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ABSTRACT

Fracturing has emerged as a powerful technique to improve well production and the recovery
of unconventional reservoirs. Under this background, the present research aims to improve
the accuracy of SRV estimation. Currently speaking, a common method used to estimate SRV
is by constructing a mathematical model. However, there are certain drawbacks associated
with this method, like rough fitting effect and low estimation accuracy. In response to this
problem, we propose a new SRV estimation method based on a combination of computer
three-dimensional modeling methods and the triangular mesh subdivision method to
subdivide the three-dimensional envelope structure formed by the microseismic point cloud
as well as the volume of the ineffective fracturing area inside the fracturing reformation
area. The rejection improves the calculation accuracy of SRV without changing the original
distribution characteristics of the microseismic point cloud. Moreover, the final reservoir
fracturing model is more accurate The proposed method is validated by a collection of
measured data and the corresponding results prove the effectiveness of this method.

KEY WORDS: Stimulated reservoir volume, Delaunay triangulation, Minimum volume
ellipsoid, Mesh subdivision
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INTRODUCTION

As one of the emerging clean energy sources in the world, shale gas 
resource has attracted tremendous international attention and has promising 
development prospects. As a low-permeability oil and gas reservoir, shale 
reservoir has physical characteristics such as low porosity, low permeability and 
low connectivity. and thus need to be modified by fracturing to improve their 
petrophysical properties, but thankfully shale reservoirs are highly brittle and 
have a considerable number of natural gas-rich fractures, and. If such natural 
fractures can be broken and transported through horizontal wells, shale gas 
production will certainly witness a sharp increase (Ren et al. 2018; Peng et al. 
2019). The complex fracture network area formed by broken natural fractures 
is called “Reservoir Reconstruction Volume” (SRV). The real data analysis 
suggests that SRV demonstrates a strong positive correlation with shale gas 
production. Accordingly, the accurate estimation of shale gas reservoir is of 
great importance for the evaluation of fracture design effectiveness as well as 
production capacity prediction (Sakhaee et al. 2012; Walton et al. 2013).

Currently, SRV estimation has been measured by either precision equipments 
or mathematical model fitting (Shao et al. 2017). Precision equipments like 
microseismic monitors estimate SRV with the location of microseismic signals 
by monitoring seismic signals in real time. Theoretically speaking, the more 
accurate the measured microseismic signal data is, the more reliable the SRV 
estimation results are. However, the detection is costly and large-scale application 
is deemed impractical. Another popular precision equipment, the electronic 
inclinometer, estimates SRV by measuring the small dip angle of the fractured 
reservoir surface, which is less costly and simple to operate experimentally. The 
major problems with this method are low calculation accuracy and imprecise 
SRV estimation (Hu et al. 2014; Seale et al. 2006; King et al. 2010; Cipolla et 
al. 2010). As a result, mostscholars choose to construct a 3D model to estimate 
SRV with mathematical methods. For example, SRV can be estimated by seam 
network length, width and height (Fisher et al. Warpinski; Warpinski et al. 
2008, 2009). In the same vein, the width of SRV is measured by fracture half-
length and fracture spacing, and the length of SRV is measured by horizontal 
well length (Mayerhofer et al. 2010). Some scholars have analyzed the fracture 
network structure of fractured shale reservoirs and concluded that the fracture 
region caused by fracture modification appears a symmetric ellipse, thereby 
proposed a minimum closed ellipse model to approximate the size of SRV (Yu 
G. 2012; Xie et al. 2015; Wen et al. 2014) Previous studies have also proposed 
lineament network models and unconventional fracture extension models to 
simulate complex fracture patterns (Xu et al. 2009; Weng et al. 2011). However, 
rule-based mathematical geometric models such as cubic and ellipsoidal 
approaches to estimate SRV ignore the complexity of the microseismic event 
point distribution, and the constructed rule-based models include a large portion 
of the non- fractured area, which makes the final estimated SRV results large. 



3

Based on the wireline network model and unconventional fracture extension 
model while the wireline network model is based on the simulation of complex 
fracture morphology, therefore, it requires high numerical accuracy in terms of 
input and cannot directly estimate SRV, which leads to a longer computational 
cycle. Therefore, how to improve the estimation method of SRV and the 
calculation accuracy of SRV in shale fracturing process is still an important 
issue.

With the advancement of 3D model construction methods in computer 
science, some scholars start adopting the irregular envelope method to estimate 
SRV, which has improved the accuracy of SRV estimation significantly 
compared with the above-mentioned regular model methods. The basis of this 
method is triangulation algorithm where the microseismic event points are first 
triangulated by spatial distance to form an overall convex polyhedron composed 
of several tetrahedral structures and the SRV is estimated by calculating the 
sum of volumes of all tetrahedral. The most pervasive triangulation algorithm 
at present is the Delaunay triangulation algorithm or a series of improved 
algorithms based on the Delaunay triangulation algorithm (Liu et al. 2019; Shao 
et al. 2018).Nevertheless, the SRV results obtained on the basis of triangulation 
algorithm still have problems in terms of accuracy. This is partly because 
triangulation algorithm cannot effectively perform calculations on non-convex 
data sets. Besides, when there are non-breaking regions in the microseismic 
event point distribution, the triangulation algorithm will take these invalid 
regions into account.

The accuracy of SRV estimation is of great significance to the exploration 
and development of shale gas reservoirs. Improving the accuracy of SRV 
estimation can not only effectively evaluate the shale gas production effect after 
fracturing, but also provide effective guidance for pre-fracturing construction 
design. To address the problem that the current SRV estimation algorithm cannot 
calculate the SRV of complex microseismic events well, this paper proposes 
a grid subdivision-based SRV estimation algorithm, which first eliminates 
the anomalous localization points by the DBSCAN algorithm, and then uses 
the grid subdivision algorithm to eliminate the internal invalid regions on the 
basis of the initial envelope formed by the triangular dissection algorithm, thus 
improving the accuracy of SRV estimation. . Through a set of experimental 
data tests, the grid segmentation-based SRV estimation algorithm proposed in 
this paper is compared with the traditional SRV algorithm and the Delaunay 
triangulation algorithm. The results not only demonstrate the effectiveness of 
this new method, but also show that it can provide an optimal design solution 
for fracture modification of shale gas reservoirs.
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The Principle of SRV calculation method

DBSCAN clustering algorithm

In the process of shale fracturing, the microseismic monitoring results are 
affected by various factors such as errors in the velocity construction model. As 
a consequence, the first-arrival information of microseismic events cannot be 
collected accurately. Therefore, it is necessary to pre-process the microseismic 
event points prior to SRV calculation in order to eliminate some effects of the 
above factors. The method adopted in this research is the DBSCAN density 
clustering algorithm. The DBSCAN algorithm can be roughly described as 
starting from a core point, continuously reaching the density of the surrounding 
area through certain principles and finally forming a boundary region based 
on the core point where any two data points are density reachable (Shou et al. 
2019; Sheridan et al. 2020; Wang et al. 2021; Chen Y et al. 2018; Alzaalan et al. 
2012).The basic concepts of the DBSCAN algorithm are shown below:

Neighborhood: For any given data point a , its ε neighborhood is defined as:

Nε (a) = {q ∈ D dist(a, q) ≤ ε }                (1)

Density: Let x ∈ X , the expression of density: ρ (x) = Nε (x) .

Core point: If ρ (x) ≥ MinPts , x is the core point in X , the set around which 
the core point formed is X .

Boundary points: x ∈ Xc / X , x exists within the neighborhood of a core point, 
but a boundary point can exist in the neighborhood of multiple core points.

Noise point: A data point that is neither a core point nor a boundary point.

Eps and MinPts are the most critical parameters of the whole algorithm which 
refer to the maximum distance between sample points in a single cluster (also 
called the cluster radius) and the minimum number of sample points contained 
in a single cluster, respectively. If the number of sample points within the Eps 
neighborhood of a sample point is not less than the size of MinPts, then the 
sample point can be defined as the core point. If Eps is longer than the shortest 
distance from the sample point to its core point, it implies that it is direct density 
reachable from the sample point to the core point. For a sample point sequence, 
the sample points should meet the direct density reachable in turn. In other 
words, the direct density reachable should meet the transferability so that these 
sample points are density reachable. If two sample points are density reachable 
for the same point, then the two sample points are density connected.

Introduction of triangular mesh subdivision algorithm

3D surface reconstruction has great applicability in the field of computer 
vision reconstruction and mesh subdivision is one of the most popular methods. 
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By subdividing the target data set into surfaces several times, the shape of data 
points can be presented more accurately. The built model is smooth and flat 
with much-improved visuality and accuracy (Hu and Zhang 2016). The most 
typical triangular mesh subdivision algorithm is the LOOP subdivision method 
which is a subdivision method proposed by American scholar Charles Loop 
in his master’s thesis in 1987 for approximate triangular surface segmentation 
(Biermann H et al. 2000; Devillers et al. 2011; Kim et al. 2019). This method 
focuses on subdividing a triangular surface by dividing an original triangular 
surface slice into four new triangular surface slices. The segmentation process 
can be roughly divided into two steps: the first step calculates the boundary 
points, and the second step moves the original vertices to generate a smooth 
surface with continuous tangents accordingly.

Calculating the boundary points

Calculating all the triangular facepieces to derive all the boundary points 
and non-boundary points. The model shown in Fig. 1 consists of two triangles 
up and down. The vertices of these two triangles are denoted by v2 and v3 , and 
the endpoints of the edges in vertices coordinates are denoted by v0 and v1 , 
respectively. If the two endpoints of an edge inside the mesh are v0 and v1 , and 
the faces of the two triangles sharing this edge are (v0 , v1, v2 ) and (v0 , v1, v3 
) , then the newly generated edge points are:

(2)

Fig. 1 Internal vertices

The difference between a mesh boundary E -vertex and a mesh interior E 
-vertex is that this edge lies at the boundary of the model and belongs to only 
one triangle; no second triangle shares this edge. Let

the two endpoints of this edge be vo and v1 , and the location of the newly 
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added vertex v Expression is:

A mesh boundary E -vertex and a mesh interior E -vertex differ in that this 
edge is located at the boundary of the model and only belongs to a triangle, 
without another triangle sharing this edge. Let the two endpoints of this edge be 
vo and v1 ,and the position of the newly added vertex v is denoted as:

(3)

Fig. 2 Generating boundary vertices

Updating the original points

The boundary needs to be processed so as to make the generated boundary 
smoother. Supposing the original interior vertice is v0 , and the adjacent vertices 
are v1 , v2 , v3 , and v4 , then the coordinates of the shifted vertices v0 are:

v = (1− nβ )v0 + β ∑vi                   (4)

Where vi is the surrounding points of the original point v0 , and the point 
n denotes the total number of surrounding points of the original point. The 
essence of the boundary shift is the weighted sum of the vertex itself and its 
neighboring vertices. The weight of the vertex itself is 1− nβ , and the weight 
of its neighboring points is β . Here the weight β is obtained by the following 
equation:
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If the boundary vertex 0v has already existed and the two adjacent points of the vertex are 1v and 2v , 
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3 1 1
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Fig. 4 Moving mesh boundary V-vertex 

By performing a triangular dissection operation on a given set of microseismic event data points, one 

can obtain the index values of all triangular facet element vertexes. A mesh subdivision method is then 

applied in these triangular facet elements and the number of triangular facet elements are increased 

accordingly. For triangular side lengths which exceed normal range significantly, the distance between 

data points is shortened by differencing to form a tetrahedral combination structure composed of smaller 
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Fig. 3 Moving the original vertices (V-vertex)
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If the boundary vertex v0 has already existed and the two adjacent points of 
the vertex are v1 and v2, then the updated vertex position is:
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Fig. 4 Moving mesh boundary V-vertex

By performing a triangular dissection operation on a given set of microseismic 
event data points, one can obtain the index values of all triangular facet element 
vertexes. A mesh subdivision method is then applied in these triangular facet 
elements and the number of triangular facet elements are increased accordingly. 
For triangular side lengths which exceed normal range significantly, the 
distance between data points is shortened by differencing to form a tetrahedral 
combination structure composed of smaller triangles, and the overall fracture 
transformation volume size can be estimated by calculating all tetrahedral 
volumes within this structure. The formula for calculating the volume of 
tetrahedral is as

follows:
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constructed using the Delaunay triangulation algorithm as shown in Figure 5 Then the model is 

subdivided by the mesh subdivision method and the number of subdivision set as two. Figure 6 and 

Figure 7 show the results for one and two subdivisions, respectively. Compared with the initial sphere 

structure in Figure 5 , the surface of the model obtained by the mesh subdivision method is smoother and 
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Fig. 5 Sphere model 

                   (7)

Where (x1, y1, z1 ), (x2 , y2 , z2 ), (x3 , y3 , z3 ), (x4 , y4 , z4 ) are the 
coordinate values of the four vertices in tetrahedron A, B, C , and D, respectively.

To illustrate the practical applicability of the mesh subdivision method, a 
set of data points with a total number of 200 are given in three-dimensional 
three plane to form a sphere. An initial sphere model is constructed using the 
Delaunay triangulation algorithm as shown in Figure 5 Then the model is 
subdivided by the mesh subdivision method and the number of subdivision set 
as two. Figure 6 and Figure 7 show the results for one and two subdivisions, 
respectively. Compared with the initial sphere structure in Figure 5 , the surface 
of the model obtained by the mesh subdivision method is smoother and more 
approximate to a spherical surface. Therefore, it is assumed that if the data 
points reach a considerable number, the model built with the mesh subdivision 
method can be more detailed.
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Fig. 5 Sphere model

Fig. 6 Results of primary mesh subdivision

Fig. 7 Secondary mesh subdivision results
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Introduction to the minimum volume ellipsoid algorithm

The rationale of the minimum volume ellipsoid algorithm is to fit microseismic 
event points by identifying the smallest ellipsoid in space. It is obtainable for 
the axis radius, ellipsoid center, and ellipsoid volume of the ellipsoid in the 
minimum ellipsoid building (Jie et al. 2018; Tao et al. 2017; Li et al. 2018; 
Halder 2018).

The minimum volume ellipsoid algorithm can be illustrated by the following 
equation:

E(a, A) = {x ∈ R3 (x − a)T A(x − a) ≤ 1}             (8)

Where

a ∈ R3

is the center point of the ellipsoid; A ∈ R3×3 is the symmetric positive definite 
matrix

(λ1, λ2, λ3 ) that controls the series of affine transformations of the ellipsoid 
and the inverse square root of the matrix eigenvalues is the length of the ellipsoid 
semi-axis that controls the scaling effect of the ellipsoid affine transformations. 
Meanwhile, the eigenvectors control the rotation effect of the ellipsoid affine 
transformations. Thus, the above equation can also be expressed as:

E = Mtranslation × Mrotation × Mscaling × C               (9)

Where  Mtranslation, Mrotation, Mscaling  denote the translational, rotational 
and stretching effects in the ellipsoidal affine variation, respectively; C is the 
unit sphere; E is the ellipsoid.

Solving the minimum volume ellipsoid problem can be converted to solving 
the optimization problem as follows:
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Fig. 8 Delaunay triangulation algorithm operation process 

Example analysis 

Solving SRV based on mesh subdivision method 
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Using the KY algorithm (Kumar and Yildirim 2008), a convex optimization 
of the above equation can be performed so that the non-convex problem is 
changed to a convex problem for the optimal solution to obtain the centroid and 
volume size of the minimum volume ellipsoid.

Introduction of the Delaunay triangulation algorithm

The 3D Delaunay triangulation algorithm connects the discrete microseismic 
event points by triangulating the surface elements so as to form a tetrahedron 
to achieve the effect of faceting and bulking. The 3D Delaunay triangulation 
algorithm first establishes an initial tetrahedron as the initial envelope, and then 
processes the microseismic event points according to their various distances. 
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For example, for an event point, if the point is within the initial envelope, then 
the point shall be skipped and keep searching the next event point. If the point 
is not within the initial envelope, then a new triangular surface is randomly 
constructed by the point with points on the initial envelope,. If the triangular 
surface divides the point from the initial envelope, the initial envelope shall be 
expanded to form a new tetrahedral structure with the triangular surface as a 
face of the new tetrahedron (Xie et al. 2015; Zhou et al. 2013; Miao et al. 2019):

Fig. 8 Delaunay triangulation algorithm operation process

Example analysis

Solving SRV based on mesh subdivision method

The data used in this research are mainly from the local fracturing microseismic 
monitoring results of a shale well in a Chinese shale gas field. Due to the need 
of large-scale shale gas development, the shale gas reservoir was fractured in 
multiple sections in a horizontal well. The number of microseismic events is 
70 and the corresponding spatial spreading extends in the east-west direction 
with the orientation close to vertical to the horizontal well. Figure 9 shows the 
microseismic monitoring results of the fractured section where the 3D XYZ 
axes show the spatial spreading size of the fractured area rather than the actual 
depth unit. Combined with the spatial spreading characteristics of microseismic 
events, a more concentrated cluster was formed after clustering by the DBSCAN 
algorithm with two parameters, Eps and MinPts, set to 40 and 2, respectively. 
Red dots in Figure 5 indicate the isolated anomalous localization points and 
black dots represent the formed clusters based on density.

Fig. 9 Microseismic data monitoring results
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After preprocessing the microseismic event points, the Delaunay triangulation 
method was used to calculate the microseismic event points, and the results of 
the initial 3D convex package consisting of multiple tetrahedra were obtained 
as can be seen from Figure 10 . Although the formed 3D convex package 
results include all microseismic event points, some non-fractured areas are also 
included, resulting in large SRV results for the final estimation, which cannot 
provide a better analysis of the fracture modification effect.

Fig. 10 Delaunay triangulation algorithm results

In order to exclude the non-fracture transformation area from the 3D convex 
package, all the surface index values and point coordinates of the 3D convex 
package are brought into the mesh subdivision algorithm, and a suitable number 
of subdivision iterations is set for excluding the non-fracture transformation 
area. Figure 11 and Figure 12 present the model results of subdivision once 
and twice, respectively. The model results obtained by subdividing twice are 
selected as the final reservoir fracturing transformation range. What stands 
out in Figure 12 is the difference compared with the results of the Delaunay 
triangulation algorithm operation in Figure 9 . The non-fracture transformation 
area in the reservoir is well eliminated and the model results generated are 
consistent with the distribution state of microseismic event points.

Fig. 11 Mesh subdivision processing results
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Fig. 12 Second-iteration subdivision processing results

Traditional method for solving SRV

In order to demonstrate the effectiveness of the mesh subdivision-based SRV 
estimation method proposed in this paper, the results are in comparison with 
those of the conventional orthocube method and the minimum volume ellipsoid 
algorithm, respectively. Figure 10 presents the model results generated by the 
Delaunay triangulation algorithm. Closer inspection of the figure shows that 
the model conforms with the spatial distribution of microseismic event points, 
but fractured regions are also included as shown in the red boxed area in Figure 
13 below, which is due to the fact that the Delaunay triangulation algorithm 
cannot handle the error results caused by non-convex regions.

Fig. 13 Error region of Delaunay triangulation algorithm results

By calculating the microseismic data points with the minimum volume 
ellipsoid algorithm, one can obtain a minimum ellipsoid model with all 
microseismic data points as shown in 13 as well as the centroids and positive 
definite matrices of this model. The SRV size is then deduced by substituting 
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these parameters into Equation 10. An analysis of this ellipsoidal model reveals 
that the model structure is generally consistent with the distribution pattern of 
microseismic event points, but still covers a part of non-fracturing effective 
area. This is because the ellipsoid model itself is limited by a centrosymmetric 
geometry structure. As a result, model building is difficult when it comes to fitting 
the microseismic event points with uneven distribution or complex distribution 
pattern. It is fair to say that the traditional minimum volume ellipsoid algorithm 
is unsatisfied for model construction in terms of solving complex microseismic 
event points.

Fig. 14 Minimum volume ellipsoid algorithm model construction

Fig. 15 Regular cube model construction

Figure 15 shows the model results of SRV estimation with the conventional 
cube method and the SRV can be obtained by calculating the volume of the 
cube. Based on a closer observation of the cube model it is apparent that the 
model is calculated with significantly low accuracy, with larger non-fractured 
zones. Besides, the SRV calculation accuracy is lower in comparison with those 
of the minimum volume ellipsoid algorithm and the Delaunay triangulation 
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algorithm. When the distribution of microseismic event points is complicated 
or presents a relatively regular distribution, the cubic method can obtain 
acceptable model results, but the distribution of microseismic event points is 
still irregular. Although this single cube method is both simple and efficient, it 
is in essence a very crude arithmetic method and impractical for the accurate 
estimation of SRV.

Comparison of results

In order to validate the high accuracy and rationality of the SRV estimation 
algorithm proposed in this paper, the SRV results based on the mesh subdivision 
method are compared with those of the Delaunay triangulation algorithm, 
minimum volume ellipsoid algorithm, and regular cube algorithm as shown in 
Table 1 :

Table 1 Comparison of results of different fracturing modification volume 
algorithms

Mesh subdivision 
algorithm to calculate
SRV/(m3)

Delaunay 
Triangulation 
algorithm to calculate
SRV/(m3)

Regular cube model 
to calculate SRV/(m3)

Minimum volume 
ellipsoid algorithm 
to
calculate SRV /(m3)

688 843 1575 1025

The data in the table clearly shows the relationship between the different 
SRV calculated by various methods. What is interesting about the data in the 
table is that the SRV results based on the mesh subdivision algorithm stands out 
as the most accurate one, followed by the results calculated by the Delaunay 
triangulation algorithm and by the minimum volume ellipsoid algorithm in 
sequence with the regular cube operation denoting the most significant SRV 
error. To sum up, these results have demonstrated the accuracy of analysis in 
prior sections. Therefore, the method proposed in this paper for calculating 
SRV based on mesh subdivision is superior in terms of accuracy degree, which 
sheds light upon the fracture modification effect evaluation.

CONCLUSION

The present study is designed to investigate the effects of different SRV 
estimation algorithm and it is found that the traditional single-model methods 
such as cube and ellipsoid are incapable to handle complex microseismic 
events and unable to effectively eliminate the volume of non-fracture transition 
zone, which leads the overestimation of SRV. In order to improve the present 
SRV estimation algorithm and to increase the accuracy of results, this paper 
proposes a grid-based SRV estimation algorithm which is applicable in 
complex microseismic event points calculation. This algorithm is composed of 
three steps. To begin with, the interference of anomalous points should first be 
eliminated by applying the DBSCAN density clustering algorithm to remove 
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the anomalous location points in the microseismic event points. In the following 
step, the initial convex hull is constructed based on the Delaunay triangulation 
algorithm.

In the third place, the fracture zone is delineated cautiously with the mesh 
subdivision method so as to improve the model accuracy. Testing result reveals 
that the mesh subdivision-based SRV estimation algorithm proposed in this paper 
can eliminate the detrimental effect of non-fracture zones without changing the 
distribution of original microseismic event points. Furthermore, it can overcome 
the shortcomings of rough model and the inconspicuous boundary contour lines 
constructed by traditional methods, which is enlightening for shale fracturing 
construction design and shale fracturing capacity effect evaluation.
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