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Abstract
The formation of tectonic fractures is primarily influenced by stress distribution 
during the tectonic period. Therefore, in situ stress plays a crucial role in predicting 
fracture development zones. It significantly impacts the effectiveness of fractures 
by determining the size, orientation, and distribution pattern of fractures, thereby 
affecting stimulation results. Existing seismic methods for in situ stress prediction 
utilize seismic data to estimate stress parameters and calculate the horizontal stress 
difference ratio or the orthorhombic horizontal stress difference ratio (DHSR). These 
methods are based on the horizontal transverse isotropy or the orthorhombic 
anisotropy medium models. However, shale formations are often subject to tectonic 
movements that can rotate the symmetry axis of a transversely isotropic medium, 
leading to the formation of a tilted transversely isotropic (TTI) medium or a monoclinic 
medium with an inclined symmetry plane. Based on the TTI and monoclinic medium 
assumptions, this paper proposes new formulas for calculating the DHSRs (tilted 
transverse isotropy DHSR and monoclinic DHSR). The formulas are further validated 
through sensitivity analyses. Finally, this study demonstrates the effectiveness of the 
in situ stress seismic prediction method, grounded in TTI, and monoclinic medium 
theory through model-based examples.

Keywords: In situ stress; Tilted transverse isotropy differential horizontal stress ratio; 
Monoclinic differential horizontal stress ratio

1. Introduction
With the growing global demand for energy, shale gas has garnered significant attention 
as a clean and efficient energy resource. In the exploration and development of shale 
gas reservoirs, in situ stress prediction plays a critical role. In situ stress, carried by 
underground rocks and pore fluids, is crucial for effective oil and gas exploration. The 
influence of tectonic stress drives the formation and evolution of geological structures. 
Furthermore, the in situ stress state of an oilfield governs the shape and distribution of 
faults. Therefore, studying in situ stress is essential for understanding geological structure 
formation and fault distribution. In-depth research on in situ stress prediction methods 
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for shale formations is vital for advancing the sustainable 
development of the shale gas industry.

Since the 1970s, both domestic and international 
scholars have conducted extensive research on methods 
for predicting in situ stress. Traditional methods, such 
as core testing, logging data analysis, and numerical 
simulations, have certain limitations, including small 
prediction ranges, high costs, and cumbersome processes. 
To better understand the nature and changes of in situ 
stress, researchers have proposed using seismic data for 
prediction.1-4 In this context, Gray et al.5 combined Iverson’s 
hypothesis with linear slip theory to derive a horizontally 
transversely isotropic (HTI) medium in situ stress formula, 
which incorporates parameters such as Young’s modulus, 
Poisson’s ratio, and fracture compliance.5-8 Given that these 
parameters can be directly obtained through pre-stack 
seismic inversion, this approach has become a promising 
direction for seismic in situ stress prediction.9,10 In 
addition, Gray7 introduced the horizontal stress difference 
ratio (DHSR) as the ratio of the difference between the 
maximum and minimum horizontal principal stresses to 
the maximum principal stress, providing a new way to 
describe ground stress. Unlike traditional methods, this 
approach is simple and practical. It addresses the challenge 
of inaccurate vertical stress prediction caused by the low 
accuracy of density inversion using DHSR as a sensitive 
in situ stress parameter. Compared to traditional logging-
based methods, which are limited to drilling locations and 
suffer from low lateral resolution, this seismic method 
can provide in situ stress distributions across large 
areas, offering a more comprehensive understanding of 
underground stress and better guidance for petroleum 
engineering. Gray’s method thus introduces a novel 
approach and practical tool to in situ stress research, 
greatly supporting fields such as petroleum exploration 
and development.

Building on Gray’s work, Ma et al.11,12 incorporated 
vertical fractures into the vertically transversely isotropic 
(VTI) medium for horizontal layered strata, treating 
fractured shale formations as orthotropic media. Using 
anisotropic media theory, they derived an orthotropic 
in situ stress formula. Following Gray’s concept of the 
DHSR, they introduced the orthorhombic DHSR for the 
orthorhombic anisotropy (OA) medium. Wang13 used 
azimuth-pre-stack seismic data combined with orthogonal 
anisotropy theory to predict ground stress, while also 
calculating the DHSR from the orthogonal anisotropy 
model combined with pre-stack elastic impedance 
inversion, focusing on tight sandstone formations.14 Li 
et al.15 utilized seismic inversion to estimate intercept, 
gradient, and curvature impedances to predict ground 
stress.15 In addition, Wang et al.16 proposed an inversion 

algorithm for the earth stress field based on the Tikhonov 
regularization and least squares methods.16 Geophysical 
prediction methods are subject to significant uncertainty. 
This is primarily because seismic inversion is a typical 
ill-posed problem, and seismic data are often affected by 
noise, which leads to considerable uncertainty in in situ 
stress prediction. Researchers have conducted studies to 
reduce the uncertainty associated with these prediction 
methods.17-22 However, as geophysical theories advance 
and our understanding of underground rock conditions 
deepens, there is a shift from modeling simple media to 
more complex media. Given the increasing complexity of 
real-world factors, it is essential to explore in situ stress 
characterization methods for these more complex media.

Formations comprising inclined fractures are 
widely distributed underground and can be effectively 
represented as tilted transversely isotropic (TTI) media. 
Vertically transversely isotropic (VTI) symmetry is most 
commonly found in shale formations, which account for 
approximately 75% of clastic infill in sedimentary basins 
worldwide. However, in tectonically active regions such 
as fold-and-thrust belts or areas near salt bodies, these 
anisotropic shale layers are often tilted due to structural 
deformation, resulting in TTI media. For example, 
up-dipping shale layers near salt domes are expected to 
form an effective TTI medium with a relatively large tilt of 
the symmetry axis. TTI models are also typically applicable 
to thrust fault zones, such as the Canadian Foothills or the 
Himalayan Foothills. TI shale layers are frequently bent by 
tectonic processes, often resulting in significant tilting.23,24 
In 1997, Tsvankin25 studied typical TI models with tilted 
symmetry axes, such as sediments near the flanks of salt 
domes, and found that dipping layers significantly affect 
the imaging of salt bodies. When imaging steeply dipping 
structures such as salt domes or volcanic intrusions, the 
tilt of the symmetry axis in TI media should be taken 
into account.25 In 2004, Isaac and Lawton26 proposed an 
independent method for estimating effective anisotropic 
parameters from surface P-wave reflection seismic data. 
They tested this approach using a two-dimensional 
physical model of seismic data from a stepped target 
beneath a tilted TTI overburden. The experimental results 
showed that assuming isotropy in an equivalent TTI 
medium led to significant errors, thereby demonstrating 
the impact of anisotropy.26 In 2008, Charles et al.27 studied 
seismic imaging in the Canadian Foothills thrust belt. In 
the study area, the shallow overburden was composed 
of tilted, shale-dominated clastic rocks, which exhibited 
weak TTI properties. The experimental results showed 
that anisotropic depth imaging based on data-driven 
tomography produced better results than isotropic depth 
imaging using the same tomography approach.27 In many 
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cases, formations subjected to either single-phase shear 
stress or multiple tectonic events tend to develop two sets 
of mutually oblique vertical fractures. Such formations can 
be abstracted in seismology as a special case of monoclinic 
anisotropic media. Reservoirs with monoclinic symmetry 
are quite common in oil and gas exploration. Examples 
include the Ordovician formations in the Tofutai area of 
the Tarim Basin in China,28 the carbonate formations of the 
Clair Group in the Clair Field, United Kingdom,29 and the 
Marcellus Shale in Bradford County, Pennsylvania, United 
States of America,30 all of which represent monoclinic 
reservoirs with hydrocarbon potential. In 2023, Li31 
conducted a seismic response analysis and parameter 
inversion for a monoclinic medium model induced by two 
sets of mutually oblique vertical fractures. The study area 
was located in the Sichuan Basin in southwestern China, 
where the reservoir belongs to the Lower Triassic and is 
characterized by well-developed tectonic fractures due to 
the influence of the Himalayan orogeny. During the Triassic 
compressional period, one set of extensional fractures 
formed concurrently with folding. Subsequently, during the 
Himalayan orogenic phase, renewed compressional stress 
acted on the pre-existing folds, resulting in the development 
of a second set of fractures. This led to the formation of an 
equivalent monoclinic anisotropic medium. The inversion 
method was ultimately applied to the study area, improving 
the accuracy of the inversion results.31 These cases clearly 
demonstrate the necessity of incorporating the effects of TTI 
and monoclinic anisotropy in seismic stress field prediction 
for geologically complex regions. Neglecting such anisotropy 
may lead to misinterpretations of fracture orientation, stress 
magnitude, and the geomechanical behavior of the reservoir. 
Therefore, research on stress field prediction based on TTI 
and monoclinic media is of critical importance.

Considering that inclined fractures influence actual 
shale formations, this study proposes in situ stress formulas 
based on the TTI and monoclinic media, along with the 
corresponding DHSRs, including the tilted transverse 
isotropy DHSR (TDHSR) and the monoclinic DHSR 
(MDHSR). By fully accounting for the effects of horizontal 
bedding and inclined fractures on DHSRs, the derived 
expressions offer higher applicability than the HTI and OA 
media, allowing for more accurate application to complex 
TTI and monoclinic media. This provides a more robust 
theoretical foundation for related research and applications.

First, the in situ stress formulas for the HTI and OA 
media are introduced. Then, based on the anisotropy 
theory, the formulas for the DHSRs in TTI and monoclinic 
media are derived. The correctness of these formulas is 
verified through formula degradation and model trial 
calculations. Finally, the relationship between the DHSRs 
of TTI and monoclinic media and factors such as elastic 

parameters, anisotropy parameters, and the dip angles of 
formations and fractures is analyzed and summarized. 
Model-based analysis further demonstrates the validity of 
the in situ stress seismic prediction method based on the 
TTI and monoclinic medium theories.

2. Materials and methods
2.1. Introduction to the basic theory

The constitutive equation of an elastic medium is an 
equation that describes the linear relationship between 
stress and strain using the stiffness tensor, also known as 
the generalized Hooke’s law. For any anisotropic linear 
elastic medium, the stress and strain have the following 
linear relationship in Equation I:

� �ij ijkl klC� �(i, j,k, l , , )1 2 3  (I)

where σij is the stress tensor, εkl is the strain tensor, and 
Cijkl is the stiffness tensor. Conversely, strain can also be 
expressed as a linear combination of stresses (Equation II):

� �ij ijkl klS� �(i, j,k, l , , )1 2 3  (II)

where Sijkl is the elastic compliance tensor (compliance 
matrix). The compliance matrix S and the stiffness matrix 
C have an inverse matrix relationship, and the expression 
of their mutual conversion is as follows (Equation III):

S C� �1  (III)

The subscript i,j,k,l = 1,2,3 of the elastic stiffness tensor 
Cijkl or the elastic compliance tensor Sijkl corresponds to the 
x, y, and z axes. Combining the number of subscripts and 
the number of symmetry axes subscripts, it can be seen 
that the fourth-order stiffness tensor and the compliance 
tensor contain 81 elements, and the second-order stress 
tensor σij and strain tensor Cijkl contain nine elements. The 
inherent symmetry of stress tensor and strain tensor causes 
the stiffness matrix to exhibit symmetric characteristics 
(Equation IV),

C C C Cijkl jikl jilk jilk= = =  (IV)

According to the symmetry of the stiffness matrix in 
Equation V:

C Cijkl klij=  (V)

Therefore, by combining Equations IV and V, the 
anisotropic stiffness matrix can be represented by 21 
independent elastic coefficients. The stiffness matrix Cijkl 
(i,j,k,l=1,2,3) can be transformed into the stiffness matrix 
of i,j = 1,2,3,4,5,6, and the stress and strain tensors can 
be transformed into σi and εj by using the Voigt notation. 
Table 1 lists the Voight conversion rules.
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Equations I and II then transform into 
Equations VI and VII:

� �i ij jC� � ���(i, j , , , )1 2 6  (VI)

� �i ij jS� � ���(i, j , , , )1 2 6  (VII)

The elastic matrix describing the relationship 
between stress and strain changes from 81 components 
to 21 independent components. Hence, the constitutive 
equation of the elastic matrix can be written as follows 
(Equation VIII):
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 (VIII)

The stiffness matrix in Equation VIII contains 21 elastic 
constants, which are generally considered independent 
in fully anisotropic media. However, in many cases, 
several elements of the stiffness matrix are either zero 
or constrained by symmetry. Moreover, not all nonzero 
stiffness elements are necessarily independent—for 
example, in transversely isotropic media. Typically, the 
greater the number of zero or constrained elements, the 
higher the degree of inherent symmetry in the elastic 
system of the medium.

The study of the elastic matrix in anisotropic media is 
typically conducted within the context of a constitutive 
coordinate system. However, due to the actual stratigraphic 
conditions, the constitutive coordinate system used for 
simulating complex anisotropic media may not align with 
the observed coordinate system. Therefore, a coordinate 
transformation is needed to unify elastic matrices across 
different coordinate systems. In the anisotropic media 
theory, the classification of anisotropic media is based on 
the angle between the medium’s symmetry axis and the 
observation coordinate system.

Two steps are typically required to transform a complex 
anisotropic medium into the observation coordinate 
system. First, the stiffness tensor is constructed in the 
material (constitutive) coordinate system. Then, a Bond 
transformation is applied to rotate the stiffness tensor into 
the observation coordinate system. It is important to note 
that the Bond transformation strictly applies to the fourth-
rank stiffness tensor, not to the 6 × 6 stiffness matrix obtained 
using Voigt’s notation. This coordinate transformation 
process is essential for accurately representing anisotropic 
media in complex stratigraphic settings.

Assuming that the observation coordinate system and 
the constitutive coordinate system are Oxyz and Ox’y’z’, 
respectively, the direction cosine relationship between the 
observation coordinate system and the constitutive coordinate 
system (coordinate axis) in the Bond transformation is 
shown in Table 2.

Assuming that the stress tensor, strain tensor, stiffness 
matrix, and compliance matrix under the observation 
coordinate system and the constitutive coordinate system 
are σ, ε, C, and S and σ’, ε’, C’, and S’, respectively, according 
to the Bond coordinate transformation, the stress and 
strain transformation under different coordinate systems 
can be expressed as Equations IX–XI:

� �� � �M  (IX)

� �� � �MT  (X)

M

1
2

1
2

1
2

1 1 1 1 1 1

2
2

2
2

2
2

2 2 2 2 2 2

3
2

3
2

3

2 2 2
2 2 2

22
3 3 3 3 3 3

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

1

2 2 2

3 1 3 1 3 1 3 3 1 1 3 3 1 1 3 3 1

1 2 1 2 1 2 1 2 2 11 1 2 2 1 1 2 2 1  
 (XI)

Through derivation, we can get Equation XII:

� �� � � �M C MT’  (XII)

The stiffness matrix constitutive equation can be used 
to obtain Equation XIII:

C M C MT� � � �  (XIII)Table 1. Voigt symbol conversion rules

Values for ij or kl Values for i or j

11 1

22 2

33 3

23 or 32 4

31 or 13 5

12 or 21 6

Table 2. The direction cosine relationship between the 
observation and the constitutive coordinate system (axis)

Axis x’ y’ z’

x α1 β1 γ1

y α2 β2 γ2

z α3 β3 γ3
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Similarly, the relationship between strain and stress is 
as follows (Equations XIV–XVI):

� �� � �NT  (XIV)

� �� � �N  (XV)

N

1
2

1
2

1
2

1 1 1 1 1 1

2
2

2
2

2
2

2 2 2 2 2 2
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2

3
2

3
2

3 3 33 3 3 3
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1 3 1

2 2 2
2 2 3 1 3 1 3 3 1 1 3 3 1 1 3 3 1

1 2 1 2 1 2 1 2 2

2
2 2 2 11 1 2 2 1 1 2 2 1  

 (XVI)
Through derivation, we can get Equation XVII:

� �� � � �N S NT’  (XVII)

The stiffness matrix constitutive equation can be used 
to obtain Equation XVIII:

S N S NT� � �’  (XVIII)

The matrices M and N are the Bond transformation 
matrices of the stiffness matrix and the compliance matrix, 
respectively, and T represents the transpose.

2.2. Derivation of the in situ stress formula for the 
TTI medium

In 1989, Crampin1 classified various anisotropic media 
by analyzing their stiffness matrices and the number of 
independent elastic parameters, based on the symmetry 
of the medium. Isotropy refers to a medium whose elastic 
properties are the same in all directions and do not change 

with the direction of wave propagation. It is the simplest 
type of medium and can be considered a special case of 
anisotropy. While the complete isotropic medium is a 
simplification for geophysical research, real underground 
media are composed of superimposed lithologic strata, 
where the same strata exhibit uniform geophysical 
properties, thus behaving isotropically.

In anisotropic media theory, a TI medium exhibits 
rotational symmetry about a single axis. In such media, 
the material properties are isotropic within the plane 
perpendicular to the symmetry axis—known as the 
isotropy plane—and vary only with the angle between the 
wave propagation direction and the symmetry axis.32,33 TI 
media can be further classified based on the direction of the 
symmetry axis into VTI media (vertical symmetry axis), 
HTI media (horizontal symmetry axis), and TTI media 
(tilted symmetry axis). Figure 1 illustrates a schematic of 
TI media, which have different symmetry axes and can be 
transformed into one another through rotation.

Although most natural fractures are vertical or 
subvertical, tectonic processes can result in fractures that are 
inclined at an angle to the stratigraphy. Monoclinic media 
are typically used to describe scenarios involving two sets of 
intersecting vertical fractures embedded in a VTI or isotropic 
background (Figure  2A and B), or a VTI background 
containing a single set of inclined fractures (Figure 2C).

In a TTI medium, the anisotropy can be regarded as a 
result of the rotation of either a VTI or an HTI medium by a 
certain angle. The stiffness (or compliance) properties of a TTI 
medium are obtained by applying the Bond transformation 
to the fourth-rank stiffness (or compliance) tensor of the 
corresponding VTI or HTI medium. It should be noted that 

Figure 2. Diagram of monoclinic media. (A) Two groups of intersecting vertical fracture groups developed in an isotropic background medium. (B) Two 
groups of intersecting vertical fracture groups developed in a vertically transversely isotropic (VTI) background medium. (C) A group of inclined fractures 
developed in the VTI background media

B CA

Figure 1. Diagram of the transversely isotropic media. (A) Vertically transversely isotropic medium, (B) horizontally transversely isotropic medium, and 
(C) tilted transversely isotropic medium

B CA
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the Bond transformation applies to the full tensor, not to the 
6 × 6 matrix representation used in Voigt’s notation.

In the subsequent derivation of this paper, the TTI 
medium is assumed to be formed by rotating a VTI 
medium. According to the definition of the linear slip 
model, when fractures develop horizontally (i.e., when the 
symmetry axis is vertical), the compliance tensor of the 
surrounding rock Sb can be expressed in terms of Young’s 
modulus E and Poisson’s ratio v as follows (Equation XIX):

S

E E E

E E E

E E E
b �
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� 1 0 0 0
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 (XIX)

where µ is the Lamé coefficient, which characterizes 
the rock’s resistance to shear deformation. The additional 
compliance tensor Sf caused by fractures can be expressed 
as Equation XX:
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 (XX)

where, ZN is the normal compliance tensor of the 
fracture surface, representing the unit normal displacement 
(deformation) caused by a unit normal stress. ZT is the 
tangential compliance tensor of the fracture surface, 
representing the unit tangential displacement caused by 
a unit tangential stress (parallel to the contact surface). 
By incorporating the linear slip theory and the Bond 
transformation, the effective compliance tensor of the 
TTI medium, ST, can be expressed as the sum of the 
compliance tensor of the rock skeleton, Sb, and the 
compliance tensor of microcracks in the rock, Sf, after 
applying the Bond transformation. Thus, the effective 
compliance tensor of the TTI medium, ST, can be written as 
Equations XXI and XXII (see page no 20):

S S N S NT b f
T� � � �  (XXI)

Substituting the compliance matrix of TTI medium 
into Hooke’s law can result in Equation XXIII:
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 (XXIII)

Among them, Sijt is the elastic compliance tensor of 
the TTI medium. σ1, σ2, and σ3 the principal stresses are 
in the three principal directions. σ4, σ5, and σ6 are shear 
stresses.

Iverson’s theory states that there are vertical principal 
stress and two horizontal stresses in anisotropic rocks.34 
Assuming that the horizontal stresses are not equal and 
assuming that the underground rocks are constrained, 
that is, they are immobile, then the horizontal strain (εx, 
εy) is equal to zero. According to Equation XXIII, the 
expression of strain and stress in the horizontal direction is 
expressed in Equations XXIV and XXV:

� � � � � �x x y z� � � � � �1 11 12 13 15 0S S S St t t t zx  (XXIV)

� � � � � �y x y z� � � � � �2 21 22 23 25 0S S S St t t t zx  (XXV)

In in situ stress prediction, researchers typically 
consider only the three principal stresses: vertical stress, 
minimum horizontal principal stress, and maximum 
horizontal principal stress. Therefore, this paper disregards 
the influence of tangential stress σ5 and focuses solely on 
the relationship among these three principal stresses. The 
final expressions for strain and stress in the horizontal 
direction are expressed in Equations XXVI and XXVII:

� � � � �x x y z� � � � �1 11 12 13 0S S St t t  (XXVI)

� � � � �y x y z� � � � �2 21 22 23 0S S St t t  (XXVII)

By solving equations through simultaneous equations, 
the expressions for the horizontal minimum principal stress 
σxt and horizontal maximum principal stress σyt of TTI 
medium can be obtained (Equations XXVIII and XXIX):

� �xt z
t t t t

t t t

S S S S
S S S

�
�
�

12 23 13 22

11 22 12
2  (XXVIII)
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� �yt z
t t t t

t t t

S S S S
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�
�
�

12 13 11 23

11 22 12
2  (XXIX)

The vertical stress σz is obtained by integrating the 
density. The expression for vertical stress σz is expressed in 
Equation XXX:

� �z

H
g� � (h)d(h)

0
 (XXX)

In the formula, h is the depth, g is the gravitational 
acceleration, and p (h) is the density at depth.

Bringing the constant term of the compliance matrix 
into it yields the corresponding stress expressions in 
Equations XXXI and XXXII:
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The vertical stress σz can be estimated using 
seismic or logging data. By integrating the pre-stack 
wide-azimuth seismic inversion to derive elastic and 
anisotropic parameters and then substituting them into 
Equations  XXXI and XXXII, the horizontal minimum 
principal stress and horizontal maximum principal stress 
of the TTI medium can be predicted. Furthermore, 
using Equations XXXI and XXXII, the TDHSR can be 
calculated as follows (Equation XXXIII):
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The tilted transverse isotropy DHSR represents the 
difference in ratio between the maximum and minimum 
horizontal principal stresses in a TTI medium. It is a 
crucial parameter for evaluating shale fracturability and the 
potential to form a fracture network. When TDHSR is high, 
hydraulic fracturing tends to generate parallel fractures 

aligned with the direction of the maximum horizontal 
principal stress, resulting in non-intersecting fracture planes 
that hinder shale oil and gas flow. Conversely, when TDHSR 
is low, hydraulic fracturing can induce fractures in multiple 
directions, forming an interlaced fracture network that 
enhances oil and gas migration. Therefore, during fracturing 
operations, targeting areas with low TDHSR values can help 
achieve a more effective shale reservoir stimulation.

2.3. Parameter correlation analysis: derivation of the 
in situ stress formula for monoclinic medium

Compared to an HTI medium, which accounts only for the 
influence of vertical fractures, an OA medium considers 
both the effect of vertical fractures and the intrinsic 
anisotropy of the host rock. This intrinsic anisotropy 
may result not only from the horizontal bedding but 
also from the inherent anisotropic nature of shale layers 
or other types of VTI formations. Building on the OA 
medium, a monoclinic medium further accounts for the 
fact that fractures are not strictly vertical but are often 
inclined due to geological structural influences, making it 
a more realistic representation of actual shale formations. 
It can be regarded as a result of the combined effects 
of inclined fractures (which can be considered a TTI 
medium) and the horizontal bedding of a VTI medium. 
Therefore, by integrating the linear slip theory and the 
Bond transformation, the effective compliance tensor, Sm, 
of the monoclinic medium can be expressed as the sum 
of the compliance tensor, SVTI, of the VTI medium, which 
represents the horizontal bedding background, and the 
compliance tensor, Sf, of inclined fractures after applying 
the Bond transformation.

The compliance matrix of VTI medium is presented in 
Equation XXXIV (see page no 20):

The compliance matrix of inclined fractures after Bond 
transformation N S Nf

T
θ θ  is expressed in 

Equation XXXV (see page no 20):

According to the Bond transformation, the compliance 
matrix of a background VTI medium is transformed 
accordingly. The effective compliance tensor of the 
monoclinic medium, SM, can be written as Equation XXXVI:

S S N S NM VTI f
T� � � �  (XXXVI)

Substituting the compliance matrix of the monoclinic 
medium into Hooke’s law can result in the matrix presented 
in Equation XXXVII:
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 (XXXVII)

The elements in Equation XXXVII are explained 
in Equations AI–AXII in the Appendix A. As in the 
derivation of the TTI medium formula in the previous 
text, assuming that there are three principal stresses, the 
horizontal stresses are not equal, the rock is constrained and 
cannot move, and the influence of shear stress is ignored. 
At this time, both the shear stress and the horizontal strain 
are 0 (Equations XXXVIII and XXXIX):34

� � � � �x x y z� � � � �1 11 12 13 0S S Sm m m
 (XXXVIII)

� � � � �y x y z� � � � �2 21 22 23 0S S Sm m m  (XXXIX)

By solving equations through simultaneous equations, the 
expressions for the horizontal minimum principal stress σxm 
and horizontal maximum principal stress σym of the monoclinic 
medium can be obtained through Equations XL and XLI:
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The vertical stress is obtained by integrating the density. 
Bringing the constant term of the compliance matrix into 
it yields the corresponding stress expression in Equations 
XLII and XLIII:
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The vertical stress can be estimated using seismic or 
logging data. By integrating the pre-stack wide-azimuth 
seismic inversion to obtain elastic and anisotropic 
parameters and then substituting them into Equations 
XLII and XLIII, the horizontal minimum principal stress 
and horizontal maximum principal stress of the monoclinic 
medium can be predicted. Furthermore, using Equations 
XLII and XLIII, the MDHSR can be calculated as follows 
through Equation XLIV:
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 (XLIV)

2.4. Verification of the tilted transverse isotropy 
DHSR

The in situ stress formulas for the TTI medium and 
monoclinic medium derived above must be verified 
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for their correctness. Therefore, the DHSR formula 
derived in this paper was compared with the DHSR for 
the HTI medium and the DHSR for the OA medium. 
This comparison involved degenerate cases to verify the 
accuracy of the formulas. Further analysis and verification 
of the DHSR for the HTI medium, as derived by Gray,7 
are given by the following formula in Equation XLV:

DHSR
EZ
EZ v

y x

y

N

N

�
�

�
� �

� �

� 1
 (XLV)

The formula for the DHSR of the OA medium derived 
by Ma et al.11 is presented in Equation XLVI:
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, M = λ + 2µ is the 
P-wave modulus.

The in situ stress formula derived for the TTI medium 
is based on the anisotropic media theory and establishes 
the relationship between stress and strain in TTI media 
through Hooke’s law. By applying the assumptions of 
Iverson’s theorem, the in situ stress formula expressed in 
terms of anisotropic and elastic parameters was obtained. 
Furthermore, the TDHSR was given by Equation XXXIII. 
The TTI medium can be considered as a complex medium 
obtained by rotating the VTI medium. The elastic matrix 
of the TTI medium consists of two parts: the isotropic 
background medium and the anisotropic component 
caused by fractures. When the inclination angle reached 
90°, the strata were considered as an HTI medium. 
Therefore, by substituting the inclination angle of 90° into 
the principal stress formula and TDHSR formula derived in 
this paper, the results matched perfectly with the principal 
stress formula and DHSR formula of the HTI medium 
as derived by Gray (Equation XLVII). The workflow is 
illustrated in Figure 3. This comparison fully supports the 
validity of the in situ stress formula for the TTI medium, 
considering the influence of inclined fractures, as proposed 
in this paper.
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2.5. Verification of the monoclinic DHSR

Following a similar approach to deriving the in situ 
stress formula for the TTI medium, the in situ stress 
formula for the monoclinic medium was derived from 
the theory of anisotropic media. Using Hooke’s law, the 
relationship between stress and strain in the monoclinic 
medium was established. According to Iverson’s 
theorem, the in situ stress formula, expressed in terms 
of anisotropic and elastic parameters, was obtained, 
along with the MDHSR for the monoclinic medium, 
given by Equation XLIV. For the monoclinic medium, it 
can be regarded as a result of the rotation of the vertical 
fractures assumed in the OA medium. The elastic matrix 
of the monoclinic medium consisted of a VTI medium 
component, representing horizontal strata, and a TTI 
medium component, representing inclined fractures. As 
the inclination angle increased, rotation occurred. When 
the inclination angle θ reached 90°, the medium was 
regarded as an OA medium. Therefore, by substituting 
an inclination angle of θ = 90° into the principal stress 
formula and MDHSR formula of the monoclinic medium 
derived in this paper, the formula degraded completely, 
yielding results that matched precisely with the principal 
stress formula and DHSR formula for the OA medium 
derived by Ma et al.11 This fully supports the validity of 
the in situ stress formula for the monoclinic medium, 
considering the combined influence of inclined fractures 
and horizontal bedding.

Compared to the TTI medium, the monoclinic 
medium further incorporates the influence of horizontal 
bedding in strata, in addition to considering the effect of 
inclined fractures. In the in situ stress formula and the 
MDHSR, both the compliance parameters of the TTI 
medium (representing fractures) and the anisotropic 
parameters of the VTI medium (representing horizontal 
bedding) were present. It can be considered that when 
the influence of horizontal bedding was ignored in the 
monoclinic medium, the shale strata degenerated from 
the monoclinic medium to the TTI medium. To verify 
the rationality of the formula derived in this paper, 
we further simplified it by removing the anisotropic 
parameters from the in situ stress and MDHSR formulas 
of the monoclinic medium. Specifically, the parameters 
ε, δ and γ were set to zero. This step allowed for a more 
intuitive assessment of the formula’s validity and ensured 
its broader applicability in practical scenarios. The 
resulting in situ stress and TDHSR formula, obtained after 
eliminating the anisotropic parameters, are presented in 
Equations XLVIII–L:
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In the transversely isotropic media, the relationship 
between the P-wave modulus, the S-wave modulus, the 
Young’s modulus, and the Poisson’s ratio can be expressed 
as follows (Equations LI & LII):
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Substituting this relationship into Equations XLVIII–L, 

with transformations, we obtained Equations LIII–LV:
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Figure 3. Workflow for converting the tilted transverse isotropy differential horizontal stress ratio to the differential horizontal stress ratio (DHSR)
Note: θ represents the fracture dip angle, E represents the Young’s modulus, and v represents the Poisson’s ratio. ZN is the normal compliance tensor of 
the fracture surface, representing the unit normal displacement (deformation) caused by a unit normal stress. ZT is the tangential compliance tensor of 
the fracture surface, representing the unit tangential displacement caused by a unit tangential stress (parallel to the contact surface). ZN increases with 
increasing θ. ZT depends only on 2θ, when θ = 90°, sin2θ = 0. Therefore, DHSR is independent of ZT
Abbreviations: HTI: Horizontally transversely isotropic medium; TTI: Tilted transversely isotropic medium
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Equations LIII–LV are consistent with the in situ stress 
and TDHSR formulas (Equations XXXI–XXXIII) of the 
TTI medium derived previously. The consistency of the 
two was mutually verified through formula degradation, 
thus proving the correctness of the in situ stress formulas 
of the two complex media derived in this paper.

3. Complex medium in situ stress sensitivity 
analysis
From the research and derivation of the complex medium 
in situ stress formulas presented earlier, it can be concluded 
that, compared to the DHSR of the HTI and OA media, 
which are controlled by a limited number of parameters, 
the TDHSR and MDHSR derived in this paper are 
influenced by a greater number of factors. To gain a deeper 
understanding of the in situ stress formula, the influence 
of individual parameters on the TDHSR and MDHSR 
formulas derived above was further studied through a 
controlled variable approach.

3.1. Influence of elastic parameters and anisotropic 
parameters on the tilted transverse isotropy DHSR

Taking the study of the influence of Young’s modulus on 
the TDHSR as an example, assume that the Poisson’s ratio 
of the TTI background medium is v = 0.35. The Young’s 
modulus increases by 2 GPa at each step, with the range 
spanning from 20 GPa to 40 GPa. The normal compliance 
and tangential compliance of fractures are given as 
ZN = 2.5×10−12 and ZT = 2.5×10−12, respectively. The 
fracture dip angle starts at 0° and increases by 10° at each 
step, with a maximum dip angle of 90°. As the fracture 
dip angle changes, the influence of Young’s modulus on 
the TDHSR is shown in Figure  4. When the fracture 
dip angle is 0°, the TTI medium degenerates into a VTI 
medium. According to Gray’s assumption, TDHSR is zero 
at this point. For a fixed fracture dip angle, as Young’s 
modulus increases, TDHSR shows a positive correlation. 
In other words, the greater the Young’s modulus, the 
higher the TDHSR. Furthermore, with other parameters 
held constant, TDHSR exhibited a linear increase as the 
fracture inclination angle increased.

Following the same approach to study the influence of 
different parameters on TDHSR, it can be observed that 
as various parameters increase, TDHSR exhibits either 
an increasing or decreasing trend. When the stratum 

dip angle is 0°, TDHSR is zero. As the stratum dip angle 
increases, TDHSR shows an increasing trend. In particular, 
for tangential compliance, when the fracture dip angle 
reaches 90°, TDHSR remains unchanged with variations 
in tangential compliance. Through the derivation and 
analysis of the above formula, it can be concluded that 
when the TTI medium is rotated by 90° to become an HTI 
medium, the DHSR formula is given by Equation XLV. At 
this point, the tangential compliance term in the formula 
is eliminated, and the DHSR becomes independent of 
tangential compliance, resulting in a constant value.

Figure  5 shows the variation of TDHSR under the 
combined influence of anisotropic and elastic parameters. 
Taking Figure 5A as an example, TDHSR increased with 
both normal compliance and Young’s modulus. TDHSR 
is more sensitive to normal compliance. From all the 
subplots in Figure  5, it can be observed that TDHSR is 
more sensitive to anisotropic parameters compared to 
elastic parameters. Consistent with the conclusions of the 
single-parameter sensitivity analysis, TDHSR increased 
linearly with the dip angle.

3.2. Influence of elastic parameters and anisotropic 
parameters on the monoclinic DHSR

Similarly, considering the study of the influence of the 
P-wave modulus on the MDHSR, assume that the shear 
wave modulus of the monoclinic background medium is 
µ = 10 GPa. The P-wave modulus M increases by 5 GPa at 
each step, with the range spanning from 25 GPa to 45 GPa. 
The anisotropic parameters are set as ε = 0, δ = 0 and 
γ = 0, while the normal weakness and tangential weakness 
of fractures are ΔN = 0.35 and ΔT = 0.1, respectively. The 
fracture dip angle starts at 0° and increases by 10° at each 
step, with a maximum dip angle of 90°. As the fracture dip 
angle changes, the influence of the P-wave modulus M on 
the MDHSR is shown in Figure 6. When the fracture dip 
angle is 0°, the monoclinic medium degenerates into a VTI 
medium. According to Gray’s assumption, MDHSR is zero 
at this point. For a fixed fracture dip angle, as the P-wave 
modulus increases, MDHSR shows a negative correlation, 
indicating that a greater P-wave modulus results in a 
smaller MDHSR. With other parameters held constant, 
MDHSR exhibited a linear increase as the fracture dip 
angle increased. When the fracture dip angle reached 
90°, MDHSR remained unchanged with variations in the 
P-wave modulus. Through the derivation and analysis 
of the above formula, it can be concluded that when the 
monoclinic medium is rotated by 90° to become an OA 
medium, the DHSR formula is given as Equation XLVI. 
At this point, the P-wave modulus M is eliminated from 
the formula, and the DHSR becomes independent of the 
P-wave modulus, resulting in a constant value.
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When the dip angle of the ground layer or fracture is 
0°, the monoclinic medium simplifies to a VTI medium. 
According to Gray’s assumption, the MDHSR is 0 in this 
case. When the fracture dip angle remains fixed, the MDHSR 
exhibits a positive correlation with the anisotropy parameter 
ε, a negative correlation with the anisotropy parameter δ, 
and a positive correlation with the anisotropy parameter 
γ. However, when the fracture dip angle reaches 90°, the 
MDHSR remains unaffected by the anisotropy parameters.

Following the same approach to studying the influence 
of different parameters on MDHSR, it can be observed that 
as various parameters increase, MDHSR exhibits either 
an increasing or decreasing trend. When the stratum dip 
angle is 0°, MDHSR remains 0. As the stratum dip angle 
increases, MDHSR shows an increasing trend. Notably, for 
P-wave modulus, tangential compliance, and anisotropic 
parameters, when the fracture dip angle reaches 90°, 
MDHSR remains unchanged despite variations in these 
parameters. Through the derivation and analysis of 
the above formula, it can be concluded that when the 
monoclinic medium is rotated by 90° to become an OA 
medium, the DHSR is given in Equation XLVI. At this 
point, the parameter terms in the formula are eliminated, 
indicating that the DHSR is unaffected by these values and 

remains a constant.

Figure 7 illustrates the variation of MDHSR under the 
combined influence of anisotropic and elastic parameters. 
Taking Figure 7C as an example, MDHSR increases with 
both normal compliance and S-wave modulus. MDHSR 
is more sensitive to normal compliance. From all the 
subplots in Figure  7, it can be observed that MDHSR is 
more sensitive to anisotropic parameters compared to 
elastic parameters. Consistent with the conclusions of the 
single-parameter sensitivity analysis, MDHSR increases 
linearly with the dip angle.

4. Model example analysis
4.1. Methodology and workflow for in situ stress 
prediction

Based on the previously discussed stress characterization 
methods for complex media, a stress inversion approach 
grounded in complex medium theory can ultimately be 
established. This method primarily consists of five steps.

4.1.1. Seismic data preparation

To invert for the anisotropic parameters used in stress 
prediction, at least six azimuthal elastic impedance 

Figure  4. Influence of elastic parameters and anisotropic parameters on the tilted transverse isotropy differential horizontal stress ratio (TDHSR). 
(A) Young’s modulus. (B) Poisson’s ratio. (C) Normal compliance. (D) Tangential compliance
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(EI) data volumes are required. The wide-azimuth pre-
stack seismic data are divided according to the azimuth 
rose diagram. Starting from zero degrees, six pre-stack 
seismic gathers are selected to ensure uniform azimuthal 
distribution and roughly equal fold coverage. The final 
selected data consist of six volumes—representing small, 
medium, and large incidence angles—at the two azimuths 
with the highest fold coverage.

4.1.2. Azimuthal elastic impedance inversion

Using the six partial-angle stacked seismic volumes, 
azimuthal EI inversion is performed individually for each 
volume. By incorporating rock physics information and 
constraints such as wavelets, well logs, seismic horizons, 
and low-frequency models, six azimuthal EI volumes 
are obtained through constrained elastic impedance 
inversion.

4.1.3. Elastic parameter inversion based on elastic 
impedance

The six-angle elastic impedance volumes are used as 
input to derive the complete volumes of P-wave velocity, 
S-wave velocity, density, and anisotropic parameters 

within the study area. Fracture compliance parameters 
can further be obtained through equation-based 
transformations.

4.1.4. Determination of formation and fracture dip 
angles

Given that this study focuses on stress prediction in shale 
formations with bedding or fracture dip (i.e., complex 
media), it is necessary to determine the dip angle. Due 
to its low cost and maturity, image logging is typically 
used to measure and determine the dip of formations and 
fractures.

4.1.5. Calculation of horizontal stress ratio and stress 
prediction

Once the elastic parameters, anisotropic parameters, 
and dip angles of formations and fractures required 
for stress calculation in complex media are obtained, 
the previously derived complex medium stress 
equations—based on linear slip theory, anisotropy theory, 
and Bond transformation—are used. Ultimately, the 
prediction of in situ stress is achieved by calculating the 
DHSR, either TDHSR or MDHSR, for complex media.

Figure  5. Influence of elastic parameters and anisotropic parameters on the tilted transverse isotropy differential horizontal stress ratio (TDHSR). 
(A) Normal compliance and Young’s modulus. (B) Tangential compliance and Young’s modulus. (C) Normal compliance and Poisson’s ratio. (D) Tangential 
compliance and Poisson’s ratio
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Figure 6. Influence of fracture compliance parameters on the monoclinic differential horizontal stress ratio (MDHSR). (A) P-wave modulus. (B) S-wave 
modulus. (C) Anisotropic parameter. (D) Anisotropic parameter. (E) Anisotropic parameter. (F) Normal compliance. (G) Tangential compliance
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4.2. Field data experiment

To further validate the correctness of the in situ stress 
formula derived in this study, actual logging data must 
be used for trial calculations. The measured logging 
curve from Well A, located in the shale formation of 
the Sichuan Basin, China, was selected for this purpose. 
A  fractured shale formation petrophysical model was 
constructed to perform the model trial calculations. 
By inputting measured parameters such as P-wave and 
S-wave velocities, rock mineral composition, as well as 
the bulk modulus, shear modulus, and density of each 
component, along with water saturation and porosity, 
the anisotropic parameters and fracture compliance 
parameters required for the in situ stress formula were 
obtained. Figure  8 presents the anisotropic parameters 
ε, δ, and γ, the fracture normal compliance ZN, the 
tangential compliance ZT, Young’s modulus, Poisson’s 
ratio, P-wave modulus M, and S-wave modulus µ for 
Well A.

The stress measurement point on Well A was selected 
for model trial calculations. By comparing the DHSR at the 
measurement point with TDHSR, derived from the TTI 
medium theory, and MDHSR, derived from the monoclinic 

medium theory, an error analysis was conducted. Figure 8 
presents a comparison of the DHSR at the measured point 
with TDHSR based on the TTI medium theory, while 
Figure 9 shows a comparison with MDHSR based on the 
monoclinic medium theory. As observed in the figures, 
both TDHSR and MDHSR calculations aligned closely 
with the measured DHSR, demonstrating the practical 
applicability of the formula derived in this study. An 
error analysis was performed on the results, as shown in 
Table  3, which presents the error analysis of DHSRs at 
different measurement points. The table indicates that 
the errors of TDHSR and MDHSR obtained from the 
model trial calculations fall within a reasonable range. By 
comparing the errors, it is evident that MDHSR, based on 
the monoclinic medium theory—which accounts for both 
horizontal stratification and inclined fractures—exhibited 
smaller errors and aligned more closely with the measured 
results than TDHSR, which is based on the TTI medium 
theory and only considers a single inclined stratum or 
fracture.

5. Discussion
It is important to acknowledge that the current validation 
of the TDHSR and MDHSR methods was based on 

Figure 7. Influence of fracture compliance parameters on the monoclinic differential horizontal stress ratio (MDHSR). (A) Normal compliance and P-wave 
modulus. (B) Tangential compliance and P-wave modulus. (C) Normal compliance and S-wave modulus. (D) Tangential compliance and S-wave modulus
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data from a single well in the Sichuan Basin. While 
the method demonstrated promising accuracy for the 
studied well, its generalization to other geological settings 
requires caution. The Sichuan Basin’s unique lithology 
and tectonic history may limit direct extrapolation to 
basins with differing diagenetic processes or structural 
complexities.

Future work should consider expanding the application 
and validation of the proposed methods using data from 
wells in other basins with diverse geological characteristics. 
This includes, for example, the Ordos Basin (characterized 
by stable cratonic settings), the Tarim Basin (with complex 

deep structures), and foreland basins with strong tectonic 
deformation. In addition, future work can explore 
formations with different structural types (e.g., anticlines, 
fault blocks) and lithologies (e.g., carbonate, sandstone, and 
tight shale formations). Furthermore, the use of synthetic 
seismic models and publicly available benchmark datasets 
should be considered to provide supplementary validation 
and to better isolate and understand the influence of 
specific parameters such as fracture dip, azimuthal 
anisotropy, and stratification. Multi-case verification will 
enhance the robustness and applicability of the TDHSR 
and MDHSR approaches, making them more adaptable to 
various exploration scenarios.

Figure 8. Elastic parameters and anisotropic parameters of Well A
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Table 3. Error analysis table of horizontal stress difference ratios at different measured points

Depth (m) Measured horizontal maximum stress
(Mpa)

Measured horizontal maximum stress
(Mpa)

Horizontal stress 
difference ratio

TDHSR Error MDHSR Error

3,483 101.4 86.3 0.149 0.135 9.4% 0.152 2.0%

3,490 102.3 90.5 0.115 0.105 8.7% 0.117 1.7%

3,501 104.6 88.5 0.153 0.141 7.8% 0.146 4.6%

3,508 103.2 88.9 0.139 0.126 9.4% 0.141 1.8%

Abbreviations: MDHSR: Monoclinic differential horizontal stress ratio; TDHSR: Tilted transverse isotropy differential horizontal stress ratio.

6. Conclusion
In situ stress plays a crucial role in the formation and 
distribution of oil and gas reservoirs. The development 
and evolution of geological structures result from the 
action and variation of tectonic stress. The underground 
stress field influences rock layer deformation, fracture 
formation, and crack development. For instance, faults 
are formed due to the fracturing or sliding of strata under 
in situ stress. The type of faults can be assessed based on 
in situ stress prediction results. In addition, the variation 
of in situ stress differs across lithologies, allowing it 
to serve as an indicator of underground lithology. 
Therefore, predicting in situ stress holds significant 
research value. A thorough understanding of the in situ 
stress field enables the identification of potential oil and 
gas accumulation areas, providing essential guidance for 
exploration efforts.

This paper primarily investigated the seismic prediction 
method for in situ stress based on complex medium 
theory. It built upon existing seismic prediction methods 

derived from HTI and OA media while considering the 
impact of inclined fractures in actual shale formations. 
By incorporating the assumptions of Schoenberg and 
Iverson and utilizing the constitutive equation along with 
coordinate transformations of the elastic matrix, this study 
derived in situ stress formulas for both TTI and monoclinic 
media, leading to the corresponding DHSRs: TDHSR and 
MDHSR.

Finally, a model trial calculation was performed using 
actual logging data from a shale formation. The results 
demonstrated that the errors of TDHSR and MDHSR 
remained within a reasonable range. Compared to TDHSR, 
which was based on the TTI medium and considered only 
a single inclined stratum or fracture, MDHSR, derived 
from the monoclinic medium theory, accounted for both 
horizontal stratification and inclined fractures, leading to 
smaller errors and results that aligned more closely with 
the measured data. In conclusion, the TDHSR and MDHSR 
formulas derived in this study exhibited high accuracy and 
strong practical applicability.
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Appendix A
The elements in Equation XXXVII are explained as follows in Equations AI–AXII:
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where ε, γ, and δ are Thomsen anisotropy parameters. ε describes the difference in the P-wave velocity between the vertical 
and horizontal directions, while γ describes the difference in the S-wave velocity between the vertical and horizontal directions. 
M is the longitudinal wave modulus, representing the ratio of axial stress to axial strain under a uniaxial strain condition.
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