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Abstract
Seismic data quality frequently deteriorates due to random noise contamination, 
substantially impeding subsequent processing and geological interpretation. While 
deep learning approaches have emerged as powerful tools for noise suppression, 
conventional single-stage architectures exhibit inherent limitations in handling 
complex seismic features while preserving subtle geological details. These challenges 
motivate the development of advanced multi-stage neural networks for seismic 
data enhancement. The proposed multi-stage progressive U-shaped convolutional 
network (MPU-Net) architecture addresses these limitations through supervised 
cross-stage attention mechanisms that maintain feature connectivity throughout 
the network. Building upon this foundation, group enhanced convolutional 
blocks (GEB)-MPU-Net introduces GEB to specifically counteract the progressive 
attenuation of shallow features in deep networks. This dual-stage enhancement 
strategy combines hierarchical feature preservation, adaptive information fusion, 
and stable gradient propagation. Comprehensive evaluation using both synthetic 
and field datasets demonstrates GEB-MPU-Net’s superior performance compared 
to conventional time-frequency analysis methods and established networks, 
such as U-Net, residual dense network, residual dense block U-Net, and MPU-Net. 
The architecture consistently achieves enhanced reflection continuity, improved 
geological feature resolution, and robust noise suppression. These advancements 
provide more reliable input for seismic interpretation, better preservation of subtle 
stratigraphic features, and increased applicability to challenging field conditions.
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1. Introduction
The focus of seismic exploration has progressively transitioned to complex structural 
traps, deep-buried reservoirs, and unconventional hydrocarbon systems as conventional 
resources become increasingly depleted. This evolution demands seismic data of 
substantially improved quality. Nevertheless, field-acquired seismic records are 
invariably contaminated by ambient noise originating from diverse environmental and 
operational factors, significantly compromising both subsurface imaging resolution and 
geological interpretation accuracy. Consequently, noise suppression and signal-to-noise 
ratio (SNR) enhancement remain fundamental challenges in modern seismic data 
processing.

*Corresponding author: 
Guanghui Li
(ligh1986@sxu.edu.cn)

Citation: Li G, Li H, He S, Wang L. 
Multi-stage progressive network for 
seismic random noise suppressing. 
J Seismic Explor. 2025;34(1): 43-59. 
doi: 10.36922/JSE025240011

Received: June 10, 2025

1st revised: July 22, 2025

2nd revised: July 26, 2025

Accepted: August 6, 2025

Published online: August 14, 2025

Copyright: © 2025 Author(s). 
This is an Open-Access article 
distributed under the terms of the 
Creative Commons Attribution 
License, permitting distribution, 
and reproduction in any medium, 
provided the original work is 
properly cited.

Publisher’s Note: AccScience 
Publishing remains neutral with 
regard to jurisdictional claims in 
published maps and institutional 
affiliations.

https://orcid.org/0000-0001-7282-2431
https://orcid.org/0009-0007-0886-8460
https://orcid.org/0009-0000-4440-4355
https://orcid.org/0009-0006-9589-9443
https://dx.doi.org/10.36922/JSE025240011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Journal of Seismic Exploration Seismic random noise suppression

Volume 34 Issue 1 (2025) 44 doi: 10.36922/JSE025240011 

Traditional seismic denoising approaches primarily 
rely on mathematical transformations and filtering 
techniques, including Fourier transforms,1 wavelet 
transforms,2 Curvelet transforms,3,4 Seislet transforms,5 
empirical mode decomposition,6 variational mode 
decomposition,7,8 low-rank approximation,9 compressed 
sensing,10 and dictionary learning.11 Although these 
methods have proven effective for certain types of noise, 
they exhibit several inherent limitations. A  primary 
challenge lies in their limited adaptability to handle diverse 
noise distributions, particularly in complex geological 
settings or unconventional reservoirs. Furthermore, their 
performance typically depends on manual parameter 
tuning, which may lead to suboptimal results when 
processing conditions vary.

Recent advances in artificial intelligence have 
established neural networks as powerful tools for seismic 
data denoising, offering substantial improvements 
over conventional approaches. In particular, deep 
convolutional neural networks12,13 and their numerous 
enhanced algorithms demonstrate superior performance 
in both seismic noise suppression and signal preservation, 
exhibiting enhanced robustness to noise variability and 
improved generalization across diverse geological settings 
compared to traditional transform-based methods, 
such as the self-supervised framework,14 the modular 
convolutional neural network that incorporates multi-scale 
attention mechanisms,15 the singular value decomposition 
combined with deep learning,16 the residual dense blocks 
integrated with time-frequency analysis,17 and the advanced 
U-shaped convolutional network (U-Net) architectures 
through Atropos convolutions and dense connections.18,19

However, these single-stage architectures frequently 
exhibit suboptimal trade-offs between multi-scale 
representation and spatial precision when processing field 
seismic data, particularly in scenarios involving complex 
noise distributions, low SNR, and subtle geological features. 
Recent developments in seismic denoising have seen the 
emergence of multi-stage unsupervised and self-supervised 
deep learning approaches. For instance, the multi-stage 
progressive U-Net (MPU-Net),20 the self-supervised multi-
stage network,21 and the two-step deep image prior model.22 
These methods significantly reduce reliance on annotated 
training data while demonstrating robust performance 
across varied noise conditions. Nevertheless, the lack of 
explicit supervisory signals presents inherent limitations, 
particularly in reliably differentiating subtle seismic 
reflections from background noise and maintaining stable 
performance under diverse geological settings.

Based on this, we present a novel group enhanced 
convolutional blocks (GEB) MPU-Net (GEB-MPU-Net) 

architecture for seismic data denoising, which innovatively 
integrates GEB23 within the MPU-Net framework. 
This synthesis enhances feature representation while 
maintaining the structural advantages of progressive 
processing. GEB significantly improves multi-scale feature 
integration through its unique combination of residual 
learning and grouped feature extraction. By incorporating 
channel attention blocks (CABs), the architecture 
further enhances long-range feature propagation and 
representation, leading to more stable and effective 
seismic denoising. This design achieves comprehensive 
feature fusion through systematic GEB-CAB integration 
at each processing stage. The framework strengthens 
low-frequency feature representation through inter-
channel correlation analysis while implementing signal 
enhancement mechanisms to maintain critical long-range 
dependencies. Importantly, this approach successfully 
resolves the persistent shallow information loss problem 
inherent in conventional MPU-Net architectures.

Compared to other multi-stage unsupervised and 
self-supervised deep learning approaches,22-25 first, 
GEB-MPU-Net’s tight integration with multi-stage 
supervised learning enables precise feature optimization 
through explicit signal-noise differentiation. This coupled 
framework systematically enhances discriminative feature 
extraction while preserving structural relationships across 
processing stages. Second, the GEB module incorporates 
a specialized channel attention mechanism designed to 
optimize shallow-deep feature integration and enhance 
low-frequency representation. This tailored architecture 
enables GEB-MPU-Net to surpass conventional 
unsupervised approaches employing standard attention 
modules, demonstrating superior denoising robustness and 
generalization capacity. The processing results of synthetic 
and field seismic data both demonstrate their superior 
performance and signal fidelity, particularly in complex 
and challenging environments. Overall, GEB-MPU-
Net represents a dual advancement in seismic denoising 
methodology, introducing both architectural innovations 
and demonstrable improvements in signal preservation. 
The framework surpasses existing approaches through its 
integrated design, achieving superior noise suppression 
while maintaining critical geological features.

2. Algorithm principle
2.1. U-shaped convolutional network structure

U-shaped convolutional network’s symmetric encoder-
decoder framework utilizes cross-connection pathways 
to maintain its characteristic U-topology while enabling 
multi-scale feature integration. Figure  1 presents the 
standard implementation of this architecture. The first 
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half of the network focuses on feature extraction, while 
the latter half emphasizes up-sampling. Specifically, the 
encoding section employs a series of 3 × 3 convolutional 
layers, rectified linear unit (ReLU) activation functions, 
and 2 × 2 max pooling layers to extract features from 
the input image. With each down-sampling operation, 
the dimensions of the feature maps are halved, while the 
number of channels is doubled. The primary function of 
the decoding section is to utilize transposed convolutional 
layers to reconstruct high-resolution representations from 
the encoded low-resolution features. Skip connections 
between the contracting and expanding channels facilitate 

the fusion of low-resolution and high-resolution features, 
enabling a more effective capture of both local and global 
characteristics of the image.

2.2. MPU-Net structure

As shown in Figure 2, the network employs a multi-patch 
hierarchical decomposition strategy, where input seismic 
data undergoes non-overlapping patch segmentation. 
This preprocessing stage enables localized feature 
extraction while maintaining structural relationships 
across spatial domains. It implements the strategy across 
three progressive stages: initial coarse segmentation into 

Figure 1. Structure of a U-shaped convolutional network
Abbreviations: conv: Convolution; ReLU: Rectified linear unit

Figure 2. Multi-stage progressive U-Net structure
Abbreviations: cat: Concatenate; Conv: Convolution; ORSNet: Original resolution subnetwork; U-Net: U-shaped convolutional network
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four patches, intermediate division into two patches, 
and final processing of the full-resolution input. The 
initial processing stages implement an enhanced U-Net 
framework, where each encoder-decoder level incorporates 
dual CABs. This design enables efficient multi-scale feature 
extraction while maintaining spatial relationships across 
different resolution levels. The attention mechanisms 
selectively emphasize informative channels, optimizing 
feature representation throughout the network hierarchy. 
Conventional transposed convolution operations in U-Net 
decoders frequently generate checkerboard artifacts due to 
uneven kernel overlap patterns. These artifacts manifest as 
spurious seismic events in processed records, particularly 
adjacent to genuine reflections, potentially compromising 
interpretation accuracy. This phenomenon motivates the 
development of more stable up-sampling alternatives 
for seismic data restoration. To mitigate this limitation, 
MPU-Net modifies the conventional U-Net architecture 
by implementing bilinear interpolation for up-sampling, 
coupled with subsequent convolutional layers for spatial 
feature restoration. This adaptation reduces artifacts while 
maintaining resolution fidelity during the decoding phase. 
The original resolution subnetwork (ORSNet) consists of 
three original resolution blocks, which are connected to 
the input in the third stage.

Figure  3 illustrates the original resolution block 
module’s composition, featuring eight CABs integrated 
with a final convolutional layer. The CAB consists of four 
3 × 3 convolutional layers, one global average pooling 
layer, and three activation functions designed to enhance 
the representational capability of valuable features. Since 
ORSNet does not perform down-sampling, it retains high-
resolution spatial details. As indicated by the dashed lines 
in Figure 2, the three stages are not independent; rather, 
a supervised attention module (SAM) is incorporated 
between each pair of stages to weigh the significant 

features. These features are then closely cascaded through 
a cross-stage feature fusion (CSFF) process. While all other 
convolutional layers in the MPU-Net architecture are 3 × 3, 
the convolutional layers in the SAM and CSFF are 1 × 1.

Cross-stage feature fusion mechanisms are introduced 
between the U-Net of the first and second stages, as well as 
between the U-Net of the second stage and the ORSNet of 
the third stage, as illustrated separately in Figure 4.

The architecture processes encoder and decoder 
outputs through parallel 1 × 1 convolutional layers for 
dimensional refinement and feature conditioning. These 
optimized feature maps subsequently undergo cross-level 
fusion, creating an enriched representation for stage-
transition processing. This dual-path approach maintains 
feature integrity while enabling information exchange 
across network depths. The CSFF mechanism enables 
systematic integration of multi-scale features throughout 
the network hierarchy. This architecture provides three 
key advantages: (i) Preservation of critical information 
across processing stages, (ii) enhanced model robustness 
through diversified feature representation, and (iii) flexible 
network optimization via adjustable stage connectivity. 
The improved inter-stage information flow additionally 
facilitates architectural diagnostics and stage-number 
optimization during network development.

A SAM, illustrated in Figure 5, is integrated at the end 
of each encoder-decoder sub-network during the first two 
stages.

The SAM module processes incoming features 
through a 1 × 1 convolutional operation to produce 
residual representations. The network utilizes the learned 
residual representations to systematically attenuate noise 
components in the input seismic data. The processed 
seismic data undergoes feature optimization through 
a 1 × 1 convolutional layer with sigmoidal activation. 

Figure 3. Structure of the original resolution block
Abbreviations: CAB: Channel attention block; Conv: Convolution; GAP: Global average pooling; PReLU: Parametric rectified linear unit
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This operation performs channel-wise feature rescaling, 
suppression of non-informative components, and 
selective propagation of geophysically valid features. This 
gating mechanism ensures only the most salient signal 
characteristics propagate through the network hierarchy, 
substantially improving the denoising efficacy while 
maintaining geological plausibility. The three stages are 
tightly integrated through the SAM and CSFF, leveraging 
feature information extracted from each stage to achieve 
improved learning outcomes.

2.3. GEBs module structure

Figure  6 illustrates the structure of the GEB. The block 
comprises two components: the known extraction portion 

(GConv1), which encompasses one-fifth of the feature 
channels from the current convolutional layer, and the 
remaining portion (GConv2), which includes four-fifths 
of the feature channels from the same layer. In each GEB, 
GConv1 serves as a convolutional layer with 16 input 
channels, 16 output channels, and a filter size of 3 × 3, 
whereas GConv2 has an input and output channel count of 
60, also utilizing a 3 × 3 filter size. The remaining portion 
is utilized as the input for the subsequent convolutional 
layer in the main network, facilitating the extraction of 
additional deep features.

To enhance the expressiveness of low-frequency 
features, the GEB module employs a fusion mechanism 
between every two adjacent GConv2 layers. Specifically, 

Figure 4. Structure of CSFF. (A) CSFF between stage 1 and 2; (B) CSFF between stage 2 and 3
Abbreviations: Conv: Convolution; CSFF: Cross-stage feature fusion; ORB: Original resolution block; ORSNet: Original resolution subnetwork

Figure 5. Structure of a supervised attention module
Abbreviations: Conv: Convolution; Fin: Input feature; Fout: Output feature; Rs: Residual representation; Xs: Input seismic feature
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for each pair of consecutive GConv2 layers within the GEB, 
their outputs are combined using a residual connection 
(Figure 6). This process enables the network to effectively 
aggregate deep neighborhood information across layers, 
thereby capturing broader contextual dependencies and 
improving the representation of low-frequency features. 
The network architecture establishes progressive feature 
interdependence, where each subsequent extraction module 
builds upon transformed representations from preceding 
stages. It provides two key advantages, including cascading 
information refinement through the network depth and 
complementary broad-context supplementation to deep 
features. The resulting multi-scale integration enhances 
denoising performance by simultaneously preserving both 
local details and global seismic characteristics. The feature 
processing within the GEB can be categorized into the 
following four steps21:
(i) Step 1. To enhance the features of neighboring layers 

and improve the accuracy of deep features across 
various channels, the features from two adjacent 
GConv2 layers are fused using a residual learning 
strategy. This combined information is subsequently 
fed into the next convolutional layer. While the 
outputs of the later GConv1 layers are derived from 
the preceding GConv2 layers, the output of the first 
GConv1 is derived from one-fifth of the output 
channels of the initial convolutional layer. Specifically, 
linear features are transformed into non-linear 
ones through the connection of the upper GConv2 
to a ReLU activation function. These non-linear 
characteristics then act as a convolutional layer that 
learns additional low-frequency features; GConv1 
receives the output data from the final one-fifth of the 
channels.

(ii) Step 2. By employing the residual learning technique, 
the features extracted from all GConv1 layers are 
integrated to enhance the connections among the 
various extraction segments.

(iii) Step 3. To obtain additional complementary features, the 
outputs from the final GConv1 and GConv2 are integrated 
along the channel dimension using a concatenation 
operation, as indicated by “Concat” in Figure 6.

(iv) Step 4. To address the limitation of shallow feature 
memory capacity across the network, we employ the 
concept of signal augmentation to preserve long-
distance features. This approach entails superimposing 
shallow features, obtained through the residual learning 
technique, onto the deep features acquired, thereby 
enhancing the significance of the shallow features.

2.4. GEB-MPU-Net structure

The progressive depth of MPU-Net may compromise 
shallow feature retention, potentially limiting its 
contribution to final representations. To mitigate this 
limitation, GEBs are systematically integrated following 
each CAB module across three critical processing stages, 
as detailed in Figure  7. This architecture optimizes 
shallow feature integration while effectively attenuating 
noise through enhanced low-frequency representation. It 
strengthens inter-channel correlations, thereby improving 
feature discrimination across multiple scales without 
compromising signal integrity.

An ablation experiment was conducted on the network 
architecture to justify the choice of architecture and 
demonstrate its optimality. Figure  7 depicts Strategy 1’s 
organizational framework, in which the GEB module 
is placed after the CAB modules in the three stages of 

Figure 6. Structure of the group enhanced convolutional blocks
Abbreviations: Concat: Concatenation operation; Conv: Convolution; GConv1: Known extraction portion; GConv2: Remaining portion; ReLU: Rectified 
linear unit
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MPU-Net. Figure  8 illustrates Strategy 2’s organizational 
structure. The GEB module is placed respectively after the 
encoder-decoder modules of the first and second stages, 
as well as the ORSNet + Conv of the third stage. Figure 9 
shows the construction of Strategy 3, in which the CSFF 
module is followed by the GEB module.

The synthetic records with varying noise levels 
were denoised using the three different GEB-MPU-Net 
network structures. Figures  10 and 11 display the 
denoising and residual results, respectively. Figure  10 

reveals characteristic waveform distortion at the 
intersection of Strategy 2 and Strategy 3’s in-phase axes, 
as highlighted by the red annotation box. The residual 
data presented in Figure 11 indicate superior amplitude 
retention in Strategy 1, as evidenced by reduced phase-
coherent artifacts compared to Strategies 2 and 3. Table 1 
presents the peak SNR and mean squared error (MSE) of 
the denoising outcomes. The results demonstrate Strategy 
1’s superior performance in both noise suppression and 
amplitude preservation across varying noise conditions, 

Figure 7. Structure of group enhanced convolution block, multi-stage progressive U-shaped convolutional network of Strategy 1
Abbreviations: cat: Concatenate; Conv: Convolution; U-Net: U-shaped convolutional network

Figure 8. Structure of group enhanced convolution block, multi-stage progressive U-shaped convolutional network of Strategy 2
Abbreviations: cat: Concatenate; Conv: Convolution; U-Net: U-shaped convolutional network
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exhibiting consistently favorable metric values compared 
to alternative approaches.

Figure 12A and B present the comparative evaluation 
metrics across the simulated dataset after completing 
training. The results reveal Strategy 1’s consistent advantage 
in signal preservation, with both alternative strategies 

demonstrating relatively reduced performance across the 
measured parameters.

2.5. GEB-MPU-Net denoising principle

The process of removing noise from seismic recordings 
that contain a combination of signals and noise is referred 

Figure 9. Structure of group enhanced convolution block, multi-stage progressive U-shaped convolutional network of Strategy 3
Abbreviations: cat: Concatenate; Conv: Convolution; U-Net: U-shaped convolutional network

Figure 10. Denoising results of the three strategies. (A) Strategy 1. (B) Strategy 2. (C) Strategy 3

B CA

Figure 11. Residual results of the three strategies. (A) Strategy 1. (B) Strategy 2. (C) Strategy 3

B CA
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Figure 12. Influence of three strategies on denoising. (A) The PSNR performance curve on the test set. (B) The MSE performance curve on the test set
Abbreviations: MSE: Mean squared error; PSNR: Peak signal to noise ratio

BA

Table 1. Comparison of parameters after denoising of three 
strategies

Strategies Signal‑to‑noise ratio (dB) Mean squared error

Noisy signal −5.1753 0.0161

−8.1856 0.0321

−9.9465 0.0482

Strategy 1 11.8588 3.1806 e−04

9.1082 5.9920 e−04

7.2832 9.1215 e−04

Strategy 2 11.5535 3.4123 e−04

8.6248 6.6975 e−04

6.7186 0.0010

Strategy 3 11.5279 3.4324 e−04

8.1443 7.4810 e−04

6.0058 0.0012

to as random noise suppression in seismic data. Equation I 
represents the noisy seismic data.

d = x + n (I)

where d denotes the noisy data, x represents the clean 
seismic signal, and n signifies the random noise. In this 
study, we employed a noise learning technique by inputting 
the noisy seismic data into the GEB-MPU-Net neural 
network. Through the process of residual learning, the 
network was trained to predict the noise, which was then 
subtracted from the input noisy seismic records to yield 
denoised seismic data. The specific procedure is outlined 
in Equations II and III.

Nt = R (d; θ) (II)

 ˆ    x d Nt= −  (III)

where Nt represents the predicted noise output by 
the network, R denotes the residual mapping process, θ 
encompasses the parameters of the network, including 

weights ω and biases b, and x̂  signifies the predicted 
seismic record. We utilized the MSE between the pure noise 
and the predicted noise as the loss function to optimize the 
parameters. The formulation for the loss function is shown 
in Equation IV.

2
 1

1( )   ( ; )   M
loss i i GEB MPU Neti

L R d n
M

θ θ − −=
= −∑  (IV)

where M is the number of samples in the training set, 
�

� �GEB MPU Net

2
 denotes the Frobenius norm, di represents 

the noisy seismic data, and ni is the pure noise. The 
objective of the network’s continuous training is to 
minimize the loss function, a non-negative real-valued 
function. A smaller loss indicates a reduced error between 
the predicted noise and the actual noise, leading to 
denoised seismic records that closely approximate the ideal 
seismic records.

The comprehensive dataset from the 1994 Canadian 
reverse masking experiment, named Model94_shots.segy, 
served as the training data for the network. This dataset 
comprises 277 shots, each containing 480 recording 
channels, with a channel spacing of 15  m and a shot 
interval of 90 m. Following manual processing, the dataset 
demonstrated a high SNR and has been widely recognized 
as a representative clean record. Users can add varying 
levels of Gaussian white noise or real noise according to 
their requirements. After normalization, the data were 
segmented into 64 × 64 patches using a sliding window with 
a step size of 32, resulting in a total of 41,776 samples, with 
31,656 samples designated for training and 10,120 samples 
for testing. The Adam optimization algorithm was utilized 
during training, with MSE as the loss function. The learning 
rate gradually decreased from 2 × 10−4 to 2 × 10−6, the batch 
size was set to 8, and the number of training epochs was 
established at 60. The experiments were conducted within 
the PyTorch deep learning framework (version  2.2.0), 
operating on a Windows 11 system. The computations 



Journal of Seismic Exploration Seismic random noise suppression

Volume 34 Issue 1 (2025) 52 doi: 10.36922/JSE025240011 

were performed on a server equipped with an Intel(R) 
Core(TM) i5-12500H processor, 16 GB of RAM, CUDA 
11.6, and an NVIDIA RTX 3050 Ti graphics card. The 
specific experimental steps were as follows:
(i) Step 1: Prepare the seismic signal dataset and conduct 

preprocessing
(ii) Step 2: Introduce noise into the clean seismic records 

and train the network using GEB-MPU-Net
(iii) Step 3: Adjust the network hyperparameters to ensure 

that the network output closely approximates the 
added noise

(iv) Step 4: Subtract the predicted noise output from the 
noisy records to obtain the denoised seismic records

(v) Step 5: Evaluate the trained network using both the 
noisy synthetic seismic records and actual seismic 
data

(vi) Step 6: Illustrate the frequency-wavenumber spectra 
of the denoised synthetic recordings and compare 

the time-frequency domain waveforms of the single-
channel records

(vii) Step 7: Analyze the denoising performance in 
comparison to time-frequency analysis (TFPF), 
conventional U-Net, residual dense network (RDNet), 
residual dense block U-Net (RDBU-Net), and 
MPU-Net.

3. Experimental results

3.1. Synthetic records processing results

The clear synthetic seismic record comprises four distinct 
cross-seismic events distributed across 61 channels, with 
each trace containing 384 temporally sampled points at 
1 ms intervals, as shown in Figure 13A. The Ricker wavelets 
exhibited characteristic dominant frequencies of 40  Hz 
and 60 Hz, representing typical exploration scenarios. The 
synthetic noisy record shown in Figure 13B was generated 

Figure 13. Denoising results of synthetic seismic records. (A) Pure record. (B) Noisy record. (C) TFPF. (D) U-Net. (E) RDNet. (F) RDBU-Net. (G) MPU-Net. 
(H) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network

B

C D E

F G H

A
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through additive Gaussian white noise at a level of 85% 
contamination of the pristine dataset. The noisy record 
was processed through multiple denoising approaches, 
encompassing conventional TFPF, established neural 
networks (U-Net, RDNet), and advanced architectures 
(RDBU-Net, MPU-Net, GEB-MPU-Net). Figure  13C-H 
displays the processed outputs from each denoising 
method, with corresponding residual patterns shown 
in Figure  14. Figure  13C presents the results obtained 
by TFPF, demonstrating partial noise attenuation while 
retaining visible signal components in the corresponding 
residuals, as shown in Figure 14A. This outcome highlights 
the method’s fundamental limitation in achieving complete 
signal-noise separation, with discernible seismic events 
persisting in the residual domain. Figures  13D and 14B 
present the U-Net processed results and the corresponding 
residual record, demonstrating significantly improved 
noise suppression capabilities compared to conventional 
approaches. The neural network output exhibits enhanced 
signal clarity while effectively attenuating both random 
and coherent noise components. Figure 13E and F present 
the processed outputs from RDNet and RDBU-Net, and 
Figure  14C and D show the corresponding residuals, 
respectively, demonstrating superior noise suppression 
compared to the baseline U-Net architecture. Both 
advanced networks showed progressively improved 
seismic event visibility, with enhanced signal-background 
differentiation by the processed records.

Figures 13G and 14E illustrate the denoising outcome 
and residuals of MPU-Net, where the seismic events are 
more distinct, and the noise is substantially suppressed, 
although some distortion occurs at the intersection points 
of the events. Figure  13H presents the GEB-MPU-Net 
processed results, demonstrating exceptional signal 
clarity and waveform coherence in the reconstructed 
seismic record. The corresponding residuals in Figure 14F 
show negligible seismic event remnants, indicating near-
complete signal preservation and noise separation.

Figure  15A-H presents comparative frequency-
wavenumber transformations of the pure record, noisy 
record, and all processed outputs. This comprehensive 
spectral analysis enables detailed evaluation of wavenumber-
frequency characteristics across different denoising 
approaches. Figure  15C shows the frequency-wavenumber 
spectrum following TFPF, revealing characteristic spectral 
overlap between residual noise components and preserved 
signal energy. While the method demonstrated partial 
noise suppression in certain frequency-wavenumber bands, 
significant signal-noise ambiguity persisted across critical 
regions of the spectrum. Figure  15D-F demonstrates that 
U-Net, RDNet, and RDBU-Net achieve substantial random 
noise suppression in the wavenumber-frequency domain. 
However, these architectures showed limited effectiveness 
against persistent low-frequency noise components, revealing 
a common challenge in neural network-based seismic 

Figure 14. Residual results of synthetic seismic records. (A) TFPF. (B) U-Net. (C) RDNet. (D) RDBU-Net. (E) MPU-Net. (F) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network

B C

D E F

A
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Figure 15. Frequency-wavenumber spectra of synthetic seismic records. (A) Pure record. (B) Noisy record. (C) TFPF. (D) U-Net. (E) RDNet. (F) RDBU-Net. 
(G) MPU-Net; (H) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional 
network
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processing. Comparative analysis of Figure 15G and H reveals 
GEB-MPU-Net’s enhanced spectral fidelity, with its frequency-
wavenumber transform exhibiting closer alignment to the 
noise-free reference than MPU-Net’s output. This improved 
spectral reconstruction demonstrates the architecture’s 
advanced noise suppression while maintaining critical signal 
components across wavenumber-frequency domains.

To evaluate GEB-MPU-Net’s performance, a random 
single trace (Trace 45) was selected from the noise-free 
reference dataset (Figure 13A) for detailed time-frequency 
analysis. The time-domain comparing waveforms are 
presented in Figure 16A. An enlarged view of the last peak 
of the time domain waveform is provided in Figure  16B. 
Lastly, the frequency domain comparing waveforms can 
be observed in Figure  16C. The results indicate that the 
waveform generated by GEB-MPU-Net closely resembles 
that of the pure signal, demonstrating that the seismic 
signal recovered through GEB-MPU-Net denoising is the 
most complete and cleanest, with a significant advantage in 
preserving effective signal amplitude.

The study employed standard quantitative metrics 
to assess denoising effectiveness and signal preservation 
across different methods. Comparative analysis reveals 
GEB-MPU-Net’s superior performance in both noise 

suppression and amplitude retention relative to alternative 
approaches, as documented in Table 2.

3.2. Field data processing results

Figure 17A shows part of an acquired field seismic dataset 
collected under forested terrain conditions, comprising 

Figure 16. Single trace record comparison. (A) Time-domain waveform. (B) Enlarged view of the last peak in (A). (C) Frequency-domain waveform
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network
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A

Table 2. Comparison of parameters after denoising with 
different methods

Methods Parameters

Signal‑to‑noise ratio (dB) Mean squared error

Noisy signal −8.1856 0.0321

TFPF 0.1597 0.0047

U-Net 5.4996 0.0014

RDNet 6.8447 0.001

RDBU-Net 7.4174 8.84 e−04

MPU-Net 8.3013 7.22 e−04

GEB-MPU-Net 9.1082 5.99 e−04

Abbreviations: GEB-MPU-Net: Group enhanced convolutional 
blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage 
progressive U-Net; RDBU-Net: Residual dense block U-Net; 
RDNet: Residual dense network; TFPF: Time-frequency 
analysis; U-Net: U-shaped convolutional network.
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Figure  17. Denoising results of the field seismic record. (A) Field seismic data. (B) TFPF. (C) U-Net. (D) RDNet. (E) RDBU-Net. (F) MPU-Net. 
(G) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional 
network
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128 channels with temporal sampling characteristics 
suitable for detailed subsurface analysis. This record 
underwent comprehensive processing through multiple 
denoising approaches, including conventional and deep 
learning-based methods, with the outputs shown in 
Figure 17B-G.

The TFPF output in Figure  17B demonstrates partial 
background noise attenuation while exhibiting characteristic 
limitations in suppressing surface wave contamination and 
persistent low-frequency noise components. This performance 
pattern reflects fundamental constraints of traditional signal 
processing approaches in complex field environments. 

Figure  18. Enlarged comparison of red boxes in Figure  17. (A) Field seismic data. (B) TFPF. (C) U-Net. (D) RDNet (E) RDBU-Net. (F) MPU-Net. 
(G) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network
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Figure 19. Corresponding residual record of Figure 18. (A) TFPF. (B) U-Net. (C) RDNet. (D) RDBU-Net. (E) MPU-Net. (F) GEB-MPU-Net
Abbreviations: GEB-MPU-Net: Group enhanced convolutional blocks-multi-stage progressive U-Net; MPU-Net: Multi-stage progressive U-Net; 
RDBU-Net: Residual dense block U-Net; RDNet: Residual dense network; TFPF: Time-frequency analysis; U-Net: U-shaped convolutional network
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Figure  17C-F presents the processed outputs from U-Net, 
RDNet, RDBU-Net, and MPU-Net, demonstrating progressive 
improvements in both noise suppression and signal recovery 
compared to conventional methods. While these architectures 
showed enhanced capability in revealing subsurface features, 
opportunities remain for further resolution enhancement 
in complex geological settings. Figure  17G demonstrates 
GEB-MPU-Net’s superior processing results, exhibiting 
comprehensive noise suppression while significantly 
enhancing seismic reflection continuity and resolution. The 
output displayed markedly improved signal clarity compared 
to alternative methods, with well-preserved geological features 
throughout the profile.

The magnified views of the red boxes in Figure  17 
and the corresponding residual records are shown in 
Figures 18 and 19, respectively. Figures 18B and 19A reveal 
severe low-frequency noise and surface wave interference 
that obscure underlying signals. While U-Net processing 
in Figures  18C and 19B enables initial event detection 
near surface waves, residual noise contamination remains 
substantial. As shown in Figures  18D-F and  19C-E, 
subsequent architectures demonstrate progressive 
improvements, with RDNet, RDBU-Net, and MPU-Net 
achieving measurable noise reduction and signal recovery. 
GEB-MPU-Net emerges as the most effective solution, 
delivering superior noise suppression and event clarity, as 
shown in Figure 18G and Figure 19F.

4. Conclusion
Building upon the MPU-Net framework, this study 
developed GEB-MPU-Net through the systematic 
integration of GEB following each CAB within the three-
stage processing hierarchy. This enhancement establishes a 
more robust feature learning pipeline while preserving the 
original network’s multi-scale analysis capabilities. The GEB 
significantly enhanced low-frequency feature representation 
through three coordinated mechanisms: (i) Strategic channel 
segmentation enabling specialized frequency processing, 
(ii) adaptive channel width expansion for comprehensive 
feature capture, and (iii) intelligent integration of deep-wide 
channel correlations. This multi-faceted approach optimized 
information flow across network depths while preserving 
critical seismic signatures. The GEB module incorporated a 
novel signal augmentation mechanism to mitigate progressive 
attenuation of shallow features in deep networks. This design 
addresses a fundamental limitation in MPU-Net’s architecture, 
where excessive network depth could compromise both 
denoising accuracy and output stability. The augmentation 
strategy actively maintains critical near-surface information 
throughout the processing hierarchy. The GEB module 
implements residual learning to create direct feature pathways 
between input and output layers. This architecture strategically 

combines shallow and deep representations through additive 
merging, ensuring preservation of critical near-surface 
features, stable gradient propagation across network depths, 
and enhanced overall denoising robustness. Experimental 
results across synthetic and field datasets demonstrated GEB-
MPU-Net’s consistent advantages over the baseline MPU-Net 
architecture. The enhanced network exhibited superior signal 
fidelity through improved amplitude preservation and more 
effective noise suppression, particularly for random noise 
components. In addition, the advanced framework yielded 
clearer seismic reflections with enhanced continuity, enabling 
more reliable geological interpretation.
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