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Abstract
Simulation of seismic waves is a critical component in the imaging of subsurface 
structures using actual data, where numerical dispersion remains a challenging task. 
The finite-difference (FD) approach is popular for solving wave equations because 
it is simple to implement and requires less memory and computing time due to 
recursion. However, the staggered grid finite-difference (SGFD) methods have gained 
popularity due to their improved accuracy and stability. In this study, we introduce 
an optimization approach using a genetic algorithm (GA) to minimize numerical 
dispersion. The SGFD coefficients were optimized to reduce numerical errors and 
improve the accuracy of seismic wave simulations, considering both spatial and 
temporal domains. Numerical simulations applied to both homogeneous and 
heterogeneous velocity models demonstrate that the GA-optimized SGFD schemes 
achieve substantial reductions in dispersion, even with lower-order approximations, 
when compared to other methods. An important advantage of the proposed 
method is that it maintains high accuracy while using lower-order approximations, 
which significantly reduces computational costs. For example, the optimization of 
12th-order FD coefficients took approximately 20 s on a standard computer with 
64 GB RAM. The findings demonstrate the efficiency of the proposed approach in 
improving the accuracy and stability of seismic wave simulations, providing a reliable 
solution for high-resolution seismic imaging.

Keywords: Numerical dispersion; Seismic wavefield; Staggered grid finite-difference 
method; Genetic algorithm; Modeling; Optimization

1. Introduction
The numerical simulation of seismic waves has several applications in both applied 
seismic and seismology, and it is essential for understanding the Earth’s subsurface 
structure. The finite-difference method (FDM) is one of the most popular techniques 
used to solve wave equations.1-4 However, despite its popularity, the issue of numerical 
dispersion in simulating seismic waves remains a significant challenge. Numerical 
dispersion is a phenomenon that occurs in numerical simulations of wave propagation, 
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where the phase velocity depends on its wavelength and 
the discretization parameters of the numerical method. 
This leads to artificial distortion of the wave as it travels 
through the computational domain.

The numerical representation of a wave equation 
introduces errors that alter the phase velocity of the 
wave components. The causes of numerical dispersion 
include inadequate spatial or temporal resolution (i.e., 
large grid spacing or time steps), the choice of numerical 
scheme, and its truncation errors. Wave components with 
shorter wavelengths are more susceptible to numerical 
dispersion. The effects of dispersion may manifest as 
waves appearing to travel at incorrect speeds, smearing, 
or degraded modeling accuracy. Numerical dispersion is 
analyzed through the dispersion relation, which relates the 
numerical wavenumber to the physical wavenumber.

Alternative numerical approaches, including the Finite 
Element Method5-9 and Finite Volume Method,10-12 can 
be employed. Moreover, different grid schemes—such as 
conventional grid, staggered grid, variable grid, irregular 
grid—and various explicit and implicit formulas, offer 
further alternatives for numerical modeling. Staggered 
grid finite-difference (SGFD) methods, in particular, have 
gained prominence due to their enhanced accuracy and 
stability compared to conventional grid FDMs. The key 
distinction in SGFD methods is the utilization of first-order 
stress and strain relations instead of the direct second-
order displacement relations. This approach not only 
increases accuracy but also leads to faster convergence13 by 
reducing interpolation errors.

In general, finite-difference (FD) coefficients are 
determined through two main approaches: Taylor series 
expansion and optimization. Taylor series expansion 
involves representing functions as polynomials and 
estimating FD coefficients by comparing the coefficients 
of the polynomial dispersion relation equations.14-17 
Optimization methods18-23 seek to minimize the dispersion 
error using techniques such as least squares, simulated 
annealing, and the sampling approximation method.24 
Recent studies also explore reducing dispersion at low 
wavenumbers using Lagrange dual problems25 and explicit 
methods with optimized constant coefficients.26

Conventionally, SGFD coefficients are calculated in 
the space domain, but the dispersion relation depends 
on both space and time domains. Therefore, to achieve 
greater accuracy at designated frequencies, it is necessary 
to consider both domains.14 A recent study4 proposed an 
optimized FDM that minimizes dispersion by deriving 
explicit (conventional grid) FD coefficients using a genetic 
algorithm (GA). This method uses the combined time 
and space dispersion relation to compute FD coefficients 

adaptively based on parameters such as velocity, grid size, 
and time sampling to achieve greater accuracy.

SGFD methods have several advantages over 
conventional grid FDMs. SGFD methods can handle a 
wider range of grid geometries and boundary conditions 
than conventional grid methods. They are less constrained 
by Courant number limitations, which can significantly 
reduce computing time by allowing the use of greater 
time steps without compromising stability. In addition, 
SGFD methods are well-suited to optimization techniques. 
Improved results can be obtained by further minimizing 
numerical dispersion through the optimization of FD 
coefficients.

We implemented an approach to solve the wave 
equation using SGFD with GA, aiming to decrease 
numerical dispersion and computation time. The SGFD 
coefficients were derived from a dispersion relation by 
considering both time and space, using plane wave theory. 
The normalized phase velocity was used as the objective 
function in our optimization approach, which considers all 
pertinent variables such as velocity, grid size, and time step.

2. Methodology
2.1. FD coefficients through conventional methods

The 1D acoustic wave equation can be expressed as27:
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where ρ is the density; s(t) is the source field; and M’ 
is the P-wave modulus, given by M’ = λ+2μ = ρv2, where 
λ and μ are the lame constants, v is the velocity, and is the 
pressure field.

The 2Mth order SGFD formula for calculating the first-
order derivatives is expressed as:
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where u u x i x t j ti
j � � �� �� �, ; x and t are the spatial 

and temporal coordinates; ∆x and ∆t are the grid spacing 
and time step, respectively; i and j are the spatial and 
temporal indices, and ai is the ith FD coefficient.

The second-order FD time derivative is used as:
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where u0
0  is the pressure field at the point (x,t); u0

1  is at 
the future time step (x,t + j∆t); and u0

1− is at the past time 
step (x,t − j∆t).
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Using this second-order time derivative and the 2Mth 
order spatial derivatives, the wave equation is expressed as:
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where ai and aj are the coefficients.

By considering plane wave theory, the wave equation is 
expressed as:

u ei
j k x i x t j t� �� �� �� �� �� �( ) � (5)

where k is the wavenumber, ω is the angular frequency, 
and � � �1 .

Substituting Equation (5) into the spatial derivative 
term Equation (2), the wavenumber is written as:
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Using Taylor series expansion, the wavenumber is 
written as:
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By comparing the coefficients of on both sides of 
Equation (8), we obtain the SGFD coefficients a1, a2,…am.

2.2. FD coefficients using both time and space 
domains

Liu and Sen15 introduced an improved FDM by considering 
the joint time and space dispersion relation, ensuring 
better accuracy and stability. This method modifies the FD 
coefficients to satisfy the exact dispersion relation, thereby 
reducing errors in wave propagation.

By substituting Equation (5) into Equation (2), we 
obtain:
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Using the sine function expansion, the coefficients for 
wave equation modeling are derived as:
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2.3. FD coefficients through the optimization method

To minimize numerical dispersion and enhance 
accuracy, it is necessary to balance spatial and temporal 
discretization. Although refining the grid size and 
reducing the time step can improve accuracy, this 
significantly increases the computation time. An efficient 
alternative is to optimize FD coefficients by considering 
both spatial and temporal dispersion relations. Instead of 
relying solely on conventional Taylor series expansions, 
a GA can be employed to fine-tune FD coefficients. This 
approach reduces dispersion errors while maintaining 
computational efficiency, without the need for higher-order 
approximations, smaller grid sizes, or reduced time steps. 
GA, a global optimization method based on the theory of 
natural evolution, has been shown in previous studies to 
produce results that are equal to or better than those of 
simulated annealing28 and to provide improved accuracy.29 
GA maintains a population of individuals, from which new 
generations are created through crossover and mutation 
operations. As the dispersion relation depends on both 
space and time, the phase velocity ratio was used as a fitness 
function for optimization. Over successive generations, 
the population evolves toward an optimal solution. The 
workflow for optimization is shown in Figure 1, and the 
steps for obtaining optimized FD coefficients are described 
below.

Figure 1. Workflow for optimization of finite-difference (FD) coefficients.
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The sinc interpolation was used to derive the FD 
operator.16 By applying the window values derived from 
this method, FD coefficients can be determined using 
Shannon’s sampling theorem30 as:
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The first derivative on a staggered grid was evaluated at 
midpoint x x�

1
2
� , as follows:

�
�

� �
��

��
�
��

�

�

�
��

�
�
�

�

�
��

�
���

�

�u
x x

n

n
x x n

|
( )

( )
1
2 2

1 1
1
2

1
2

� � 



sin

��
�
�

un � (12)

For a 2M-point SGFD operator approximation, 
Equation (12) becomes:
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where wn
M  are the window values.

The SGFD coefficients (an) were then determined from 
Equation (13) as:
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In the optimization process, an initial population 
comprising numerous sets of random M window values 
is generated for the 2N-order approximation, within the 
range of 0–1. Any number of initial sets can be considered; 
in this study, around 100 sets were used to ensure that the 
algorithm performs a global search. The FD coefficients 
are then computed using Equation (14). The phase velocity 
ratio (or dispersion relation) was used as the fitness 
function in GA.

The phase velocity ratio was calculated by substituting 
Equation (5) in Equation (4), expressed as:
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x
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During each iteration process, crossover and mutation 
operations are applied to generate child populations 
of window values that better fit the fitness function. 
A  weighted function was incorporated into the fitness 
function to minimize errors more effectively at low 
wavenumbers, as described by Vanga et al.4 The final fitness 
function is given by:

fit w err w errmean std� �1 2 � (16)

where w1 and w2 are the weights assigned to the mean 
error (errmean) and the standard deviation of the error 
(errstd), respectively, with the condition w1+w2 = 1. The 
mean error was calculated as:
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Where wg(i) is the weighting function over K samples, 
K is the total number of wavenumber indices.

The standard deviation of the error is calculated as:
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where err(i) = |(1-δi)| is the absolute error of the phase 
velocity ratio.

The weights w1 and w2 are user-defined parameters 
that determine the contribution of each error component 
to the final fitness value. In this study, different weighting 
functions were tested to identify the most suitable 
configuration.

3. Results
We tested linear, exponential, and cubic weighting 
functions by varying the weights used to calculate the 
mean dispersion error and standard deviation. After 
conducting several trials and evaluating the results, the 
linear weighting function wg(i) = (kmax−i+1) was found 
to provide the best outcomes.4 Based on this finding, we 
finalized the weight values as w1 = 0.8 and w2 = 0.2, which 
yielded optimal performance. These values are used in 
all subsequent numerical examples. We computed the 
FD coefficients derived using the GA and compared the 
resulting dispersion curves (phase velocity ratios), as shown 
in Figure  2, with those obtained using conventional and 
time-space Taylor series-derived FD coefficients.15 These 
GA-derived solutions provide broader kh coverage and 
show minimal frontal (time) dispersion, as the coefficients 
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are optimized considering both space and time domains. 
The proposed method achieves the accuracy of higher-
order conventional and time-space methods even at lower 
orders (e.g., the proposed 8th-order method is equivalent to 
the 16th-order time-space and the 12th-order conventional 
method, as shown in Figure 2). The grid spacing is 10 m, 
the time step is 1 ms, and the wave propagation velocity is 
2.5 km/s.

We also compared the results with the previously 
proposed GA-based explicit FD method,4 as shown in 
Figure 3, which shows improved performance when using 
the staggered grid FDM over the explicit FDM.

To examine how dispersion varies with velocity for 
three different methods, we calculated phase velocity ratios 
(Figure  4) for wave velocities of 1.5  km/s (Figure  4A), 
2.5  km/s (Figure  4B), and 4.5  km/s (Figure  4C), using 

4th, 8th, 12th, and 16th orders of approximation. As shown 
in Figure 4, it is observed that the new method produces 
significantly less dispersion compared to the conventional 
and time-space methods across all approximation orders 
and velocity settings.

Figure  5 shows the dispersion curves for different 
velocities using a 12th-order approximation for the 
conventional method (Figure 5A), the time-space method 
(Figure  5B), and the proposed method (Figure  5C). As 
shown in Figure  5A, it is clearly observed that, with 
increasing velocity, the conventional method exhibits high 
dispersion in both temporal and spatial components. In 
the case of the time-space method, temporal dispersion is 
eliminated; however, spatial dispersion remains significantly 

Figure  3. Dispersion curves versus kh for conventional, time-space, 
and new genetic algorithm (GA)-based staggered grid finite-difference 
methods (FDM) compared with the GA-based explicit FDM for a 
12th-order approximation.

Figure 2. Plot of phase velocity ratio (dispersion) versus the product of 
the wavenumber (k) and grid spacing (h) for conventional, time-space 
and new genetic algorithm-based staggered grid methods, across various 
orders (M) of approximations.

Figure 4. Dispersion versus the kh for different velocities v: (A) 1.5 km/s, 
(B) 2.5  km/s, and (C) 4.5  km/s, for various order sof approximations 
M, using conventional, time-space, and new genetic algorithm-based 
staggered grid methods. The grid spacing is 15 m, and time step is 1 ms.

B

C

A
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high at larger kh values compared to the proposed method. 
Although the time-space method exhibits stable dispersion 
behavior, it has limited wavenumber coverage. In contrast, 
the proposed method demonstrates greater stability and 
broader wavenumber coverage than both the conventional 
and time-space methods. The stability ratio (s) was 
calculated using the conventional eigenvalue method of 
stability analysis15:

s a
m

M

m�
�

�
�

�

�
�

�

�

�
1

1

Figure  6 shows the stability ratio as a function of 
increasing approximation order for the conventional, time-

space, and proposed methods, using a velocity of 2.5 km/s, 
a time step of 1 ms, and a grid spacing of 15 m. It is also 
evident that the staggered FDM offers greater stability than 
the explicit FDM. SGFD methods are less constrained by 
Courant number limitations, which allows for the use of 
larger time steps without compromising stability. This, in 
turn, significantly reduces computation time.

3.1. Numerical examples of 2D wave propagation

For the 2D wave simulation, we consider three models: (i) a 
single velocity medium with 2.5  km/s, (ii) a horizontal-
layered model, and (iii) the 2004 British Petroleum (BP) 
benchmark salt-dome model. We compared 2D wave 
propagation results at different simulation times using 
the conventional and time-space method for 4th, 8th, and 
12th-order approximations. A  40th-order conventional 
method was used as the reference solution. Figure  7 
presents 2D wave propagation snapshots for the 
single-velocity medium. Quarter I shows the reference 
solution using the 40th-order conventional method; 
quarter II displays results from the GA-based method; 
quarter III shows the conventional method; and quarter 
IV is the time-space method. Snapshots were taken at 0.5 
s (top panel) and 1.15 s (bottom panel). The wavefields 
were generated in a single velocity (2.5 km/s) medium 
measuring 3 km × 3 km, using a grid spacing of 15 m, 
a time step 1 ms, and a 30  Hz Ricker wavelet as the 
source. The results show that the proposed GA-based 
method exhibits significantly lower dispersion across 
all snapshot times compared to other SGFD methods.

Figure  8 shows the horizontal-layered model 
(Figure 8A) and the 2004 BP benchmark salt-dome model31 

(Figure 8B), both used to generate synthetic shot gathers. 
To reduce computational cost, we used staggered FD 

Figure 5. Dispersion versus kh for varying velocities v, using a 12th-order 
approximation for: (A) conventional, (B) time-space, and (C) new genetic 
algorithm-based staggered grid methods. Grid spacing is 10 m, and time 
step is 1 ms.

B

C

A

Figure  6. Comparison of stability conditions for the proposed genetic 
algorithm (GA)-based staggered grid finite-difference method (FDM; 
green) with the GA-based explicit FDM (blue), conventional staggered 
grid FDM (red), and time-space staggered grid FDM (purple).
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coefficients optimized for the minimum velocity in each 
model. Given that lower velocities (i.e., higher kh) are more 
dispersive and exhibit reduced wavenumber (k) coverage 
compared to higher velocities, coefficients optimized for 

the lowest velocity in the model can be applied effectively 
across the full velocity range. However, if the velocity 
range in the model is very broad, coefficients may need to 
be optimized for different velocity zones to achieve better 

Figure 7. Snapshots of 2D wave propagation in a homogeneous model for 4th, 8th, and 12th orders. Quarter I shows the reference wavefield generated using 
the 40th-order conventional method; quarter II is the new genetic algorithm-based method; quarter III is the time-space method; and quarter IV is the 
conventional method.

Figure 8. Velocity models used in the study: (A) the horizontal-layered model, and (B) the 2004 BP benchmark salt-dome model. Red stars indicate the 
source positions.

BA
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accuracy. The values of the optimized coefficients for a 
12th-order approximation, using a grid size of 10 m and a 
time step of 1 ms, are provided in Table 1.

Figure  9 shows the shot gathers computed using the 
horizontal-layered model (Figure 8A) and Figure 10 shows 
the shot gathers generated from the BP 2004 benchmark 
salt-dome model (Figure  8B). The horizontal-layered 
model was used to interpret wave propagation without 
diffraction effects. The source was placed at x = 3990  m 
and z = 2250 m. We employed the first derivative of the 
staggered scheme to discretize the wave equation and 
used a time step ∆t = 1 ms and grid spacing ∆x = 10 m. 

Shot gathers were computed using both the conventional 
and GA-based methods. The gather generated using 
the 40th-order conventional method is considered the 
reference (Figures  9I and 10I). Figures  9(II) and 10(II) 
show the results for the 12th-order conventional method. 
Figures  9(III) and 10(III) present the new GA-based 
method using FD coefficients optimized with the lowest 
velocity in the model, while Figures  9(IV) and 10(IV) 
show the new GA-based method using FD coefficients 
optimized over a range of velocities. Compared to the 
conventional method, the GA-based optimized method 
yielded improved results with reduced dispersion and 

Table 1. Optimized finite‑difference coefficients for 12th‑order approximation

Velocity (m/s) Coefficient 1 Coefficient 2 Coefficient 3 Coefficient 4 Coefficient 5 Coefficient 6

1,500 1.24712819 −0.11964252 0.03317386 −0.01119058 0.00340783 −0.00058573

2,000 1.23966780 −0.11480708 0.03063733 −0.00987106 0.00270170 −0.00024662

2,500 1.23345081 −0.11135320 0.02889657 −0.00883066 0.00214908 −0.00018497

3,000 1.23220741 −0.11342553 0.03262676 −0.01146971 0.00397580 −0.00101733

3,500 1.21853003 −0.10458359 0.02795159 −0.00870379 0.00224119 −0.00036994

4,000 1.21355644 −0.10444543 0.03043838 −0.01101295 0.00394510 −0.00101733

4,500 1.19863567 −0.09518902 0.02546479 −0.00804402 0.00217978 −0.00033911

Figure 9. Shot gathers (A) for the horizontal-layered model (Figure 8A). (I) Reference gather generated using the 40th-order conventional method, (II) 
12th-order conventional method, (III) new genetic algorithm (GA)-based method with finite-difference (FD) coefficients optimized for the lowest velocity 
in the model, and (IV) new GA-based method with varying FD coefficients optimized across a range of velocities. Zoomed-in views of the dashed white 
boxes (B and C) inside Figure A are shown below the corresponding gathers.

B

C

A
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lower computational cost by using a lower-order expansion 
with optimized coefficients. Two optimization approaches 
were considered: Figures 9(III) and 10(III) show that FD 
coefficients were optimized using the lowest velocity in 
the model, while Figures 9(IV) and 10(IV) show that FD 
coefficients were optimized across a range of velocities. 
Specifically, SGFD coefficients were optimized at intervals of 
every 500 m/s. Figures 9(III) and 10(III) good balance between 
computational efficiency and accuracy, making it suitable 
for applications requiring broad adaptability across varying 
velocities. In contrast, as shown in Figures 9(IV) and 10(IV), 
though slightly more computationally intensive, provide 
enhanced accuracy in regions with sharp velocity contrasts 
or complex geological features. This approach is generally 
more effective in minimizing dispersion errors under varying 
velocity conditions, thereby improving the reliability of wave 
propagation simulations in challenging environments.

Numerical modeling using 12th-order approximations 
of the GA-based, conventional and reference (40th-order 
conventional) was performed. The simulated results 
are shown in Figures  11 and 12 for the horizontal-
layered and salt-dome velocity models, respectively 
(Figure  8). Figures  11A and 12A present the reference 
wavefields generated using the 40th conventional method. 

Figures  11B and 12B correspond to the 12th-order 
conventional method. Figures 11C and 12C show results 
from the proposed SGFD method using FD coefficients 
optimized for the minimum velocity in the model, while 
Figures 11D and 12D show the SGFD method using FD 
coefficients optimized over a range of velocities. In the 
horizontal-layered model, five interfaces are present, with 
the third interface being a negative interface. In the bottom 
panel of Figure  11, the first signal in the seismic traces 
corresponds to the direct wave; the second to the first 
interface; the third to the second interface; the fourth to 
the negative interface; the fifth to the fourth interface; and 
the sixth to the fifth interface. The 12th-order conventional 
method shows more dispersion in all reflected signals 
(including direct and interface reflections), as observed 
in the seism mic traces beneath the snapshots. As shown 
in Figures  11 and 12, it is evident that the seismogram 
produced by the proposed method exhibits significantly 
less dispersion compared to the conventional method.

4. Discussion
This study focused on modeling seismic wave equations 
using the SGFD approach combined with GA optimization. 
The primary goals of seismic wave simulation are to reduce 

Figure  10. Shot gather (A) for the BP salt-dome model (Figure  8B). (I) Reference gather generated using the 40th-order conventional method, (II) 
12th-order conventional method, (III) new genetic algorithm (GA)-based using finite-difference (FD) coefficients optimized for the lowest velocity in the 
model, and (IV) new GA-based method using varying FD coefficients optimized for a range of velocities. Zoomed-in views of the dashed white boxes (B, 
C) inside Figure A are shown below the corresponding gathers.
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Figure 11. Acoustic wave simulations in the horizontal-layered model (Figure 8A). (A) Reference wavefield generated using the 40th-order conventional 
method. Wavefields generated using the 12th-order approximation for: (B) conventional and (C) new genetic algorithm (GA)-based method using finite-
difference (FD) coefficients optimized for the minimum velocity, and (D) new GA-based staggered grid FD method with varying FD coefficients optimized 
for a range of velocities. Seismic traces shown below the wavefields correspond to the source (red stars) and receiver (blue triangles) locations.
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numerical dispersion, improve accuracy, and minimize 
computational time. The staggered grid approach is 
preferred over conventional methods due to its inherent 
interpolation accuracy and stability. GA is employed to 
improve FD coefficients by considering velocity, grid spacing, 
and time step, resulting in coefficients that better satisfy 
both spatial and temporal dispersion relations. Even with 
lower-order approximations, the study demonstrates that 
GA-optimized coefficients outperform traditional and time-
space Taylor series-derived coefficients by providing broader 
wavenumber coverage and reduced frontal dispersion.

The computation times for optimizing coefficients over 20 
iterations using a standard workstation with 60 Gb RAM are 
12.873, 21.390, 21. 993, and 22.064 s for the 4th, 8th, 10th, and 
12th orders, respectively. The computational cost of optimizing 
FD coefficients using GA does not scale linearly with the 

order of approximation. While higher-order schemes, such 
as the 12th order, involve more coefficients than lower-order 
schemes like the 6th order, the increase in computation time 
is not directly proportional. This is because the solution 
space expands significantly at higher orders, providing 
more flexibility for GA to converge efficiently toward an 
optimal set of coefficients. As a result, although higher-order 
approximations require more iterations, the search benefits 
from a larger parameter space, leading to a more gradual 
increase in computation time rather than linear growth. 
There is some randomness in the values of each optimized 
coefficient during the GA process due to its stochastic nature. 
However, after a sufficient number of iterations, the overall 
accuracy and wavenumber coverage remain consistent. 
This ensures that variations in individual coefficients do not 
significantly affect the modeling outcomes.
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Figure 12. Acoustic wave simulations in the BP salt-dome model (Figure 8B). (A) Reference wavefield generated using the 40th-order conventional method. 
Wavefields generated using the 12th-order approximation for: (B) conventional, and (C) new genetic algorithm (GA)-based method using finite-difference 
(FD) coefficients optimized for the minimum velocity, and (D) new GA-based method with varying FD coefficients optimized for a range of velocities. 
Seismic traces shown below the wavefields were generated using the source and receiver locations indicated by red stars and blue triangles, respectively.
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For wavefield simulation, the computation time for 
both the horizontal-layered and salt-dome model was 
approximately 110 s, as both models used the same grid 
size and simulation time (2.4 s). However, when using 
FD coefficients optimized across a range of velocities, the 
same simulations take about 130 s due to the additional 
computation required to apply multiple velocity-
dependent stencils. These results show the adaptability 
of the method to complex structures and highlight how 
optimized FD coefficients can be reused across a range 
of velocities within a model. When modeling complex 
geological structures, velocity variations tend to increase. 
For such models, FD coefficients optimized across a range 
of velocities can be precomputed and stored them as 
stencils for future simulations, providing an efficient and 
flexible solution.

5. Conclusion
We propose an SGFD method for seismic wavefield 
simulation, in which the FD coefficients are optimized using 
a GA. Our results show improved accuracy and reduced 
numerical dispersion compared to both conventional and 
time-space methods. Although the computational cost for 
determining the optimized coefficients is higher than that 
of conventional methods, this is a 1-time expense. Once 
the algorithm is run for a set of representative velocities 
in the model and the optimal coefficients are obtained, 
the final simulation cost is reduced. This is because the 
proposed method achieves high accuracy even with lower-
order approximations. For example, the eighth-order 
approximation using the proposed method provides results 
similar to the 12th-order time-space method (Figure 2), and 
the 12th-order approximation yields results comparable to 
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the 40th-order conventional method (Figures 11 and 12). 
The results presented in this study demonstrate that the 
optimized SGFD method can be effectively used for 
seismic wave simulation and may support comparison 
with real data to obtain more accurate subsurface imaging.
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