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ABSTRACT

Owing to increasingly complex surface conditions of land seismic acquisition in petroleum
exploration, conventional wired acquisition has become environmentally unfeasible, leading
to the dramatic increase in exploration cost. We recover and reconstruct the acquired OBN
data by the technology of compressed sensing based on curvelet transform, iterative threshold
and sampling matrix according to the acquired data. As per model tests, data restoration is
satisfactory in the context of complete data on both sides of missing traces and missing traces
less than 6% of total traces. The threshold and curvelet scale will be defined depending on
measured data. A field OBN data application with 1378 shots yields good results of missing
data restoration and reconstruction. The improved event continuity and information content
demonstrate the validity of compressed sensing for data restoration and reconstruction.

KEY WORDS: compressed sensing; data restoration and reconstruction; OBN data; cur-
velet transform
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INTRODUCTION

Owing to increasingly complex surface conditions of land seismic acquisition 
in petroleum exploration, conventional wired acquisition has become 
environmentally unfeasible, leading to the dramatic increase in exploration cost 
and security risks of field operation. These challenges have made oil companies 
and service contractors flinch. Wireless node acquisition developed in the latest 
years based on some key techniques, such as storage technology, battery life, and 
time correction, is much superior to wired acquisition in surface environmental 
feasibility and operational flexibility and thus makes seismic exploration come 
true in the prospects with complicated surface conditions.

For ocean bottom node (OBN) technique, separate geophones are positioned 
at sea floor for data recording. After excitation, data acquired by geophones 
will be exported for further processing and interpretation. OBN technique is 
not subject to transmission cables and thus more flexible than ocean bottom 
cable (OBC) technique. Besides, OBN technique is less affected by sea water 
and can obtain high-quality data because of the advantages of continuous 
recording, multiple components, and high signal-to-noise ratio. This technique 
is significant to improved seismic imaging and reservoir monitoring [1] and 
has been widely used in reservoir monitoring and other activities. Shell used 
OBN for reservoir monitoring in Mars field in the Gulf of Mexico in 2004 
[2] and in Bonga deepwater field in Nigeria in 2008, obtaining data of higher 
quality than streamer acquisition [3]. Seabed Geosolution researched into the 
equipment of automatic OBN acquisition. Shell developed a new generation 
of OBN equipment (Flying Node) and solved the problems of slow landing 
and picking node facilities with low accuracy by undersea teleoperators [4]. 
However, wireless node acquisition cannot be monitored in the process of 
operation, leading to seismic data gaps caused by abnormal performance of 
some nodes and even non-performance of continuous nodes. In serious cases, 
it is necessary to shoot again to reacquire missing data, which decreases the 
efficiency of exploration and increases the workload and cost of field seismic 
acquisition. To solve the problem of data missing in node acquisition, increase 
the efficiency of exploration, and decrease the workload of field acquisition 
and the cost of exploration, it is urgent to develop the technique of seismic data 
restoration and reconstruction to replace the process of field reshooting and re-
acquirement technically.

Seismic data reconstruction is to technically recover the gaps in field seismic 
data at defined sampling rate and enrich seismic data with sufficient geophysical 
information to support geophysical exploration and development. There are three 
routine methods: filter, wave field operator, and transform domain, the sampling 
rate of which should be large enough to satisfy the requirement of the Nysuist 
sampling theorem; hence, large storage space is needed. To break through the 
limitation of routine methods, compressed sensing was developed [5-7] to encode 
original signals using the frequencies far below the Nyquist frequency and then 
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restore signals accurately or reconstruct signals approximately with small errors 
using a reconstruction algorithm. As to compressed sensing essentially, if the 
signals are sparse in an orthogonal transform domain and a measurement matrix 
is defined to make the orthogonal bases of its sparse transform uncorrelated, 
the signals will be projected from a higher space to a low-dimensional space 
using this matrix; high frequencies can be restored and reconstructed using a 
recovery algorithm [8]. This process includes three steps: sparse representation of 
signals, measurement matrix (sampling method) definition, and reconstruction 
algorithm design.

Sparse representation of signals can be accomplished through Fourier 
transform, wavelet transform, curvelet transform, etc. Fourier transform 
realizes signal analysis in the frequency domain based on the interconversion 
between time domain and frequency domain, but it is a global transformation 
in the whole time domain and thus cannot characterize the frequency spectrum 
at local time [9]. To localize the sudden changes of signals, Gabor (1946) 
formulated the short-time Fourier transform [10], which uses a window function 
for local partition of signals and Fourier analysis to identify local frequencies. 
The window size and geometry are constant, and thus it is unfeasible for 
complex seismic data owing to great waveform variation with time [11]. For 
wavelet transform, the geometry of the window function is varied; hence, time 
resolution can be tuned according to frequency [12-14]. However, despite its wide 
application to seismic prospecting [15-18], it is still not a good choice for seismic 
data characterization. Curvelet transform uses curvilinear transform basis [19-

20] to identify curves at different scales and in different directions [21]. As an 
optimal solution to the sparse representation of seismic data [22], it has been 
extensively applied to seismic data processing [23], including noise reduction 
[24-27], data reconstruction [28-31], and wave field simulation [32-33]. The algorithm 
of data reconstruction based on curvelet transform was created by integrating 
curvelet transform with compressed sensing [34].

A conventional regular sampling method adopts uniform sampling with 
equal interval. Sampling rate should conform to the Nysuist sampling theorem; 
otherwise, aliasing will lead to serious problems in seismic data restoration. An 
alternative is random undersampling, which can mitigate aliasing by converting 
aliases into low-amplitude noises and then filtering them out. Consequently, it 
is possible to accomplish data restoration and reconstruction at the frequencies 
below the Nyquist frequency. Gaussian random sampling, a commonly used 
method in compressed sensing, suffers from the problem that the spacing 
interval between missing traces is beyond control; thus, seismic data cannot 
be recovered because many continuous traces may be lost [35]. Compared with 
Gaussian random sampling, Jitter sampling divides the zone to be processed into 
many subzones, in each of which forced random sampling is performed at each 
point to control the spacing interval between two neighboring missing traces 
to a great extent for compressed sampled data reconstruction [36]. Hennenfent 
and Herrmann (2007) introduced 1D sampling into curvelet transform-based 
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compressed sampling [26]. Tang (2010) generalized the sampling from one 
dimension to two dimensions and obtained good results of data restoration [37].

Reconstruction algorithm focuses on how to reconstruct complete data 
accurately using the sparse representation of signals; it is essentially a convex 
optimization problem to minimize L1 norm. A common method is basis pursuit 
(BP) algorithm, which searches for the most matched atom in the compressed 
sensing matrix in each iteration [38]. BP algorithm can be realized using interior 
point method, which is time consuming [39-40] despite accurate reconstruction 
of signals. Another common algorithm for convex optimization is iterative 
shrinkage-thresholding, which is simple but slow in convergence rate [41]. 
Matching pursuit (MP) algorithm searches for the atom in the sensing matrix 
matching most with current residual vector in each iteration [42], but it requires 
a large number of iterations. Orthogonal matching pursuit (OMP) algorithm [43] 
reduces the number of iterations by orthogonalizing the atom set selected by MP. 
OMP algorithm is much faster in convergence rate than convex optimization 
algorithm, and the results of data reconstruction are good.

Our efforts focus on three steps: sparse representation, sampling, and signal 
reconstruction, in compressed sensing, including different methods involved in 
each step and the application of compressed sensing to field data processing.

METHODOLOGY

Compressed sensing samples the sparse representation of signals using a 
measurement matrix, and then recovers and reconstructs the original high-
frequency signals through solving an optimization problem. There are two 
premises; one is the sparsity of signals, and the other is that the sampling matrix 
is uncorrelated with the basis of sparse representation. Compressed sensing 
mainly includes three steps: sparse representation of signals, measurement 
matrix design, and signal restoration and reconstruction.

Sparse representation of signals

Sparse representation of signals is to brief signal representation by 
compressing signals and extracting key sparsities. Commonly used methods 
include Fourier transform, short-time Fourier transform, wavelet transform, 
ridgelet transform, and curvelet transform. Fourier transform is a global time-
frequency analysis method, which deals with the overall features of signals in 
the time domain and cannot effectively identify local features. On the basis 
of Fourier transform, short-time Fourier transform divides the signals into 
a number of segments in the time domain by using a window function and 
then performs Fourier transform for each segment so as to characterize local 
features. The problem is that constant window size and geometry indicate a 
single resolution. Wavelet transform uses a damping wavelet basis with finite 
length, instead of an infinite basis of trigonometric function used in Fourier 
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transform, to identify local features, which are restricted to point singularities. 
With respect to the issue of linear singularity, ridgelet transform converts linear 
singularities into point singularities through Radon transform and then uses 
point singularities identified by wavelet transform to capture linear singularities 
of signals. This method of linear singularity characterization is unfeasible for 
seismic signals with curved events. Based on wavelet transform and ridgelet 
transform, curvelet transform introduces an orientation parameter to accomplish 
optimum non-linear approximation of seismic data. Owing to multi-scale, 
multi-direction, and anisotropic properties, curvelet transform has been widely 
applied to seismic data restoration and reconstruction.

Figure 1 illustrates seismic wavefront approximated using a curvelet 
basis function, and Figure 2 shows the original seismic data in (a) and their 
reconstruction results by using Fourier transform in (b), wavelet transform in (c) 
and curvelet transform in (d) [15]. As shown in Figure 1, the curvelet coefficient 
is large when the curvelet basis parallels seismic wavefront; the coefficient 
decreases as the basis deviates from the direction of wavefront; the coefficient 
is at the minimum and close to zero when the basis is perpendicular to seismic 
wavefront. Hence, this part of data can be represented sparsely using a few large 
coefficients in parallel with seismic wavefront. Such behavior can be illustrated 
by reconstructing the 1% largest coefficients using different methods, as shown 
in Figure 2. Reconstruction by Fourier transform exhibits serious interference 
and missing data (Figure 2(b)). Reconstruction by wavelet transform does 
not suffer from the problem of interference, but wavefront texture with linear 
singularities cannot be effectively captured (Figure 2(c)). Both problems do not 
exist in the reconstruction result by curvelet transform (Figure 2(d)). Thus, we 
used curvelet basis for sparse representation in our study.

Figure 1 Diagram of approximating seismic wavefront by using curvelet basis function
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Figure 2 Reconstruction results using different transforms

Measurement matrix design

Compressed sensing solves an underdetermined problem, which recovers 
and reconstructs the signals N  with the length of N  from the measured data 
y  with the length of M ( NM < ) provided that the signals are k-sparse and the 
measurement matrix Ψ  is uncorrelated with the sparse matrix Ψ  [44]. If Φ  
is given, the sensing matrix Θ = ΦΨ  will be obtained based on the designed 
sampling matrix Φ .

Methods

The sampling matrix R  is designed in terms of sampling method. As per 
developmental sequence, sampling methods are classified as regular sampling 
and random sampling.

Regular sampling

A regular sampling method adopts uniform sampling with equal interval. If 
the Nysuist sampling theorem is satisfied, complete signals will be reconstructed 

(a) Original seismogram (b) Reconstruction by 
Fourier transform

(c) Reconstruction by 
wavelet transform

(d) Reconstruction by 
curvelet transform
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without frequency aliasing. If the sampling frequency is below the Nyquist 
frequency, aliasing will happen; thus, it is impossible to reconstruct original 
signals accurately.

Random sampling

Random sampling is performed at heterogeneous intervals between sampling 
points. Unsampled points are uncorrelated with each other; hence, aliasing can 
be alleviated and eliminated effectively. Figure 3 illustrates several associations 
of sampling methods, where the lateral axis denotes the direction of receiver 
points and the vertical axis denotes the direction of shot points.

(a) Vertical regular 
sampling and lateral 

regular sampling

(b) Vertical regular sampling 
and lateral random sampling 

in the same way

(c) Vertical regular sampling 
and lateral random sampling 

in different ways

(d) Vertical random sampling 
in the same way and lateral 

random sampling in the same 
way

(e) Vertical random sampling 
in the same way and lateral 

random sampling in different 
ways

(f) Vertical random sampling 
in different ways and lateral 
random sampling in different 

ways

Figure 3 Diagrams of two-dimensional sampling methods

Method comparison

Figures 4 and 7 show the reconstruction results through curvelet-based 
compressed sensing for regular sampling and random sampling. The result 
of reconstruction improves with increasing irregularity and incoherence of 
sampling points.
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 (a) Sampling result                  (b) Reconstruction result            (c) Reconstruction error

Figure 4 Reconstruction results for curvelet transform with regular sampling method

 (a) Sampling result                  (b) Reconstruction result            (c) Reconstruction error

Figure 5 Reconstruction results for curvelet transform with random sampling method

APPLICATION

Sampling matrix construction

In the program implementation of seismic data processing, the sampling 
matrix is established in accordance with the distribution of sampling points 
for real data. This is different from the way of processing for theoretical data. 
For theoretical data, which are assumed to be complete, different sampling 
rates and sampling methods are used to gap and sample data, followed by data 
restoration. For real seismic data, the sampling method may be designed in 
accordance with data distribution. How to construct the sampling matrix is 
dependent on missing traces in original data.

Figure 6 shows the process of construction. A sampling matrix is designed 
to be equal in size to original data (Figure 6(a)), in which the sampling value is 
equal to 1 at the point with measured data and to 0 at the point with no measured 
data. Hence, a sampling matrix corresponding to original data is established 
(Figure 6(b)). Original data are equivalent to the sampling results of complete 
seismic data using the sampling matrix. After that, real seismic data will be 
recovered and reconstructed.
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 (a) Real OBN data  (b) Sampling matrix established in accordance with real data

Figure 6 Construction of sampling matrix

Model tests

For effective data restoration and reconstruction, four parameters were tested 
using modelled data. The parameters are: threshold, data integrity on both sides 
of missing traces in the time domain, number of missing traces, and curvelet 
scale.

Threshold

Figure 7 Testing data for threshold analysis
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(a) Threshold=0.2                             (b) Threshold=2

(c) Threshold=10                            (d) Threshold=20

Figure 8 Reconstruction results of curvelet transform with different thresholds

The reconstructed data agree well with original data in curve shapes as the 
threshold increases; but a large threshold may lead to a blurred image. This 
means that there is an optimal threshold or threshold range in data processing.

The following part deals with original data integrity on both sides of missing 
traces in the time domain to discuss why there are gaps in reconstructed data.

Influence of data integrity

If original data are incomplete on both sides of the missing trace in the time 
domain (Figure 9(a)), these incomplete traces labelled as effective traces in 
the measurement matrix will lead to the gaps in recovered data (Figure 10(a)), 
which represent missing information in original data. If original data are 
complete without null values on both sides of the missing trace (Figure 9(b)), 
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data restoration will yield good results (Figure 10(b)). In summary, original data 
integrity on both sides of missing traces in the time domain is a prerequisite to 
data restoration with good results.

(a) Incomplete data on both sides of the 
missing trace

(b) Complete data on both sides of the 
missing trace

Figure 9 Testing data for the integrity analysis on both sides of the missing trace

(a) Reconstruction of incomplete data (b) Reconstruction of complete data

Figure 10 Reconstruction results of curvelet transform

Another test with several missing traces (Figure 11(a)) further illustrates 
good results of data restoration (Figure 11(b)).
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(a) Seismic data with several missing traces (b) Reconstruction results using curvelet 
transform

Figure 11 Reconstruction results of seismic data with several missing traces

Influence of number of missing traces

The following part deals with the number of missing traces in the context of 
complete data on both sides of missing traces (Figure 12).

Different numbers of missing traces were tested. For a data size of 350×350, 
restoration results are good for the number below 20, acceptable for the number 
of 30, and unsatisfactory for the number of 40. This means that the scale of 
curvelet basis is restrictive. In other words, restoration results are good for the 
curvelet scale of 6 and missing traces less than 6%.

(a) 10 missing traces (b) Reconstruction results for 10 missing 
traces
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(c) 20 missing traces (d) Reconstruction results for 20 missing 
traces

(e) 30 missing traces (f) Reconstruction results for 30 missing 
traces

(g) 40 missing traces (h) Reconstruction results for 40 missing 
traces

Figure 12 Reconstruction results for seismic data with different numbers of missing traces
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Influence of curvelet scale

Figure 13 shows the influence of curvelet scale on data restoration for 20 
missing traces, which account for 5.7% of total traces.

(a) Original data                        (b) Curvelet scale of 6

(c) Curvelet scale of 4                   (d) Curvelet scale of 2

Figure 13 Reconstruction results for seismic data with different curvelet scales

Curvelet scale has little impact on data restoration. An increase in curvelet 
scale is helpful to the restoration of details, which is unnecessary in this test. 
Hence, data restoration with different scales yielded similar results.

Originally incomplete data on both sides of missing traces in the time domain 
led to an inaccurate measurement matrix. The gaps in recovered data represent 
missing information in original data. If original data are complete without null 
values on both sides of missing traces, data restoration will yield good results. 
Hence, original data integrity on both sides of missing traces in the time domain 
is a prerequisite to data restoration with good results.
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Different numbers of missing traces were tested. For a data size of 350×350, 
restoration results are good for the number below 20, acceptable for the number 
of 30, and unsatisfactory for the number of 40. This means that the scale of 
curvelet basis is restrictive. Restoration results are good for the curvelet scale 
of 6 and missing traces less than 6%.

Field Data

OBN data (as shown in Figure 14) with single-ended spread have 1378 shots 
and 350 channels per shot. Group interval is 50 m; record length is 8000 ms; 
sampling interval is 2 ms. For the convenience of analysis, the data of the first 
shot (Figure 15(a)) were processed first. In Figure 15(b) with missing traces 
plotted in red, the number of continuous missing traces is 18 at most and 1 at 
least. We used 6 curvelet scales, 8 angles at the largest scale, threshold of 10, 
and 100 iterations for data restoration. The results are shown in Figure 16(a). 
Figure 16(b) shows the restoration results of compressed sensing using Fourier 
transform for comparison.

Figure 14 Field OBN data

(a) Single-shot data                             (b) Missing traces

Figure 15 Single-shot OBN data and missing traces
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(a) Curvelet transform                          (b) Fourier transform

Figure 16 Reconstruction results of single-shot OBN data

As shown in Figure 16(a), OBN data missing is often attributed to node 
missing; hence, complete data on both sides of missing traces lead to good 
results of restoration. Except for one or two areas (e.g. the rightmost abnormal 
area in Figure 15(a)) with too many missing traces, missing traces in additional 
areas do not exceed 6% of total traces. Thus, restored data show relatively 
continuous events and consistent amplitude.

As shown in Figure 16(b), Fourier transform for data reconstruction yields 
more distinct aliases than curvelet transform. This is because according to the 
Nyquist sampling theorem, for the given dominant frequency and group interval, 
only when the number of missing traces is small can aliasing be avoided in data 
restoration based on Fourier transform. Owing to a large number of missing 
traces in field data, restored data in Figure 16(b) show serious aliases. This 
means that curvelet transform is more feasible for OBN data restoration based 
on compressed sensing.

Compressed sensing based on curvelet transform was performed to reconstruct 
OBN data of 1378 shots (as shown in Figure 17). Except for several areas with 
too many missing traces, restored data in additional areas show more continuous 
events and abundant information than original data (shown in Figure 14).
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Figure 17 Reconstruction result of field OBN data

We established the sampling matrix of OBN data and used compressed 
sensing based on curvelet transform and iterative shrinkage-thresholding for 
OBN data restoration and reconstruction. As per model tests, data restoration is 
satisfactory in the context of complete data on both sides of missing traces and 
missing traces less than 6% of total traces. How to define threshold and curvelet 
scale depends on measured data. An application to OBN data of 1378 shots 
yielded good results of missing data restoration and reconstruction with more 
continuous events and abundant information than original data; compressed 
sensing was demonstrated to be effective for OBN data reconstruction.

CONCLUSIONS

To solve the problem of data missing in wireless OBN data acquisition, we 
developed a compressed sensing technique, which takes full advantage of the 
sparse representation of seismic data in the time-space transform domain, for 
field data restoration and reconstruction. This technique may replace the process 
of reshooting and re-acquisition to reduce the cost and improve the efficiency 
of seismic prospecting. Centering on the theory of compressed sensing, we 
discussed the basic theory of compressed sensing, methods related to three steps 
in compressed sensing, and application to model data and field data. Following 
conclusions are arrived.

(1) As per theoretical analysis, compressed sensing can reconstruct original 
data at the frequencies far below the Nyquist frequency, which cannot be 
accomplished using conventional methods. This is the greatest strength of 
compressed sensing; thus, this technique is significant to seismic data restoration 
and reconstruction.
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(2) Compressed sensing mainly includes three steps: sparse representation of 
signals, measurement matrix design, and signal restoration and reconstruction, 
each of which can be implemented using many methods. As per comparative 
analysis, curvelet transform features multi-scale, locality, and multi-direction, 
and can accomplish optimum non-linear approximation of seismic wavefront; 
random sampling mitigates and even eliminates aliasing; iterative shrinkage-
thresholding features simple operation, fast iteration, and good performance 
for noisy data. For OBN data with curved events and missing traces of 
random distribution, compressed sensing based on curvelet transform, random 
sampling, and iterative shrinkage-thresholding is the most feasible method for 
data restoration and reconstruction.

(3) We established the sampling matrix of OBN data and used compressed 
sensing based on curvelet transform and iterative shrinkage-thresholding for 
OBN data restoration and reconstruction. Model tests show satisfactory data 
restoration in the context of complete data on both sides of missing traces 
and missing traces less than 6% of total traces. How to define threshold and 
curvelet scale is dependent on measured data. An application to OBN data of 
1378 shots yielded good results of missing data restoration and reconstruction. 
Compared with original data, improved event continuity and information 
content demonstrate the validity of compressed sensing for data restoration and 
reconstruction.
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