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ABSTRACT

Carbonate reservoirs are important targg s the o1l and gas reserve exploration and production in
China. However, such reservoirs us i eveloped complex pore structures, which heavily affect
the precision in seismic predictig i arameters. As one of the most important parameters

to characterize reservoir roc
evaluate the oil/gas bearin

g within the lithofacies, the Gaussian mixture model is introduced to describe the prior distribution of
¢ parameters. The analytical expression for the posterior distribution of the objective parameters
is obtainedWith the linearized forward operator. Numerical tests indicate that the accuracy of predicted elastic
parameters by the proposed method is improved compared with the conventional Xu-White model and the
varying pore aspect ratio method. The application to the field data validates the effectiveness of the method,
wherein the porosity and fluid saturation results help indicating the spatial distribution of potential reservoirs.

KEY WORDS: carbonate reservoirs; DEM model; Gassmann model; the Xu-White model,
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INTRODUCTION

Asmostoftheclasticoiland gasfieldshave faced the middle and late production
stages, the exploration and development of carbonate reservoirs are gaining
increasing attenuations (Cao et al. 2018). However, due to the sedimentation,
diagenesis, and tectonic factors in the formation process, carbonates usually
exhibit strong heterogeneity with non-uniform mineral distribution and internal
properties, which may lead to the complex pore structures/types (Xu and Payne
2009; Gharechelou et al. 2015). The pore complexity in carbonate reservoirs
poses significant challenges for seismic/elastic predictions with conventional
rock-physics modeling/inversion methods (Falahat and Farr ania 2020;

has been demonstrated to be the significant factors that 1
properties of carbonates (Assefa et al. 2003; Mirkamals

modeling approaches.

To describe the compositions and s
physics model establishes theoretical fr
correlations between elastic and reservo
provides a fundamental basis for pxobi
modeling and inversion (Keys and@
The rock can be assumed as_2
ithin these pores. Therefore, reservoir
mediums to investigate the elastic or

1952), the Kuster-Toks6z model for the sparsely
1ons (Kuster and Toksoz 1974), the self-consistent model
the differential equivalent medium (DEM) model (Cleary
1985; Zimmerman 1985). In consideration of the impact

rocks. In particular, the rock-physics modeling approach proposed by Xu and
White (1995) integrated the differential equivalent medium model, Kuster-
Toks6z model, and Gassmann equation to characterize the sands and mudstones.
Notably, the Xu-White model introduced a simplified classification of pores
into sand-related hard pores and clay-related soft pores. As an extension to
the Xu-White model, Xu and Payne (2009) proposed to classify the carbonate
pores as moldic, interparticle, and microcrack porosities, which addresses the
multiple pore types in rock-physics modeling.
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Seismic petrophysical inversion method plays a crucial role in the prediction
of oil/gas reservoirs by inferring subsurface reservoir properties with recorded
seismic data. Typically, the inversion requires the established petrophysical
forward model, and incorporates the prior constraint information, based on
which optimization algorithm is employed to achieve the estimation of model
parameters. Due to the influence of model error and noise, the inversion
solution is non-unique. Therefore, it is essential to express the inversion
result in terms of probability distribution with quantified uncertainty for the
model parameters. The Bayesian approach, which is widely used in handling
geophysical inversion problems, effectively incorporates prior information into
the solutlon and facﬂltates the evaluatlon of the result uncertaia@gGunning

stochastic inversion. The former usually assumes
follow a Gaussian distribution with a linear fo
assumption, it is possible to derive an analytic

covariance) (Grana et
al. 2017; Luo et al. 2023). The primary gbjective of st@hastic inversion is to
address highly nonlinear inversion probl k any analytical expression
of the solution. In the case of high non e solution can be obtained
ochastic sampling or global
optimization algorithms (Yin et al. pvedo ef al. 2017). Particularly the

the Taylor series expa as togobtain the analytical representation for
the Bayesian inversi ”Grana et al. (2017) proposed a Bayesian
linear inversion on the Gaussian mixture model. This approach
introduces a re ula to approximate the posterior distribution
taking into account the variations in statistical
odel parameters with different lithofacies. In summary,
method provides efficient and stabilized solutions
lem. However, stochastic inversion method can handle
but it involves iterative sampling or optimization that often
ive forward computations and suffers from drawbacks such as
aputational efficiency and unstable inversion results.

For seismic petrophysical inversion applications, porosity, fluid saturation,
and mineral content are commonly considered as the objective variables to be
estimated. Compared with the conventional sandstone reservoirs, carbonates
exhibit complex pore structures, which are characterized by the coexisting of
two or more distinct pore types (Weger et al. 2009; Bemer et al. 2019). Therefore,
it becomes particularly crucial to employ multiple variables for effectively
characterizing these complex pore types. For instance, the pore geometry can be
incorporated as an intermediate variable to assist the inversion of petrophysical
parameters by Guo et al. (2022), which effectively characterizes the spatial



variation of pore structure in carbonate reservoirs. In addition to pore geometry,
the pore connectivity affects elastic or oil/gas-bearing properties in carbonates.
Ishola et al. (2022) demonstrated the prominent effect of pore connectivity on
permeability and hydraulic bending of highly heterogeneous porous medias
such as carbonate rocks with a stochastic 3D pore scale simulation method. In
particular, rock permeability is proven to be largely influenced by pore geometry
or structure, which leads to connected and isolated pores in carbonates (Zhang
et al. 2022; Dias et al. 2023). On the other hand, rock elastic propertles of
pore- ﬁllmg fluid Wlth connected pores 1s different from those regasging 1solated

physics modeling and inversion, the consideration o
and the associated connectivity is critical for improy4
prediction and characterization.

g

To address the aforementioned issues, opose agock-physics modeling
and Bayesian seismic petrophysical inveffion method for carbonate reservoirs.
The method takes into account the influence of isolated and
connected pores, which quantifi of connected pores as the
pore connectivity parameter. By the decoupled DEM model and the

METHODOLOGY AND THEORY

Rock Physics Modeling

According to the matrix-skeleton-fluid rock-physics modeling method, the
modeling process of carbonate reservoirs primarily involve calculating the
elastic moduli of rock matrix/pore fluid, rock skeleton, and fluid-saturated rock.
The equivalent elastic moduli of rock matrix can be determined with the Voigt-



Reuss-Hill (VRH) average.

The bulk modulus K  and shear modulus u of rock skeleton can be determined
with the utilization of the decoupled differential equivalent medium (DEM)
model according to Keys and Xu (2002),

K,=K,1-$"", (1)
sy =1, (1= ), 2)

where K_and p_ are the bulk and shear moduli of rock matrix, respectively,
¢ is the porosity, and P and Q are the polarization factors relatgdmte, the pore
aspect ratio o (Berryman 1980).

By assuming that pore fluid is the brine and hydroca mi C
bulk modulus (K,) is computed with the Wood model @Mavkgber a/g009),

-1
Kf:[S—W+1_SW] , &N 3)
a e btk moduli of brine and

K K

W h

where S is water saturation, and K a

uation,
4)
(5)
To consider t lex pOgg structures in carbonates and improve modeling

ore spaces into two parts, 1.e., connected and isolated
percentage content of connected pores 1s defined
onnectivity parameter ). The total porosity ¢, is thereby

=p - ¢, and ¢ =(1-p) - ¢. In practice, the elastic moduli
ks with the two types of pores are computed separately. It is
considered that the connected pores represent pore spaces that are connected
other, while the isolated pores represent sealed and isolated pores; the
fluid mixture movement mainly occurs between the connected pores.

The moduli of saturated rock with connected pores are estimated by using
the Gassmann equation, which follows the conventional Xu-White model,

i)
K.) . ©)




Heon = ﬂdry s (7)

where K and u _ represent the bulk and shear moduli of fluid-saturated
rock with connected pores, respectively, and ¢__represents the connected-pore
porosity.

Since the Gassmann model is based on the fully-connected pore assumption,
we estimate the saturated rock moduli with isolated pores by the decoupled
DEM model (Keys and Xu 2002),

Kdls K (1_¢dis)P’ (8)

0
:udis = lum (1 - ¢dis) ’ (9)
1 of rock
d po®porosity.
rred as the

where K. and u, represent the bulk and shear m
with isolated pores, respectively, and ¢ represents i€
The modeling process with equations (6)-(7) an
connected- and isolated-pore models, respectiv

Then, we employ the VRH average to te the'@uerall elastic properties

jointly affected by the connected and is

[ BK o+ (1= B) Ky, |+ (10)

/K

cmb

| Bt + (1= B) 1§ (11)

/ucmb

., Fopgesent the weighted bulk and shear moduli of saturated

to the elastic moduli of saturated rock, the elastic
(P-wave velocity V, ., S-wave velocity V', and density

4
- (12)

I/s-cmb = lucmb ’ (1 3)
Yo
p=8(S.p, +(1-S,)p,)+1U-9)p,, (14)

where p , p_, p, and p are the brine, rock matrix, hydrocarbon, and bulk
densities, respectively.
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Due to the complexity of real rock structure, it is difficult to determine the
content of connected or isolated pores at different depth ranges. In this regard,
we define the percentage of connected pores £ (the pore-connectivity parameter)
as a pending variable and try to estimate it based on the observed P- and S-wave
velocities of well log data.

Linearized Forward Operator

According to the established DEM-Gassmann rock-physics modeling
process, porosity, water saturation and pore connectivity parameters are treated
as objective variables, and the forward operator of quantitative_correlation

between the objective variables and elastic parameters can be d as
m=F(r)+e, (15)
where m=[V,, V,, p]” denotes the elastic paramet denotes
the objective Varlables F denotes the forward ope g equations
(1)-(14), and e is the modeling error. The linea del is obtained
by performing a first-order Taylor approximation to
=FK(r,)-Dr,, (16)
¢c=F(r,)—Dr,, (17)

jective variable for the Taylor
be subtracted from the seismic elastic
efers to the linearized forward operator,

where r represents the appro
approx1mat10n c is a congg
data m during the calc

W op
Vs s (18)
s, op
o %
as, o |

inear forward operator D is the Jacobian matrix, which represents the
partial d€rivatives of the seismic petrophysical forward operator F with respect
to r. It can be referred with Appendix for the detailed expressions of these
partial derivatives.

Rock Physics Inversion

From a statistical perspective, the reservoir parameters typically exhibit
a multi-modal distribution due to variations in lithofacies and their physical
properties. Hence, we employ a Gaussian mixture model (Grana et al. 2017)
to represent the prior distribution. This prior distribution is expressed as the
arithmetic average of Gaussian distributions,



PB=Y 4N, L D), (19)

where N_represents the kth Gaussian distribution, p*, X% and ¢, are the
mean, covariance, and weight coefficients of N,, respectively, and C'is the total
number of Gaussian distributions. In practice, the Gaussian mixture model
(mean, covariance, and weight coefficients) of the objective variables can
be computed by using the expectation-maximization algorithm (Hastie et al.
2009), based on the sample data of pore connectivity parameter estimated from
well-side P-/S-wave velocities and measured porosity and water saturation.

For the linearized model as expressed in equation (16), if me the
data error exhibits a normal distribution with zero-mean N 0, X ) nd the
likelithood probability P(m|r) is determined by the linea n the
conditional probability P(rjm) also satisfies a Gauss ibution
with the analytical expression (Grana et al. 2017) fi ditional mean,

2 k, kT kT -1 k 20
m|m D r + r ( r + e) ( o r ( )

) R (21)

The final inversion result of the objectiye variaBles is the weighted mean of
the posterior mean

= Zn i (22)
where
7' (m)= . ' . (23)
In pra improve computational efficiency, we employ the Bayesian
lineagg d based on the Aki-Richards approximation (Buland et al.

208 the elastic parameters of m. Furthermore, considering that
the odel heavily relies on the approximate points and initial models,
we ad@pt an iterative Bayesian inversion method (Lang and Grana 2018) for

t inversions to improve the modeling accuracy. The posterior mean
of Bayesian linear inversion is utilized as the initial model in each iteration of
inversion process. The inversion process terminates until either the difference
between the predicted and observed data falls below a pre-defined threshold or
the maximum iterations are reached.

In summary, the proposed method involves the pore-connectivity parameter
inversion and rock-physics modeling. The specific process of the proposed
method is depicted in Figure 1. According to equation (19), the expectation-
maximization algorithm is utilized for estimating the Gaussian mixture model.
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The iterative Bayesian inversion, as per equations (20)-(23), is employed to
obtain the objective variables. In practice, the number of Gaussian components
1s set to 2 assuming two lithofacies. The threshold for ending the iteration is set
as 1% of the initial residual value and the maximum iteration is 10.

Well log data

| Elastic modulus of rock matrix |

1 * 1
Inversion of the pore
connectivity parameter

| |

Expectation maximum
algorithm - Gaussian
mixture model

Petrophysical modeling

Partial derivative matrix
calculation

!

Prior distribution of
model parameters

Update the initial model
to a posterior |
expectation

The well logging data from a carbonate reservoir of northwest China have
been selected for testing and verification. Figure 2 shows the log data of well
A, including P- and S-wave velocities, density, porosity, and water saturation.
The reservoir in this area primarily consists of karst carbonates, which exhibit
complex crack and cavity distribution with strong heterogeneities. The identified
target layer (2.045~2.072 s) is predominantly composed of pure dolomite with
a minor presence of limestone [1[J[1[]. Table 1 presents the rock and fluid
properties of carbonates. To describe the complex pore structure in carbonates,
the proposed method reformulates the Xu-White model by combining the DEM
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model and the Gassmann equation so as to incorporate the joint influences
of isolated and connected pores. In the rock-physics modeling, the pore
connectivity parameter represents the proportion of interconnected pores and
serves as a weighting coefficient for adjusting the general elastic properties of
different pore types in fluid-saturated rocks. In addition, such a pore parameter
helps revealing the pore connectivity/permeability of carbonates to some extent,
thereby improves the rock-physics modeling accuracy.

Vp (km/s) Vs (km/s) p (g/cm?’) Porosity Sw
6 657 32 36 26 28 0 005 0 05 1

Figure 2. Well log data of (a) P-wave v&

and (e) water saturation.
@

-wave velocity, (¢) density, (d) porosity,

arponates.

Table 1 Rock and fluid prog

Do Limestone Brine
94 76.8 23
39 32 /
2.87 2.71 1.05

mversion, to illustrate the complexity of the pore structure of
irs, the Xu-White model is adopted as the connected-pore model, while
model as the isolated-pore model to predict the elastic parameters
around the well, respectively. The rock-physics modeling result with the
conventional Xu-White model (with a constant pore aspect ratio of 0.15) is
given in figure 3. By analyzing the prediction (see figure 3), it is apparent
that the elastic parameters predicted by the conventional method exhibit the
deviations from the log curve. The prediction gives the correlation coefficients
0f 0.8576 (V,), 0.8264 (V,), and 0.6367 (p) with respect to log data, and thereby
only provide a general indication of the trend observed at the target layer.
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Predicted curve

vave velocity, (b) S-wave velocity, and (c) density by the
connected-pore model) with a constant pore aspect ratio in

ion using only the connected-pore model (figure 3) generally
under@§timates the true value compared with the log data, whilst the isolated-
pore model (figure 4) overestimates. For the connected-pore model, the stiffening
effect caused by the isolated pores are neglected, and a softer rock frame is
assumed. On the other hand, for the isolated-pore model, the equilibrium effect
of pore fluid pressure gradient induced by elastic waves is neglected, so that
no relaxation occurs. For each of the two models, there exists errors in the
predictions due to the assumption of a single-porosity condition. The difference
between the predicted and measured curves at some depths is obvious, which
may cause the errors for the relevant rock-physics inversion.
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Vp  (mis) Vs (mis) (glem 3)

2020

2030

2040

2050

Time (ms)

2060

2070

DyS*™Wave velocity, and (c) density by the
DEM model (isolated-pore model) with aSta ore aspect ratio in comparison with the
log curves.

The illustration in indicates the conventional rock-physics

asonable prediction of elastic properties for the

pore structure. The pore-connectivity parameter
erved P- and S-wave velocities at well A 1s illustrated

aps the results predicted by the proposed method and that by the
ite model (figure 3), which shows that the proposed method achieves
an apparent agreement with the log data (marked with the arrows in figure 6).

We also compare the proposed method with the method proposed by Guo et
al. (2023). The latter (referred as the varying aspect-ratio method) addresses
the pore complexity of carbonates by estimating the spatially-varying pore
aspect ratio, which estimates the pore aspect ratio with observed P- and S-wave
velocities based on the DEM model and the Gassmann equation under the
Bayesian framework. Figure 7d shows the estimated pore aspect ratio of the
study area, where the pore geometry reveals the spatial variation of reservoir
pore types to a certain extent. Although, the prediction by the varying aspect-
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ratio method generally matches well with the log data, the comparison between
the two methods shows a slight improvement achieved by the proposed method
(see figure 8). In summary, Table 2 shows the correlation coefficients between
the log data and those predictions of figures 3, 5, and 7. The proposed method,
which takes into account the interaction between connected and isolated pores,
exhibits the best agreement (the highest correlation coefficient) with the well
log data compared to both the varying aspect-ratio method (Guo et al. 2023)
and the conventional Xu-White model.

Vo (mis) Vs (mls) (g/em Si I6i

6 65 7 32 36 2.7 28 0 05 1

(a) (b) (c)
Proposed Xu-White

— Log curve

Figure 6. Comparison between the predicted results of (a) P-wave velocity, (b) S-wave velocity,
and (c) density by the proposed method (red curves) and the Xu-White model (blue curves).
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Vo (mis) Vs (m/s) (g/cm )

6 65 7 3.2 3.6 27 28 0 0.5

2020

2030

2040

2050

Time (ms)

2060

2070

(b)

Log curve

Figure 7. Predicted results of (a) P-wave velodily, (b) S-wive velocity, (¢) density, and (d)
pore aspect ratio by the method by GuQget al. (2 i parison with the log curves.

(a) (b) (c)

Log curve Proposed Varying aspect-ratio

Figure 8. Comparison between the predicted results of (a) P-wave velocity, (b) S-wave
velocity, and (c¢) density by the proposed method (red curves) and the method by Guo et al.
(2023) (blue curves).
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Table 2 Correlation coefficients between the log data and the predicted results of figures 3, 5, and 7.

V V
P s
Xu-White model 0.8576 0.8264
Varying aspect-ratio 0.9472 0.8905
method
Proposed model 0.9605 0.8908

Seismic Section Application

ed from
1s from the

sity and water saturation as
e, it enables the evaluation

pore structures can be employed for pre
well as the pore-connectivity parameter.
of favorable reservoir areas withi ”The survey line crossing the
two wells is extracted for the applige Qich is shown in figure 9. The target
layer has a depth range of oximaely 4610-4704 m, with the corresponding
time depth range of 207

Figure 9. Stacked seismic section of the 2D survey line with the two wells located at the 165
and 601 CDPs.
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34
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56

Figure 10. Sections of P- (a) and S- (b) wave velocities and density (¢) from prestack seismic
inversion for the survey line.
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2.04

Time (s)

2.00

Time (s)

2.06
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Figure 11. Inversion Its of orosity and (b) water saturation by the proposed method
for the survey line

Figure 12. Inversion result of pore-connectivity parameter by the proposed method for the
survey line.
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The elastic data of P-/S-wave velocities and density sections (figure 10) are
obtained through the prestack seismic inversion (Buland et al. 2003) of the
survey line. Based on the elastic data, the porosity, water saturation, and pore
connectivity parameters are simultaneously inverted by using the proposed
method. The prediction results of porosity and water saturation are shown in
figure 11. Wells A and B were utilized for the validation of the inverted sections.
Based on the production reports, the gas test results indicate that well B is a
highly productive gas well, producing 1.047 million m?/d of gas, while well
A has a water production rate of 591 m*/d. In the prediction results of figure
11, the zone of high porosity and low water saturation area (~165 CDP) 1s
generally consistent with the proven gas bearing reservoir of wg
water saturation area (~600 CDP, figure 11b) also accords
of well B (water producing). Besides, figure 12 shows t
pore-connectivity parameter. Although the inverted re

CONCLUSION

The present study proposes a rock-p
for carbonate reservoirs which cqnsi
(connected and isolated pores) o
of fluid-saturated rocks are often

operties. The elastic properties
ated or overestimated due to the
es. In this regard, the DEM model can
e of isolated pores on fluid-containing
0t the connected pores. Based on the rock-
petrophysical inversion is proposed to jointly

h the modeling method with spatially-varying pore aspect
SHows the good performance on capturing pore complexity in
ates. The application of seismic survey line validates the validity of the
method¥nd the inversion results for porosity and water saturation effectively
indicate the spatial distribution of favorable reservoirs. The estimated pore-
connectivity parameter can assist with identifying gas-bearing regions being
characterized by the relatively higher permeability.

However, the linearized model is unable to fully capture the highly nonlinear
relationships between the petrophysical properties and elastic parameters,
so the modeling accuracy is limited under the certain conditions. The pore-
connectivity parameter serves as an auxiliary variable that accounts for the
effects of different pore types, which fails to accurately depict the intricate
details of pore structure within carbonate rocks.
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Appendix. Partial Derivative of Linearized Forward Model
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