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ABSTRACT

Zhu, J.G., Qu, Y.M., Duan, W.W., Zhang, Q.H. and Yang, C.Y., 2023. Frequency domain
acoustic wave full waveform inversion based on average-derivative optimization. Journal of
Seismic Exploration, 32: 509-508.
Full waveform inversion is a geophysical inversion method. Based on the residuals of
observation records and simulation records as the objective function, it combines travel time,
amplitude and other information to invert subsurface parameters to achieve high-precision
inversion of subsurface media. Seismic wave forward modeling is the key theoretical basis
of full waveform inversion, and its accuracy is directly related to subsequent seismic data
processing. In the frequency domain, the conventional difference scheme cannot adapt to the
situation of unequal spatial sampling intervals. In order to improve the adaptability of the
forward modeling algorithm in the frequency domain, this paper deduces a 21-point finite-
difference scheme based on the average derivative method, and calculates the difference
coefficient and Dispersion condition. The model trial calculation proves that the method is
not only suitable for the non-uniform space sampling interval but also improves the operation
efficiency. Then, the method in this paper is applied to the full waveform inversion in the
frequency domain. The inversion effect of the method is verified by the Marmousi model, which
can effectively restore the underground structure in the Marmousi model, especially for the subtle
underground structure, and the inversion results are more accurate, fine and accurate.

KEY WORDS: frequency domain, average derivative, forward modeling. acoustic wave,
full waveform inversion.
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INTRODUCTION

The full waveform inversion (FWI) method (Claerbout, 1971; Tarantola, 
1984, 1986) is based on the wave equation forward modeling technology, and 
the residual is obtained by comparing the simulated data with the measured 
data as the target functional of the inversion. Then, a variety of optimization 
algorithms (Jang et al., 2009; Brossier et al., 2009; Hu et al., 2009, 2011; Kim 
et al., 2014) proposed by experts and scholars are used comprehensively to 
realize the inversion of formation medium and physical parameters and apply 
them to migration imaging.

Forward modeling is an important theoretical basis for full waveform 
inversion. Compared with time-domain forward modeling, frequency- domain 
forward modeling has the advantages of not being constrained by stability and 
is easy to perform multi-scale analysis. Although frequency domain forward 
modeling has many advantages, it also has a big defect. That is, the processing 
of large models will cause a large amount of memory usage, and at the same 
time, it will also cause the calculation speed to be too slow. A large-scale sparse 
matrix proportional to the grid point size should be constructed in frequency-
domain forward modeling. Therefore, experts and scholars from various 
countries started with the grid. Based on the average derivative method (ADM), 
Chen (2012) used a 9-point operator to approximate the spatial derivative and 
mass acceleration term, and constructed the optimal nine-point grid for the 
average derivative. And the average derivative algorithm is extended to two-
dimensional viscous scalar wave equation and three-dimensional scalar wave 
equation. A year later, Chen (2013) constructed a generalized optimal 9-point 
scheme based on the directional derivative method. Different from the average 
derivative method, the generalized optimal 9-point scheme has the geometric 
characteristics of the rotation optimal 9-point scheme, and has high precision 
and flexibility. Then, the ADM 25-point (Zhang et al., 2014), ADM 17-point 
(Tang et al., 2015), and ADM 15-point (Li et al., 2016) differential formats 
were successively developed.

Among the finite-difference methods, there are many optimizations with 
grids. The discontinuous non-uniform grid adopts different grid sizes and grid 
spacing, which is suitable for dealing with complex media and non-uniform 
media. The continuous non-uniform grid adopts continuously variable grid size 
and grid spacing, which is suitable for dealing with problems requiring high-
precision calculations. Oprsal et al. (1999) proposed a new elastic FD method 
for spatially irregular grids, which is simple and efficient, while saving a lot of 
storage space. In this method, relative abrupt changes between small and large 
grid step sizes do not produce numerical artifacts. Pitarka (1999) proposed a 
method for simulating seismic motion in 3D elastic media on grids with uneven 
grid spacing using fourth-order staggered grid finite difference operators. Chu et 
al. (2012) proposed an implicit spatial finite difference method for non-uniform 
grids. The continuous non-uniform grid can better adapt to the change of 
medium parameters in the simulation area and will not generate cross-sections, 
which is convenient for calculation (Oliveira et al., 2003). Takckawa et al. 
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(2015, 2018) derived a mesh-free method to solve the acoustic wave equation 
using multivariate Taylor expansion.

Based on previous work, this paper derives the average derivative 21-point 
difference scheme and uses the conjugate gradient method to solve the optimization 
coefficient. Then the method in this paper is introduced into the full waveform 
inversion, and two models verify the correctness of the algorithm in this paper.

THEORY

Construction of 21-point finite difference scheme based on average deriv-
ative method

The wave equation of a two-dimensional isotropic medium in the frequency 
domain is (Li et al., 2021):

( ) ( ) ( )
2

2
2, , , ,P x z P x z S

v
ωω ω ω∇ + = −                            (1)

where P  is the wave field value, v  is the angular frequency, v  is the velocity, 
and ( )S ω  is the seismic source.

Conventional frequency-domain difference schemes based on rotating 
coordinate systems often have low precision, serious dispersion, low 
computational efficiency, and inability to meet the inconsistent vertical and 
horizontal sampling intervals. Chen (2012) proposed the ADM 9-point 
differential format based on the average derivative method, reducing the 
number of calculation points for each wavelength to 4. The advantage of this 
is to reduce the calculation cost, but the calculation accuracy is reduced. Then, 
Zhang Heng et al. (2014) developed the ADM 25-point differential format, 
which has higher calculation accuracy. Still the matrix bandwidth is about 
twice that of the nine-point method, which affects the solution efficiency. 
Therefore, this paper proposes a 21-point difference scheme based on the 
mean derivative. This differential scheme can not only solve the problem of 
inconsistent sampling intervals, but also limit the bandwidth of the impedance 
matrix, thereby achieving the purpose of improving computational efficiency. 
The schematic diagram of the differential format is shown in Fig. 1.

Fig 1. 21-point finite-difference scheme based on the average derivative.
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The ADM 21-point differential format can be expressed as

( ) ( )

( ) ( ) ( ) ( )

2, 2, 1, 1, , , 2 , 2 , 1 , 1 ,

2 2

1 , 2 1, 1, 3 , 1 , 1 4 2, 2, 5 , 2 , 2
2

6 1, 1 1,2

1 4 5 1 4 5( ) ( )
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m n m n m n m n m n m n m n m n m n

m n m n
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x z
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+ + + +  

          (2)

where x∆  and P′  are the horizontal and vertical sampling intervals respectively,
P′  and P′′  represent the new grid points obtained by the weighted average of 3 
points or 5 points in each horizontal and vertical direction respectively through 
weighting coefficients

2, 5 2, 1 4 2, 5 2, 1
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





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
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               (3)

where iα , iβ  and ib  are weighting coefficients with fixed values, and there is:

5 4 3 2 1

5 4 3 2 1

1 2 3 4 5 6 8 9

2 =1, 2 2 =1
2 =1, 2 2 =1

2 2 2 2 4 4 4 =1b b b b b b b b

α α α α α
β β β β β

+ + +
 + + +
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                          (4)

We combine and simplify formulas (2) and (3) to obtain a finite difference 
format based on ADM 21-point:

1, 2 , 2 1, 2

2, 1 1, 1 , 1 1, 1 2, 1

2, 1, , 1, 2,

2, 1 1, 1 , 1 1, 1 2, 1
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+ + + + +

+ + + + +

+ + + =

       (5)

Coefficient optimization and dispersion analysis

The plane wave in the ADM 21-point finite difference grid can be expressed 
as follows:



5

( ( ) ( 2 )) ( ( ) ( 2 )) ( ( ) ( 2 ))
1, 2 0 , 2 0 1, 2 0

( ( 2 ) ( )) ( ( ) ( )) ( ( ))
2, 1 0 1, 1 0 , 1 0

1

,

, , ,

x z x z x z

x z x z x z

i k x x k z z i k x k z z i k x x k z z
m n m n m n

i k x x k z z i k x x k z z i k x k z z
m n m n m n

m

P A e P A e P A e

P A e P A e P A e

P

− −∆ + − ∆ − + − ∆ − +∆ + − ∆
− − − + −

− − ∆ + −∆ − −∆ + −∆ − + −∆
− − − − −

+

= = =

= = =

，，

( ( ) ( )) ( ( 2 ) ( ))
, 1 0 2, 1 0

( ( 2 ) ( )) ( ( ) ) ( )
2, 0 1, 0 , 0

( ( ) ) ( ( 2 ) ( ))
1, 0 2, 0

,

, ,

,

x z x z

x z x z x z

x z x z

i k x x k z z i k x x k z z
n m n

i k x x k z i k x x k z i k x k z
m n m n m n

i k x x k z i k x x k z
m n m n

A e P A e

P A e P A e P A e

P A e P A e

P

− +∆ + −∆ − + ∆ + −∆
− + −

− − ∆ + − −∆ + − +
− −

− +∆ + − + ∆ +
+ +

= =

= = =

= =

，

，

，

( ( 2 ) ( )) ( ( ) ( )) ( ( ))
2, 1 0 1, 1 0 , 1 0

( ( ) ( )) ( ( 2 ) ( ))
1, 1 0 2, 1 0

( ( ) ( 2 ))
1, 2 0

,

,

x z x z x z

x z x z

x z

i k x x k z z i k x x k z z i k x k z z
m n m n m n

i k x x k z z i k x x k z z
m n m n

i k x x k z z
m n

A e P A e P A e

P A e P A e

P A e P

− − ∆ + +∆ − −∆ + +∆ − + +∆
− + − + +

− +∆ + +∆ − + ∆ + +∆
+ + + +

− −∆ + + ∆
− +

= = =

= =

=

，，

，

， ( ( ) ( 2 )) ( ( ) ( 2 ))
, 2 0 1, 2 0

x z x zi k x k z z i k x x k z z
m n m nA e P A e− + + ∆ − +∆ + + ∆

+ + +














 = = ，

       (7)

where cosxk α=  represents the wavenumber in the horizontal direction, sinzk α=  
represents the wavenumber in the vertical direction, 0A  is the plane wave 
amplitude. Substituting formula (7) into the ADM 21-point finite difference 
format, and integrating zk , zk  and Euler equation ( 2cosix ixe e x−+ = ), we can obtain the 
phase velocity dispersion relation as:

( )

1/2
2 2

4 5 3 2 1 4 5 3 2 1
ph

1 2 3 4 5 6 8 9

1 5 8 1 5 8z ( 2 ) ( )(2 2 ) ( 2 ) ( )(2 2 )
6 2 3 6 2 3

z 2 2 2 2 4 4 4

B C A D C x D A C B AV
v k x b b A b C b B b D b AC b BC b AD

α α α α α β β β β β    ∆ + + − + + + ∆ + + − + +        =  ∆ ∆ + + + + + + + 
  

    (8)

where grid points within a unit wavelength, and ∆  represents the grid 
spacing. The ADM 21-point finite difference scheme deduced in this paper can 
satisfy the situation that the horizontal and vertical spatial sampling intervals 
are not equal. Therefore, when performing forward modeling, it is necessary 
to consider whether the ratio of the two is >1 or <1. However, the differential 
schemes using the ADM method in the case of x z∆ > ∆  or x z∆ > ∆  are mutually 
symmetric (Zhang et al., 2014), so we only need to consider one of the above 
two cases. The optimization coefficients solved in this paper are obtained in 
the case of x z∆ > ∆ . When we encounter x z∆ < ∆ , we only need to exchange the 
coefficients with each other.

When
xr
z

∆
=
∆ , let xr

z
∆

=
∆

, then 2k
G x
π

=
∆

, at this time there are 2 cos=xk x
G

π θ
∆ , 

2 sin=zk z
rG
π θ

∆ , then in formula (8),

2 cos 4 coscos( )=cos( ) cos(2 )=cos( )x xA k x B k x
G G

π θ π θ
= ∆ = ∆，，

2 sin 4 sin=cos( ) cos( ) =cos(2 ) cos( )z zC k z D k z
rG rG
π θ π θ

∆ = ∆ =，

Then, we use the conjugate gradient method to find the optimal weighting 
coefficients of ADM 21-point format. When calculating, we set the range of 1/ G  
to be [ ]0,0.4 , the interval to be 0.001, the propagation range of the propagation 
angle θ  to be 

0,
2
π 

   , the initial value are
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1 2 4 1 2 4,  ,  ,  ,  ,  ,0.9 0.01 0.4 0.9 0.01 0.4α α α β β β= = = = = =

1 2 3 4 5 6 80.9,  0.02,  0.02,  0.01,  0.01,  0.02,  0.003b b b b b b b= = = = − = − = = − . 

Using the conjugate gradient method to obtain the optimization 

coefficients in different r  xr
z

∆
=
∆

 cases is shown in Table 1, and the algorithm 
flow is as follows:

(1) Calculate the derivative relational expression of the dispersion relational 
expression according to the value range of 1/ G  and , ,i i ibα β ;

(2) Then respectively to the weighting coefficients , ,i i ibα β  to obtain the 
derivative (i.e., the second derivative relational expression) to obtain the 
gradient relational expression g ;

(3) Given the initial value 1x , perform calculations to determine whether the 
algorithm stop threshold ε  is reached, and skip step (4) if it does not;

(4) Exact one-dimensional search to find the optimal step size, let
1k k k

kx x pλ+ = + ;

(5) If 1kg ε+ ≤ , the algorithm stops, k n= , otherwise go to step (6);

(6) If k n= , let 1 1kx x += , stop the algorithm, 1k = , go to step (4), 

otherwise go to step (7),

(7) Calculate 11
12

2

, , 1k kk
k k k

k

g
p g p k k

g
α α++

+= = − + = + , go to step (4).

Table 1. Optimization coefficients obtained when x z∆ > ∆ .

Optimization 
coefficients Δx/Δz=0.5 Δx/Δz=1 Δx/Δz=1.5 Δx/Δz=2 Δx/Δz=2.5 Δx/Δz=3

α1 0.986535 0.965207389 0.921838 0.912582257 0.908582 0.907341

α2 -0.052169 0.038743658 0.02077 0.013706396 0.009554 0.010115

α4 0.556879 1.110819746 0.818796 0.600338258 0.526411 0.481434

β1 0.921888 0.966953678 1.054778 1.00013787 1.021135 1.022992

β2 0.023421 0.035487575 -0.003678 0.02782873 0.013825 0.010427

β4 0.454961 1.106732571 1.213526 1.17905563 1.175216 1.160312
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b1 0.795528 0.844737408 0.891236 0.911116587 0.91395 0.938102

b2 0.007188 0.053367263 0.044634 0.052776338 0.063814 0.098341

b3 0.028901 0.054392402 0.01796 -0.002203456 0.011167 0.007713

b4 -0.031991 -0.024180023 -0.036898 -0.04381506 -0.043485 -0.032566

b5 0.015223 -0.025219033 -0.007702 0.009328088 -0.000634 -0.004059

b6 0.043005 0.008684814 0.016765 0.014494279 -0.000385 -0.032536

b8 0.007881 0.000139554 0.006428 0.009461552 0.00867 0.002690

Construct the PML wave equation in ADM 21-point format

In seismic forward modeling, the size of the model is fixed, so there must be 
a reflection interface. In order to avoid the reflection of the wave at the edge of 
the model, which will affect the propagation process of the seismic wave in the 
model medium, and then affect the accuracy of the simulation, we must study 
Boundary conditions. In this paper, the perfectly matched layer (PML) boundary 
condition originally introduced by Berenger (1994) in electromagnetism is 
adopted, which can effectively reduce the boundary reflection in numerical 
simulation. The basic principle is that the PML absorbing layer is added to the 
periphery of the four boundaries of the model, which includes a power function 
that decays exponentially as the wave propagates along the boundaries. The 
advantages of PML boundary conditions are that they can effectively reduce 
boundary reflection and beam spread, thereby improving the accuracy and 
efficiency of numerical simulation.

Fig. 2. Schematic diagram of PML absorption boundary.

First, in the frequency domain, the acoustic wave equation with boundary 
conditions is (Komatitsch et al., 2003):
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( ) ( ) ( )
2 2 2

2 2 2

, , , ,1 1 , , 0
x z

P x z P x z
P x z

x z v
ω ω ω ω

η η
∂ ∂

+ + =
∂ ∂

                       (9)

where, xη  and z  represent the attenuation functions in the z  and z  
directions, respectively:

1

1

x x

z z

i f

i f

η
ω

η
ω

 = −

 = −


                                           (10)

where, xf  and zf  represent the attenuation factors, which describe the 
attenuation degree of the wave propagating in the medium. When performing 
numerical calculations, there is no attenuation in the model area, so there is no 
value for zero. When the wave is at the model absorption boundary, expressed 
as:

( )
( )

0 0

0 0

2 /

2 /

x x pml

z z pml

f a f I L

f a f I L

π

π

 =


=
.                                 (11)

where 0f  represents the main frequency of the seismic source, xI  and x 
represent the lengths between the points in the left and right and upper and 
lower absorption boundaries and the four adjacent model boundaries, that is, the 
lengths in the x  and z  directions, pmlL  is the width of the PML boundary, and 

0a  is a constant to control the degree of attenuation of the boundary conditions, 
and the previous empirical value is 1.79 (Wu et al., 2007).

Then, we substitute formula (10) into formula (2) to obtain the ADM 21-point 
finite difference format wave equation based on the PML boundary as:

1, 2 , 2 1, 2 2, 1 1, 1

, 1 1, 1 2, 1 2, 1, ,

1, 2, 2, 1 1, 1 , 1 1, 1

2, 1 1, 2 , 2 1, 2 0

m n m n m n m n m n

m n m n m n m n m n m n

m n m n m n m n m n m n

m n m n m n m n

BP CP BP DP EP
F EP DP GP HP IP
HP GP DP EP FP EP
DP BP CP BP

− − − + − − − − −

− + − + − − −

+ + − + − + + + +

+ + − + + + +

+ + + + +

+ + + + + +

+ + + + + +

+ + + =

              (12)

where
2 2

3 5 3 4
9 52 2 2 2 2 2 2 2 2 2

2 2
5 3 2 2

8 62 2 2 2 2 2 2 2 2 2

2 2
2 1 4 3

3 42 2 2 2 2 2 2 2 2 2

1
2 2

4 5,
3 12 2 12

4 4 4,
12 3 3 3

5 4 5,
2 3 12 2

4
3

x z x z

x z x z

x z x z

x

B b C b
x z v x z v

D b E b
x z v x z v

F b G b
x z v x z v

H
x

α β ω α β ω
η η η η

α β ω α β ω
η η η η

α β ω α β ω
η η η η

α
η

= − + = − − +
∆ ∆ ∆ ∆

= − + + = + +
∆ ∆ ∆ ∆

= − + + = − − +
∆ ∆ ∆ ∆

= −
∆

2 2
2 1 1

2 12 2 2 2 2 2 2 2
5 5 5,

2 2 2z x z

b I b
z v x z v

β ω α β ω
η η η

+ = − − +
∆ ∆ ∆

                 (13)
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Full waveform inversion in frequency domain based on ADM 21-point 
format

Based on the ADM 21-point difference scheme, the full waveform inversion 
research is carried out in the frequency domain, and the target functional is:

( ) ( ) 2

2new,1( )
2

,obs r sm d Px u xφ ω ω= −                              (14)

Subject to: ( ) ( ),new s sA u x s xω =                                  (15)

where, newP  is the detector extraction function, and newA  is the wave equation 
operator based on the innovation of this paper.

Through the Lagrange multiplier method, the constrained objective functional 
( )vφ  can be transformed into an unconstrained objective functional:

( ) ( ) ( )2new
2

,1( , , )
2

, , (, )
s sob ss u s r newu s sl xm u d P Ax u x u s xω ωλ ωλ− < − >= −           (16)

where, ,< >  represents the inner product. According to the accompanying 
state method:

0
s

l
u
∂

=
∂

                    (17)

give:

( ) ( ) ( )( )†
new new, , ,

s

T
new u obs r sA P d u xPx xω ωλ ω= −                       (18)

where †  represents the conjugate transpose, and the conjugate operation 
in the frequency domain is equivalent to the reverse sequence in time. The 
gradient expression of the objective function can be obtained by obtaining the 
first-order partial derivative of formula (16) with respect to m :

( ) ( )
†

† , ,
s

new
s u

Al u x x
m m

ω λ ω
 ∂∂  = −  ∂ ∂   

m                 (19)

NUMERICAL EXAMPLES

Forward simulation test

In order to verify the effectiveness of the method in this paper and compare 
the accuracy and efficiency of different differential formats, we use a two-layer 
model (Fig. 3) for testing. We set the model size to 2800 m*2800 m. Two grid 
strategies are used respectively (the two strategies use the same parameters 
except the grid):

(1) Uniform grid, horizontal and vertical grid points are 200*200, grid 
spacing is 14 m*14 m.
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(2) Non-uniform grid, the horizontal and vertical grid points are 200*400, 
and the grid spacing is 14 m*7 m.

The source position is (100, 2), the main frequency is 20 Hz, the sampling 
interval is 2 ms, the sampling time is 1500 ms, and the PML boundary is set 
to 60. Next, we used conventional 9, 21, 25-point and ADM 9, 21, 25-point 
difference formats to carry out forward modeling in frequency domain. Figs. 
4a, 4b, 4c, 5a, 5b and, 5c have a grid spacing of 14*14. Figs. 4d, 4e, 4f, 5d, 
5e, and 5f have a grid spacing of 14*7. It can be seen from the figure that the 
accuracy of the results obtained by the average derivative method is high, which 
meets the expected effect. Table 2 shows the time required for the simulation of 
the three differential formats under the two grids. It can be seen from the table 
that the use of non-uniform grids can improve the calculation efficiency. This 
shows that a reasonable design of the grid strategy during the simulation process 
can improve the computational efficiency, make better use of computational 
resources, and improve the efficiency and accuracy of the simulation.

Fig. 3. Two-layer model.

Fig. 4. Wavefield snapshots at time 501 ms in different differential formats with (a) 
conventional 9-point; (b) conventional 25-point; (c) conventional 21-point; (d) ADM 
9-point; (e) ADM 25-point; (f) ADM 21-point.
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Fig. 5. Forward results obtained by three differential formats with (a) conventional 9-point; 
(b) conventional 25-point; (c) conventional 21-point; (d) ADM 9-point; (e) ADM 25-point; 
(f) ADM 21-point.

Table 2. Comparison of efficiency under two grid strategies.

9-point 25-point 21-point

the first grid strategy
881.32 s 1386.467 s 1045.36 s

the second grid strategy
642.31 s 914.034 s 749.89 s

Next, we test the time it takes for the program to run with the same accuracy. 
The model adopted is consistent with the model used in the above comparison, 
which is a two-layer medium model (2800 m*2800 m). After many tests, we 
found that the following grid strategy met our accuracy requirements:

(1) 9-point differential format: the horizontal and vertical grids are 280*280, 
and the grid spacing is 10 m*10 m.

(2) 21-point differential format: the horizontal and vertical grids are 200*400, 
and the grid spacing is 14 m*7 m.

The observation system is consistent with the above observation system. The 
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wavefield and shot records obtained by the two differential formats are shown 
in Figs. 6 and 7. From the wave field at the time of 461 ms, it can be seen 
that there is a weak dispersion phenomenon in the wave field generated by the 
ADM 9-point format at this time, while the wave field generated by the ADM 
21-point format has no dispersion phenomenon. This is also evident in Fig. 7. 
However, in this case, the calculation time of ADM 9-point is 1285.47 s, and 
that of ADM 21-point format is 1045.36 s (Table 2). That is to say, in the case 
of the same accuracy, the calculation time of the ADM 9-point format is higher 
than that of the ADM 21-point format.

Fig. 6. Wavefield snapshots at 461 ms with (a) ADM 9-point; (b) ADM 21-point.

Fig. 7. Forward results obtained by two differential formats with  (a)  ADM 9-point;  (b) 
ADM 21-point.

Table 3. Comparison of efficiency under two grid strategies.

ADM 9-point ADM 21-point

Time 1285.47 s 1045.36 s
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Then, we use the complex Marmousi model (Fig. 8) to simulate. The size 
of the model is 737*425, the grid adopts a non-uniform grid of 10 m*5 m, 
the sampling interval is 1 ms, the sampling time is 3500 ms, and the main 
frequency is 25 Hz. Fig. 9 shows the shot records obtained in three formats. It 
can be seen from the figure that the ADM 21-point method is also applicable 
to complex models, and the accuracy is much higher than the ADM 9-point 
result. Compared with ADM25 points, its accuracy is almost the same. Still, 
its calculation efficiency is higher than that of ADM25 points, so the average 
derivative 21-point difference format has good applicability and forward 
modeling accuracy.

Fig. 8. Marmousi model.

Fig. 9. Forward results obtained by three differential formats with (a) ADM 9-point; (b) 
ADM 25-point; (c) ADM 21-point.

Inversion test

First, the accuracy of the algorithm is tested using the depression model 
(Fig. 10a). The initial velocity model is shown in Fig. 10b. The model size is 
320*188, the grid spacing is 10 m, the position of the first shot in the observation 
system is (50 m, 20 m), the shot spacing of each shot is 100 m, the number 
of shots is 32, and the main frequency is 20 Hz. The frequency groups we 
selected are 1.5 Hz, 1.9697 Hz, 2.5864 Hz, 3.3963 Hz, 4.4597 Hz, 5.8562 Hz, 
7.6899 Hz, 10.0978 Hz, 13.2596 Hz, 17.4114 Hz, 22.8633 Hz, 30.0222 Hz, 
39.4228 Hz. We first test the case where the spatial sampling interval of the 
three differential schemes based on the average derivative has an aspect ratio 
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of 1. Fig. 11 shows the final inversion results obtained by using the ADM 9, 
25 and 21-point differential formats. It can be seen from the results that the 
inversion accuracy of ADM 21 and 25-point is significantly higher than that of 
ADM 9-point, and the former has a clearer inversion of the overall outline and 
local fine structures. Fig. 12 is the comparison of the inversion velocity and the 
real velocity of the three differential formats of the 125th, 160th, and 195th tracks, 
respectively. It can be seen from the figure that the overall inversion speed of 
the ADM 21-point is more in line with the real speed curve, and it is better than 
the other two formats at the local point indicated by the red arrow. This proves 
the effectiveness of the frequency domain full waveform inversion algorithm 
based on the average derivative ADM 21-point difference scheme.

Fig. 10. Depression model of real (a) and initial (b).

Fig. 11. Inversion results of different methods with (a) ADM 9-point; (b) ADM 25-point; (c) 
ADM 21-point.
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Fig. 12. The comparison between the speed value and the real value of different tracks in 
three differential formats with (a) route 125 (1.24 km); (b) route 160 (1.59 km); (c) route 195 
(1.94 km).

Then, we utilize the Marmousi model to test the adaptability of the algorithm 
to complex models. The model size is 383*221, as shown in Figure 13a, and 
the initial velocity model is shown in Fig. 13b. The spatial sampling interval 
is 10 m*10 m, the position of the first shot is (50 m, 20 m), the shot spacing is 
10, the number of shots is 38, and the main frequency is 20 Hz. The selected 
frequency groups are 1.5 Hz, 2.6263 Hz, 3.4751 Hz, 4.5982 Hz, 6.0843 Hz, 
8.0508 Hz, 10.6528 Hz, 14.0957 Hz, 18.6514 Hz, 24.6795 Hz, 32.6558 Hz, 
43.21 Hz. Three spatial sampling intervals with an aspect ratio of 2 based on the 
mean derivative difference scheme. Figure 14 shows the final inversion results 
obtained by using ADM 9, 25 and 21-point differential formats. It can be seen 
from the inversion results that the inversion accuracy of ADM 21 and 25-point 
is significantly higher than that of ADM 9-point. The former inverts the overall 
outline and local fine structures more clearly, and the inversion velocity field 
is also close to the real velocity field, especially in shallow structures. The 
inversion velocity field is more accurate both numerically and structurally. 
At the same time, the deep structure has been restored more accurately, and 
the energy distribution is more balanced. Figure 15 is the comparison of the 
inversion velocity and the real velocity based on the three differential formats 
for the 64th, 192th, and 300th tracks, respectively. It can be seen from the figure 
that the overall inversion speed of the ADM 21-point fits the real speed curve 
better, and it is better than the other two formats at the local point indicated by 
the red arrow, which proves that the algorithm in this paper is also applicable 
to complex models.
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Fig. 13. Marmousi model of real (a) and initial (b).

Fig. 14. Inversion results with (a) ADM 9-point; (b) ADM 25-point; (c) ADM 21-point.

Fig. 15. Comparison of different track velocity values and real values in three differential 
format with (a) route 62 (0.61 km); (b) route 192 (1.91 km); (c) route 300 (2.99 km).
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CONCLUSION

Since the full waveform inversion needs to solve the wave equation every 
update iteration, the accuracy of the forward modeling affects the accuracy of 
the full waveform inversion. In the frequency domain, there is a phenomenon 
that the spatial sampling interval is inconsistent, and the conventional difference 
scheme cannot solve this problem. Therefore, this paper deduces the 21-point 
difference scheme based on the average derivative, and calculates the difference 
coefficient and dispersion condition. The model test proves that the method is 
not only suitable for the non-uniform space sampling interval but also improves 
the operation efficiency. Then, the ADM 21-point difference method derived in 
this paper is introduced into the full waveform inversion. The inversion results 
of the two models verify that the method is applicable to complex models, and 
has high inversion accuracy in complex velocity fields and a high degree of 
restoration of small geological structures.
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