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ABSTRACT

Interpretation of seismic surveys is severely constrained until subsurface velocity information
is extracted by seismic survey interpreters. Velocity modeling is an important aspect of
seismicity, and the extraction of accurate velocities of subsurface media is an important
parameter for obtaining high-precision imaging. Conventional velocity information can be
obtained by layer inversion and full waveform inversion (FWI), but the conventional methods
are computationally intensive, affected by the quality of acquired data, and expensive. In
recent years, the technology of deep learning has been widely used in the field of seismic
exploration. In this paper, deep learning convolutional neural network is introduced, which
can build the velocity information of this data directly from seismic data. Attention Unet
network distinguishes itself from the traditional network, which can realize the target area
by attention according to the observation of demand. Different from the traditional inversion
method, the deep learning method is based on the training of big data. In the training phase,
the network maps key information from the seismic simulation data into a velocity model.
The reconstruction of the data can be completed based on the training. In a large number of
experimental data validation results show that the method has achieved better results. The
output results can obtain accurate velocity information of underground medium.
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INTRODUCTION

Accurate velocity information is necessary to obtain accurate imaging results 
for seismic interpretation. Velocity modeling techniques have been continuously 
developed and improved, and many techniques such as offset velocity analysis 
(Al-Yahya and Kamal, 1989), tomography (Chiao and Kuo, 2001), and full-
waveform inversion (Yang et al., 2013) can build relatively accurate velocity 
models. These methods usually use either frequency-domain data or time-
domain data and test the velocity model by minimizing the difference between 
observed and simulated data. There are some limitations in the use of traditional 
methods due to the high computational cost and the interference of inversion 
results by multiple factors.

Nowadays, many optimization methods are continuously proposed. For 
example, the proposed full-waveform inversion methods in Laplace domain and 
Laplace-Fourier domain can not only improve the accuracy of the inversion, but 
also be applied to the field data (Shin and Cha, 2008, 2009 ). The FWI technique 
has been developed continuously, and a lot of achievements have been made 
in the inversion strategy, algorithm optimization, construction of initial model 
and computational efficiency. The comparison of four optimization methods 
in full waveform inversion for elastic waves was studied (Liu et al., 2022). 
The 3D three-bit elastic waveform full waveform inversion based on region 
decomposition was realized in the 3D processing that fits the field data (Qin et al., 
2023). The above methods are all improvement strategies in different directions 
for the FWI method, but the FWI method still faces serious challenges in terms 
of memory consumption, computational cost, and actual production(Gui et al., 
2017).

In the mid-1980s, nonlinear intelligence techniques were applied. Neural 
networks were first utilized in 1994 for inversion in seismic exploration (Roth 
and Tarantola, 1994). After continuous research and development, neural 
networks were utilized in predicting fault information from seismic traces, and 
the prediction results were tested to be not only accurate but also greatly save 
manpower (Wu and Chang., 2014). In order to obtain high-precision inversion 
results, deep learning methods are combined with FWI to improve the quality 
of salt dune inversion. By learning the relationship between observed data 
and media model features through Convolutional Neural Network (CNN), the 
trained network can act in the FWI method (Lewis and Vigh, 2017). Through 
this idea of transformation, inversion is viewed as a transformation between 
different domains, which is realized between the seismic data domain and the 
velocity model domain based on a deep convolutional generative adversarial 
network approach (Mosser et al., 2018). In the same line of thought and approach, 
velocity models can be reconstructed using all seismic trace data and global 
seismic profiles (Li et al., 2019). The field data is no longer a standard depth-
domain velocity model, and using the analyzed velocity spectra as a dataset, a 
method to introduce deep learning into seismic velocity modeling based on a 
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conventional convolutional neural network was implemented (Araya_polo et 
al., 2018). Network training is also a relatively large computational project, in 
order to reduce the training time, a Monte Carlo-based method was investigated 
to reduce the training dataset and train the network more efficiently by selecting 
part of the seismic dataset (Jia et al., 2018). In order to solve the prediction of 
salt mound model has been a difficult point in seismic exploration. In order to 
improve the accuracy of salt body prediction, a full convolutional neural network 
was utilized to detect salt bodies on raw shot records, and the comparison was 
found to be faster and more efficient than the traditional method (Wang et al., 
2018). The accuracy of petrographic prediction for single wells can also be 
improved using the BP neural network approach (Zhou et al., 2020). In the 
actual Dutch Groningen gas field, the deep learning approach accelerated the 
modeling of the Dutch Groningen gas field (Haibin et al., 2022).

Deep learning techniques have been continuously applied to overcome many 
difficulties in the field of seismic exploration. For velocity modeling methods, 
from the first use of deep learning techniques to improve the accuracy of FWI 
inversion, it is now possible to predict velocity information directly in the 
original seismic record. In 2019, a velocity modeling technique based on real-
time data-driven technology was applied using an anti-network approach for 
improving velocity model accuracy (Zhang et al., 2019). On this basis, direct 
velocity modeling using full-waveform seismic data was proposed, such as a 
direct velocity modeling method using full-waveform seismic data based on 
FCN (Yang et al., 2019); and a CNN-based method to estimate the background 
velocity model directly from the original seismic data without pre-processing 
or pre-training (K. Øye and E. Dahl, 2019 ). This shows that deep learning 
neural networks can extract meaningful velocity information from real gun 
sets, demonstrating potential applications in velocity modeling. To further 
improve the accuracy, inversion with constraints can be achieved based on 
fully connected neural networks, and the deep learning method can directly 
eliminate or pick up bad points, completely eliminating manual checking and 
modification and improving the modeling efficiency (Zhao, 2019). The initial 
prediction of the network is further come to be refined by iteratively optimizing 
the network parameters, and the accuracy of the inversion is further improved 
using this constrained method (Liu et al., 2023). With known initial velocities 
and field seismic data, mapping between the time-shifted data domain and 
target data variations can be achieved using the simplest fully convolutional 
neural network (Yuan et al., 2020). Most of the deep learning velocity modeling 
method studies since then have been based on initial velocities and field seismic 
data, which are also more consistent with the actual physical meaning. In order 
to solve practical and complex near-surface problems, deep learning is used 
to predict the near-surface velocity modeling method, which expands another 
application idea of deep learning (Wang et al., 2022). In order to further simulate 
to get accurate seismic data, using different grids, different differential orders 
and physical simulation methods, a data-driven deep learning component was 
utilized to achieve high-precision inversion of seismic data (Sun et al., 2021).
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In summary, this paper proposes a deep learning velocity model construction 
method based on seismic simulation data driven by the field seismic data is 
known. The accuracy of the inversion results is improved by optimizing the 
original Attention-U-Net network model. The workflow of this paper is shown 
below:

Step 1: Using Improved Attention U-Net, establish the mapping relationship 
between the seismic simulation record and the corresponding velocity model;

Step 2: Construct two datasets and make predictions, comparing the FWI 
method with the traditional UNet method;

Step 3: Input the validation set to obtain the predicted velocity model.

THEORY

Conventional full-waveform inversion(FWI) methods

The core idea of FWI is to utilize the optimal matching of observed and 
simulated data for subsurface media modeling, but full waveform inversion 
still has many difficulties, such as instability and strong nonlinearity of the 
inversion problem.

The theory of full waveform inversion is based on:
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where obs represents field recorded data, cal represents simulated recorded 
data, and m represents the velocity model.

In the process of algorithm implementation, it is necessary to derive the 
target generalization. The model parameter m of Eq. (1) is derived:
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where R denotes taking the real part. This equation expresses the relationship 
between the first-order partial derivatives ( )
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function and the real part of the transpose of the wavefield residual Äd .

The gradient operator of the target generalized function is the gradient of 
the target generalized function with respect to the model parameters, i.e., the 
vector consisting of the partial derivatives of each model parameter in the target 
generalized function. According to Eq. (2), we can then obtain the expression 
of the gradient operator of Eq. (1) as:
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Assume that there is an optimization step α  which must make the initial 
objective generalization ( )E α∇  zero. A second-order Taylor expansion of the 
error generalized function takes the same form as the second-order Taylor 
expansion of the velocity. Thus when ( )E α∇  = 0, the optimization step can be 
expressed as:
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Where τ represents the result of taking the second order partial derivative of 
the residual vector with respect to the velocity.

To summarize, the flow of the full waveform inversion is shown as follows; 

Step 1: Select a suitable initial model, set the observation system, set the 
error termination conditions, the maximum number of iterations, etc;

Step 2: The initial model performs forward simulation, calculates the residual 
difference between the simulated record and the observed data, and calculates 
the objective function value as well as the gradient;

Step 3: Calculate the gradient and calculate the step size;

Step 4: update the velocity field;

Step 5: determine whether the error termination condition and the maximum 
number of iterations are reached, when completed, output the velocity model, 
when not, repeat steps 2 to 4;

Step 6: output the final velocity model.

U-Net network architecture with improved attention mechanism

The U-Net network, a classical neural network first applied to medical image 
segmentation, is an Encoder-Decoder structure, where the Encoder, or encoder, 
is used to extract features from the input image, and the Decoder decoder 
reduces the features to an image.

The model proposed in this paper is shown in Fig. (1) below, which introduces 
jump connection and Fusion attention on the basis of U-Net network. In which 
the encoder compresses the spatial dimension of the input seismic data by 
multilayer convolution and downsampling to obtain its high latitude information 
and feature potential representation. Then the decoder uses inverse convolution 
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for feature reduction and velocity modeling. The novel U-Net network, 
Fusiond Attention-based Velocity Modeling Network (Fusion Attention-U-
Net), proposed in this paper, introduces the novel Fusion Attention mechanism. 
This network addresses the problem of seismic velocity modeling and achieves 
efficient data conversion from seismic simulation records to velocity models 
through end-to-end learning of neural networks.

Fig. 1 Optimized network structure model

The network as a whole can be represented as:

)x,nt,ns),wFAN(shot(nVmodel =                                      (6)

where shot denotes the original seismic shot record, nx denotes the length of 
each excitation point geophone, nt denotes the reception time of the acquisition 
record, w denotes the weight parameter of the deep learning network, and 
Vmodel denotes the velocity model.

The encoder uses convolution and downsampling layers to achieve feature 
extraction as follows:

[ ]))(()( shotConvBNReLuMPshotEncoder −=                            (7)

Where MP denotes maximum pooling and the pooling parameter is set to 
2 to achieve downsampling. Conv convolution kernel size is set to 3. padding 
parameter is 2. step size is 2 to achieve feature extraction in the same dimension. 
ReLu activation function and BN normalization are used to prevent the network 
from the gradient explosion problem. The middle Center layer is used as a 
central layer to connect the encoder and decoder, and a layer of convolution is 
used to achieve feature transfer as shown below:

[ ])(Re)( XConvBNLuXCenter −=                                    (8)
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The decoder’s feature decoding is implemented using inverse convolution, 
also known as transposed convolution, which is the inverse process of 
convolution that allows for semantically inclusive decoding:

)()( xConvTransxDecoder =                                    (9)

In this paper, we propose the novel Fusion Attention Module. The attention 
mechanism is derived from the different levels of human attention to specific 
regions, and is commonly used in deep learning to emphasize key regions of 
features. In this paper, the Fusion attention mechanism is used to enhance the 
network’s attention to features at the edges of velocity mutations, as well as 
focused regions, which can be represented as:

),( yxFusionZ =                                      (10)

where x denotes the feature vector of the encoder part, y denotes the vector 
of the corresponding dimension of the decoder, and z denotes the feature vector 
of the output.

In this paper, the Fusion module is applied in four different dimensions and 
the application to the network can be represented as:

∑=
n
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1

),(                                            (11)

For extracting x from the encoder, which is the pre-vector of the network, in 
order to improve the generalization performance of the network as well as to 
dimensionally align it with y, it is first padded with padding, i.e.

)(xpadxl =                                             (12)

Then y is concatenated with x1, and the two are merged to perform feature 
fusion through subsequent steps:

),( yxlConcatyl =                                      (13)

Given the layer design of the overall network, i.e., four layers each for the 
encoder and decoder, in order to improve the advanced semantic information 
extraction of the network in the shallow layer, the information fusion of the 
front and back features is strengthened by using average pooling in the fusion 
module,and then y2 is obtained by summarizing the vectorial features of the 
encoder and decoder from the detail side after a 3*3 convolutional layer:

[ ])(2 ylConvAPy =                                        (14)

where AP denotes average pooling AvgPool.

The Fusion attention mechanism is accomplished by applying different 
weights to the Feature map to emphasize the features, and using the sigmod 
function on the y2 vector, the attentional weights are projected into the interval 
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[0,1] to obtain the attentional coefficients:
)2(yatt σ=                                               (15)

where σ denotes sigmod, is used as a projection function, and then the att 
information is pixel-producted with the original fusion vectors to obtain a 
feature map containing the attention weights, which is fed to the deconvolution 
in the decoder for velocity model reconstruction.

ylattyoutput ∗=                                        (16)

The whole process can be represented as:

[ ])))),(((( yxPadconcatConvAPayoutput =                               (17)

With the Fusion attention module, the time domain data x and depth domain 
data y are realized with feature fusion and key information enhancement to 
ensure the efficient implementation of the network for seismic velocity modeling.

Fig. 2 Schematic flow of data training as well as prediction

CONSTRUCTION AND VALIDATION OF THE DATASET

Training dataset preparation

To validate the accuracy of the methods in this paper, the data sets are the 
simulated data set and the SEG salt dune data set. The simulated data training 
set has 1600 velocity models without duplicates. The SEG salt dune model has 
130 trained data models. Some of the data for the simulated dataset is shown in 
Figure 3 and some of the data for the SEG data is shown in Figure 4. The model 
size of the dataset is 301*201, the grid spacing is 8 m, the maximum velocity 
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is 4500 m/s, and the minimum velocity is 1500 m/s. In order to quickly and 
accurately get the simulated gun records corresponding to each velocity model, 
the corresponding shot records are obtained by using the optimized nine-point 
finite difference solving the fluctuation equation in the frequency domain. For 
each velocity model, 29 excitations were made at the surface of the seismic 
source, and all 301 geophones were received at the surface, with a geophone 
interval of 8 m. The sampling interval was 1 ms, the sampling time was 2 s, 
and the main frequency was 30 Hz. Fig. 5 shows the simulated gun records for 
some of the corresponding velocity models. Figure 5 shows that the simulated 
data have a high signal-to-noise ratio and no frequency dispersion.

Fig. 3 Simulated data training set

Fig. 4 SEG data training set
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Fig. 5 Schematic of a single gun for some of the training data

Test Data Set

In this paper, the validation results are compared with the traditional U-Net 
network method and FWI method to prove the effectiveness, accuracy and 
efficiency of the method. In order to make the network training optimal, the 
simulated data test set with 100 different speed models and SEG salt dune 
model with 10 tested speed model data sets are prepared. Figure 6 shows a part 
of the test set of simulated data and a part of SEG is data.

Fig. 6 Simulated data part of the test set    
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Verification results

The initial validation model, FWI inversion results and the new network 
structure inversion results in this paper are shown in Fig. 7. Figure 8 shows the 
analysis of the extracted 80th and 200th lane speeds, and the comparison gets 
that the deep learning predicted speed model is closer to the real speed. Figure 9 
shows the inversion results of the other speed two velocity model, the same 80th 
and 200th channel speeds are extracted for curve analysis, and the comparison 
shows that the speed predicted by the deep learning method is more accurate. 
As obtained by inverting the four models, the inversion accuracy of the deep 
learning method is better than that of the traditional FWI method. Especially at 
the deep level, the inversion results of deep learning methods outperform those 
of conventional methods.

It is also found that the FWI method iteratively calculates the velocity model 
for 25 iterations takes 11.5 h to get the inversion result, but the deep learning 
method takes only 2.5 min to get the desired inversion result, which largely 
saves the computation time compared to the full waveform inversion method 
deep learning prediction method.

Fig. 7 Demonstration of the results predicted by the simulated dataset

Fig. 8 On the left, the 80th and 200th pass velocity analysis of the prediction results in Fig. 7(a); 
on the right, the 80th and 200th pass velocity analysis of the prediction results in Fig. 7(b)
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Fig. 9 Presentation of the results predicted by the simulated dataset

Fig. 10 On the left, the 80th and 200th pass velocity analysis of the prediction results in Fig. 
9(a); on the right, the 80th and 200th pass velocity analysis of the prediction results in Fig. 9(b)

CONCLUSION

In this paper, an improved attention mechanism network is proposed to 
establish a relationship between simulated records and velocity model by 
training the seismic numerical simulation records and velocity model, which can 
realize the inversion work of seismic data, and the improved network can further 
enhance the since relationship between seismic records and velocity model. 
Through the salt mound model test analysis obtained, the method proposed in 
this paper can not only save the calculation time, but also can accurately replace 
the calculation function of the FWI, and the accuracy of the model prediction 
has been improved by the improvement of the attention mechanism network. In 
order to the future work, should study how to solve the field data in the field, the 
fiela data  is a work containing a huge amount of computation, need to further 
optimize the work in this paper to solve the problem of computation. And it is 
necessary to design the deep learning network architecture that matches with 
the field data, which is very necessary.
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