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Abstract
This study conducts a detailed seismic hazard assessment of the Himalayan region. 
It focuses on studying how b-values, based on the Gutenberg–Richter law, vary 
throughout location and time. These fluctuations assist measuring tectonic stress 
and provide insights into the region’s seismic activity. This research focuses on five 
Himalayan sub-regions: Far Western, Western, Central-I, Central-II, and Eastern. It 
incorporates earthquake data spanning 1964 – 2023 obtained from the International 
Seismological Centre. The data were de-clustered using the Reasenberg method 
and examined by Maximum Likelihood Estimation. The results demonstrated 
considerable spatial variability in b-values across the Himalayan sub-regions. The Far 
Western Himalayas displayed the greatest b-value (0.93 ± 0.02), indicating frequent 
smaller earthquakes and lesser tectonic stress. In contrast, the Eastern (0.68 ± 0.02) 
and Central-I (0.69 ± 0.03) regions had the lowest b-values, implying more stress 
accumulation and a greater risk of future strong earthquakes. Temporal fluctuations, 
as a decrease in b-values preceding to the 2015 Gorkha earthquake (Mw 7.8) and a 
subsequent increase in Central-II (1.19 ± 0.03), highlighted the retention and release 
cycles. The Eastern Himalayas, particularly the Dhubri-Chungthang fault zone seismic 
gap in Bhutan, are considered a key high-risk zone. This region, with b-values ranging 
from 0.65 to 0.75, has remained unruptured since the 1934 Bihar-Nepal earthquake 
(Mw 8.4). The findings showed the influence of the continual convergence of the 
Indian and Eurasian plates (~20  mm/year) on strain heterogeneity. This study 
underlines the vital demand for intensive seismic monitoring, resilient infrastructure, 
and disaster readiness in low b-value areas to alleviate catastrophic risks in one of the 
globe’s most tectonically active regions.
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1. Introduction
The Himalayan Mountain Range, the tallest mountain chain in the world, traverses 
five countries – India, Nepal, Bhutan, China (Tibet), and Pakistan – and extends over 
2,400 km in southern Asia.1 The continual collision between the Indian and Eurasian 
tectonic plates, which began around 50 million years ago (Mya) after the Neo-Tethys 
Ocean closed, is responsible for its construction.2 The Indian Plate subducted northward 
beneath Eurasia between 70 and 50 Mya, closing the Tethys Ocean and leaving 
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behind the Indus-Tsangpo Suture Zone, a geological 
indicator of the ancient oceanic crust, was the primary 
step in the orogenesis of the Himalayas.3 The continental 
collision phase (50 – 40 Mya) resulted in massive crustal 
shortening, folding, and thrust faulting, which uplifted 
the Greater Himalayas through systems, such as the Main 
Central Thrust, while the Main Boundary Thrust and 
Main Frontal Thrust distinguish the Lesser Himalayas 
and the young, sediment-rich Siwalik Hills, respectively.4,5 
Ongoing northward convergence of the Indian Plate at 
5 – 10  mm/year sustains tectonic activity, driving uplift 
of peaks, such as Mount Everest and accumulating stress 
along major faults, such as the Main Himalayan Thrust 
(MHT), a primary source of strong earthquakes.6,7 This 
dynamic process ensures continued seismic hazard in 
the region, exemplified by historical earthquakes and 
the persistent risk of future events as strain energy is 
episodically released.8,9

An earthquake is defined as the sudden release of 
accumulated stress along locked tectonic plate boundaries 
or intraplate zones, where abrupt crustal movement 
generates seismic waves.9,10 In the Himalayas, this process 
is driven by the ongoing India-Eurasia collision, which 
has generated significant seismicity linked to strain release 
along the MHT.2,6 One of the notable seismic activities in the 
Himalayas is the 1905 Kangra earthquake (Mw 7.8), where 
a segment of the western Himalayan front was ruptured, 
releasing stress accumulation in the Kangra reentrant.11,12 
The Bihar-Nepal earthquake (Mw 8.1) in 1934 involved 
slip along a ~250  km portion of the MHT, illuminating 
shallow decollement dynamics.13-16 The 1950 Assam-
Tibet earthquake (Mw 8.6) highlights the complexity of 
oblique convergence near the eastern Himalayan syntaxis, 
where thrust and strike-slip faulting combine to produce 
bimodal faulting.17,18 The 2005 Kashmir earthquake 
(Mw 7.6) highlighted strain partitioning in the western 
syntaxis, with thrust and strike-slip components.8,19,20 Most 
recently, the 2015 Gorkha earthquake (Mw 7.8) in central 
Nepal ruptured a 150  km × 60  km patch of the MHT, 
leaving deeper segments unbroken and underscoring 
heterogeneous coupling.8,21-23 These events, spanning the 
MHT’s strike, reveal segmented rupture behavior and 
variable locking depths, with GPS-derived convergence 
rates (~18 – 20  mm/year), suggesting ongoing strain 
accumulation.6

By analyzing the b-value in the Gutenberg–Richter 
law, this study aims to identify zones of differential stress 
accumulation, potential asperities, and fault maturity 
across the Himalayan region (71.6°E – 95.5°E and 26.6°N – 
37.5°N), subdivided into five distinct sub-regions. Based on 
the probabilistic seismic hazard assessment report of India, 

tectonic features, and geology, the region has been broadly 
divided into four sections,26-28 with the western section 
further subdivided for improved analysis. As a result, As a 
result, we have categorized the Himalayan region into five 
zones: Far Western, Western, Central-I, Central-II, and 
Eastern (Figure 1). Each of these zones has been defined 
based on distinct geological and tectonic characteristics to 
ensure a comprehensive assessment.

1.1. Frequency magnitude distribution

The frequency-magnitude distribution (FMD) of 
earthquakes29 is a fundamental statistical relationship in 
seismology. It describes how the frequency of earthquakes 
scales with their magnitude, using the following equation:

logN = a−bM (I)

In Equation I, N is the cumulative number of events 
having magnitude ≥M; M is the magnitude of earthquakes; 
the constant a is the seismicity of the region; and b is 
the b-value of the earthquake frequency magnitude 
distribution.29 The b-value, a key parameter in the 
Gutenberg–Richter law, quantifies the relative frequency of 
small to large earthquakes, where a lower b-value indicates 
a higher likelihood of large-magnitude events due to 
elevated tectonic stress, while a higher b-value reflects 
frequent small earthquakes and lower crustal strain.30-32 
To assess regional stress accumulation and evaluate the 
seismic hazard potential, seismologists have analyzed 
spatial and temporal fluctuations in b-values around the 
globe. As an example, researchers analyzed spatiotemporal 
variations in b-value within the subducting slab before the 
2003 Tokachi-oki earthquake (M 8.0), Japan, to identify 
precursory seismic signatures.33 Similarly, the b-value 
anomalies were noticed before the Assam Earthquake on 
April 28, 2021.34 In addition, the low b-value anomaly 
identified in the west of Gorkha highlights the zone with 
potentially strong seismic activity in the future.35

2. Data and methods
An extensive earthquake catalogue covering a long 
period is essential for studying the seismic activity of 
any region. In this study, we focused on the Himalayas, 
located between 71.6°E and 95.5°E, and utilized 
earthquake data for the period from 1964 to 2023, from 
the International Seismological Centre catalogue.36-38 The 
earthquake magnitudes in the catalogue are reported 
in mb (body-wave magnitude). The dataset comprises 
both dependent (foreshocks and aftershocks) and 
independent (mainshocks) events, but to ensure accurate 
analysis, only independent earthquakes are considered by 
applying de-clustering using the Reasenberg algorithm.39 
The de-clustering process was carried out in ZMAP 
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software (Swiss Seismological Service, Switzerland).40 The 
segmented study regions are:
(i) Far Western Himalayan region (31.3°N – 37.5°N and 

71.6°E – 76°E): A  total of 3445 earthquake events 
with a magnitude of 3.0 mb or greater were recorded. 
After applying the de-clustering process, 47 clusters 
were identified, and following the removal of 
dependent events, 2867 independent events were 
retained.

(ii) Western Himalayan region (28.8°N – 35.2°N and 76°E 
– 80.2°E): A  total of 1040 earthquake events with a 
magnitude of 3.0 mb or greater were recorded. After 
the de-clustering process, 24 clusters were identified, 
and following the removal of dependent events, 1004 
independent events were retained.

(iii) Central-I Himalayan region (27.4°N – 31.5°N and 
80.2°E – 82.9°E): A total of 529 earthquake events with 
a magnitude of 3.0 mb or greater were recorded. After 
the de-clustering process, 11 clusters were identified, 
and following the removal of dependent events, 494 
independent events were retained.

(iv) Central-II Himalayan Region (26.03°N – 30°N and 
82.9°E – 88.2°E): A  total of 1482 earthquake events 
with a magnitude of 3.0 mb or greater were recorded. 
After the de-clustering process, 35 clusters were 
identified, and following the removal of dependent 
events, 1079 independent events were retained.

(v) Eastern Himalayan region (26.6°N – 29.9°N and 
88.2°E – 95.5°E): A total of 767 earthquake events with 
a magnitude of 3.0 mb or greater were recorded. After 

the de-clustering process, 8 clusters were identified, 
and following the removal of dependent events, 706 
independent events were retained.

The b-value was determined using the maximum 
likelihood estimate approach, which remains unaffected by 
large-magnitude earthquakes. In addition, the magnitude 
of completeness was computed using the first derivative 
of the frequency-magnitude curve.32 The formula41,42 for 
b-value estimation is as follows:

b
e

M M M
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− −
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where Ma is the average of all magnitudes; M is the 
minimum magnitude in the catalogue; and ∆M is the 
binning width of the catalogue. The standard deviation in 
b-value (δb), as recommended elsewhere,43 is provided in 
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where Mi denotes the individual earthquake 
magnitudes; Ma is the average magnitude of all the 
earthquakes considered; and ns refers to the total number 
of earthquake samples used in the calculation. The 
expression M Mi ai

N
−( )∑ 2  represents the sum of the 

squared differences between each magnitude and the mean 
magnitude.

Figure 1. Study region with earthquake distribution. Red star indicates the earthquake >6.4 mb and notable past earthquakes, and red rectangular box are 
subdivided regions. UK stands for Mw 6.8 Uttar Kashi earthquake, CH stands for Mw 6.4 Chamoli earthquake, GK stands for Mw 7.8 Gorkha earthquake, 
NB stands for Mw 8.4 Nepal-Bihar earthquake, KA stands for Mw 7.6 Kashmir earthquake, SK stands for Mw 6.9 Sikkim earthquake, KG stands for Mw 
7.8 Kangra earthquake, and AS stands for Mw 7.8 Assam earthquake. The blue rectangle stands for Dhubri-Chungthang Fault Zone (DCFZ).24,25
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3. Results and discussion
As mentioned in the past literature, temporally declining 
b-values precede major earthquakes, signaling stress 
concentration,44,45 and spatially, low b-values correlate 
with locked, high-stress zones, while high b-values 
reflect fractured, aseismic regions.46,47 Together, these 
patterns highlight the utility of b-values in mapping stress 
heterogeneity and identifying seismogenic potential. 
To better understand these dynamics, we investigated 
spatial and temporal b-value variations in the Himalaya to 

quantify stress heterogeneity and earthquake likelihood. 
The estimated b-values for all five regions (Far Western, 
Western, Central-I, Central-II, and Eastern) are illustrated 
in Figure  2, with their corresponding numerical values 
provided in Table 1.

The Far Western region (Figure  2A) exhibits the 
highest b-value (0.93 ± 0.02), indicating a predominance 
of small magnitude earthquakes, which is a common 
feature of tectonically active zones. Conversely, the 
Central-I (Figure  2C) and Eastern regions (Figure  2D) 

Figure 2. b-value and magnitude of completeness plots of Far Western Himalayan region (A), Western Himalayan Region (B), Central-I Himalayan Region 
(C), Central-II Himalayan Region (D), and Eastern Himalayan Region (E)

DC

BA

E
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have the lowest b-values (0.69 ± 0.03 and 0.68 ± 
0.02, respectively), suggesting a lower frequency of 
small earthquakes and a greater potential for stress 
accumulation, which may contribute to the occurrence 
of larger seismic events.48,49 Meanwhile, the Western 
(Figure  2B) and Central-II (Figure  2D) regions 
demonstrate moderate b-values (0.73 ± 0.02 and 0.83 ± 
0.03, respectively), reflecting a more balanced seismic 
activity pattern.50,51 These variations in b-values provide 
crucial insights into seismic behavior and potential 
hazard levels across different regions. In the preceding 
work, b-values calculated for the Himalayan region from 
1900 to 2015, were reported as 0.98, 0.86, 0.85, and 0.74 
for the Western, Central-I, Central-II, and Eastern zones, 
respectively, by Pudi et al.26 Similarly, other studies have 
analyzed b-values across the Himalayas, demonstrating 
differences in stress and seismic hazard. Tiwari and 
Paudyal52 discovered a b-value of 0.68 ± 0.03 in western 
Nepal (central Himalaya), indicating a high-stress 
zone with locked faults. Kumar and Sharma53 reported 
b-values ranging from 0.7 to 1.1 in central Nepal (central 
Himalaya), showing stress heterogeneity after the 2015 
Gorkha earthquake. Pathak et al.54 discovered a high-
stress environment in the Kumaun region of the western 
Himalayas, with a b-value of 0.59 ± 0.11. Similarly, Yadav 
et al.55 reported low b-values ranging from 0.6 to 0.7 in 
the northeastern Himalayas, particularly along the MHT, 
indicating locked faults and high seismic potential. These 
low b-values across locations show the Himalayan belt’s 
enormous stress and earthquake vulnerability.

The temporal fluctuations in b-values over the study 
region indicate varying stress regimes and seismic activities 
(Figure 3).

In the Far Western Himalaya (Figure  3A), a decrease 
in b-value from 1.04 (July 15, 1990) to 0.97 (November 
11, 2015) during the 1980 – 2020 period signifies ongoing 
stress accumulation along the MHT.56 The initial elevated 
b-value indicated stress relaxation through frequent 
little earthquakes, but the subsequent decline suggested 
an increase in strain concentration. The Western 
Himalayas (Figure  3B) exhibited a low b-value of 0.84 

on August  30,  1995, associated with stress accumulation 
preceding the 1991 Uttarkashi (Mw 6.8) and 1999 Chamoli 
(Mw  6.4) earthquakes, influenced by locked parts of the 
Main Central Thrust.57,58

In the Central-I Himalayas (Figure 3C), the b-value 
of 0.94 recorded on December 14, 2006, throughout 
the period from 1995 to 2015 indicated moderate stress 
conditions with ongoing strain building along the MHT. 
In contrast, the Central-II Himalayas (Figure  3D) saw 
a significant increase in the b-value to 1.19 on May 
10, 2015, following the Gorkha earthquake, indicating 
stress release through aftershocks.59 The Eastern 
Himalayas (Figure  3E) exhibited consistently elevated 
and constant b-values (0.97 in 2014; 0.99 in 2016) from 
1990 to 2015, indicating reduced stress attributable to 
crustal variability. This region constitutes a seismic gap 
that has remained unruptured since the 1934 Bihar-
Nepal earthquake (Mw 8.4), with locked faults quietly 
collecting strain.8,14 Our findings align with previous 
studies analyzing b-value variations in the Himalayas. 
Chetia et al.,49 for example, observed b-value varying 
from 0.4 to 3.3 on the Himalayan and forehead region 
from 1964 to 2020.

The low b-value zones of the Himalayan region, 
extending from west to east, demonstrate a significant 
increase in seismic hazard potential (Figure 4).

In the Far Western Himalayas (72°E – 76°E) (Figure 4A), 
significant stress accumulation (b = 0.7 – 0.9) is noted in 
Himachal Pradesh, historically associated with the 1905 
Kangra earthquake (Mw 7.8), where locked parts of the 
MHT maintain localized strain.60 Proceeding eastward, the 
Western Himalayas (76°E – 80°E) (Figure 4B) display the 
sub-region’s minimal b-values (0.6 – 0.7) in Uttarakhand 
(77°E – 79°E), which correlate with the Main Central Thrust 
and its rupture history, encompassing the 1991 Uttarkashi 
(Mw 6.8) and 1999 Chamoli (Mw 6.4) earthquakes.23,58,61 
Further east, the Central-I Himalayas (80.5°E – 82.5°E) 
(Figure  4C) in mid-western Nepal exhibit significantly 
low b-values (0.6 – 0.65), indicating unruptured segments 
of the MHT that have preserved residual stress following 
the 2015 Gorkha earthquake (Mw 7.8).62 In proximity to 
this, the Central-II Himalayas (83°E – 88°E) (Figure 4D) 
exhibit a pronounced disparity: The western sector 
(83°E – 85°E) (Figure  4B) saw post-2015 stress release 
(b = 0.9 – 1.05), but the eastern sector (85°E – 88°E) retains 
low b-values (0.65 – 0.8), indicating persistent strain 
accumulation in central Nepal. The Eastern Himalayas 
(89°E – 95°E) (Figure  4D) are the most hazardous, with 
Bhutan’s DCFZ gap (91°E – 93°E) exhibiting the lowest 
b-values (0.65 – 0.75) in the entire region.24 This seismic 
gap, which has remained unruptured since the 1934 

Table 1. b-value and magnitude of completeness in five 
regions of the Himalayan

Region b-value Magnitude of 
completeness (Mc)

Magnitude 
range (in Mb)

Far Western 0.93±0.02 3.8 3 – 6.9

Western 0.73±0.02 3.8 3 – 6.6

Central I 0.69±0.03 3.8 3 – 6.1

Central II 0.83±0.03 3.8 3 – 6.9

Eastern 0.68±0.02 3.8 3 – 6.2
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Bihar-Nepal earthquake, contains significant stress on the 
MHT, indicating an immediate threat of a mega-thrust 
event.63 The west-to-east gradient from moderate strain to 
catastrophic potential highlights the Himalayas’ dynamic 

tectonic interactions, driven by the Indian and Eurasian 
plates’ continuous convergence (~20  mm/year). Thus, 
monitoring and disaster resilience are crucial in high-risk 
areas, such as Bhutan and central Nepal.

Figure 3. A time series analyzing b-value across Far Western Himalayan region (A), Western Himalayan Region (B), Central-I Himalayan Region (C), 
Central-II Himalayan Region (D), and Eastern Himalayan Region (E)

DC

BA

E
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4. Conclusion
In this study, earthquake data were obtained from the 
International Seismological Centre catalogue covering 
the Himalayan arc region between 71.6°E and 95.5°E for 
the period 1964 – 2023. The analysis was based on body-
wave magnitude (mb), and to ensure accuracy, dependent 
events (foreshocks and aftershocks) were removed using 
the Reasenberg de-clustering algorithm implemented in 
MATLAB, allowing for the evaluation of only independent 
events (mainshocks).

The results of the investigation demonstrate clear spatial 
and temporal changes in b-values across distinct Himalayan 
sub-regions. Among the five zones investigated, the Far 
Western Himalayas demonstrated the greatest b-value 
(0.93 ± 0.02), which predicts a lower amount of tectonic 
stress accumulation and a dominance of small-magnitude 
earthquakes. In contrast, the Eastern Himalayas and 
Central-I region had the lowest b-values (0.68 ± 0.02 and 
0.69 ± 0.03, respectively), indicating a higher accumulation 
of stress and a greater likelihood of big, devastating seismic 
occurrences.

Figure  4. Spatial distribution of b-values across Far Western Himalayan region (A), Western Himalayan Region (B), Central-I Himalayan Region 
(C), Central-II Himalayan Region (D), and Eastern Himalayan Region (E)

DC

BA

E
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Temporal analysis showed dynamic changes in 
b-values over time. For instance, the b-value in the Far 
Western Himalayas decreased from 1.04 in 1990 to 0.97 
in 2015, reflecting increasing tectonic strain before the 
2015 Gorkha earthquake (Mw 7.8). Similarly, the Western 
Himalayas recorded a b-value of 0.84 in 1995, which was 
associated with subsequent major earthquakes, including 
the 1991 Uttarkashi (Mw 6.8) and 1999 Chamoli (Mw 6.4) 
events. The Central-II region showed a sharp increase in 
b-value to 1.19 during 2015, attributed to stress release 
from aftershock activity. Notably, the Dhubri-Chungthang 
seismic gap in Bhutan, with a persistent b-value of 0.65 
– 0.75, remains unruptured since the 1934 Bihar-Nepal 
earthquake (Mw 8.4), indicating a silent but critical 
accumulation of strain, potentially making it a future 
earthquake hotspot.

The interpretation of these results is significant. Low 
b-values point to regions with high stress accumulation 
and fewer small earthquakes, which are more prone to host 
large seismic events. Conversely, high b-values indicate 
frequent small earthquakes and lower potential for major 
seismic rupture. The temporal decrease in b-values in 
certain regions can serve as a potential indicator of 
impending earthquakes, whereas post-event increases 
often reflect stress release through aftershocks.

This work sheds light on the spatial and temporal 
patterns of seismicity over the Himalayan region. It 
helps to improve seismic hazard assessment and disaster 
risk mitigation strategies by identifying high-stress and 
earthquake-prone areas. The findings emphasize the 
significance of ongoing monitoring, particularly in low 
b-value zones, such as the DCFZ gap, and call for increased 
earthquake preparedness and mitigation activities in these 
susceptible locations.
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