 m wide.

Table 1. Averaged facies percentages in real and generated
scenarios across five selected wells

Well Real images Generated images ToU (%)
number Facies Facies Facies Facies

0 (%) 1(%) 0 (%) 1(%)
30 84.77 15.23 85.16 14.84 99.66
63 69.92 30.08 72.35 27.65 99.42
73 79.30 20.70 80.47 19.53 99.38
175 79.30 20.70 81.35 18.65 99.37
181 72.66 27.34 72.71 27.29 99.43

Abbreviation: IoU: Intersection over union.

limited dataset. Furthermore, visual and quantitative
comparisons with the actual facies distributions confirmed
the model’s ability to capture key features of the input data,
integrate conditional information, and generate significant
variability across realizations. These results suggest
that the FaciesGAN model generalizes effectively and
serves as a robust tool for generating 2D facies scenarios
in petroleum applications, even with limited training

datasets. This capability can significantly enhance reservoir
characterization and support operations planning.

4, Discussion

The results demonstrate that FaciesGAN produces
highly coherent and realistic geological facies scenarios,
even when trained on a limited dataset. The generated
realizations captured key geological patterns and spatial
continuity, showing high fidelity to the conditioning
information.

The stochastic simulation methodology employed does
not aim to identify a single, “optimal” scenario but rather
to quantify geological uncertainty by producing multiple
realistic representations of the subsurface that respect
the conditioning data. This approach is crucial for risk-
based decision-making, as the true facies distribution is
unknown. Accordingly, the workflow uses the full ensemble
(e.g., as inputs to flow models) to estimate outcome ranges
(e.g., P10, P50, and P90) rather than a single “best” result.
The statistical consistency of this ensemble with the
reference model was evaluated using MDS (Figure 7) and

Volume 34 Issue 6 (2025)

55

doi: 10.36922/JSE025370069


https://dx.doi.org/10.36922/JSE025370069

Journal of Seismic Exploration

FaciesGAN: a cGAN for Facies Generation

facies proportion histograms (Figure 9), ensuring that the
generated scenarios were statistically representative and
effectively explored the geological uncertainty space, as
detailed in Section 3.1.

Visual inspection confirmed that FaciesGAN
accurately reproduced facies structures and variability,
outperforming SNESIM in terms of structural diversity.
Quantitative metrics further reinforced this result: the
mean IoU (99.96%) indicates near-perfect preservation
of well conditioning, and facies-percentage distributions
closely aligned with the real data, with deviations generally
<4%.

The comparative histogram highlighted that FaciesGAN
better approximated the observed facies proportions than
SNESIM, which tended to generate realizations with
greater variability and statistical deviation. In addition,
FaciesGAN  demonstrated superior computational
efficiency, producing 1,000 scenarios in 20 s compared to
SNESIM’s 137 min.

These results suggest that deep generative approaches,
such as FaciesGAN, offer a robust alternative for simulating
geological facies. The model’s ability to learn spatial patterns
and accurately reproduce conditioning information
makes it promising for reservoir modeling workflows that
demand both accuracy and efliciency. The results also
demonstrate FaciesGAN’s potential for generalization, as
the model maintained high consistency across different
conditioning wells, with stochastic variability remaining
within acceptable geostatistical ranges.

The FaciesGAN model was trained and validated
exclusively on the Stanford Earth Science Data dataset,
which represents a particular meandering-channel system.
While the results are promising, especially under conditions
of scarce data, further research is necessary to confirm
the model’s applicability to various geological contexts,
including turbidite systems, deltaic environments, and
carbonate platforms, which exhibit distinct spatial patterns
and heterogeneities.

Furthermore, transfer learning is a promising area
for future research. A model pre-trained on a large and
diverse set of public geological models could be fine-
tuned using smaller, field-specific datasets. This approach
could enhance the practicality of FaciesGAN in real-world
reservoir characterization projects, where data availability
is always limited.

Overall, the tests confirm that FaciesGAN can
generate realistic, diverse, and conditionally consistent
facies realizations, offering advantages in terms of speed
and statistical performance compared with traditional
MPS methods. While this study primarily compared

FaciesGAN with the conventional MPS SNESIM method,
subsequent research should evaluate its performance
against additional deep generative models. For example,
variational autoencoders could be explored, although
c¢GANs have already demonstrated key advantages in
generating scenarios with sharper geological boundaries
and closer alignment to the true statistical distribution of
reservoir properties”’—key attributes for realistic facies
modeling.

5. Conclusion

The use of artificial intelligence-based techniques to
generate facies scenarios is an innovative area aimed
at improving the accuracy and robustness of machine
learning models in oil exploration and production.
c¢GANSs are gaining prominence due to their capacity
to generate high-quality synthetic data that preserves
known geological characteristics. FaciesGAN  was
successfully trained with a limited number of 2D facies
images, demonstrating strong performance in data-scarce
scenarios and offering an effective approach for data
augmentation with small datasets. The main advantage of
the model lies in its ability to generate synthetic 2D facies
scenarios while honoring known conditional information,
ensuring consistency with real conditions derived from
drilled and analyzed wells. MDS and facies-proportion
statistics produced favorable results, highlighting the
ability of this network to consistently reproduce the
conditioning data. The generated realizations preserve
the frequency distributions and spatial correlations
characteristic of the original images, ensuring visual
consistency and maintaining statistical and geological
integrity. Furthermore, a comparative analysis with
SNESIM demonstrated that FaciesGAN provides a
more accurate representation of facies proportions, with
reduced dispersion and skewness relative to the reference
data, while maintaining higher spatial and statistical
fidelity. Another significant advantage of FaciesGAN
is its computational efficiency, which enables the rapid
generation of multiple scenarios compared with sequential
simulation methods. These synthetic realizations can be
integrated into reservoir characterization workflows to
support uncertainty estimation and enhance the quality of
results. Finally, the proposed methodology can be extended
to subsequent workflow steps, such as incorporating
facies with acoustic and/or elastic properties, generating
synthetic seismic data, and evaluating consistency with
actual seismic observations. In particular, future work
will focus on applying the approach to real-world field
datasets—a logical and most important next step. This
extension will enable synthetic seismic generation to be
combined with seismic inversion. This integration will
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establish a direct and useful link among facies modeling,
seismic inversion, and reservoir characterization.
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Abstract

Accurate seismic monitoring is vital for the safe operation of enhanced geothermal
systems in hot dry rock (HDR) reservoirs; however, robust P- and S-wave classification
and precise first-arrival picking remain difficult under low signal-to-noise ratios
and complex noise conditions. Hence, in this study, we present SeisFormer, a
Transformer-based framework that couples adaptive multi-scale windowing with
joint time-frequency analysis. It allocates time—frequency resolution on the fly to
overcome the limitations of a fixed-window short-time Fourier transform and slowly
extracts varying trends and dominant periodicities from waveform sequences.
To stabilize the modeling of long-range dependencies, we introduce regularized
pseudoinverse attention, which retains the speedups of low-rank approximations
while damping amplification in directions associated with small singular values. We
evaluated SeisFormer on a unified, multi-site dataset with data from HDR operations
in the Qinghai Gonghe Basin and from an unconventional hydraulic-fracturing field in
North China. Compared with baselines (EQTransformer, PhaseNet), it exhibited better
performance across real-world data, noise-augmented data with non-stationary
composite noise, and overlapping multi-event scenarios. On real-world data, it
attained 98.30% classification accuracy, with mean arrival-time errors of 1.42 ms
(P) and 2.29 ms (S). Ablations show that each component contributes substantially,
indicating robustness for near-real-time monitoring and deployment.

Keywords: Microseismic monitoring; Hot dry rock hydraulic fracturing; Picking and
classification; Transformer; Adaptive multi-scale windowing; Time—frequency domain

1. Introduction

As a clean and renewable energy source, geothermal energy offers low carbon emissions,
environmental friendliness, operational stability, high efficiency, and abundant resources.
Among geothermal resources, hot dry rock (HDR) has attracted significant attention
due to its large heat-storage capacity and development potential, and has become a
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substantial focus of global exploration.! To efficiently
extract heat from HDR, hydraulic fracturing is commonly
employed to increase reservoir permeability, promote heat
flow, and improve energy recovery. Figure 1 illustrates the
basic process of heat extraction from HDR:> High-pressure
fluid is injected to induce rock failure; fractures propagate
and release energy, accompanied by microseismic events.

Compared with conventional oil and gas reservoirs,
hydraulic fracturing in HDR formations is more complex.>*
HDR rocks typically exhibit very low permeability and high
strength, and their microseismic signals are broadband with a
high-frequency bias. Under high-temperature, high-pressure
conditions and elevated injection rates, rock strength is
further reduced and microseismicity becomes more complex
and heterogeneous in time and space; numerous closely
spaced events often occur within short time windows, yielding
intricate source distributions and substantially increasing the
difficulty of signal processing and interpretation.>” Reliable
microseismic monitoring is therefore crucial for assessing
fracture-propagation dynamics during HDR stimulation
and for providing timely feedback for engineered fracture-
extension analysis and field decision-making.®’

In microseismic signal processing, phase identification
and first-arrival picking are two core tasks. Traditional
methods (e.g., short-time average/long-time average
[STA/LTA], and Akaike information criterion') perform
well under ideal conditions but are prone to false positives

Geothermal power plant

Figure 1. Schematic representation of enhanced geothermal systems
using hydraulic fracturing in hot dry rock

and less effective at low signal-to-noise ratios (SNR) and in
complex noise environments, limiting their suitability for
HDR field applications.'**¢ Recent advances in deep learning
have substantially improved detection and phase picking
for seismic and microseismic signals.”""” Convolutional and
recurrent architectures, such as PhaseNet,” PickCapsNet,*
and a convolutional neural network (CNN) + long short-
term memory (LSTM)* learn discriminative features but
still struggle to model long-range dependencies and cross-
scale coupling. Transformer-based models, via self-attention,
provide global dependency modeling and have become
an important framework for seismic time-series analysis.
Representative works include EQTransformer, which
jointly models detection and phase picking for regional and
teleseismic catalogs; EQCCT, which couples compact CNNs
with transformers for efficiency and improves cross-domain
robustness via basin-scale transfer learning; SeisT, which uses
multitask learning to unify detection, phase classification,
and arrival-time estimation; and ICAT-Net, which leverages
lightweight attention to balance accuracy and efficiency.”*
In mining and engineering scenarios, prior work has also
explored handcrafted feature representations and hybrid
CNN-transformer classifiers. However, many of these
methods target conventional seismic catalogs or relatively
stationary noise. In particular, transformer pipelines trained
on regional or teleseismic data—characterized by lower event
density and more stationary backgrounds—generalize poorly
to HDR wavefields featuring overlapping onsets, narrowband
harmonics, and low-frequency drift. Moreover, the quadratic
cost of full attention and fixed analysis windows can introduce
latency and unstable pick times on long streams sampled at
1 kHz with rapid cross-scale variability, motivating a time-
frequency-aware architecture with adaptive windowing and
a stabilized Nystrom attention mechanism.

In this context, we propose the SeisFormer, a
time—frequency transformer framework tailored to HDR
hydraulic-fracturing microseismic signals. Our main
contributions are as follows:

(i) Time-frequency co-modeling with a transformer. We
fuse short-time Fourier transform (STFT)- and two-
dimensional (2D)-convolution-derived time-frequency
features with self-attention to jointly represent low-
frequency trends and high-frequency transients,
matching the broadband, high-frequency-biased
characteristics of HDR microseismic data.
Adaptive multi-scale window selection. We adapt
window scales based on trend and periodicity cues
and employ dynamic grouping and routing for
efficient cross-scale modeling in dense-event, strongly
non-stationary scenarios.
(iii) Robust and efficient attention. We incorporate a
Tikhonov-regularized pseudoinverse into Nystrom

(ii)
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truncate long events, whereas long windows include

while
excessive noise. When signal lengths vary widely and event

attention, delivering low-rank speedups
improving numerical stability, thereby supporting
million-sample sequences for engineering deployment.

1.1. Time-frequency characteristics
Microseismic data from HDR hydraulic fracturing in
enhanced geothermal system reservoirs are complex, non-
stationarytimeseries with distincttime—frequencystructure.”
Waveforms comprise background noise, P waves, S waves,
and coda, with phase durations and amplitudes varying
across operating conditions. In the frequency domain, P
waves have higher-frequency and lower-amplitude, whereas
S waves have lower-frequency and higher-amplitude.”®?!
Consequently, models must capture both low- and high-
frequency content and adapt across multiple time scales to

density is high, processing performance degrades and errors
propagate downstream to subsequent modeling stages.

2. Proposed method
2.1. Model architecture
We propose the SeisFormer, a time-frequency modeling
framework for P/S classification and first-arrival picking. As
illustrated in Figure 2, the model (i) performs per-sample
adaptive window selection to choose the processing scale,
(ii) derives interpretable time—frequency representations via
STFT coupled with 2D convolutions, and (iii) models long-
range dependencies with a transformer whose self-attention
is stabilized by a Tikhonov-regularized pseudoinverse to
enhance numerical robustness and computational efficiency.

Section 2.2 introduces the trend- and dominant-

distribution shifts and transient changes.

frequency-guided complex routing for window selection.
Section 2.3 explains how the selected window jointly
determines the STFT/2D-convolution hyperparameters
and the construction of the time-frequency tensor.

Section 2.4 presents Nystrom attention with a Tikhonov-

1.2. Challenges in manual labeling
P- and S-wave arrival times are commonly picked
manually, which is labor-intensive and susceptible to
inter- and intra-operator variability. There is a clear need
for automated classification and picking methods that are

efficient, robust, accurate, and less labor-intensive.
regularized pseudoinverse.

2.2, Adaptive multi-scale time windows
To capture the multi-scale, time-varying characteristics

1.3. Multi-event scenarios
of microseismic signals, we proposed a dynamic

Fracture propagation and injection fluctuations often

trigger closely spaced, overlapping events. Fixed-window
approaches are limited in this regime: Short windows

[ Adaptive window size selection ]
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window-selection method that fuses trend and periodicity
cues. The technique first extracts multi-scale trend and
periodicity representations from the input sequence and
compresses them along the temporal axis to obtain a
compact indicator vector f. We then scored a pre-defined
candidate window set {W1,... Wn} with f; during training,
light Gaussian noise was injected into the scores to improve
generalization. During inference, a hard-routing strategy
(k=1) selected the optimal window length W, to drive the
subsequent time-frequency modeling.

Let the input be zER®"*P, where B is the batch size,
W is the maximum observation window considered by
the selector, and D = 1 is the channel dimension. Given a
scale set K={k,|,....k,| }, we computed multi-scale moving
averages using Equation (I):
P MA(z;k) eRP"P Ve

trend

@

The per-scale trend components were fused with
learnable weights, as shown in Equation (II):

. exp(@)
Ztrend = Zakzsre)nd ? Ctk = n—’
k=t Zj:1exp(a)j )
a)k = Wtrend ’ AVgPOOI(ZS(e)nd ) + btrend (II)

Where AvgPool(-) denotes temporal average pooling
and {a,} are softmax-normalized scale weights.

In terms of periodicity features, for each sample,
we applied a fast Fourier transform to obtain a complex
spectrum Z.... The magnitude was calculated using
Equation (III):

|ZFFT| = \/Re(ZFFT )2 + Im(ZFFT )2

(I10)

To emphasize dominant periodic components, we
selected the top-k frequency indices by magnitude and
retained the corresponding real-valued magnitude
features, yielding Zg?q . This reduces dimensionality while

preserving the principal periodic structure.

For fusion and selection, we performed temporal
average pooling on the trend and periodicity features
separately and used additive fusion to obtain the indicator
vector, as shown in Equation (IV):
f= Angool(ztrend ) + Angool(Z(K) )

freq Iv)

Candidate windows were scored by logits = W,f + b,.
During training, we added zero-mean Gaussian noise
N (0, 0% to the logits (with o selected on the validation
set) to mitigate overfitting near decision boundaries and
improve out-of-distribution robustness. During inference,

we adopted hard routing by choosing a single window via
i = arg max; logits, and used W, for subsequent time-
frequency modeling. The fusion and routing procedure is
summarized in Algorithm 1.

For dynamic bucketing and end alignment, since
samples within the same batch can select different window
lengths, we dynamically grouped (bucketed) samples by
their chosen window and formed sub-batches per window.
For each group, a sample was fed to the segment obtained

Algorithm 1. Trend-period fusion and hard routing

Inputs: ZERP»Y*!, kernel set K = {ky|,..., k,,|}, top—x
Outputs: selected index i* and window length W,
1: //Multi-scale trend extraction

2 For each k€K do

3: z\) | < MovingAverage(z; window =k)

4: end for
5: //Learnable weighting across scales (softmax on pooled cues)

6: for each kEK do

7: u, < AvgPool(z%¥),)// pool along time
8: ol — Wi U + by

9: end for

10: ot <« softmax([®,],)//Bxm  along k
1: Z,, <Y oz, [IBxW x1

12: //Periodicity via FFT (keep Top-k complex components)

13: Zg <« FFT(z)

14: mag —R(Zy) +3(Zy)

15:idx <«TopK (mag,k)//per—sample
16: Zgq <«Gather (mag, idx)

17: //Additive fusion and hard routing

18: f < AvgPool(Z,,,,)+ AvgPool(Z,,)

19: logits «~W,f+b,

20: if training then

21: logits  <«logits+&//e~N (0,62)

22: P <softmax (logits)//optional: for logging/analysis
23:7* <-arg max; p;

24: else

25: V//Hard routing at inference: k=1
26: i*

27: end if
28: return ¥, W,

<arg max; (logits)
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by slicing from the sequence end leftward with length
W...; the supervision signal (class label and/or arrival-time
label) was aligned to the window end. This ensured a one-
to-one correspondence among “context length-feature
extraction—-supervision” while preserving batch efficiency.
The selector consisted only of linear transforms and
pooling, and dynamic grouping was a tensor reindexing/
slicing operation; the overall computational overhead was
negligible.

2.3. Time-frequency feature extraction based on
STFT and 2D convolution

The STET preserves both temporal and spectral information
and is therefore well suited to low-SNR, compositionally
similar, time-varying microseismic signals.’ In this work,
we mapped the input microseismic sequence from the
time domain to the time-frequency domain to extract
more discriminative spectral features and characterize
energy evolution across time. The STFT window length is
a key hyperparameter: Increasing the window improves
frequency resolution (smaller Af = f/ng) but reduces
time resolution (larger At = H/f,)and increases temporal
smoothing 7,,, = n,,/f; the converse holds for shorter
windows.

Let f be the sampling rate, n; the DFT size, n,,, the
window length (we set ng = n,,), and Hthe hop size.
For a discrete signal z[n], the STFT was calculated using
Equation (V):

Z(t,f) = Ez[n}a)[n - tH:|e'j2”f”/N

Where w[-] is the analysis window (we used a Hann
window), t indexes time frames, and f indexes frequency
bins. For a batch zERPT, the STFT produced Equation (VI):

V)

XExT n > t_nwin
Zrer eCH™™ T, F:|:%:|+1, T z|:T:|+1 (VD)

with the Nyquist limit f/2. To retain both magnitude
and phase while matching a 2D CNN, we stacked the real
and imaginary parts along the channel dimension, forming
stack [Z, ., Zi,lJER>™T, which was then passed to a 2D
convolution followed by ReLU, as shown in Equation (VII):

7. =ReLUW®stack[Z. ., Z.]+b) (VII)

‘conv real> ““imag

where ® denotes 2D convolution on the frequency-
time plane. The 2D CNN captures local structures within
a single band and cross-band/time dependencies, enabling
short-term spectral trend modeling and inter-band
coordination.

Following the hard-routing selection in Section 2.2,
once the sample-level optimal window W, €{128,256,512}

was chosen, we adapted 1 and the hop size H accordingly
(50% overlap, H = ng/2), and proportionally adjusted the
number of 2D convolution channels to achieve comparable
time-frequency resolution and controlled computation
across scales. The mapping used in this paper is shown in
Equation (VIII):

(62,31,12), W' =128
(10> H,channels) = { (126,63,6), W, =256 (VIID)
(256,127,3), W =512

motivated by setting ng ~W, /2 to align Af = f,/ng
across scales. Larger windows increase frequency
resolution but also the number of frequency bins FFF;
hence, we reduced the convolution channels inversely
(1256-3) to offset the growth in feature-map size and
stabilize throughput. Modern fast Fourier transform
implementations handle non-power-of-two lengths
efficiently, so the above choices were numerically and
computationally sound. This parameterization was
empirically validated as the best-performing configuration,
yielding the strongest trade-off among arrival-time
accuracy, classification metrics, and efliciency on the
validation set, and demonstrating stable behavior in
ablation studies.

2.4. Nystrom attention with Tikhonov-regularized
pseudoinverse

After the 2D convolution, the frequency-time maps were
reshaped to form a sequence for the transformer. Let
Z,,,. € R¥™ denote the convolutional output (batch B,

channels C, frequency bins F, frames T"). We flatten
the (C, F) axes to obtain Equation (IX):

XeRP™d n:=T” d:= CxF (IX)

and fed X to the transformer (SeisFormer) for further
sequence modeling. Multi-head self-attention captured
long-range temporal-spectral dependencies, improving
microseismic event discrimination.

For notation unification, we set n = T” (sequence
length after 2D CNN) and d := CxF (embedding width
before head-splitting). With h heads, the per-head width
was d, = d/h. Given XER»™, after linear projections and
head splitting, we have Q,K,V € R¥*™% In Equation (X),

the scaling Jd refers to the per-head width, thatis, d = d,.

SeisFormer alternates between self-attention and
feed-forward neural network (FFN) blocks and, unlike a
standard transformer, employs a Nystr6m approximation
to self-attention for efficiency on long sequences.”*?” In
conventional attention, the row-wise scaled dot-product
was calculated using Equation (X):

Volume 34 Issue 6 (2025)

64

doi: 10.36922/JSE025290036


https://dx.doi.org/10.36922/JSE025290036

Microseismic event picking with SeisFormer

Journal of Seismic Exploration
QK'

c Rnxn
)

We chose m <« T landmarks with index set M, and
defined it as Equation (XI):

A £ 8(Q,, K,)ER™™ B £ §(Q, K,)ER™™, C £ S(Q,,
K)eRma (XI)

X)

S(Q,K) = softmax[

The classical Nystrom approximation is shown in
Equation (XII):
S=BA'C (XII)

where A* is the Moore-Penrose pseudoinverse. If the
true attention S has rank at most m and the landmark
submatrices are full rank, we can write § = UV" with U,
VeR™" whichyields B=UV,,,C=U,V' and A=U,,V,,.
Using (XY)* = Y* X*under the usual full-rank side
conditions, we obtain Equation (XIII):

BA'C=(UV,)(V,) U, )(U, V" )=U[V (V) 1U, U,V

m m

=UV' =8 (XI1I)

Hence, the Nystrom reconstruction is exact in this
ideal case. In general, § still preserves the landmark rows/
columns (S ,,=B,S, =C)and gives the minimum-norm
solution consistent with them.

For numerical stability, we replaced A* with a Tikhonov-
regularized pseudoinverse A . Let the SVD of A be the
formula shown in Equation (XIV):

A=U,ZV,, A*=V,2'U,, ' = diag(a;l 1{@0})
(XIV)

When the landmarks are highly correlated or the subset
is skewed, small singular values make the plain inverse
amplify noise along those directions. In practice, we used
the Tikhonov-regularized pseudoinverse, as shown in
Equation (XV):

-1 o,
Aj=(A"A+AI) A" =V, dia — |U, XV
= ) f g(G;MJ PN CAY)
Whose operator norm satisfies Equation (XVI):
1
A =max——~<—— (XVI)
- SN N )

thereby avoiding the % blow-up as ¢->0. The
resulting stable reconstruction is shown in Equation (XVII):

S, =BAIC (XVID
Spectrally, the regularization acts as a smooth shrinkage

on each singular direction, as seen in Equation (XVIII):

3
i T +
A]VA L A—AATA

o+

i

O
2

AATA= UAdiag(

- UAdiag( Ao, JVI (XVIID)
o +A
Hence, the approximation-bias trade-off is monotone
in A. This shrinkage bounds the amplification of
perturbations and yields smoother gradients during back-
propagation, as the Lipschitz constant along the landmark
path is controlled by A .

In terms of complexity, exact attention incurs O(n’d)
time and O(n*)memory, whereas the Nystrém scheme
requires O(nmd) + O(m?) to construct B and Cand to solve
a single m x m system. Under the common regime, m << n,
the O(m’)term is negligible, and the overall complexity is
effectively O(nmd). Replacing A* with A, preserved this
low-rank acceleration while improving numerical stability
for long-range dependency modeling in microseismic
signals; this matches our implementation, which computes
the (regularized) pseudoinverse on the landmark attention
block.

The processed sequence features were flattened and
passed to each transformer layer. In each layer, the features
were further optimized through the FEN, which consists
of linear layers and GELU activations to extract non-linear
relationships and enhance feature representation. Residual
connections and layer normalization were applied to
both self-attention and FEN blocks to accelerate training
and prevent gradient vanishing, ensuring stable signal
propagation through the network and better adaptation
to complex time-frequency structure. The output features
then pass through three linear transformations with ReLU
and dropout, followed by a final linear layer that maps to
the task space; finally, scores were normalized to predict
probabilities for P-waves, S-waves, and noise, completing
the microseismic event classification.

3. Experimentation
3.1. Parameter configuration

To enhance data representativeness and rigorously
evaluate cross-site generalization, we merged data from
two independent sites into a joint dataset under a unified
organization and labeling protocol: An HDR project in the
Gonghe Basin, Qinghai, China, and an unconventional
hydraulic-fracturing site in North China. The Qinghai data
wereacquired in 2020 usingan in-house system. Monitoring
at well GR-1 (approximately 2 km from GH-02/3) used a
12-level, three-component downhole array (1,100-1,400 m
depth; 20 m inter-level spacing) together with a “surface—
shallow-well-deep-well” joint layout: 12 surface lines
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within an 8 x 8 km area centered on GH-02/3 (25 m station
spacing; at least 1,512 channels) and 60 three-component
shallow-well instruments (10-25 m installation depth),
providing coverage to a target depth of ~4,000 m. At the
North China site, production wells were arranged in belts,
targeting formations at depths of ~3,700-4,300 m. The two
sites shared a consistent data organization and labeling
protocol: Both used a 1 ms sampling interval, and phases
were labeled as noise =0, P =1, and S = 2 (Figure 3). Across
all annotated frames, class proportions were 70.01% noise,
13.70% P, and 16.29% S.

Modeling was conducted on the joint dataset, comprising
a total of 4,000 single-channel time series (At = 1 ms)as
inputs. Each channel was demeaned and standardized via
z-score using statistics computed from the training split of
the joint dataset to ensure comparability across sites and
channels. Unless otherwise stated, the data were splitin a ratio
of 8:1:1 into training/validation/test sets. We adopted Adam
(initial learning rate 1 x 10™*) with ReduceLROnPlateau
(factor = 0.1, patience = 5) based on validation metrics
to promote stable convergence. The training objective
combined cross-entropy with L2 regularization (weight
decay = 0.003). After each epoch, the model was evaluated
on the validation set, and early stopping was applied to curb
overfitting and improve generalization.

Given the high noise fraction (70.01%) in the joint
dataset, we employed class-weighted cross-entropy during
training and assigned a weight of 1.2 to P- and S-phase
frames to strengthen discrimination around arrivals,
thereby improving picking sensitivity and robustness.
All training and evaluation settings were applied
uniformly across both sites to ensure fair comparison and
reproducibility.

3.2. Comprehensive experimental evaluation

To comprehensively evaluate model performance under
different conditions, we designed a series of experiments
on a strictly held-out test set from the joint dataset. This
test set consisted of 200 data segments from each site
(400 in total) and was entirely non-overlapping with
the training/validation data. The evaluation scenarios
included the real environment, the noise environment, and
multi-event cases. To ensure fairness and reproducibility,
all methods followed a unified pre-processing pipeline
before entering their respective models/algorithms.
The evaluation protocol then proceeded in four stages:
(i) Multiple methods were compared under the real
scenario; (ii) better-performing methods were included
in the noise tests; (ili) complex-signal handling was
assessed via the multi-event scenario; and (iv) ablation
studies were conducted to quantify the contributions of
key components.

The class set be {0:Noise, 1:P, 2:S}. Define the confusion
matrix be CEN*? with entries C, = #{samples with true
class i predicted as j}, 1, j€{0,1,2}.Then, the overall accuracy
is calculated using Equation (XIX):

2
C.
—ZZ":‘)Z” (XIX)
Zi:oz j:ocﬁ

Accuracy =

For class i, Equation (XX) was used:

TP, =C,, FP, :zcki’ EN; =) C, (XX)

k#i k#i

Class-wise precision, recall, and F1 are shown in
Equation (XXI):

A
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Figure 3. Manual annotation process
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TP TP
———, Recall, = ——,
TP, +FP, TP, +FN,

i i i

Precision, =

_ 2Precision,Recall,

FI, = (XXI)

Precision, + Recall,

Weighted aggregates used for class support n,= TP,+ FN,
(i.e., the number of true samples in class i) with N= Y n,, as
shown in Equation (XXII):

2 n 2 n
Precision =Y —-Precision., Recall =) —Recall ,
> " precison, > Recall

i=0 i=0

2

FI:Z%FL

i=0

(XXII)

We also reported mean absolute error (MAE)-P and
MAE-S for P/S arrival times, defined as the sample-wise
mean absolute difference between the predicted and
manually annotated arrivals. Together, these metrics and
visualizations quantified both classification and arrival-
time picking performance and enabled a consistent
comparison of methods across the three scenarios.

3.2.1. Real environment experiment

We evaluated classification performance on real
microseismic signals using SeisFormer, EQTransformer,”
PhaseNet,” generalized phase detection (GPD),* LSTM,
CNN, and STA/LTA.'® Unless otherwise stated, all models
were trained from scratch under a unified pre-processing
pipeline, with a sampling rate of 1 kHz, identical train/
validation/test splits, and identical label definitions.
Model configurations were as follows: SeisFormer—an
8-layer Transformer with eight attention heads, model
dimension 64, FFN/multilayer perceptron hidden size
256, dropout 0.5 on attention and FFN, and a multilayer
perceptron head with 128 hidden units. EQTransformer
was implemented following the public release and original
architecture (convolutional encoder, residual CNN stack,
3xBiLSTM, detection decoder branch with multi-stage
upsampling). PhaseNet is a one-dimensional U-Net with
four down- and upsampled stages (downsampling kernel
length 7, stride 4). GPD used four Conv1D layers plus two
fully connected layers. The LSTM baseline used a two-layer
bidirectional LSTM with 100 hidden units per direction.
The CNN baseline is a lightweight one-dimensional CNN
with three convolutional blocks and a fully connected
head (kernel length 7; channels 32/64/128). STA/LTA is a
short/long-window energy-ratio trigger under the same pre-
processing/segmentation as the deep models (short/long
windows 0.2s/2.0s; threshold tuned on the validation set).
For fairness, we used matched optimization, regularization,
learning-rate scheduling, early stopping, and random seeds
across methods, without modifying baseline architectures.

As shown in Figure 4, SeisFormer, EQTransformer,
and PhaseNet clearly outperformed the other baselines.
Representative numbers are reported in Table 1: SeisFormer
(Accuracy: 98.30%, precision: 97.40%, recall: 97.92%,
F1: 97.66%; MAE-P: 1.42 ms, and MAE-S: 2.29 ms),
EQTransformer (Accuracy: 96.90%; MAE-P: 1.90 ms,
and MAE-S: 3.18 ms), PhaseNet (Accuracy: 94.80%;
MAE-P: 4.76 ms, and MAE-S: 6.95 ms), while the remaining
baselines lagged substantially behind. Overall, these three
models constituted the first tier, with SeisFormer leading in
both classification and arrival-time accuracy.

We also benchmarked forward-pass latency on an RTX
4060 (8 GB) + Intel i9-13900HX using single-channel
1 kHz/3 s input (the three-second window was used solely
to standardize the latency benchmark), FP32, batch = 1.
Results were the median of 100 runs after 20 warm-up
iterations, measuring wall-clock time for the model forward
only—including in-graph STFT and hard routing, and
excluding data loading and disk I/O: SeisFormer =~ 4.2 ms
(GPU)/43 ms (CPU), PhaseNet = 5.1 ms (GPU)/55 ms
(CPU), EQTransformer = 8.5 ms (GPU/94 ms (CPU).
Under this accuracy-latency trade-oft, SeisFormer is the
most suitable for near-real-time deployment on the target
hardware.

Confusion matrices for each method in Figure 5
further illustrate their strengths and weaknesses.
SeisFormer attained an overall true-positive rate of
98.1%, with class-wise rates of 96.1% (P-wave) and 94.3%
(S-wave), outperforming all other methods. Notably,
most SeisFormer errors arise from small discrepancies
between predicted and manually labeled endpoints of
P- and S-wave arrivals; such endpoint disagreements
have limited impact on microseismic monitoring and are
therefore of low significance to the overall evaluation. To
further substantiate SeisFormer’s advantages, Figure 6A-D
shows predictions on representative waveforms from the
test sets of both datasets, visually demonstrating efficient
classification and accurate arrival-time calibration.

3.2.2. Noise environment experiment

To more faithfully emulate field disturbances and align the
evaluation with picking/classification objectives, we
calibrated noise intensity using an event-referenced SNR
(ER-SNR) and conducted stress tests with non-stationary
composite noise that included low-frequency drift, power-
line fundamentals and harmonics, impulsive interference,
and colored background noise. This design better reflected
real HDR noise characteristics than conventional whole-
trace SNR and enabled an objective assessment of model
robustness under realistic conditions. Concretely, for each
record, we constructed an event window E (labels >0) and
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Figure 4. Comparison of classification and picking results from different methods. The same waveform was used to test each model, with the classification
results for the 0-500 ms segment extracted to showcase performance in P-wave classification and arrival-time picking, and the 1,500-2,100 ms segment
extracted to highlight performance in S-wave classification and arrival-time picking. SeisFormer, EQTransformer, and PhaseNet demonstrated strong
performance; further comparisons and evaluations will be conducted in subsequent noise experiments. Classification results of the (A) SeisFormer model,
(B) the EQTransformer model, (C) the PhaseNet model, (D) the GPD model, (E) the long short-term memory (LSTM) model, (F) the convolutional neural
network (CNN) model, and (G) the short-term average/long-term average (STA/LTA) method.
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Table 1. Comparison of classification performance and arrival time calibration errors for different models

Model Accuracy (%) Precision (%) Recall (%) F1 (%) Mean P-wave arrival error Mean S-wave arrival error
SeisFormer 98.30 97.40 97.92 97.66 1.42 ms 2.29 ms
EQTransformer 96.90 96.15 96.48 96.31 1.90 ms 3.18 ms
PhaseNet 95.80 95.02 95.71 95.36 4.76 ms 6.95 ms
GPD 83.70 81.80 82.45 82.12 24.9 ms 30.6 ms
LSTM 85.90 85.10 85.35 86.10 15.1 ms 45.3 ms
CNN 82.10 80.10 81.95 81.30 21.4 ms 54.9 ms
STA/LTA 68.79 61.60 66.42 64.63 152 ms 224 ms

Abbreviations: CNN: Convolutional neural network; GPD: Generalized phase detection; LSTM: long short-term memory; STA/LTA: Short-term

average/long-term average.
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Figure 6. Classification results of the SeisFormer model on representative waveforms from the training set, verifying performance across different data

types. (A and B) Qinghai site. (C and D) North China site.

a pre-event baseline window B from the second-column
labels. The event mask was dilated by approximately
+100 samples to cover onsets and coda. The waveform was
|—113|Zs[i], yielding
5[i] = s[i]— p, , which suppresses low—frelcelflency drift in
power estimation. In the presence of impulses and non-
stationarity, we obtained stable energy estimates by
combining trimmed mean of squares with baseline
bootstrap length-matching: For any segment we averaged
the squared amplitudes after two-sided 10% trimming to
reduce the leverage of outliers; as | B|>>| E| for most records,
we repeatedly sampled from B subsegments of length |E|,
computed trimmed power for each replicate, and averaged
across K = 30 replicates to remove biases due to unequal
window lengths. This yielded Equation (XXIII):

PE= Trimo_l(E[ET ) jo Eboa{Trimo'l(E[Bwb T ﬂ
(XXIII)
and the ER-SNR (in dB) was defined as Equation (XXIV):

then baseline-centered using pu,=

P
ER-SNR,, =10log,, (P—E] (XXIV)

B

To match the field noise spectra, we did not add
stationary Gaussian white noise. Instead, we synthesized
a non-stationary composite of four components—baseline
drift (random walk or 1/f -like), power-line harmonics
(50/60 Hz and overtones with slow AM/PM), sparse
impulsive spikes, and colored AR (1) background—and
linearly mixed them with fixed relative weights, as shown
in Equation (XXV):

n

ra

+wn

¢ “col

w = Wil Wy, W, (XXV)

i “imp

using w, = 1.0, w, = 1.0, w, = 0.6, and w, = 0.8. The
noise powers within E and B, P, ;| and P, ,,, were estimated
with the same robust procedure. Given a target ER-SNR
level (let y = 105R-SNRIBI0 the composite noise was scaled
and added as x = s + an,,, so that the post-augmentation

event/baseline power ratio met the target, as shown in
Equation (XXVI):
a’=

_ P—yP,
yP . —P

nBO L nEO

(XXVI)

If P,~yP, < 0 (the trace is already cleaner than the
target) or P,,—P,., < 0 (the noise recipe concentrates
relatively more energy in E than in B, contradicting the
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Figure 7. Phase classification and arrival-time picking across event-referenced signal-to-noise ratio (ER-SNR) levels. (A, C, and E) Qinghai.
(B, D, and F) North China. Each column shows the same representative record under three noise settings (10/5/2 dB); rows are, from top to bottom,
raw/noisy waveform (with ER-SNR), SeisFormer, EQTransformer, and PhaseNet. Performance degrades as ER-SNR decreases; SeisFormer consistently
exhibits more precise and temporally coherent P/S predictions, smaller picking bias, and slower growth in false/missed detections across both datasets.

target balance), we kept the original waveform to avoid
unrealistic distortion. All augmentations used fixed
random seeds for reproducibility and fairness, and for each
record and level, we computed and logged the achieved
ER-SNR to verity calibration error against the target.

We adopted three ER-SNR levels (10 dB, 5 dB, and
2 dB), corresponding to moderate, strong, and extreme
degradation, with a no-noise condition as the baseline. For
each level, waveforms, spectrograms, and augmented samples
were generated under fixed random seeds for inference and
visualization. To provide representative comparisons, we
selected two records from Figure 6 (panel A: Qaidam; panel
D: North China) and evaluated SeisFormer, EQTransformer,
and PhaseNet across the four noise conditions (no noise,

10 dB, 5 dB, 2 dB). All results were reported as raw values
(accuracy, precision, recall, F1, and P/S arrival MAE),
accompanied by corresponding waveforms and STFT
spectrograms to visually demonstrate the degradation
trend with increasing noise. Spectrograms used frame-wise
adaptive STFT: At each time position, the window length was
chosen by the selector in Section 2.2, and the STFT for that
frame was computed as in Section 2.3; frames from different
windows are interpolated onto a unified time-frequency
grid and concatenated to form a continuous spectrogram.
We also overlaid a window-identifier ribbon aligned to the
time axis to indicate the time-frequency resolution used per
segment. Related visualizations and noise-robustness curves
are shown in Figures 7 and 8.
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Figure 8. Adaptive short-time Fourier transform (STFT) time-frequency spectrograms with window-selection indicator bars. (A-D) Qinghai. (E-H)
North China. Shown are the adaptive STFT magnitude spectra of the same two records as in Figure 7 under different noise/scenario settings (vertical axis:
Frequency/Hz; horizontal axis: time/s; color scale: magnitude/dB). Below each spectrogram, the colored bar indicates the frame-wise window selection
(green = 128, blue = 256, red = 512) with pixel-wise alignment to the spectrogram’s time axis.

Abbreviation: SNR: Signal-to-noise ratio.

As shown in Figure 7A-F, when ER-SNR decreased
from 10 dB to 5 dB and 2 dB, the classification and arrival-
time accuracy of all three methods degraded: Baseline
elevation and impulsive interference raised false alarms on
non-event segments and introduced systematic delays in
the picks. In contrast, SeisFormer consistently produced
more temporally coherent and better-aligned P/S
predictions on both datasets while maintaining a tighter
temporal window—at 10 dB it nearly coincided with the
annotations; at 5 dB it still stably covered the main energy
of the events with markedly fewer false positives than
EQTransformer and PhaseNet; and under the extreme

2 dB condition, although slightly contracted, its onset/
offset remained broadly consistent with the labels, whereas
the baselines exhibited fragmented or drifting predictions,
leakage of energy into the baseline, or P/S confusion.
Detailed metrics are presented in Table 2.

The STFT spectrograms in Figure 8 make the non-
stationarity and narrowband harmonics, as well as their
evolution with SNR, visually explicit, and empirically
demonstrate that frame-wise adaptive windowing dynamically
allocated time-frequency resolution: Under high noise it
favored longer windows to enhance frequency resolution
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and suppressed harmonics and low-frequency drift, whereas
at higher SNR it adopted shorter windows to preserve onset
transients—thereby highlighting the band-limited event
energy even at low SNR. These visualizations provide direct and
interpretable evidence for the robustness of the proposed time-
frequency strategy. Overall, as noise intensifies, SeisFormer
exhibited slower growth in false/missed detections and smaller
arrival-time drift, indicating stronger noise resilience.

3.2.3. Multi-event scenario experiment

To assess the models adaptability in complex signal
conditions, we evaluated it on a dense-event window
containing multiple consecutive P/S arrivals. As shown
in Figures 9 and 10, the proposed model preserved clear
P/S boundaries between adjacent events, with onsets and
offsets closely matching the annotations. When inter-
event intervals shortened and energy overlaps arose, it
still robustly localized phase breakpoints and effectively

suppressed cross-segment leakage. The spectrogram reveals
that the model adaptively switches to shorter windows at
rapid energy transitions to retain transient details, while
favoring longer windows in regions with background
undulations or strong narrowband interference to stabilize
spectral structure. Consequently, in dense multi-event
scenarios, the model achieved a favorable balance between
arrival-time accuracy and noise robustness.

3.2.4. Ablation experiment

To quantify the contribution of each component to
overall performance, we conducted ablation studies
under realistic settings with a unified training/evaluation
protocol (Table 3). Replacing Nystrom attention with
exact dot-product attention (without Nystrom) reduced
accuracy/F1 to 91.72%/91.93% and increased P/S arrival
MAE to 6.36/7.71 ms, indicating that the Tikhonov-
regularized pseudoinverse within the Nystrom block

Table 2. Classification performance and arrival time calibration errors of the SeisFormer under different signal-to-noise ratios

Event-referenced signal-to-noise ratio Accuracy (%) Precision (%) Recall (%) F1 (%) Mean P-wave arrival error Mean S-wave arrival error

None 98.30 97.40
10dB 95.73 94.75
5dB 92.88 93.13
2dB 87.02 86.76

97.92 97.66 1.42 ms 2.29 ms
94.69 95.38 3.02 ms 5.37 ms
92.90 93.96 6.33 ms 8.41 ms
87.06 87.17 12.48 ms 18.49 ms

Table 3. Comparison of classification performance and arrival time calibration errors under different model configurations

Method Accuracy (%) Precision (%) Recall (%) F1(%) Mean P-wave arrival error (%) Mean S-wave arrival error (%)
SeisFormer 98.30 97.40 97.92 97.66 1.42 ms 2.29 ms
Without Nystrom 91.72 92.05 91.68 91.93 6.36 ms 7.71 ms
Frequency domain only 90.21 92.11 92.41 92.16 4.79 ms 5.34 ms
Time domain only 86.02 87.77 88.32 89.18 8.81 ms 9.05 ms
Without an adaptive window 93.82 92.19 90.71 90.30 10.21 ms 14.16 ms
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Figure 9. Classification results of the SeisFormer model in scenarios with multiple events occurring within a short time window. Each waveform segment

has a duration of 3,000-4,000 ms.
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Figure 13. Distribution of average S-wave arrival time errors across
different model configurations

(in the full model) constrained small-singular-value
directions, suppressed noise amplification, and stabilized
the weight distribution. Restricting the representation to
a single domain markedly weakened modeling capacity:
The frequency domain only variant, while closer to the full
model, attained only 90.21%/92.16% (accuracy/F1) with
MAE 4.79/5.34 ms; the time domain only variant further
degraded to 86.02%/89.18% with MAE 8.81/9.05 ms,
underscoring that a single domain cannot simultaneously
capture transient onsets and band-limited structure—joint
time-frequency modeling is critical for robust picking
and classification. Removing the adaptive windowing
mechanism (without adaptive windowing) still yielded
93.82% accuracy, but F1 dropped to 90.30% and arrival
errors increased to 10.21/14.16 ms, demonstrating that

frame-wise window selection, in combination with
STFT/convolutional parameters, is essential for mitigating
low-frequency drift and harmonic interference while
preserving onset alignment.

As shown in Figure 11, the ablated variants exhibited
more diffuse probability responses, window spillover, and
larger onset drifts relative to the baseline. Figures 12 and 13
further corroborate this trend quantitatively: Per-trace
error curves showed systematic increases in P/S arrival
errors whenever a component was removed, with the
largest growth observed without an adaptive window.
Taken together, Nystrom with a Tikhonov-regularized
pseudoinverse + joint time-frequency representation
+ adaptive windowing acted synergistically: Adaptive
windowing yielded the most significant gains in arrival-time
precision, the regularized pseudoinverse secured numerical/
training stability, and time-frequency complementarity set
the upper bound and robustness of both classification and
picking.

4, Conclusion

We proposed SeisFormer, a P/S-wave classification
and first-arrival picking network for HDR hydraulic
fracturing. SeisFormer combines adaptive multi-scale
windowing with joint time-frequency modeling and
introduces a stabilized Nystrom attention module to
enhance long-range dependency modeling and feature
discriminability. Evaluated on a joint multi-site dataset
constructed from HDR stimulation in the Qinghai
Gonghe Basin and unconventional hydraulic fracturing
in North China, SeisFormer achieved state-of-the-art
performance on real data, noise-augmented data with
non-stationary interference, and dense multi-event
windows, demonstrating robustness across operating
conditions and strong generalization. In field settings, the
classification accuracy reached 98.30%, with mean arrival-
time errors of 1.42 ms (P) and 2.29 ms (S). Under low SNR
and complex signal environments, the model maintained
stable classification and picking accuracy. Ablation studies
further confirmed the significant contributions of the key
components to overall performance.

Based on measured results on a NVIDIA GeForce RTX
4060 (8 GB) + Intel Core i9-13900HX platform—where the
method attained P/S arrival-time errors ”2.5 ms—future
work can refine the unified pre-processing and end-to-end
inference pipeline and conduct systematic robustness and
fault-tolerance evaluations under complex, non-stationary
noise, and dynamic operating conditions. In parallel,
SeisFormer can be migrated to edge-computing modules
and portable platforms to support near-real-time field
monitoring and facilitate engineering deployment.
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Abstract

In full waveform inversion (FWI), long-wavelength velocity models are essential
for accurately estimating subsurface physical parameters. However, building long-
wavelength velocity models with low-frequency components is challenging due to
mechanical limitations in seismic data acquisition. We propose a novel FWI method
that utilizes a regenerated wavefield derived from the Suppressed Wave Equation
Estimation of Traveltime (SWEET) algorithm. The regenerated wavefield in our
approach was obtained by convolving the arbitrary source wavelet with a Green’s
function, which is represented by the first-arrival traveltime and amplitude extracted
from the SWEET algorithm. Our approach can build long-wavelength velocity
models, provided that a low-frequency wavelet is used. Furthermore, the potential
for multi-scale inversion was demonstrated by gradually increasing the frequency of
the source wavelet, leading to the acquisition of high-resolution models. In numerical
examples, our proposed algorithm was validated using both synthetic and field data
sets. We also assessed the noise sensitivity of the proposed method, confirming its
applicability in practical scenarios. These results demonstrate that the proposed
method is a robust and versatile tool for constructing long-wavelength and high-
resolution velocity models from band-limited seismic data.

Keywords: Full waveform inversion; Long-wavelength velocity model; SWEET method;
Regenerated wavefield; Multi-scale inversion

1. Introduction

Full waveform inversion (FWI) estimates subsurface physical parameters by minimizing
the misfit between observed and modeled seismic data.'* However, successful FWI
requires addressing nonlinearity, substantial computational demands, and dependence
on an appropriate initial velocity model.*® In particular, a reliable initial velocity is
essential for avoiding cycle skipping and for robust convergence when applying FWI
to field data.” One approach to improving the accuracy of the initial velocity model is
to build long-wavelength velocity models and use them as the initial velocity model
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FWI-RWS for long-wavelength velocity model

for FWI. Many studies have proposed constructing long-
wavelength velocity models, with first-arrival tomography
being a commonly used technique,*® and a reflection
tomography approach' has typically been employed to

generate initial velocity models for waveform inversion.'''*

Traveltime tomography has been developed to achieve
progressively higher-resolution models starting from
long-wavelength models. This method, which relies on
ray-tracing theory and the high-frequency approximation,
is less sensitive to the initial velocity model.'>'¢ However,
conventional traveltime tomography often falls short
of the resolution requirements for FWI because it does
not utilize phase and amplitude information.'”'® Using
the phase and traveltime of the first-arrival wavefield,
Liu et al.”” proposed the first-arrival phase-traveltime
tomography (FPT). Nevertheless, FPT has a drawback in
that it does not consider the amplitude of the first-arrival
wavefield, making it difficult to accurately generate detailed
structures.

Another approach involves transforming the observed
and modeled seismic data to reconstruct the wavefield
by utilizing specific waveform attributes, such as
instantaneous phase, envelope, and Laplace-transformed
data. For example, Shin and Cha* proposed a Laplace-
domain waveform inversion to extract low-wavenumber
components from high-frequency seismic data, thereby
generating an initial velocity model for FWI. Although
the Laplace domain, like tomography, does not consider
phase information,* by utilizing a multi-scale inversion
approach with varying damping factors during the Laplace
transform, it is possible to build relatively high-resolution
initial velocity models. Moreover, various studies have
proposed building long-wavelength velocity models using
envelope data derived through the application of the
Hilbert transform. Similar to Laplace-domain waveform
inversion, envelope inversion faces challenges in accurately
resolving detailed subsurface structures due to the lack of
phase information.”*** Notably, recent advancements have
introduced methods that incorporate phase information
during the envelope inversion process, thereby improving
the resolution of the inverted models.** These approaches
aim to overcome the lack of low-frequency components
in the data used for generating long-wavelength velocity
models.

Recently, several complementary strategies have been
developed to improve FWI convergence. Reflection
waveform inversion separates a smooth background
model from short-wavelength reflectivity, allowing
reflections to contribute low-wavenumber updates to the
background model and thereby reducing dependence on
very low frequencies in the recorded data.*** In addition,

low-frequency extrapolation methods, including global
multi-scale deep networks, reconstruct sub-band energy
from band-limited recordings.®® In parallel, improved
convexity or robust misfit functions and extended search
spaces mitigate nonconvexity and reduce sensitivity to
the background model.”' Pretrained or self-supervised
frameworks provide informative priors and warm-
start initialization, which can be coupled with physics-
based optimization.**** Despite the progress, most
long-wavelength building strategies remain limited when
low frequencies are missing and when phase and amplitude
along the first-arrival wavefield are not exploited.

Consequently, we introduce an approach that leverages
traveltime and amplitude information extracted under
high-damping conditions to reconstruct a reliable long-
wavelength background model for FWI The approach,
referred to as FWI using a regenerated wavefield based on
the Suppressed Wave Equation Estimation of Traveltime
(SWEET) algorithm (FWI-RWS), utilizes the first-arrival
traveltime and amplitude to regenerate a wavefield
that contains low-frequency components. The SWEET
algorithm is typically employed to derive traveltimes for
refraction tomography. It uses the characteristics of the
observed seismic data transformed under high-damping
conditions in the Laplace domain to approximate the first-
arrival time and amplitude. By integrating this method,
FWI-RWS aims to enhance the accuracy of the long-
wavelength velocity model and provide robust results for
subsequent multi-scale FWT on field data.

To implement the proposed method, we regenerated
the wavefield by convolving the first-arrival traveltimes
and amplitudes obtained from each receiver with an
arbitrary source wavelet. This process allows for the
successful construction of long-wavelength velocity
models by generating wavefields that contain low-
frequency components. In addition, to effectively
mitigate nonlinearity, a multi-scale method that starts
the inversion at low frequencies and fits higher-frequency
components sequentially was applied.”> We demonstrated
through preliminary tests that multi-scale inversion is
possible depending on the frequency characteristics of
the convolved source wavelet, thereby enabling the stable
acquisition of long-wavelength models.

The theory and methodology of FWI with the SWEET
algorithm are presented, and the effectiveness of the
proposed method is demonstrated using synthetic data.
We also discuss the robustness of the proposed method
in noisy environments, which is a known limitation of the
SWEET algorithm. Finally, field data results are presented
to verify the applicability of FWI-RWS.
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2, Methodology

2.1. Regenerated wavefield based on the SWEET
method

In this section, the basic theory of the regenerated
wavefield based on the SWEET method is reviewed. In the
time domain, a wavefield u can be approximated as a series
of spikes.*

u(t)=>Ap3(t-t,) 0))

where A and t represent the amplitude and g-th time
step (counted from the first-arrival event), respectively, and
6 is the Dirac delta function. By multiplying Equation (I)
by an exponential damping factor e and integrating it, the
wavefield # in the Laplace domain can be written as
follows:*%*7

©

ﬁ(s):J‘u(t)e’“dt zAfefst’ (In

where s is a positive real number known as the Laplace
damping constant, ¢, is the first-arrival traveltime, and A_ is
the amplitude at the first-arrival traveltime. By taking the
derivative of Equation (II) with respect to s and dividing it
by u, the equation becomes:

ou(s) st -
Fz—thfe ! =—tfu(s) (III)

Therefore, the first-arrival traveltime and amplitude are
defined as follows:

1 aﬁ(s)

tf__ﬁ(s) Os (V)
and

A= ﬁ(s)e“f (V)

In this study, the wavefield in the time domain was
regenerated by convolving the traveltime and amplitude,
calculated from Equations (IV) and (V), with an arbitrary
source wavelet.

The regenerated wavefield u is given by:
a(t)zw(t)*[Afé(t—tf)J (V1)

where w is the source wavelet, and * is the convolution
operator.

2.2. FWIl using a regenerated wavefield based on the
SWEET method (FWI-RWS)

Inits classical formulation, FWT1is defined as an optimization
problem that seeks to minimize an objective function,
and FWI-RWS has a similar form to FWI. The objective
function E, based on the lz-norm of residuals between the
observed and modeled data, can be expressed as

1 N, N, —
E= gzzﬁw - dz]? (VID)
i

where ||...|[; is the L-norm, u,, and H,.,j are the
regenerated traces both for modeled and observed traces
using Equation (VI), i and j indicating the source and the
receiver locations, and N and N are the number of sources
and receivers, respectively. The gradient with respect to the
k-th subsurface model parameter m, can be expressed as:

— T
ou,; | _
s
om,
u,

0
where —= is the partial derivative wavefield using the
my
regenerated wavefleld, T ; is the data residual calculated by

(VIID)

u ;- ai’j , T'is transpose, and - is the dot product operator.

In conventional FWI, as calculating Equation (VIII)
leads to substantial computational cost, the adjoint-state
method is used to reduce the computational burden
associated with the partial derivative wavefield.*® Similarly,
we aim to apply the adjoint-state method to the proposed
approach. By substituting Equation (VI) into Equation
(VIII), the partial derivative wavefield can be expressed as
follows:

6ﬁi‘j ﬁi,j (mk + Am) - ﬁ,.,j (mk )

Q

om, Am
P _ b
=w,(t)*( fAm f)é'(t—tf)
P _ b
=w, (1) Dt (IX)
with
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where f is the source wavelet, indicating the use of the
i-th source wavelet. In Equation (IX), the first-arrival

traveltime t,

and A’ denote the first-arrival amplitudes computed from
the perturbed model m,+Am and background model m,
respectively. Therefore, the partial derivative wavefield can
be further simplified as follows:

remains the same regardless of Am, while A7

ou, AA
AA, =A? - A am: =wi(t)*A—n§5(t—tf)
_ u,.,j(mk+Am)—ui,/.(mk) _ E (XID)
Am om

k

Through Equations (VIII), (IX), and (XII), we
can confirm that applying Equation (VI) to the partial
derivative wavefield yields results identical to the
regenerated wavefield. To verify Equation (XII), we
used a homogeneous velocity model of 1.5 km/s on a 201
x 101 grid (Figure 1A). The grid size was 10 m and the
time interval was 1 ms. Figure 1A shows a single shot at
800 m and a single receiver at 1,200 m, both positioned
on the surface. The point-scatterer was located at (1,000 m,
500 m) at the center of the velocity model. The source
signature was a Ricker wavelet with a dominant frequency
of 5 Hz. The partial derivative wavefield at the point-
scatterer within a simple subsurface model was compared
with results obtained from numerical differentiation. In
Figure 1B, the comparison of the results from convolving
the same sources with Equation (XII) indicates excellent
agreement between the two approaches.

To reduce the computational burden of FWI-RWS, the
adjoint-state method was applied. The partial derivative
wavefield for the regenerated wavefield in Equation (VIII)
can be expressed as follows:

ou,. | ou,. _
—L = —L|=G*v, (XIII)
om, | om, ¥
u, .
where G is Green’s operator, — is the regenerated
mk

partial derivative wavefield, and v, is the regenerated
virtual source wavefield. To verify Equation (XIII), the
gradient to a perturbation point within the subsurface
model (Figure 1A) was examined. This yielded two distinct
gradient estimates: one calculated using the finite-
difference method and the other obtained using the virtual
source. Figure 2 shows that the two gradients closely
match. By substituting Equation (XIII) into Equation
(VIII), the gradient using the regenerated wavefield can be

expressed as follows:

VE =
ZZJ[ s pa- 35| 2 for

_ZZ[G(t)* v,0)]®7 (¢ ):ZSZV,.J(t)
[G(t)* (T, —t)]
=sz'v,-.,-<t>*3.-)}-(t) 337, (OB, (T, ~t)

i

N, N, T,
_Zz jv (t)B,, (T, —t)dt with B,
(t)= G(t)* (T -0
(X1V)
where B, is the backpropagated wavefield with the

regenerated residual wavefield, and ® denotes the zero-lag
cross-correlation.

Based on the steepest-descent method, the model
update at each iteration is expressed as®:

1+1

m™ =m' —axAm (XV)

where m' is the subsurface model parameter for
[-th iteration, « is the step length, and Am is the update
direction.

In this study, the diagonal term of a pseudo-Hessian was
used as a preconditioner for the gradient*'. Furthermore,
to mitigate model dependence in seismic imaging, a
multi-scale strategy was employed, applying the FWI
method across a spectrum of frequencies, progressing
from low-frequency to high-frequency components.”
The conventional multi-scale FWI approach enhances
resolution by progressively incorporating the low-
frequency to high-frequency components of the observed
data.'? Overall, a multi-scale FWI-RWS approach
was introduced by gradually increasing the maximum
frequency of the source wavelet used in Equation (VI).
Figure 3 shows the workflow of multi-scale FWI-RWS,
which can be divided into eight steps:

(i) Set initial velocity model parameters and source
wavelet for low frequencies.

(ii) Perform forward propagation modeling.

(iii) Extract the traveltime and amplitude of the shot
gathers.

(iv) Convolve the arbitrary source wavelet with the

extracted traveltime and amplitude to regenerate the

wavefield.

Use the calculated regenerated wavefield, virtual

source, and residual to perform backward propagation

)

modeling.
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Figure 1. Geometry of the homogeneous model and validation of Equation [XII]. (A) The homogeneous velocity model illustrates the source, receiver,
and point-scatterer locations. (B) Comparison of results obtained by convolving the same source wavelet with the first-arrival amplitude obtained from the
differentiated trace (solid black line) and the derivative of the first-arrival amplitudes from the point-scatterer and background models (dashed red line).
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Figure 2. A comparison of the gradient between the finite-difference method (Equation [IX]; solid black line) and the adjoint formulation (Equation
[XIII]; dashed red line)
Abbreviation: FDM: Finite-difference method.
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Figure 3. Workflows of multi-scale FWI-RWS

(vi) Update the velocity model using the regenerated
wavefield.

(vii) Check the error curve convergence and increase the
frequency of the source wavelet.

(viii) Build a long-wavelength velocity model.

3. Results

3.1. Analysis of the regenerated wavefield and
gradient using a three-layer velocity model

In the numerical tests, we solved the 2D isotropic,
constant-density acoustic wave equation in the time
domain. The propagator employed second-order central
differences in space and a second-order three-level time
scheme. To analyze how the maximum frequency of the
arbitrary source wavelet in Equation (VI) affects the shot
gathers and the corresponding gradients, we designed a
synthetic experiment using a three-layer model (Figure 4).
The initial velocity model was homogeneous with a
velocity of 1.5 km/s. The top boundary was treated as a
free surface boundary, while the remaining sides employed

convolutional perfectly matched layers.*” The model grid
comprised 601 x 201 points with 10.0 m spacing in both
directions. The time sampling interval was 1 ms, and
the recording length was 5.0 s. A total of 57 shots were
deployed from x = 0.2 to x = 5.8 km at 100 m spacing. For
each shot, 601 receivers were distributed along the velocity
model surface, with a receiver interval of 10 m. The source
signature was a Ricker wavelet with a dominant frequency
of 5 Hz. Shot gathers were generated by propagating
wavefields induced by the arbitrary source wavelet and
subsequently used to compute and analyze the gradients
within the multi-scale FWI-RWS workflow.

Figure 5A-C shows the modeled data, observed data,
and residuals obtained by forward modeling. Figure 5D-L
illustrates the regenerated modeled data, observed data,
and residuals after convolution with Ricker wavelets at
three different maximum frequencies: 15 Hz (Figure 5D-F),
1 Hz (Figure 5G-I), and 0.5 Hz (Figure 5J-L). As frequency
decreased, the observed and modeled data became
smoother, and the residuals grew broader and less detailed.

Volume 34 Issue 6 (2025)

83

doi: 10.36922/JSE025370071


https://dx.doi.org/10.36922/JSE025370071

Journal of Seismic Exploration

FWI-RWS for long-wavelength velocity model

A Distance (km)
0 1 2 3 4 5 6

35
3 P~
_ L
g g
< 25 &
o S
[} [
o 3
o

2
15
B Distance (km)
0 1 2 3 4 5 6

0 35
0.5 3
— £
£ £
£ 1 25 2
o S
Jo) [
o 7
o

1.5 2
2 1.5

Figure 4. Test velocity models. (A) The three-layer velocity model. (B) The initial velocity model.

Based on Equations (IV) and (V), the first-arrival
traveltime and amplitude of the wavefield, as shown in
Figure 6, were obtained with a Laplace damping constant
of 15. As the maximum frequency of the convolved source
decreased, the regenerated wavefield contained more low-
frequency information.

In FWI-RWS, the gradient was calculated by regenerating
the virtual source and the backward-propagated wavefields.
To compare the inversion capabilities of conventional FWI
and FWI-RWS on the three-layer model, we examined
gradients at various frequencies: the gradient of FWI
(Figure 7A) and the gradient of FWI-RWS using maximum
frequencies of 15 Hz (Figure 7B), 1 Hz (Figure 7C), and
0.5 Hz (Figure 7D). The gradient of conventional FWI
significantly updated the upper part of the high-velocity
layer. In contrast, FWI-RWS, utilizing arbitrary source
wavelets at low frequencies, updated the lower and internal
parts of the high-velocity layer.

3.2. FWI-RWS using the SEG/EAGE salt model

The FWI-RWS was tested using a 2D section of the Society
of Exploration Geophysicists/European Association of
Geoscientists and Engineers (SEG/EAGE) salt model."
The model size was 676 x 210 points with 10.0 m spacing
(Figure 8A). The synthetic dataset consisted of 186 shots,
with a shot interval of 400 m. For each shot, 676 receivers
were distributed along the velocity model surface, with a
receiver interval of 10 m. The data recording time was 5.0 s,

with a time interval of 1.0 ms. The source signature was
a Ricker wavelet with a dominant frequency of 5 Hz. The
initial velocity model was a linear model, with a velocity
range of 1.5 km/s at the surface to 2.5 km/s at the bottom,
as shown in Figure 8B. The FWI-RWS algorithm used a
Laplace damping constant of 15 to extract first-arrival
traveltime and amplitude.

In this case, the multi-scale FWI-RWS was performed
in three steps to update the velocity model, where each step
involved repeating the process across a specified frequency
band. It progressively increased the maximum frequency of
the source wavelet used in Equation (VI) from 0.05 Hz to
1 Hz, with a frequency interval of 0.05 Hz. Figure 8C shows
the inverted velocity model for the 103" iteration. The
FWI-RWS results enabled the updating of broad regions
of the salt body and the acquisition of a more reliable
initial velocity model. When the iteration termination ¢ is
satisfied:

E _E"

&< 7

(XVI)

where E' represents the evaluated objective function
at the [-th iteration. In our test, we set & to 0.02. The
updated images for FWI-RWS from these inversion results
(Figure 8C) demonstrated the potential of a multi-scale
strategy. The inversion quality improved by iteratively
processing the inversion from low to high frequencies of the

source. Then, multi-scale FWI-RWS was used to improve
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Figure 5. Comparison of the modeled data, observed data, and residuals. (A-C) Original wavefield. Regenerated wavefield using a maximum frequency of

(D-F) 15 Hz, (G-I) 1 Hz, and (J-L) 0.5 Hz. The red dashed lines denote the first-arrival traveltime of the modeled data, and the blue dashed lines denote
the first-arrival traveltime of the observed data.

the resolution of inverted salt structures. To evaluate the FWI results obtained using a linear velocity model
dependency of FWI results on the initial velocity model, (Figure 8B) were compared with those obtained using the
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Figure 6. Spatial patterns of first-arrival traveltime and amplitude across sources and receivers. (A) First-arrival traveltime, and (B) amplitude.

FWI-RWS results (Figure 8C). The model parameters used
for modeling and FWT were the same as those used in the
previous example.

After 200 iterations, the FWI results using the linear
velocity model as the initial velocity model only recovered
the shallow part of the salt due to a lack of low-frequency
information (Figure 9A). It is difficult to obtain the
reflection information of the salt bottom and subsalt when
there is insufficient low-frequency information. However,
FWTI using FWI-RWS results as the initial velocity model
showed improvement with the same number of iterations
(Figure 9B), showing the effectiveness of the proposed
method. The proposed method allows for estimating long-
wavelength components when using low-frequency source
wavelets, and, as the frequency increases, it progressively
recovers finer details, such as the salt boundaries shown
in Figure 9B.

The analysis of the depth-velocity profiles (Figure 10)
demonstrated that the proposed algorithm not only
updates the model to closely resemble the true velocity but
also accurately adjusts both the boundaries and internal
velocities of the high-velocity layers. Figure 11 shows the
history of root mean square error (RMSE) with respect to
the number of iterations to assess convergence. The RMSE
values were normalized by dividing the error obtained
from the first iteration by the total RMSE value. As shown
in Figure 11, we noted that the RMSE of the FWI using
FWI-RWS results reached 0.2 of the initial value, whereas
the RMSE of the FWI using the linear velocity model
reached over 0.6 compared to the initial result.

3.3. Field data test

The application of the multi-scale FWI-RWS strategy
was further extended to a 2D marine profile to evaluate
its robustness. The 2D active seismic dataset was acquired
offshore Yeosu in the South Sea by the Korea Institute
of Geoscience and Mineral Resources. Seismic data

acquisition was performed using a 1,050 m streamer and
an airgun source. Additional acquisition parameters are
shown in Table 1.

Field seismic data were first conditioned by estimating
an effective source wavelet from high-signal-to-noise ratio
(SNR) early arrivals. We then applied an eighth-order,
zero-phase Butterworth low-pass filter (80 Hz cutoff) to
limit bandwidth and resampled the data from 0.5 ms to
0.25 ms to match the modeling grid. Finally, to stabilize
the multi-scale FWI-RWS updates and to comply with
the regenerated-wavefield formulation, the records were
convolved with a 40 Hz dominant Ricker wavelet to achieve
a controlled low-frequency target wavelet. All steps were
applied consistently to all shots.

Finite-difference modeling used a 0.25 ms time step
with second-order accuracy in space and time. The initial
velocity model was a homogeneous model with a velocity
of 1.5 km/s. The model size was 8,951 x 151 grid points
with 1.25 m spacing in both directions. The towed streamer
had 84 channels at a 12.5 m group interval, towed at 7 +
1 m depth, and shots were spaced 12.5 m apart with 3 s
records sampled at 1 ms.

Figure 12 presents the estimated source and the
Ricker wavelets (with maximum frequencies of 1, 5,
and 10 Hz) used for constructing the long-wavelength
velocity model. Figure 13A showcases the results of the
FWI-RWS, demonstrating the construction of a long-
wavelength velocity model. To achieve this, wavefields
were regenerated using arbitrary sources with maximum
frequency components ranging from 1 Hz to 10 Hz,
incremented at 1 Hz intervals. Then, the applicability
of the proposed method to field data was evaluated by
applying reverse time migration (RTM) with different
initial velocity models, including a homogeneous velocity
model and a model derived from the FWI-RWS method.
Figure 13B and C shows migration images from RTM
obtained using a homogeneous model and FWI-RWS
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Figure 7. Gradients of (A) FWI using a maximum frequency of 15 Hz, FWI-RWS using a maximum frequency of (B) 15 Hz, (C) 1 Hz, or (D) 0.5 Hz. The
red dashed lines denote the first-arrival traveltime of the modeled data, and the blue dashed lines denote the first-arrival traveltime of the observed data.

results. The RTM images generated using the FWI-RWS
results (Figure 13C) showed improved amplitude balance
compared to those using a homogeneous model. Compared
with the RTM results using a homogeneous model, this
approach also produced more accurate and high-resolution
images with better continuity of subsurface structures.

For an additional analysis, the subsurface offset domain
common image gather (SODCIG) obtained by RTM using
the homogeneous model and the FWI-RWS results as
initial velocity models were compared. Common image
gathers (CIGs) are generally used as a primary criterion
for validating the velocity model, with moveout guiding
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Figure 8. The 2D SEG/EAGE salt model. (A) True, (B) initial velocity model, and (C) long wavelength model of FWI-RWS results.
Abbreviation: SEG/EAGE: Society of Exploration Geophysicists/European Association of Geoscientists and Engineers.

Table 1. Seismic data acquisition parameters

Parameters Description Value
Streamer Streamer length (m) 1,050
Number of channels 84
Group interval (m) 12.5
Streamer depth (m) 7+1
Recording Recording length (s) 3
Sampling rate (ms) 1
Source Source type Bolt long-life air guns
Source volume (cu. in.) 269
Source depth (m) 5
Source interval (m) 12.5

the velocity updates.””* One type of CIG, known as
the SODCIG, is characterized by accurately migrated
transmitted events that are vertically aligned at zero-

offset along the depth axis, while any defocusing indicates
inaccuracies in the migration velocity.** Figure 14
presents SODCIGs at depths of 1, 2, and 5 km in the
migration image. When using a homogeneous velocity
model, most reflectors shift upward as the offset increases,
indicating that the background velocity is slower than the
actual velocity. In contrast, the FWI-RWS velocity model
focuses the reflection energy near zero offset, though some
reflectors still exhibit curvature with increasing offset.
These results suggest that using the FWI-RWS model as
the background velocity enhances the recovery of long-
wavelength structures, leading to more accurate alignment
of reflectors than using the homogeneous velocity model.

4. Discussion

When estimating the first-arrival traveltime, the Laplace
transformation is sensitive to the first-arrival noise, as
noted by Shin and Cha.? Therefore, if noise precedes the
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Figure 13. Imaging results from field data. (A) FWI-RWS results using field data. Reverse time migration results post-processing obtained using a
(B) homogenous model, and (C) FWI-RWS results as the background velocity model.

first-arrival signal, the transform assigns it significant
weight, necessitating the removal of first-arrival noise
before applying the Laplace transform. To further test the
applicability of the algorithm to noisy data, we analyzed
the first-arrival traveltime and amplitude as a function
of the SNR to assess noise sensitivity. The first-arrival
traveltime and amplitude of the observed data using
a strong Laplace damping factor e are calculated as
follows:

©

(;l(s) = J.d(t)e’“dt ~ Afe_“f

0

(XVID)

where d is the Laplace-transformed observed data.

Therefore, to analyze the noise sensitivity of the
proposed method, tests were conducted with varying
Laplace damping constants and intervals. For the noise
test, arbitrary seismic signals were generated, and
noise was added to achieve SNRs of 10 dB, 20 dB, and
30 dB (Figure 15). When the first-arrival traveltime
was unknown, the error in first-arrival traveltime and
amplitude increased at low SNR levels (Figure 16).
The synthetic test showed results nearly identical
to situations where the first-arrival traveltime was
known (Figure 17). When the first-arrival traveltime
was established, the process tended to yield similar
outcomes, largely unaffected by the level of noise present.
Successful application of this technique is anticipated if
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Figure 16. The scenarios with unknown first-arrival traveltime. Variations in the first-arrival traveltime and amplitude in relation to the Laplace damping
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Abbreviations: Amp: Amplitude; FA: First-arrival traveltime; SNR: Signal-to-noise ratio.

picking is performed for each source, ensuring accurate
determination of first-arrival traveltime. At very low SNR
levels, our analysis showed that the first-arrival traveltime
and amplitude remained consistent across SNRs,
provided the first-arrival traveltime of the observed data
was accurately known.

5. Conclusion

We presented FWI-RWS, a physics-guided framework
that leverages the SWEET method-derived first-arrival
traveltime and amplitude. This is achieved by convolving a

target source wavelet and gradually increasing its maximum
frequency. The potential of the proposed method lies in its
ability to enhance resolution incrementally through multi-
scale inversion. Both synthetic and field experiments
show that FWI-RWS recovers a reliable long-wavelength
background from poor initial models and delivers clear
RTM focusing improvements when used as the migration
velocity model. When applied to field data and used as the
background velocity model for RTM, FWI-RWS yields
more accurate structural results than a homogeneous
velocity model. In addition, we examined the sensitivity of
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Figure 17. The scenarios with known first-arrival traveltime. Variations in the first-arrival traveltime and amplitude in relation to the Laplace damping
constant, with a Laplace damping constant intervals of (A) 0.1, (B) 0.01, (C) 0.001, or (D) 0.0001.
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the SWEET algorithm to noise, confirming that accurate
first-arrival traveltimes and amplitudes can be extracted,
provided first-arrival picking is performed beforehand,
regardless of noise. Future research will focus on improving
the efficiency and applicability of the proposed method
by analyzing the impact of different source wavelets and
determining the optimal frequency components for the
model, with the goal of producing background models that
better support attribute analysis, diffraction imaging, and
machine learning-based interpretation. Future work will
explore adaptive selection of the target-wavelet schedule
and extensions to anisotropic and elastic settings.
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