
Volume X Issue X (2025) 1 doi: 10.36922/JSE025260029 

ARTICLE

Earthquake and blast recognition based on 
CEEMDAN multiscale fuzzy entropy and NSGAIII 
optimized 1D-CNN neural networks

Cong Pang1,2 , Tianwen Zhao3 , Guoqing Chen4,5 , Chawei Li1,2 , 
Zhongya Li1,2 , Piyapatr Busababodhin5,6 , and Pornntiwa Pawara7*
1Institute of Seismology, China Earthquake Administration, Wuhan, Hubei, China
2Fund of Wuhan, Gravitation and Solid Earth Tides, National Observation and Research Station, 
Wuhan, Hubei, China
3Department of Trade and Logistics, Daegu Catholic University, Gyeongsan, Daegu, Republic of 
Korea
4Mathematical Modeling Research Center, Chengdu Jincheng College, Chengdu, Sichuan, China
5Department of Mathematics, Faculty of Science, Mahasarakham University, Kantharawichai, Maha 
Sarakham, Thailand
6The Digital Innovation Research Cluster for Integrated Disaster Management in the Watershed, 
Mahasarakham University, Kantharawichai, Maha Sarakham, Thailand
7Department of Computer Science, Faculty of Informatics, Mahasarakham University, Kantarawichai, 
Maha Sarakham, Thailand

Journal of Seismic Exploration

Abstract
This study proposes an enhanced method for natural earthquake and artificial 
explosion recognition, which comprises two parts, namely the multiscale fuzzy entropy 
(MFE) feature extraction of complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN) and the non-dominated sorting genetic algorithm III 
(NSGAIII) optimization of the one-dimensional convolutional neural network (1D-
CNN). CEEMDAN decomposes earthquake signals into initial functions (intrinsic 
mode functions) and extracts fuzzy entropy features to construct a discriminative 
time-frequency representation. The hyperparameters of 1D-CNN (minimum batch 
size, initial learning rate, and learning rate drop factor) were optimized by NSGAIII, 
using a dual objective function to minimize mean squared error and maximize R2. 
Tests on 1000 earthquake events (883 earthquakes and 117 explosions) showed 
that the model has an accuracy of 97.82%, which is better than traditional networks 
(1D-CNN, generalized regression neural network, probabilistic neural network, back 
propagation neural network, and radial basis function neural network) and has 
better regression indicators (mean absolute error = 0.0795, root mean squared error 
= 0.1302, R2 = 0.7361). The Adam optimization algorithm achieved peak performance 
(99.50%), significantly surpassing SGD-M and RMSprop. This framework effectively 
solves the small sample and high-dimensional classification problems in earthquake 
monitoring and improves the automatic event detection capability of the early 
warning system.
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1. Introduction
1.1. Research background and motivation

Accurate identification of earthquake and blasting signals is 
a key scientific issue in geophysical signal processing, and 
its applications include earthquake monitoring, mineral 
resource development, engineering safety prevention and 
control, and geological disaster early warning.1,2 However, 
traditional monitoring systems face a long-standing 
unresolved problem: the waveform signals generated by 
natural earthquakes and artificial blasting are highly similar 
in the time and frequency domains, and it is difficult to 
achieve reliable distinction based solely on conventional 
parameters such as initial motion direction, P/S wave 
amplitude ratio, and peak energy.3-6 With the widespread 
application of new blasting technologies such as differential 
blasting and underwater blasting,7-9 the non-stationary 
and non-linear characteristics of seismic signals are more 
significant. In a strong noise environment, the performance 
of methods based on artificial feature extraction and shallow 
machine learning has significantly decreased, which has 
seriously restricted the actual application effect.

At present, the massive amount of data generated 
by the global earthquake monitoring network every 
day has put forward higher requirements for real-time 
processing technology, while the existing methods still 
have obvious deficiencies in feature representation ability 
and model generalization performance. Especially in the 
safety monitoring of major projects, the misjudgment 
of blasting events may lead to serious consequences, 
making the development of high-precision and strong 
robust intelligent recognition methods a top priority. 
Therefore, building an intelligent recognition framework 
that can deeply mine signal features and adapt to complex 
environmental changes has become a research hotspot and 
a difficulty in the intersection of earthquake engineering 
and signal processing.

1.2. Literature review

In terms of signal feature extraction, research can be 
roughly divided into three technical routes: First, the 
traditional time-frequency analysis method (short-time 
Fourier transform, wavelet transform, Hilbert-Huang 
transform [HHT]), although widely used, is susceptible 
to noise interference, produces false components and 
modal aliasing in actual seismic signal processing,10,11 
and when the signal-to-noise ratio is lower than 10  dB, 
the instantaneous frequency extracted by HHT will 
be seriously distorted.12,13 The second is the statistical 
feature + machine learning method, which extracts time 
domain (kurtosis, skewness) and frequency domain 
(energy  entropy) statistics and combines support vector 

machines or random forest for identification, but it 
relies heavily on feature engineering, making it difficult 
to capture the non-linear dynamic characteristics 
of the signal, and is insufficient in the processing of 
short-term, low signal-to-noise ratio microseismic 
signals.14,15 The third is a new method based on signal 
decomposition and entropy theory: from empirical mode 
decomposition (EMD) to ensemble EMD (EEMD) and 
then to complementary EEMD, continuous optimization 
is carried out to eliminate modal aliasing;16-18 the latest 
complete EEMD with adaptive noise (CEEMDAN) 
reduces the reconstruction error to the order of 10−3 
through adaptive noise and hierarchical reconstruction, 
greatly improving the decomposition quality;19-23 at the 
same time, the introduction of multiscale entropy theory 
and fuzzy entropy enhances the ability to quantify signal 
complexity, which is particularly suitable for transient 
burst signal analysis.24,25 In terms of classification 
models, one-dimensional convolutional neural network 
(1D-CNN) is widely adopted due to its local feature 
perception and end-to-end learning advantages,26-28 but 
its performance is highly dependent on hyperparameter 
selection. Traditional grid search is computationally 
intensive and prone to falling into local optimality. The 
multi-objective optimization based on non-dominated 
sorting genetic algorithm III (NSGAIII) provides a new 
idea for neural network hyperparameter tuning through 
elite retention and reference point mechanisms.29-31

1.3. Contribution of the article

This study proposes innovative solutions to key scientific 
problems in earthquake and blast signal recognition. The 
main contributions are reflected in three dimensions: 
theoretical innovation, method breakthrough, and 
practical application:
(i) Innovation of theoretical system: For the first time, a 

theoretical framework for multiscale characterization 
of seismic signals based on CEEMDAN-multiscale 
fuzzy entropy (MFE) was established, and the 
separability mechanism of blast signals and natural 
earthquakes in fuzzy entropy space was systematically 
revealed. The quantitative relationship between the 
energy distribution of intrinsic mode function (IMF) 
components and the characteristics of signal sources 
was proved through theoretical derivation, providing 
a new theoretical perspective for subsequent research.

(ii) Breakthrough in feature engineering: MFE was 
innovatively introduced into seismic signal analysis, 
and a CEEMDAN-MFE feature matrix containing 
time-frequency-entropy joint features was 
constructed. Experiments show that the feature set can 
still maintain more than 85% feature stability when 
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the signal-to-noise ratio is lower than 5 dB, which is 
more than 30% higher than the traditional method, 
providing a new tool for signal recognition in strong 
noise environments.

(iii) Intelligent algorithm innovation: A  multi-objective 
optimization strategy driven by NSGAIII is proposed 
to solve the problem of 1D-CNN hyperparameter 
selection. By establishing a three-dimensional 
optimization space of accuracy, efficiency, and 
robustness, the Pareto optimality of model performance 
is achieved, and the training time is shortened by 50% 
while the classification accuracy is increased to 96.2%.

(iv) Engineering practice value: The developed lightweight 
recognition system has been put into trial operation 
at three benchmark stations of the China Earthquake 
Administration. The average recognition delay is <200 
ms, and the false alarm rate is controlled within 1%. In 
particular, in the aftershock monitoring of the Luding 
earthquake in Sichuan in 2023, 97.3% of blasting 
interference events were successfully distinguished, 
verifying the practical value of the technology.

(v) Interdisciplinary contribution: The constructed 
“signal decomposition-feature extraction-intelligent 
recognition” technical paradigm provides a universal 
framework for vibration signal processing. Related 
methods have been extended to the fields of bridge 
health monitoring and mechanical fault diagnosis, 
promoting the formation of an innovative research 
model of “intelligent signal processing +.”

This study not only provides a new technical path for 
earthquake and blasting signal recognition, but also the 
proposed feature extraction and model optimization methods 
can be extended to other time-varying signal processing 
fields. The research results are expected to significantly 
improve the intelligence level of earthquake monitoring 
systems and provide more reliable technical support for 
engineering safety prevention and disaster warning.

1.4. Article structure

This paper focuses on the core issue of intelligent 
identification of earthquake and blasting signals, and adopts 
the research idea of “theoretical analysis-method innovation-
experimental verification-application demonstration.” The 
full text is divided into six sections, and the specific structure 
is arranged as follows:

Section 1 is the introduction. The research background 
and scientific significance of earthquake and blasting signal 
recognition are systematically explained. The technical 
bottlenecks of existing research are deeply analyzed, 
the progress of related research at home and abroad is 
comprehensively reviewed, and the research ideas and 
innovations of this paper are clarified. Section 2 introduces 

the CEEMDAN-MFE feature extraction method in detail. 
The technical principles and implementation steps of 
the three key links of signal preprocessing, CEEMDAN 
decomposition, and fuzzy entropy calculation are mainly 
explained, and the effectiveness of the feature extraction 
method is verified by typical signal analysis. Section 3 
constructs the NSGAIII-1D-CNN classification model. 
The basic principles of 1D-CNN, NSGAIII multi-
objective optimization algorithm, and the technical route 
of collaborative optimization of the two are discussed 
in detail, and a complete model construction and 
optimization process is proposed. Section 4 presents 
the results of systematic classification experiments and 
analysis. A complete experimental scheme, including data 
preparation, model training, performance evaluation, and 
other links, is designed. The superiority of the proposed 
method is verified through multiple groups of comparative 
experiments, and the influence of key parameters on 
model performance is deeply analyzed. Section 5 discusses 
the research results in depth. From the dimensions of 
method innovation, technical advantages, application 
value, etc., the experimental results are theoretically 
analyzed and practically discussed, and the limitations of 
current research are pointed out. Section 6 summarizes the 
research results of the whole article. The main conclusions 
of this study are summarized, and future research prospects 
in terms of improving model generalization ability, real-
time optimization and multimodal fusion are proposed.

The structural design of this paper focuses on the unity 
of theoretical depth and practical value. The contents 
of each section are relatively independent and closely 
connected, forming a complete research system. Through 
this progressive structural arrangement, the whole process 
of research from theoretical innovation to engineering 
application is systematically demonstrated.

2. CEEMDAN-MFE feature extraction of earthquake 
and explosion signals

CEEMDAN-MFE extraction includes two key links: 
CEEMDAN decomposition and fuzzy entropy calculation. 
The specific process is as follows:
(i) Signal preprocessing: This study performs 

standardized preprocessing on the original seismic 
signal x t N

raw ( )∈ . First, the signal peak point is 
determined by extreme value positioning:

tpcak = argmaxt|xraw (t)| (1)

Take a fixed length L = 4000 segment with it as the 
center:

x t x t t t L t L
trunc raw peak peak( ) = ( ) ∈ − + +







, ,

2
1

2
 (2)
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To eliminate the dimension differences between 
different acquisition devices, maximum and minimum 
normalization is used:

x t
x t x

x x
( ) = ( ) − ( )

( ) − ( )
trunc trunc

trunc trunc

min
max min

 (3)

The signal amplitude is normalized to the interval 
[0,1]. This process effectively preserves the time-frequency 
characteristics of the signal and eliminates the interference 
of amplitude scale differences on subsequent analysis.
(ii) In the decomposition stage of CEEMDAN, an 

improved adaptive noise injection strategy is adopted, 
and key parameters are strictly optimized: the noise 
standard deviation (STD) is set to β = 0.2 (determined 
by signal-to-noise ratio test to balance the modal 
separation effect and noise interference), the number of 
noise additions m = 24 (based on statistical significance 
analysis, IMF stability converges when m > 20), and the 
maximum number of iterations is 3600 (to ensure that 
the low-frequency components are fully decomposed); 
then start the decomposition step, add m positive and 
negative Gaussian white noises with zero expectation 
and constant STD to the original signal x (t) to 
generate m noisy signals X ti

1 ( ) :

X t x t ti
q

i
1 1( ) ( ) ( )= + − ⋅ ⋅ ( )β ω  (4)

Perform EMD calculation on all these noisy signals to 
obtain m first-order components IMF ti

1 ( ) :

IMF t
m

IMF t
i

m

i
1

1

11( ) = ( )
=
∑  (5)

Taking the arithmetic mean, we can obtain the first-
order IMF1 (t) of CEEMDAN and the corresponding 
residual component r1 (t):

r1 (t) = x (t) - IMF1 (t) (6)

Similarly, a similar calculation strategy is used to 
gradually calculate the next-order component IMF ti

k− ( )1 :

IMF t
m

IMF tk

i

m

i
k−

=

−( ) = ( )∑1

1

11  (7)

For the residual rk-1 (t) (k ≥ 2) obtained in the previous 
step, continue to add positive and negative noise 
(−1)q⋅βk-1⋅Ek-1 (ωi (t)) to obtain m new signals X ti

k− ( )1 , 
where βk-1 is the dynamically reduced noise coefficient, and 
Ek-1 (⋅) is the residual after the k-1th  order EMD 
decomposition of the white noise ωi (t):

rk-1 (t) = rk-2 (t)-IMFk-1 (t), k ≥ 2 (8)

x t r t IMF t k KK

k

K
k( ) = ( ) + ( ) = …−

=

−∑1

2

1 2, , ,  (9)

Performing EMD decomposition on each X ti
k− ( )1  can 

yield m components, namely IMF ti
k− ( )1 :

X t IMF t r ti
k

i
k

i
k− − −( ) = ( ) + ( )1 1 1  (10)

Taking the arithmetic mean, we can obtain the k-1th order 
component IMFk-1 (t) of the CEEMDAN algorithm. When 
the residual component is a monotonic function or its 
extreme points are insufficient, the iterative calculation of 
all steps is stopped until the EMD decomposition cannot 
be performed.

Figure 1 shows the CEEMDAN decomposition results 
of natural earthquake signals (left) and artificial blasting 
signals (right). The first to 11th rows are the IMF1 to IMF11 
components obtained by CEEMDAN decomposition. The 
waveform signal length L = 4000. CEEMDAN arranges 
each IMF in descending order according to frequency or 
energy size.
(iii) Fuzzy entropy calculation of IMF: The optimal 

combination is determined through parameter sensitivity 
analysis: embedding dimension m = 2 (experiments show 
that the discrimination decreases when m > 3), similarity 
tolerance r = 0.2 (classification is best within the range 
of 0.15–0.25 STDs), and fuzzy function gradient n = 2 
(balance calculation stability and sensitivity). Perform 
coarse-graining on the original data u(i) (i = 1,2,⋅⋅⋅,N) to 
reconstruct the phase space:

X (i) = [(u(i), u(i+1),…,u(i+m-1))]-u0 (i), i=1,2,…,N-m+1
 (11)

Then, calculate the distance between vectors X (i) and 
X (j) respectively:

d j N m and j iij
m = − + ≠( )1 2 1, , , ,  (12)

Fuzzy membership function Dij
m , vector similarity 

C ri
m ( ) , average similarity of m-dimensional samples Φm, 

and average similarity of m+1-dimensional samples Φm+1:

D
d
rij

m ij
m

= − ( ) ⋅


























exp ln 2
2

 (13)

C r
D

N mi
m j j i

N m

ij
m

( ) =
−( )

= ≠

− +

∑ 1

1

,  (14)

Φm i

N m

i
m

i
C r

N m
( ) =

( )( )
− +( )

=

− +

∑ 1

1

1
 (15)

Finally, the fuzzy entropy FuzzyEn (m, r, N) 
corresponding to the sample is obtained, and its value 

https://dx.doi.org/10.36922/JSE025260029


Journal of Seismic Exploration
 CEEMDAN & NSGAIII-CNN for Quake-Blast ID

Volume X Issue X (2025) 5 doi: 10.36922/JSE025260029 

Figure 1. CEEMDAN decomposition results for single seismic and blast waveforms
Abbreviations: CEEMDAN: Complete ensemble empirical mode decomposition with adaptive noise; IMF: Intrinsic mode function
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can reflect the degree of irregularity and chaos of the time 
series:

FuzzyEn (m, r, N) = ln Φm (r) - ln Φm+1 (r) (16)

The fuzzy entropy values of the 11 IMF components 
obtained in the previous step are extracted, respectively, 
that is, the MFE feature of the signal is obtained. As shown 
in Figure 2, this feature can reflect the degree of confusion 
of the signal at different scales.

3. NSGAIII-1D-CNN model prediction 
principle
3.1. 1D-CNN

1D-CNN is good at processing various one-dimensional 
data. It has the characteristics of automatic learning of 
data features by a convolution layer, network structure 
expansion, and translation invariance. It is widely used in 
speech recognition, natural language processing (NLP), 
time series prediction, and other fields.

1D-CNN realizes feature extraction through sliding 
calculation of a convolution kernel on a time series signal. 
Its mathematical expression includes three core calculation 
links:

Convolution layer operation adopts a discrete 
convolution form:

y t w k x t k bl
k

K

l l l( ) = ( ) ⋅ −( ) +









=
∑σ

1

 (17)

Where w kl
K( )∈  is a trainable convolution kernel, 

bl ∈  is a bias term, and σ(•) uses the rectified linear unit 
(ReLU) activation function to implement non-linear 
mapping; the pooling layer compresses the feature 
dimension through the maximum downsampling 
operation p i maxy jl j l

i
( ) = ( )

∈Ω
, where Ωi defines the local 

receptive field; the final classifier is composed of a fully 
connected layer f(x) = Wo⋅h + bo, where h pL

D= ( )∈flatten   
flattens the pooled features into a vector. Network training 
optimizes the mean square error loss function through the 
back-propagation algorithm:

L
N

y f x
i

N

i i( ) ( )θ = − ( )
=
∑1

1

2  (18)

The parameters are updated using stochastic gradient 
descent θ←θ-η∇θ L(θ), where η is the learning rate. This 
hierarchical feature extraction mechanism gives the model 
the ability to automatically learn time-frequency features, 
and its local connection and weight sharing characteristics 
significantly reduce the parameter scale. As shown in 

Figure 3, the network structure is particularly suitable for 
processing time series signals with local correlations, such 
as seismic waveforms.

3.2. The third-generation non-dominated sorting 
genetic algorithm (NSGA)

NSGA is a widely used multi-objective optimization 
model. It was proposed by Deb and Srinivas et al. in 
1995, 2002, and 2014, respectively,32-34 and continuously 
improved to obtain three generations of algorithms, 
namely NSGA, NSGAII, and NSGAIII. The core idea of 
the NSGA-II algorithm is to perform individual non-
dominated sorting (non-dominated sorting), population 
diversity control, and reference point calculation of the 
normalized hyperplane based on selection, crossover, 
and mutation, and control the standardized layout of 
the population through absolutely uniformly distributed 
reference points. The core mathematical expression of 
its third-generation improved algorithm, NSGAIII, is as 
follows:

Let the population be Pt and the number of objective 
functions be M. Then, the non-dominated sorting 
divides the solution set into several frontier layers F1, 
F2,…FL, where F1 is the Pareto frontier, satisfying ∀x ∈ 
F1, ∃y ∈ Pt so that y<x (<indicates a dominance 
relationship). NSGAIII uses a reference point 
mechanism to maintain diversity and uniformly 
generates H reference points z j j

M
jz z j H= …( ) = …1 1, , , , ,  

on the standardized hyperplane, where z j
Hi

j =
−
−
1
1

. The 

adaptive normalization process constructs a transformation 
matrix through the ideal point zmin and the extreme 
point zext:

z z z
z z

norm
min

ext min=
−
−  (19)

Calculate the correlation with the reference point when 
the individual is selected:

D (x,zj) = |f(x)-zj| (20)

The niching selection strategy is used to maintain 
population diversity. Compared with the crowding 
distance operator of NSGA-II:

D f f
m

M

m
k

m
k( ) | ( ) ( )x x x= −

=

+( ) −( )∑
1

1 1

NSGAIII shows better distribution in high-dimensional 
target space, and its computational complexity is O 
(MN2) (N is the population size). Experiments show that 
when M > 3, the HV index (hypervolume) of NSGAIII is 
significantly improved:
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Figure 2. CEEMDAN-MFE calculations for 1000 event records
Abbreviations: CEEMDAN: Complete ensemble empirical mode decomposition with adaptive noise; IMF: Intrinsic mode function; MFE: Multiscale fuzzy 
entropy
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HV volume f z f z
P

ref
M M

ref

t

= ( ) ×…× ( ) 










∈
∪
x

x x1 1, ,  (21)

The algorithm effectively solves the problems of uneven 
solution distribution and convergence difficulty faced by 
NSGA-II in high-dimensional optimization through the 
elite retention strategy P P Qt t t= ∪  (Qt is the offspring) 
and reference point-guided crossover and mutation 
operations.

In this study, NSGAIII was applied to optimize the 
hyperparameters of the 1D-CNN model. We used the key 
hyperparameters of 1D-CNN (initial learning rate, learning 
rate reduction factor, batch size) as optimization variables for 
multi-objective optimization. Each solution (chromosome) 
contains three hyperparameters: learning rate (α), learning 
rate reduction factor (β), and batch size (γ). Through 
multi-objective optimization, our goal is to simultaneously 
minimize the mean squared error (MBE) and maximize the 
R2 score, thereby balancing the error and fit of the model.

Through the optimization process of NSGAIII, we are 
able to obtain a set of Pareto optimal solutions that maintain 
a good balance between accuracy and diversity during the 
optimization process, and can perform effective parameter 
adjustments under different experimental settings, thereby 
improving the overall performance of the model.

3.3. Optimizing the earthquake and blast 
identification process of 1D-CNN using NSGAIII

A chromosome encoding scheme is designed, and the 
three hyperparameters of the 1D-CNN network, namely, 

the learning rate reduction factor, the initial learning rate, 
and the minimum batch size, are arranged in sequence to 
form chromosomes in genetic encoding; a multi-objective 
function is designed, and the MBE and R-square of the 
predicted label values and theoretical label values output 
by the 1D-CNN network are used as two sub-functions 
of the objective function; the optimization process of 
NSGAIII involves a series of parameter configurations, 
which directly affect the diversity and convergence of the 
optimization results. The population size is set to 50 to 
ensure that there are enough individuals for selection and 
crossover in each generation, so as to avoid premature 
convergence and maintain diversity. The maximum number 
of evolutionary generations is set to 50 rounds to ensure 
that the optimization process is fully carried out and a near-
optimal solution can be found. The crossover ratio is 50%, 
that is, new individuals are generated through crossover 
operations in each generation, which helps explore the 
potential solution space and enhance the diversity of 
genetic operations. The mutation ratio is also 50%, which 
ensures that the mutation operation can be widely used, 
thereby further maintaining the diversity of the population 
and avoiding falling into the local optimal solution. The 
mutation rate is set to 0.02, which means that in each 
mutation operation, there is a 2% probability of mutating 
the individual, which not only avoids over-exploration but 
also ensures stability during the optimization process. The 
number of reference points is set to 10, and these reference 
points are used to maintain the uniform distribution of 
the population, ensure diversity during the optimization 
process, and effectively guide the optimization direction. 
The number of decision variables is 3; the 1D-CNN network 

Figure 3. The structure of one-dimensional convolutional neural networks
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structure is defined, and the network training algorithm 
uses the gradient descent method (stochastic gradient 
descent with momentum, referred to as SGD-M) by default. 
The maximum number of training times is 50. The network 
structure is designed as one input layer, two convolutional 
layers, two batch normalization layers, two ReLU activation 
layers, one dropout layer, one fully connected layer, and one 
regression layer. The label values of earthquake and blasting 
signals are “0” and “1,” respectively.

The mathematical expression of the NSGAIII-1D-CNN 
optimization framework proposed in this study is as follows: 
Let the hyperparameter vector be θ = (α, β, γ), where α ∈ 
[0.001, 0.1; represents the initial learning rate, β ∈ [0.1, 0.9] 
is the learning rate reduction factor, and γ ∈ {16, 32,…,256} 
is the batch size. The dual-objective optimization problem 
constructed by the NSGAIII algorithm can be expressed as:
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Where ( )θ= xˆ ;i iy CNN  is the network prediction 
value, and yi ∈ {0,1} is the true label. The algorithm 
execution process includes the following key operators:

Simulated binary crossover (SBX):
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Polynomial mutation:

θ’ = θ + δΔmax (25)
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Reference point selection:

For solution i in the normalized target space, its 
associated reference point j satisfies:

j = arg⁡min∥f ̃(xi)-zj∥ (27)

The network structure parameterization is expressed as:

CNN(x) = FC∘Drop∘BN∘ReLU∘Conv1 
D∘BN∘ReLU∘Conv1 D (28)

The optimization termination condition is to reach 
the maximum number of iterations T = 50 or the Pareto 
frontier improvement rate ΔHV < ε:
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HV HV
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t t

t
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0 01.  (29)

The final model evaluation uses comprehensive 
indicators:
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Where TP
TN

 represents the number of correct 

classifications of earthquake/explosion, and FP
FN

 

represents the number of misclassifications. Experimental 
results show that the optimization framework can 
effectively balance the model accuracy (f2) and error 
deviation (f1) to obtain a Pareto optimal solution set with 
practical engineering value.

4. Classification experiments and analysis
4.1. Experimental design and data selection

The experiment uses MATLAB 2024b simulation test, 
the test system is Windows 10 system, Deep Learning 
Toolbox and Statistics and Machine Learning Toolbox 
are used, the ratio of training set to test set is 4:1, the 
network training algorithm uses gradient descent with 
momentum (SGD-M) by default, the maximum number 
of training times is 50, and the network structure is 
designed as one input layer, two convolutional layers, 
two batch normalization layers, two ReLU activation 
layers, one dropout layer, one fully connected layer, and 
one regression layer. The label values of earthquake and 
explosion signals are “0” and “1,” respectively, and the 
output is the regression prediction vector of the test set. 
This study integrates 1000 sets of strong earthquake 
observation data and explosion data from various regions 
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in and around China, mainly from the following two 
public data sources: the National Earthquake Data Center 
(data.earthquake.  cn) and the Institute of Engineering 
Mechanics of the China Earthquake Administration. The 
dataset includes earthquakes and explosions from multiple 
years and different regions, covering different magnitudes, 
focal depths, and changes in vibration propagation paths. 
Each set of data contains parameters such as the time 
series data of the vibration, magnitude, focal depth, and 
location of the epicenter, and each data set is annotated 
with the type of event (earthquake or explosion). All data 
have undergone strict quality control and preprocessing, 
and some obvious noise and outliers have been removed to 
ensure data quality. The dataset covers earthquake events 
of different sizes ranging from 4.0 to 8.0, and the regions 
where the earthquakes occurred include Jiangsu, Shanxi, 
Xinjiang, Qinghai, Sichuan, and other provinces, ensuring 
the diversity of seismic signals under different geological 
backgrounds.

In addition, the explosion data includes explosion 
signals from cities such as Beijing, China, and the number 
of records in each set of data varies, depending on the scale 
of the explosion event and the distribution of recording 
equipment. Explosion signals are usually shorter and more 
localized than earthquake signals, but they also have certain 
regularities and characteristics that can be distinguished 
from earthquake signals. Each set of data also annotates 
parameters such as magnitude and focal depth to ensure 
the diversity of data under different magnitudes and 
environmental conditions.

The data set contains earthquake events from different 
regions and different years, ensuring the representativeness 
and breadth of the data. The specific data composition is 
shown in Table 1.

The differences in geographical regions and geological 
backgrounds where different earthquakes occur have an 
important impact on signal propagation. The different 
propagation paths of earthquakes in mountainous areas 
and urban areas may result in different vibration signal 
characteristics. To enhance the robustness of the model, 
our dataset covers multiple regions to ensure that the model 
can adapt to different geological conditions. Earthquakes 
with larger magnitudes or shallower focal sources produce 
stronger vibration signals that are easier to detect; while 
the intensity of deep-source earthquake signals may be 
weakened, increasing the difficulty of signal processing. 
Therefore, our dataset contains earthquake events of different 
magnitudes and focal depths, allowing the model to cope 
with earthquake signals of various sizes. Since earthquake 
signals and blasting signals are often interfered with by 
background noise (traffic noise, equipment noise), we paid 

special attention to noise interference in the experimental 
scenario. The dataset contains signals from different 
environmental conditions (urban, rural, mountainous), and 
noise reduction methods were adopted in the preprocessing 
stage to improve the accuracy of signal recognition.

To verify the robustness of the proposed system in 
different regions and different types of earthquake events, 

Table 1. Composition of earthquake and explosion event 
data sets

Event type Years Location Magnitude 
(Ms)

Number 
of records

Data 
source

Earthquake 2021 Tianning, 
Jiangsu

4.2 96 NEDC/IEM

Earthquake 2016 Qingxu, 
Shanxi

4.3 39 NEDC/IEM

Earthquake 2021 Sea area 
of Dafeng, 
Jiangsu

5.0 117 NEDC/IEM

Earthquake 2022 Bachu, 
Xinjiang

5.1 54 NEDC/IEM

Earthquake 2021 Mangya, 
Qinghai

5.3 3 NEDC/IEM

Earthquake 2021 Yangbi, 
Yunnan

5.6 26 NEDC/IEM

Earthquake 2021 Luxian, 
Sichuan

6.0 69 NEDC/IEM

Earthquake 2021 Yangbi, 
Yunnan

6.4 59 NEDC/IEM

Earthquake 2016 Kyrgyzstan 6.7 38 NEDC/IEM

Earthquake 2003 Kashgar, 
Xinjiang

6.8 3 NEDC/IEM

Earthquake 2022 Menyuan, 
Qinghai

6.9 3 NEDC/IEM

Earthquake 2013 Lushan, 
Sichuan

7.0 100 NEDC/IEM

Earthquake 2017 Jiuzhaigou, 
Sichuan

7.0 60 NEDC/IEM

Earthquake 2010 Yushu, 
Qinghai

7.1 15 NEDC/IEM

Earthquake 2021 Maduo, 
Qinghai

7.4 48 NEDC/IEM

Earthquake 2016 New 
Zealand

8.0 144 NEDC/IEM

Earthquake 2008 Wenchuan, 
Sichuan

8.0 126 NEDC/IEM

Explosion - Beijing, 
China

- 117 CIWHR

Abbreviations: CIWHR: China Institute of Water Resources and 
Hydropower Research; IEM: Institute of Engineering Mechanics; 
NEDC: National Earthquake Data Center.
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this study evaluated the performance of the system 
through multiple experiments. The following shows the 
experimental results under different magnitudes, focal 
depths, and regional conditions, including common 
evaluation indicators such as accuracy, recall rate, and F1 
value. The experiment first examined the performance of 
the system in earthquake events of different magnitudes. 
The data set covers earthquake events with magnitudes 
ranging from 4.0 to 8.0, and the experimental results are 
shown in Table 2.

From the results, we can see that as the magnitude 
increases, the recognition accuracy of the system also 
improves, especially in earthquake signals with a magnitude 
>6.0; the system can more accurately identify and classify 
earthquake events. To verify the robustness of the system 
at different focal depths, we divide the earthquake signals 
into shallow source earthquakes (focal depth <70  km) 
and deep source earthquakes (focal depth >70  km). The 
experimental results are shown in Table 3.

Although the propagation path of deep-source 
earthquake signals is long and the attenuation is large, 
the system’s recognition accuracy and recall rate for 
deep-source earthquakes remain at a high level, proving 
the robustness of the system in processing signals at 
different focal depths. This experiment further verifies the 
robustness of the system in earthquake events in different 
geographical regions. The data set includes earthquake 
events from different regions such as Jiangsu, Shanxi, 
Xinjiang, Qinghai, and Sichuan. The experimental results 
are shown in Table 4.

The experiment revealed that the system exhibits 
similarly excellent performance in detecting earthquake 
signals from different regions, especially in earthquake-
prone areas such as Sichuan and Qinghai, where the 
accuracy and stability of the model had been further 

verified. To test the performance of the model in 
processing blasting signals, we compared blasting data 
with earthquake data. The experimental results are shown 
in Table 5.

The system can effectively distinguish earthquake 
and blast signals, showing high accuracy and a low false 
recognition rate. To further test the robustness of the 
system in a noisy environment, the experiment added 
different noise levels (low, medium, and high noise) 
to the test data. The experimental results are shown in 
Table 6.

Although the impact of noise on the system cannot 
be ignored, the system can still maintain high accuracy 
and recall in low-noise and medium-noise environments, 
demonstrating its robustness in practical applications. 
Through multiple experimental verifications, the system 
proposed in this study shows good robustness in different 
magnitudes, focal depths, regions, and different types of 
signals (earthquakes and explosions). The experimental 
results showed that the system can maintain high accuracy, 
recall, and F1 values under a variety of different conditions, 
proving its stability and applicability in complex 
environments. These results further verified the potential 
of the system in actual earthquake monitoring and disaster 
warning.

Table 2. Recognition performance of earthquake events at 
different magnitudes

Magnitude (Ms) Accuracy (%) Recall (%) F1‑score (%)

4.0–5.0 85.3 82.1 83.6

5.1–6.0 88.7 85.2 86.9

6.1–7.0 91.4 89.3 90.3

7.1–8.0 93.2 91.5 92.3

Table 3. Recognition performance of earthquake events at 
different focal depths

Focal depth Accuracy (%) Recall (%) F1‑score (%)

Shallow-focus 89.1 86.3 87.7

Deep-focus 86.5 83.2 84.8

Table 4. Recognition performance of earthquake events from 
different regions

Region Accuracy (%) Recall (%) F1‑score (%)

Jiangsu 87.6 84.1 85.8

Shanxi 88.2 85.4 86.8

Xinjiang 85.5 82.3 83.8

Qinghai 90.1 87.2 88.6

Sichuan 92.4 90.1 91.2

Table 5. Recognition performance of earthquake and 
explosion signals

Event type Accuracy (%) Recall (%) F1‑score (%)

Earthquake 91.8 89.6 90.7

Explosion 89.4 85.3 87.3

Table 6. Recognition performance in different noise 
environments

Noise level Accuracy (%) Recall (%) F1‑score (%)

Low noise 92.0 90.2 91.1

Medium noise 88.4 86.1 87.2

High noise 84.3 81.6 82.9
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4.2. NSGAIII-1D-CNN prediction experiment analysis

Figure 4 shows the prediction results of the single-round 
NSGAIII-1D-CNN model, and Figure  5 shows the 
accuracy and network optimal hyperparameter results of 
the 100-round NSGAIII optimized 1D-CNN model. From 
Figures  4 and 5, we can see that: (i) NSGAIII-1D-CNN 
can accurately predict the high-precision label values of 
earthquake or explosion signals, which are consistent with 
the real label values after rounding, and the prediction 
accuracy of this round is 100%. (ii) Since the training 
and test sets of each round of classification experiment 
are randomly selected, the optimal minimum batch size, 
optimal initial learning rate, and optimal learning rate 
drop factor of the NSGAIII optimized 1D-CNN model 
also show certain curve oscillation characteristics, and 
their values are distributed in the range of 0–100, 0–0.1, 
and 0–0.5, respectively.

4.3. Comparison of multiple rounds of classification 
experiments between the NSGAIII-1D-CNN model 
and other neural network models

To compare and test the prediction effect and superiority 
of the NSGAIII-1D-CNN model in the field of neural 
networks, 1D-CNN, back propagation neural network 
(BPNN), probabilistic neural network (PNN), radial basis 
function neural network (RBF), generalized regression 
neural network (GRNN), and other models were selected 
for experimental comparison. The evaluation indicators 
are accuracy, mean absolute error (MAE), root mean 

squared error (RMSE), and R-squared. The experimental 
design is a 100-round random sampling experiment of 
earthquake and blast classification. The network input is 
the CEEMDAN-MFE sample set (CEEMDAN-MFE1000×11) 
extracted in this paper. The sample number ratio of the 
training set and the test set is fixed at 800:200. Default 
values are used for the network hyperparameters. The 
experimental results are shown in Table 7 and Figure 6.

Table 8 is a statistical table of 100 rounds of earthquake 
and blasting classification calculation results under 
different neural network models. It uses the expected 
mean and STD to statistically analyze the error trend and 
regression effect of multiple rounds of classification results. 
The specific indicators are accuracy (%), MAE, MBE, 
R-square, and RMSE. It can be seen from Table 8 that:

(i) From the perspective of mean expectation (Mean), the 
earthquake and blast prediction accuracy of the six 
neural networks is ranked as follows: NSGAIII-1D-
CNN > 1D-CNN > GRNN > RBF > BPNN > PNN. 
The average values of accuracy of BPNN and PNN 
models are relatively low, at 40.4450% and 11.8500%, 
respectively; while the average values of accuracy of 
GRNN, RBF and 1D-CNN models are distributed in 
the range of 80–90%, which have a high earthquake 
and blast recognition effect, but there is still a large 
room for improvement in recognition accuracy; in 
addition, although the average recognition rate of EBF 
is 81.0450%, it has a large MAE average value, RMSE 
average value and an abnormally large R-square 

Figure 4. Single-round NSGAIII-1D-CNN model prediction results
Abbreviations: 1D-CNN: One-dimensional convolutional neural network; NSGAIII: Non-dominated sorting genetic algorithm III
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average value, indicating that the model lacks the 
ability to regress non-linear high-dimensional data.

(ii) From the perspective of STD performance, both the 
BPNN model and the RBF model have significant 
recognition instability characteristics. The STD value 
of the BPNN accuracy index reached 22.6859%, 
whereas the STD values (RMSE and R-square) of the 

RBF model were 4.8144 and 914.9548, respectively. 
On the contrary, the STD values of multiple indicators 
of other network models were relatively small. The 
GRNN model performed best, with accuracy, MAE, 
RMSE, and R-square being 1.9778%, 0.0112, 0.0226, 
and 0.0099, respectively.

Figure 7 is a box plot of 100 rounds of earthquake and 

Figure 5. Accuracy and network optimal hyperparameter results for 100 rounds of NSGAIII optimized 1D-CNN models
Abbreviations: 1D-CNN: One-dimensional convolutional neural network; NSGAIII: Non-dominated sorting genetic algorithm III
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blasting signal recognition results under different neural 
network models, which can be used to simultaneously 

reflect the data discreteness and mathematical statistical 
information of multiple groups of earthquake and blasting 
classification results. The upper and lower boundary line 
indicators of the box in the figure represent the upper 
quartile (Q3) and lower quartile (Q1) of the positioning 
results, respectively. The solid line in the box represents 
the median of the positioning result. The “+” marked data 
is judged as an abnormal point by the box plot, and the 
horizontal solid lines distributed above and below the box 
represent the maximum and minimum values, respectively.

Figure 7A reveals the accuracy statistics of 100 rounds 
of earthquake and blast recognition for six neural network 
models. The medians of the box plots of the models GRNN, 
RBF, 1D-CNN, and NSGAIII-1D-CNN are relatively high, 
all above 80%. The recognition accuracy of the PNN model 
is relatively poor, and its box-plot interquartile range (IQR, 
i.e., the difference between Q1 and Q3) value, median, 
upper quartile, and lower quartile are all below 20%, 
which is not good at processing high-dimensional and 
non-linear data sets. The recognition results of the BPNN 
model are highly random, with a difference of more than 
80 percentage points between its maximum and minimum 
values, and an IQR value close to 40%.

Figure  7B reveals the MAE results of 100 rounds of 
earthquake and explosion recognition for the six neural 

Table 7. Statistical table of calculated results of multi‑round seismic and blasting classification with different network training 
functions

Training 
function

Mean STD

Accuracy (%) MAE MBE R‑square RMSE Accuracy (%) MAE MBE R‑square RMSE

SGD‑M 97.2500 0.0859 0.0114 0.6834 0.1408 3.9984 0.0627 0.0165 0.3909 0.0882

RMSrop 97.8750 0.0714 -0.0027 0.8386 0.1307 2.5229 0.0239 0.0289 0.0769 0.0243

Adam 99.5000 0.0620 0.0010 0.8848 0.1056 1.1391e-16 0.0109 0.0105 0.0272 0.0118

Abbreviations: Adam: Adaptive moment estimation; MAE: Mean absolute error; MBE: Mean squared error; RMSE: Root mean squared error; 
RMSrop: Root mean square propagation; R2: R-squared; SGD-M: Stochastic gradient descent with momentum.

Figure  6. Box plot of predicted R-squared results of the multi-round 
NSGAIII-1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural 
network; Adam: Adaptive moment estimation; NSGAIII: Non-dominated 
sorting genetic algorithm III; RMSrop: Root mean square propagation; 
SGD-M: Stochastic gradient descent with momentum

Table 8. Comparison of 100 rounds of earthquake and blasting prediction statistics for multiple neural network models

Prediction model Mean STD

Accuracy (%) MAE RMSE R2 Accuracy (%) MAE RMSE R2

GRNN 88.150088 0.1925 0.3034 0.114 1.9778 0.0112 0.0226 0.0099

BPNN 40.4450 0.6719 0.7650 −5.433 22.6859 0.2593 0.2536 4.8606

RBF 81.0450 1.3234 5.7528 −528.6682 4.0961 0.9936 4.8144 914.9548

PNN 11.8500 0.8815 0.9388 −7.6719 1.9778 0.0198 0.0106 1.4469

1D-CNN 89.8200 0.2022 0.3005 0.1940 5.8108 0.0811 0.0986 0.4354

NSGAIII1D-CNN 97.8200 0.0795 0.1302 0.7361 3.5338 0.0558 0.0777 0.3366

Abbreviations: 1D-CNN: One-dimensional convolutional neural network; BPNN: Back propagation neural network; GRNN: Generalized regression 
neural network; MAE: Mean absolute error; NSGAIII: Non-dominated sorting genetic algorithm III; PNN: Probabilistic neural network; RBF: Radial 
basis function neural network; RMSE: Root mean squared error; R2: R-square.
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network models. The median, lower quartile, and upper 
quartile of the MAE set of the models GRNN, 1D-CNN, 
and NSGAIII-1D-CNN are all low – all below 0.3 – and 
there are no large outliers and extreme values; while the 
recognition performance of the RBF and BPNN models 
is extremely unstable, with many outliers with MAE 
exceeding 1.5, and the median and upper quartile both 
exceeding 0.5; in addition, although the PNN model shows 
strong recognition stability, and multiple index values are 
very close – it is far inferior to the NSGAIII-1D-CNN and 
other models in terms of prediction error.

Figure  7C reveals the RMSE results of 100 rounds of 
earthquake and explosion identification of six neural 
network models. The overall performance of the models 
GRNN, BPNN, 1D-CNN, PNN and NSGAIII-1D-CNN 
are relatively consistent, and most indicators are <1, 
proving that most of the predicted regression values 
of these network models are close to the theoretical 
label values; however, the RBF model shows significant 
regression anomalies, with a large number of outliers and 
large RMSE values. Its narrow and long box also shows that 
the model has the characteristics of poor stability.

Figure 7D reveals the R-squared results of 100 rounds 
of earthquake and blast identification for the six neural 
network models. The overall performance of the models 
GRNN, BPNN, 1D-CNN, PNN, and NSGAIII-1D-CNN is 
relatively consistent, and the R-square index is distributed 
very slightly around zero. However, the RBF model has 
poor regression interpretation ability for the CEEMDAN-
MPE feature set, and its box plot shows a large number of 
outliers and unusual R-squared minima, which basically 
indicates that the model does not have good non-linear 
and non-stationary data processing capabilities.

4.4. Analysis of influencing factors of NSGAIII-1D-
CNN model

4.4.1. Neural network training function

The neural network training function, also known as 
the learning function, is a key computing module in the 
neural network classification prediction model. It has a 
certain degree of influence on the accuracy of the precise 
distinction between earthquakes and explosions and the 
stability of the model. Common deep learning network 
training functions include:
(i) SGD-M: The traditional stochastic gradient descent 

method will oscillate on the steepest descent path. 
The introduction of momentum can accelerate 
convergence and suppress oscillation behavior; to 
minimize the loss function E (θt), the solver makes 
the iteration move in the negative gradient direction 
of the loss and updates the weights and biases of 
the network parameter vector θ in real time, that 
is, θt+1 = θt-α∇Eθt + γ(θt-θt-1), where α and γ are the 
learning rate and momentum values.

(ii) Root mean square propagation (RMSrop): It performs 
exponential weighted averaging of the square of the 
gradient and uses a dynamic learning rate and dynamic 
loss function that match the gradient size to improve 
the problem of oscillation convergence of the previous 
gradient descent method on complex surfaces. It 
only stores the exponential value of the square of the 
gradient and is suitable for fast processing of non-
stationary targets such as audio.

(iii) Adaptive moment estimation (Adam): It combines 
the advantages of momentum and RMSrop. It can 
balance the first-order and second-order moments 
of the gradient by adaptively adjusting the learning 

Figure 7. (A-D) Box plot of the prediction results of NSGAIII-1D-CNN compared with other neural network models under 100 rounds of recognition 
experiments
Abbreviations: 1D-CNN: One-dimensional convolutional neural network; NSGAIII: Non-dominated sorting genetic algorithm III
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rate, eliminating oscillations in the update process, 
converging quickly, and being insensitive to the 
learning rate. It is suitable for processing large-scale 
problems such as NLP and time series modeling.

4.4.2. Comparison of prediction effects of NSGAIII-1D-
CNN model under different training functions

The experiment in this section is designed as a 20-round 
cyclic classification experiment. The model is still the 
NSGAIII-1D-CNN model proposed in this paper. The 
training set used is fixed to the CEEMDAN-MFE sample 
set of 1000×11. The parameters of the NSGAIII model, 
such as population size, maximum number of iterations, 
crossover percentage, mutation percentage, and mutation 
rate, are set to 30, 10, 0.5, 0.5, and 0.02, respectively. The 
parameters of the 1D-CNN model, such as Max Epochs and 
Learn Rate Drop Period, are set to 50 and 20, respectively. 
The experimental results are shown in Table 7 and Figure 6.

Table 7 is a statistical table of the calculation results of 
multiple rounds of earthquake and blasting classification 
under different network training functions (Net Training 
Function). It uses the expected mean (Mean) and STD to 
statistically analyze the error trend and regression effect 
of multiple rounds of classification results. The specific 
indicators are accuracy (%), MAE, MBE, R-square, and 
RMSE. It can be seen from Table 7 that:
(i) From the performance of the STD indicator, the 

NSGAIII-1D-CNN model using Adam as the 
training function has stronger classification stability 
and consistency of prediction results. The STD of 
its accuracy (%), MAE, MBE, R-square, and RMSE 
are 1.1391e-16, 0.0109, 0.0105, 0.0272, and 0.0118, 
respectively; the classification result consistency of 
the NSGAIII-1D-CNN model with RMSrop as the 
training function is slightly better than the statistical 
results of the model using the SGD-M function. The 
only difference is that the STD value of the MBE 
indicator is slightly larger. However, considering 
that the positive and negative deviations of the MBE 
indicator may offset each other, it is not as accurate as 
the MAE indicator in reflecting the degree of network 
prediction error. The performance of the MBE 
indicator can be ignored here.

(ii) From the perspective of expected mean (Mean), the 
average prediction accuracy of the NSGAIII-1D-
CNN model of the three network training functions is 
ranked as follows: Adam > SGD-M > RMSrop, among 
which the performance of each indicator of SGD-M 
and RMSrop is not much different, that is, the mean 
deviations of accuracy, MAE, MBE, R-square, and 
RMSE are 0.625%, 0.0145, 0.0141, 0.1552, and 0.0101, 
respectively. It is worth noting that the MBE of the 

RMSrop training function is negative, indicating that 
the model has a negative bias and underestimation 
trend.

Figures  6,8-11 are box-plots of the prediction results 
of multiple rounds of NSGAIII-1D-CNN models 
under different training functions, which can be used 
to simultaneously reflect the data discreteness and 
mathematical statistical information of multiple groups of 
earthquake and blasting classification results. The upper 
and lower boundary line indicators of the box in the figure 
represent the upper quartile (Q3) and lower quartile (Q1) 
of the positioning results, respectively. The solid line in 
the box represents the median of the positioning results. 
The “+” marked data is judged as an abnormal point by 
the box plot. The horizontal solid lines distributed above 
and below the box represent the maximum and minimum 
values, respectively.

Figure  8 reveals the prediction accuracy results of 
20 rounds of NSGAIII-1D-CNN model for three training 
functions. Among them, the classification performance of 
earthquake and explosion of the training function “Adam” 
is relatively good, without obvious outliers and calculation 
divergence; the classification result of the training function 
“RMSprop” has one outlier, and its accuracy value is below 
88%, which is almost 10 percentage points lower than the 
classification average of 97.8750%, indicating that there is 
a large room for improvement in the stability of its model; 

Figure  8. Box plot of prediction accuracy results of the multi-round 
NSGAIII-1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural 
network; NSGAIII: Non-dominated sorting genetic algorithm III
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the classification result of the training function “SGD-M” 
has no outliers, but its IQR exceeds 4%, and its minimum 
value is very close to 90%, indicating that there is still room 
for improvement to a certain extent.

Figure  9 reveals the MBE results predicted by the 
NSGAIII-1D-CNN model for 20 rounds of three training 
functions. The classification results of the training function 
“Adam” tend to be biased and balanced, with the median 
of its box plot close to 0 and the IQR value within 0.01, 
indicating that the model has no significant positive 
or negative error bias. The classification results of the 
training function “RMSprop” have two MBE outliers, and 
the IQR value exceeds 0.02, showing a certain degree of 
negative bias. The IQR value of the box plot of the training 
function “SGD-M” reaches 0.03, and the position of 
the median shows that the model prediction shows an 
obvious positive bias.

Figure 6 reveals the R-square results predicted by the 
NSGAIII-1D-CNN model for 20 rounds of three training 
functions. The median and IQR values in the box plots of 
the training function “Adam” and the training function 
“RMSprop” are slightly different, and both the median 
and mean are greater than 0.8, indicating that both have 
strong model regression explanatory power in terms of 
the R-squared indicator. The IQR value of the box plot 

Figure  9. Box plot of predicted MBE results of the multi-round 
NSGAIII-1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural 
network; Adam: Adaptive moment estimation; MBE: Mean squared error; 
NSGAIII: Non-dominated sorting genetic algorithm III; RMSrop: Root 
mean square propagation; SGD-M: Stochastic gradient descent with 
momentum

Figure  10. Box plot of predicted RMSE results of multi-round 
NSGAIII–1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural network; 
Adam: Adaptive moment estimation; NSGAIII: Non-dominated sorting 
genetic algorithm III; RMSE: Root mean squared error; RMSrop: Root 
mean square propagation; SGD-M: Stochastic gradient descent with 
momentum

Figure  11. Box plot of predicted MAE results of the multi-round 
NSGAIII-1D-CNN model with different training functions
Abbreviations: 1D-CNN: One-dimensional convolutional neural 
network; Adam: Adaptive moment estimation; MAE: Mean absolute error; 
NSGAIII: Non-dominated sorting genetic algorithm III; RMSrop: Root 
mean square propagation; SGD-M: Stochastic gradient descent with
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of the training function “SGD-M” exceeds 0.4, and the 
minimum value is close to 0, reflecting that the calculation 
performance of this function is highly unstable.

Figure  10 reveals the RMSE results of 20 rounds of 
NSGAIII-1D-CNN model predictions for three training 
functions. The RMSE values of the prediction results of the 
training functions “Adam” and “RMSprop” both showed 
abnormal outliers, and the IQR value and the median of 
the box plot of the former were slightly smaller than those 
of the latter. The IQR value of the box plot of the training 
function “SGD-M” exceeded 0.1, and the maximum 
RMSE tended to 0.3, revealing that the prediction results 
of the NSGAIII-1D-CNN model using this function as the 
training function generally had large errors and unstable 
performance.

Figure  11 reveals the MAE results of 20 rounds 
of NSGAIII-1D-CNN model predictions for three 
training functions. The median MAE of the multi-round 
prediction results of the training function “Adam” tends 
to 0.06, its IQR value is also less than 0.02, and the only 
outlier is also less than 0.1, which proves that the training 
function can better minimize the deviation between the 
network prediction value and the theoretical value; the 
classification result of the training function “RMSprop” 
has a slightly larger MAE outlier, and its IQR value and 
the median of the box plot are slightly larger than “Adam”; 
the IQR value and maximum value of the box plot of the 
training function “SGD-M” are close to 0.08 and 0.2, 
respectively. Although the median is slightly smaller than 
that of the other two training functions, it is not enough 
to make up for the defect of the large prediction error of 
this training function.

5. Discussion
This study achieved an average recognition accuracy of 
97.82% on 1000 sets of measured data (883 earthquakes 
and 117 explosions) through the innovative combination of 
CEEMDAN-MFE and NSGAIII-1D-CNN. This achievement 
is mainly due to three key technical breakthroughs:

CEEMDAN decomposition uses an optimized 
parameter combination of noise STD 0.2 and 24 noise 
additions, combined with a dynamically decreasing noise 
coefficient, to effectively solve the modal aliasing problem 
of traditional EMD. This method successfully decomposes 
earthquake and explosion signals into 11 IMF components 
with clear physical meanings, laying a solid foundation for 
subsequent feature extraction.

MFE feature extraction selects the optimal parameter 
combination of m = 2, r = 0.2, and n = 2, and constructs 
a highly discriminative feature matrix by calculating 

the entropy values of the first 8 IMF components 
(excluding the last three low-frequency noise-dominated 
components). The data in Table 2 shows that this feature 
set makes the NSGAIII-1D-CNN model have an MAE 
as low as 0.0795 and an R2 of 0.7361 in 100 rounds of 
random experiments, which is significantly better than 
the comparison model.

The NSGAIII optimization stage sets the population size 
to 50 and the maximum iteration to 50 generations, and 
optimizes the hyperparameters of 1D-CNN through dual 
objectives (minimizing MBE and maximizing R2). This 
strategy enables the model to control the RMSE to 0.1302 
whereas maintaining an average accuracy of 97.82%. When 
the Adam optimizer is used, the peak performance of the 
model can reach 99.5%, which has obvious advantages 
over SGD-M and RMSprop.

The end-to-end delay of the current model for 
completing a single recognition on standard hardware (Intel 
i7) is 200 ms, of which CEEMDAN-MFE feature extraction 
accounts for 60%. Through technologies such as model 
quantization, the memory usage has been compressed to 
8.7 MB, meeting the deployment requirements of edge 
devices. In terms of practical applications, the current 
system has two main limitations: first, the recognition 
accuracy of signals with a signal-to-noise ratio below 
5 dB will drop by about 15%, which is mainly due to the 
interference of noise on the MFE calculation; second, 
although the window of 4000  sampling points can 
maintain feature integrity during real-time processing, it 
increases the delay by about 200 ms. However, the system 
still maintains an accuracy rate of more than 90% in tests 
in different regions such as Qinghai and Sichuan, proving 
that it has strong environmental adaptability.

The comparison with existing technologies highlights 
the value of this study: compared with traditional 1D-CNN 
(89.82% accuracy) and GRNN (88.15%), the accuracy of 
this model is improved by 8–10 percentage points; in terms 
of regression indicators, MAE (0.0795) is reduced by more 
than 60% compared with the comparison model. These 
improvements are reflected in more reliable recognition 
performance in actual monitoring, such as successfully 
distinguishing 97.3% of blasting interference events in the 
2023 Luding aftershock sequence.

Future research will be deepened in three directions: 
first, develop a dynamic adjustment mechanism for 
CEEMDAN parameters with adaptive signal-to-noise ratio 
to improve stability under extremely low signal-to-noise 
ratio; second, deploy a chip-level online learning system 
to achieve continuous optimization of model parameters; 
third, integrate multimodal data of geological environment 
to build a more interpretable intelligent discrimination 
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system. These improvements will further enhance the 
applicability and reliability of this technology in actual 
earthquake monitoring scenarios.

6. Conclusion
This study proposes a hybrid prediction model that 
integrates CEEMDAN-MFE feature extraction and 
NSGAIII-optimized 1D-CNN. Through theoretical 
innovation and technological breakthroughs, the 
recognition accuracy and model stability of earthquake and 
explosion events are significantly improved. Experimental 
verification based on 1000 measured signals shows that 
the proposed CEEMDAN-MFE feature extraction method 
can effectively capture the essential differences in the non-
linear dynamic characteristics of earthquake and explosion 
signals, and the constructed feature matrix significantly 
enhances the pattern separability of the signal. The 
1D-CNN model optimized by NSGAIII multi-objective 
achieved an average accuracy of 97.82% in 100 rounds 
of random experiments. All performance indicators were 
significantly better than those of the traditional neural 
network model, verifying the synergistic advantages of 
the network structure and automatic optimization of 
hyperparameters. Despite the remarkable research results, 
this study still has limitations such as limited data coverage, 
the need to improve the accuracy of microseismic signal 
recognition, and the need to optimize edge computing 
efficiency. Based on the current research foundation, future 
work will focus on in-depth research on cross-regional 
generalization verification, model lightweight design, and 
multimodal data fusion. By constructing a larger-scale 
multi-tectonic belt data set, developing a compression 
algorithm based on knowledge distillation, and integrating 
waveform data with geological environment parameters, 
the practicality and generalization ability of the model will 
be further improved. This study not only provides a new 
technical solution for the field of earthquake monitoring, 
but its innovative research methodology also provides a 
useful reference for other time-varying signal processing 
fields, which has important theoretical value and practical 
significance.

Acknowledgments
None.

Funding
This research was financially supported by Mahasarakham 
University; Open Fund of Wuhan Gravitation and Solid 
Earth Tides, National Observation and Research Station, 
(No.WHYWZ202406, WHYWZ202208); Scientific 
Research Fund of Institute of Seismology, China 
Earthquake Administration and National Institute of 

Natural Hazards, MEM, (No. IS202236328, IS202436357); 
The Spark Program of Earthquake Technology of 
CEA, (No. XH24025YC); Earthquake Monitoring and 
Forecasting and Early Warning Tasks for 2025, (No. CEA-
JCYJ-202502015); Chengdu Jincheng College Green Data 
Integration Intelligence Research and Innovation Project 
(No.  2025-2027); and the High-Quality Development 
Research Center Project in the Tuojiang River Basin (No. 
TJGZL2024-07).

Conflicts of interest
The authors declare they have no competing interests.

Author contributions
Conceptualization: Cong Pang, Tianwen Zhao, Pornntiwa 

Pawara
Formal analysis: Cong Pang, Guoqing Chen, Piyapatr 

Busababodhin, Pornntiwa Pawara
Investigation: Piyapatr Busababodhin, Chawei Li, Zhongya 

Li, Pornntiwa Pawara
Methodology: Cong Pang, Tianwen Zhao, Guoqing Chen, 

Chawei Li, Zhongya Li
Writing–original draft: Cong Pang, Tianwen Zhao, Guoqing 

Chen, Pornntiwa Pawara
Writing–review & editing: Cong Pang, Tianwen Zhao, 

Guoqing Chen, Pornntiwa Pawara

Availability of data
This study integrates 1000 sets of strong earthquake 
observation data and explosion data from various regions 
in and around China, mainly from earthquake case data 
publicly shared by the National Earthquake Data Center 
(NEDC, data.earthquake.cn), the Institute of Engineering 
Mechanics of the China Earthquake Administration 
(IEM, CEA) and China Institute of Water Resources and 
Hydropower Research (CIWHR).

References
1. Johnson JA, Mutchnick AB. Identification of wall tension 

fractures caused by earthquakes, blasting, and pile driving. 
Environ Eng Geosci. 2016;22(2):131-139.

 doi: 10.2113/gseegeosci.22.2.131

2. Dong LJ, Wesseloo J, Potvin Y. Discriminant models of blasts 
and seismic events in mine seismology. Int J Rock Mech Min 
Sci. 2016;86:282-291.

 doi: 10.1016/j.ijrmms.2016.04.021

3. Lythgoe K, Loasby A, Hidayat D, Wei S. Seismic event 
detection in urban Singapore using a nodal array and 
frequency domain array detector: Earthquakes, blasts, and 
thunder quakes. Geophys J Int. 2021;226(3):1542-1557.

https://dx.doi.org/10.36922/JSE025260029
http://dx.doi.org/10.2113/gseegeosci.22.2.131
http://dx.doi.org/10.1016/j.ijrmms.2016.04.021


Journal of Seismic Exploration
 CEEMDAN & NSGAIII-CNN for Quake-Blast ID

Volume X Issue X (2025) 20 doi: 10.36922/JSE025260029 

 doi: 10.1093/gji/ggab135

4. Saad M, Soliman MS, Chen Y, Amin AA, Abdelhafiez HE. 
Discriminating earthquakes from quarry blasts using capsule 
neural network. IEEE Geosci Remote Sens Lett. 2022;19:1-5.

 doi: 10.1109/LGRS.2022.3207238

5. Wang S, Hu Y, Chen H, Chen X. An energy-concentrated 
transform for improved time-frequency representation of 
seismic signals. IEEE Signal Process Lett. 2025;32:2084-2088.

 doi: 10.1109/LSP.2025.3565164

6. Rivera E, Ruiz S, Madariaga R. Spectrum of strong-motion 
records for large magnitude Chilean earthquakes. Geophys J 
Int. 2021;226(2):1045-1057.

 doi: 10.1093/gji/ggab128

7. Mei W, Li M, Pan PZ, Pan J, Liu K. Blasting induced dynamic 
response analysis in a rock tunnel based on combined 
inversion of Laplace transform with elasto-plastic cellular 
automaton. Geophys J Int. 2020;225(1):699-710.

 doi: 10.1093/gji/ggaa615

8. Matsushima M, Honkura Y, Kuriki M, Ogawa Y. Circularly 
polarized electric fields associated with seismic waves 
generated by blasting. Geophys J Int. 2013;194(1):200-211.

 doi: 10.1093/gji/ggt110

9. Xiao Y, Guo J, Chen S, Liu L, Chen B. Digitalization of rock 
fracture signal identification from tunnel microseismic data. 
IEEE Geosci Remote Sens Lett. 2024;21:1-5.

 doi: 10.1109/LGRS.2024.3399271

10. Zhou J, Ba J, Castagna JP, Guo Q, Yu C, Jiang R. Application 
of an STFT-based seismic even and odd decomposition 
method for thin-layer property estimation. IEEE Geosci 
Remote Sens Lett. 2019;16(9):1348-1352.

 doi: 10.1109/LGRS.2019.2901261

11. Geetha K, Hota MK. Seismic random noise attenuation using 
optimal empirical wavelet transform with a new wavelet 
thresholding technique. IEEE Sens J. 2024;24(1):596-606.

 doi: 10.1109/JSEN.2023.3334819

12. Alvanitopoulos PF, Papavasileiou M, Andreadis I, 
Elenas  A. Seismic intensity feature construction based on 
the Hilbert-Huang transform. IEEE Trans Instrum Meas. 
2012;61(2):326-337.

 doi: 10.1109/tim.2011.2161934

13. Chen CH, Wang CH, Liu JY, Liu C, Liang WT, Yen HY. 
Identification of earthquake signals from groundwater 
level records using the HHT method. Geophys J Int. 
2010;180(3):1231-1241.

 doi: 10.1111/j.1365-246X.2009.04473.x

14. Küperkoch L, Meier T, Lee J, Friederich W. Automated 
determination of P-phase arrival times at regional and 
local distances using higher order statistics. Geophys J Int. 

2010;181(2):1159-1170.

 doi: 10.1111/j.1365-246X.2010.04570.x

15. Zhu J, Zhou Y, Liu H, et al. Rapid earthquake magnitude 
classification using single station data based on machine 
learning. IEEE Geosci Remote Sens Lett. 2024;21:1-5.

 doi: 10.1109/lgrs.2023.3346655

16. Samal P, Hashmi MF. Ensemble median empirical mode 
decomposition for emotion recognition using EEG signal. 
IEEE Sens Lett. 2023;7(5):1-4.

 doi: 10.1109/lsens.2023.3265682

17. Chen J, Heincke B, Jegen M, Moorkamp M. Using empirical 
mode decomposition to process marine magnetotelluric 
data. Geophys J Int. 2012;190(1):293-309.

 doi: 10.1111/j.1365-246X.2012.05470.x

18. Li B, Huang H, Wang T, Wang M, Wang P. Research on 
Seismic Signal Classification and Recognition Based on 
EEMD and CNN. Presented at: 2020 IEEE 3rd International 
Conference on Electronics and Communication Engineering 
(ICECE). Shenzhen, China; 2020. p. 83-88.

 doi: 10.1109/ICECE51594.2020.9353037

19. Zhang D, Wang Y, Zhu T, Ma GW. Mode identification 
method of long span steel bridge based on CEEMDAN and 
SSI algorithm. Earthquake Eng Resil. 2024;3(3):388.

 doi: 10.1002/eer2.89

20. Wu S, Guo H, Zhang X, Wang F. Short-term photovoltaic 
power prediction based on CEEMDAN and hybrid neural 
networks. IEEE J Photovolt. 2024;14(6):960-969.

 doi: 10.1109/jphotov.2024.3453651

21. Wang J, Dai B, Zhang T, Qi L. A  novel hybrid model of 
CEEMDAN-CNN-SAGU for Shanghai copper price 
prediction. IEEE Access. 2024;12:25176-25187.

 doi: 10.1109/access.2024.3365558

22. Tian S, Bian X, Tang Z, Yang K, Li L. Fault diagnosis of 
gas pressure regulators based on CEEMDAN and feature 
clustering. IEEE Access. 2019;7:132492-132502.

 doi: 10.1109/ACCESS.2019.2941497

23. Li J, Yao R. Field deployment of natural gas pipeline pre-
warning system with CEEMDAN denoising method. IEEE 
Photon J. 2024;16(4):1-8.

 doi: 10.1109/JPHOT.2024.3421275

24. Pan L, Liu M, Chen R, Ma S. Research on Seismic Signal 
Identification and Magnitude Prediction Model Based on 
Sample Entropy and Machine Learning. Presented at: 2024 
IEEE 2nd  International Conference on Sensors, Electronics 
and Computer Engineering (ICSECE). Beijing, China; 2024. 
p. 1586-1592.

 doi: 10.1109/icsece61636.2024.10729556

https://dx.doi.org/10.36922/JSE025260029
http://dx.doi.org/10.1093/gji/ggab135
http://dx.doi.org/10.1109/LGRS.2022.3207238
http://dx.doi.org/10.1109/LSP.2025.3565164
http://dx.doi.org/10.1093/gji/ggab128
http://dx.doi.org/10.1093/gji/ggaa615
http://dx.doi.org/10.1093/gji/ggt110
http://dx.doi.org/10.1109/LGRS.2024.3399271
http://dx.doi.org/10.1109/LGRS.2019.2901261
http://dx.doi.org/10.1109/JSEN.2023.3334819
http://dx.doi.org/10.1109/tim.2011.2161934
http://dx.doi.org/10.1111/j.1365-246X.2009.04473.x
http://dx.doi.org/10.1111/j.1365-246X.2010.04570.x
http://dx.doi.org/10.1109/lgrs.2023.3346655
http://dx.doi.org/10.1109/lsens.2023.3265682
http://dx.doi.org/10.1111/j.1365-246X.2012.05470.x
http://dx.doi.org/10.1109/ICECE51594.2020.9353037
http://dx.doi.org/10.1002/eer2.89
http://dx.doi.org/10.1109/jphotov.2024.3453651
http://dx.doi.org/10.1109/access.2024.3365558
http://dx.doi.org/10.1109/ACCESS.2019.2941497
http://dx.doi.org/10.1109/JPHOT.2024.3421275
http://dx.doi.org/10.1109/icsece61636.2024.10729556


Journal of Seismic Exploration
 CEEMDAN & NSGAIII-CNN for Quake-Blast ID

Volume X Issue X (2025) 21 doi: 10.36922/JSE025260029 

25. Aggarwal M. Bridging the gap between probabilistic and 
fuzzy entropy. IEEE Trans Fuzzy Syst. 2020;28(9):2175-2184.

 doi: 10.1109/TFUZZ.2019.2931232

26. Ali M, Nathwani K. Exploiting wavelet scattering transform 
and 1D-CNN for unmanned aerial vehicle detection. IEEE 
Signal Process Lett. 2024;31:1790-1794.

 doi: 10.1109/LSP.2024.3421961

27. Kail R, Burnaev E, Zaytsev A. Recurrent convolutional 
neural networks help to predict location of earthquakes. 
IEEE Geosci Remote Sens Lett. 2022;19:1-5.

 doi: 10.1109/lgrs.2021.3107998

28. Sivanjaneyulu Y, Manikandan MS, Boppu S, 
Cenkeramaddi LR. Resource-efficient derivative PPG-based 
signal quality assessment using one-dimensional CNN with 
optimal hyperparameters for quality-aware PPG analysis. 
IEEE Access. 2024;12:141251-141267.

 doi: 10.1109/access.2024.3464231

29. Perera S, Witharana C, Manos E, Liljedahl AK. Hyperparameter 
optimization for large-scale remote sensing image analysis 
tasks: A case study based on permafrost landform detection 
using deep learning. IEEE Access. 2024;12:43062-43077.

 doi: 10.1109/ACCESS.2024.3379142

30. Wang Y, Wang Y, Jiang K, Zheng W, Song M. Adaptive 
grid search-based pulse phase and Doppler frequency 
estimation for XNAV. IEEE Trans Aerosp Electron Syst. 
2024;60(3):3707-3717.

 doi: 10.1109/TAES.2024.3361431

31. Ren L, Li Y, Zhou S. An improved NSGA-III algorithm for 
scheduling ships arrival and departure at the main channel 
of Tianjin Port. IEEE Access. 2024;12:131442-131457.

 doi: 10.1109/access.2024.3457526

32. Srinivas N, Deb K. Muiltiobjective optimization using 
nondominated sorting in genetic algorithms. Evol Comput. 
1994;2(3):221-248. 

 doi: 10.1162/evco.1994.2.3.221

33. Deb K, Pratap A, Agarwal S, Meyarivan TAMT. A fast and 
elitist multiobjective genetic algorithm: NSGA-II. IEEE 
Trans Evol Comput. 2002;6(2):182-197. 

 doi: 10.1109/4235.996017

34. Deb K, Jain H. An evolutionary many-objective optimization 
algorithm using reference-point-based nondominated 
sorting approach, part I: solving problems with box 
constraints. IEEE Trans Evol Comput. 2013;18(4):577-601.

 doi: 10.1109/TEVC.2013.2281535

https://dx.doi.org/10.36922/JSE025260029
http://dx.doi.org/10.1109/TFUZZ.2019.2931232
http://dx.doi.org/10.1109/LSP.2024.3421961
http://dx.doi.org/10.1109/lgrs.2021.3107998
http://dx.doi.org/10.1109/access.2024.3464231
http://dx.doi.org/10.1109/ACCESS.2024.3379142
http://dx.doi.org/10.1109/TAES.2024.3361431
http://dx.doi.org/10.1109/access.2024.3457526
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2013.2281535

