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Abstract
As seismic signals and artificial blasting signals exhibit high similarity in time–
frequency domain features, resulting in insufficient recognition accuracy, we 
propose a self-organizing map (SOM) neural network classification model based 
on complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) multiscale distribution entropy (MDE) feature extraction and Ant Lion 
Optimization (ALO) algorithm improvement. The multiscale decomposition of the 
original seismic and blasting signals was carried out using CEEMDAN, and the 
distribution entropy values of the obtained multiple intrinsic mode functions were 
calculated to construct multidimensional feature inputs containing complexity 
information in the time–frequency domain. The ALO algorithm optimized the key 
parameters of the SOM neural network (competing layer dimensions and number of 
training iterations), with the root mean squared error serving as the fitness function. 
The optimal solution obtained by ALO optimization replaced the hyperparameter 
values in the original model, and multiple prediction rounds were performed on 
the seismic data test set to address unstable classification performance caused by 
random initialization in the traditional SOM network. The results revealed that the 
recognition performance of the CEEMDAN–MDE combined with the ALO–SOM 
model was significantly improved compared with machine learning models, such 
as linear discriminant analysis (LDA), decision tree, support vector machine, 
probabilistic LDA, and AdaBoost. Its recognition accuracy, recall, and F1-score were 
99.3373%, 99.1479%, and 99.4557%, respectively, suggesting that this method 
can serve as a reliable approach for accurately differentiating between natural 
earthquakes and artificial blasting events, with important application value for 
seismic monitoring and blasting event exclusion.
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1. Introduction
High-precision identification of earthquakes and explosions 
is one of the major challenges in seismic observation 
data processing. Although there are essential differences 
between the two in terms of earthquake mechanisms 
and energy release modes, they exhibit high similarity 
in time-domain waveforms and spectral characteristics, 
which is of great significance for earthquake early 
warning, nuclear explosion monitoring, and engineering 
safety assessment.1-4 Traditional identification methods 
typically rely on artificial empirical features (e.g., P/S 
wave amplitude ratio, spectrum envelope shape, energy 
spectrum statistical parameters, and P-wave initial motion 
direction), and the recognition rate drops significantly in 
strong-noise environments and when the ground-motion 
energy difference is small.5-7 With the increase in seismic 
network density and the improvement of monitoring 
requirements, intelligent recognition methods based on 
machine learning have gradually become mainstream; 
however, their performance is still limited by two 
bottlenecks: insufficient feature representation capability 
and weak model generalization. Therefore, integrating 
adaptive signal decomposition, non-linear dynamic 
feature extraction, and intelligent optimization models to 
overcome the recognition accuracy limitations of existing 
technologies has become a frontier research direction in 
seismic waveform recognition.

Techniques combining spectrum analysis and machine 
learning can be used for the accurate recognition of 
seismic waves at this stage. The integration of non-linear 
signal processing methods, such as wavelet transform and 
Hilbert–Huang transform with neural networks has been 
successfully applied to seismic data processing.8-10 The 
development of adaptive signal decomposition methods 
provides a new paradigm for seismic wave feature 
extraction. Empirical mode decomposition (EMD) and 
its derivatives achieve multiscale analysis of signals by 
decomposing non-linear and non-stationary signals into 
intrinsic mode functions (IMFs).11,12 However, traditional 
EMD suffers from mode aliasing. Although ensemble 
EMD (EEMD) alleviates this defect by adding Gaussian 
white noise, it introduces residual noise interference.13,14 
To address these limitations, complete ensemble empirical 
mode decomposition with adaptive noise (CEEMDAN) 
has been developed. Its core innovation lies in the adaptive 
noise injection mechanism and residual noise isolation 
strategy: (i) signal contamination is avoided by adding 
auxiliary noise IMF components decomposed by EMD 
to the original signal (rather than adding raw white 
noise); and (ii) after each IMF extraction, integrated 
averaging is performed immediately to prevent residual 

noise transmission to low-frequency components. These 
improvements make CEEMDAN significantly superior 
to previous methods in signal completeness, modal 
separation, and computational efficiency, and particularly 
suitable for pre-processing non-stationary signals, such as 
seismic waves.15,16

At the feature quantification level, multiscale 
distribution entropy (MDE), an emerging representative 
of non-linear dynamic characteristics, effectively reveals 
the essential differences between earthquake and 
explosion signals by measuring the probability distribution 
complexity of IMF components at different time scales. 
Compared with traditional sample entropy,17 MDE has 
three major advantages:
(i)	 Multiscale analysis capability: extracts multiscale 

information of time series through a coarse-graining 
process, avoiding the one-sidedness of single-scale 
analysis.

(ii)	 Distribution sensitivity: based on probability 
distribution difference (Euclidean distance or 
Kullback–Leibler divergence) rather than mean 
quantization complexity, making it more suitable for 
non-Gaussian distribution signals.

(iii)	 Noise robustness: sensitivity to random noise is 
significantly lower than that of sample entropy. This 
feature was verified in the processing of earthquake 
data from Maduo County, Qinghai Province, China, 
in 2021.

Early recognition models were mainly based on 
statistical classifiers (e.g., support vector machines [SVMs], 
random forests, and Adaboost) and shallow neural 
networks (e.g., backpropagation, radial basis function, and 
probabilistic neural network), and their performance was 
highly dependent on artificial feature engineering.18-21 By 
extracting features, such as the number of spectral peaks 
and the short-time energy zero-crossing rate of seismic 
signals and combining them with SVM classification, 
recognition rates of up to 85% can be achieved in 
simple scenarios. However, these models face two major 
challenges:
(i)	 Feature–model decoupling: feature extraction and 

classification models are designed independently, 
resulting in information transmission loss.

(ii)	 Overfitting of small samples: seismic event samples 
are scarce and unevenly distributed, making complex 
models prone to local optimality.

In recent years, deep neural networks have shown 
great potential in seismic analysis. As an unsupervised 
competitive learning model, self-organizing map (SOM) 
networks retain the ability to reduce the dimensionality 
of high-dimensional data while preserving topological 
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structures and are adept at handling complex, non-linear, 
non-stationary data, making them an ideal choice for 
seismic signal recognition. Their core advantages are:
(i)	 Visual interpretability: mapping high-dimensional 

features to a two-dimensional grid to intuitively 
display the separation of earthquake and explosion 
clusters.

(ii)	 Small-sample adaptability: a robust mapping can be 
constructed without large-scale training data.22

However, the fixed network structure and sensitivity 
to random initialization parameters of traditional SOMs 
can affect the overall performance of earthquake and 
explosion recognition, leading to prediction results with 
large standard deviations (SDs).23-25 To address this issue, 
intelligent biomimetic algorithms are introduced to 
optimize multiple network hyperparameters of the SOM 
model, aiming to identify the optimal hyperparameters 
for the training set and thereby improve the prediction 
accuracy and output robustness of the original model. 
Ant Lion Optimization (ALO) simulates the collaborative 
hunting mechanism of antlions, balancing global 
exploration and local exploitation capabilities through 
elite individual guidance and random walk strategies. 
It is particularly suitable for weight initialization and 
topological structure adjustment in SOM models, helping 
determine appropriate competition-layer parameters 
and initial learning rates, which are then applied to the 
prediction model in this study.26,27

To address the defects of low recognition rate, poor 
robustness, and imperfect feature learning of machine 
learning models in seismic wave recognition, the present 
study employs novel spectrum analysis technology and 
an improved unsupervised learning algorithm to develop 
a hybrid model for natural earthquake and artificial 
explosion signal recognition. The key objective is to design 
a series of new multiscale spectrum feature criteria based 
on CEEMDAN with adaptive noise and distribution 
entropy (DistEn),28,29 and to propose an innovative 
CEEMDAN–MDE–ALO–SOM hybrid model optimized 
using the ALO algorithm.30 This study makes the following 
important contributions to the field of natural earthquake 
and artificial explosion signal recognition:
(i)	 Novel multiscale feature extraction framework: an 

improved signal decomposition method based on 
CEEMDAN is proposed. Across the adaptive noise 
injection mechanism and residual noise isolation 
strategy, the modal aliasing problem in the traditional 
EMD/EEMD method is effectively solved. Combined 
with the 12-dimensional feature vector constructed by 
MDE, a comprehensive quantitative characterization 
of the complexity of seismic signals in the time and 
frequency domains is achieved for the first time.

(ii)	 Intelligent optimization of neural network architecture: 
ALO is innovatively applied to parameter optimization 
of the SOM neural network, and an automatic 
parameter adjustment mechanism is established, with 
the competition-layer dimension and the number 
of training iterations as optimization variables and 
root mean squared error as the fitness function. 
This method addresses the performance instability 
problem caused by the random initialization of 
traditional SOM and reduces the SD of classification 
accuracy to 1.166.

(iii)	 Interdisciplinary method integration: for the first 
time, adaptive signal processing (CEEMDAN), 
non-linear dynamics (MDE), bionic optimization 
algorithm (ALO), and unsupervised learning (SOM) 
are systematically integrated to construct an end-to-
end intelligent recognition framework. This fusion 
model is theoretically innovative in the coordinated 
optimization of feature extraction and classification 
decision-making.

(iv)	 Large-scale empirical verification: a rigorous 
verification scheme, including hundreds of Monte 
Carlo experiments, is designed based on 414 sets of 
multi-source data from authoritative institutions, 
such as the Institute of Engineering Mechanics, China 
Earthquake Administration. The experimental results 
not only confirm the model’s 99.337% recognition 
accuracy (F1-score = 99.456%) but also quantify its 
stability advantage through statistical indicators, such 
as the coefficient of variation (CV) (CV = 0.0117).

(v)	 Engineering application value: the developed feature 
extraction and classification module is encapsulated as 
a MATLAB-callable function library, supporting real-
time signal processing. The model’s test performance 
in the 2021 Qinghai Maduo earthquake aftershock 
sequence (recall rate = 99.148%) provides a feasible 
technical solution for reducing the false alarm rate of 
earthquake monitoring systems.

This study adopts a progressive structure of “theoretical 
modeling–method innovation–experimental verification–
application discussion” to organize the full text. Section 
2 systematically explains the mathematical principles 
of the ALO–SOM model, including the elite retention 
mechanism and random walk strategy of the ALO 
algorithm, the competitive learning dynamics model of 
the SOM network, and the complete algorithm flow chart 
(Figure 1). Section 3 details the CEEMDAN–MDE feature 
extraction method, covering the adaptive noise injection 
strategy of CEEMDAN, the multiscale probability 
distribution quantization method of MDE, and the criteria 
for selecting IMF components (Figures 2 and 3). Section 
4 presents a rigorous controlled-variable experiment, 
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explaining the data sources and pre-processing procedures, 
demonstrating the ALO optimization process (Figure 4) and 
hyperparameter sensitivity analysis, and finally comparing 
six benchmark models through box plots (Figure  5) and 
statistical tables (Tables 1 and 2). Section 5 discusses three 
key issues in depth, including a comparison of spectral 
resolution with methods, such as EEMD–VMD, the 
robustness boundary in strong-noise environments, and the 
trade-off between computational efficiency and real-time 
performance. Section 6 summarizes the research results and 
future directions, including lightweight model deployment, 
cross-regional generalization testing, and the construction 
of a multimodal data fusion recognition framework.

2. ALO–SOM seismic wave identification 
model
2.1. ALO

ALO is a heuristic algorithm proposed by Mirjalili et al.31 
in 2015, inspired by the behavior of antlions hunting prey 
in nature. The algorithm imitates the habits of antlions 
setting traps, prey random walks, and antlions waiting 
to hunt. It adopts a fast convergence mechanism based 
on trap boundary search and elite retention, and applies 
roulette and random walk strategies to improve global 
search capabilities. It features strong robustness and 
simple algorithm settings. The ALO algorithm process is 
described in the following sections.

2.1.1. Ant random walk

The set of ant random walk steps is defined as Xi(t), with 
the initial step number set to 0. The ant random walk is 

constrained within a range-limited domain, and the ant 
position needs to be normalized based on Equation I:

X
X a d c

b a
ci

t i i i
t

i
t

i i
i
t�

�� �� �� �
�� �

� � (I)

where Xi
t  is the normalized result of the ant random 

walk step set Xi within the feasible domain; ai and bi are the 
minimum and maximum values of the ant position vector 
on the i-th dimension, preset by the algorithm; and ci

t  and 
di

t  are the minimum and maximum values of the ant 
position on the i-th dimension at the t-th iteration.

2.1.2. Antlion sets a trap

When an ant mistakenly enters the trap pit dug by 
the antlion, the ant’s movement is restricted, and the 
walking formulas within the trap are given in Equations 
II and III:

c A ci
t

j
t t� � � (II)

d A di
t

j
t t� � � (III)

Where ct is the minimum value of all variables at the 
t-th iteration, dt is the maximum value of all variables at the 
t-th iteration, and Aj

t  is the antlion j selected at the t-th 
iteration.

2.1.3. Antlion trapping target

When the antlion finds an ant, it throws sand to the edge 
of the sand pit to prevent the ant from escaping, causing 

Figure 1. Flowchart of the ALO–SOM model for recognizing earthquakes and blasting.
Abbreviations: ALO: Ant Lion Optimization; CEEMDAN: Complete ensemble empirical mode decomposition with adaptive noise; SOM: Self-organizing map.
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Figure 2. Comparison of complete ensemble empirical mode decomposition with adaptive noise decomposition results between single earthquake and 
blasting waveforms.
Abbreviation: IMF: Intrinsic mode function.
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Figure  3. Distribution entropy of IMF components from complete ensemble empirical mode decomposition with adaptive noise for earthquake and 
explosion waveforms.
Abbreviation: IMF: Intrinsic mode function.
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the ant to slide continuously toward the antlion at the 
bottom of the pit. The ALO algorithm uses roulette wheel 
selection to identify the appropriate antlion position 
and dynamically narrows the trap range to speed up 
the capture of ants. The relevant formulas are given in 
Equations IV–VI:

c
c t T

T c t t T
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t
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�
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Where T is the preset upper limit of the number of 
algorithm iterations, and w is the dynamic weight factor 
related to the present number of iterations t. Equation VI 
shows a stepwise increasing trend for w.

2.1.4. Preying on ants

When the prey slides to the bottom of the pit, the antlion 
moves quickly and catches the prey. This biological 
phenomenon is modeled algorithmically by comparing 
the fitness values of the ant and the antlion. When the ant’s 
fitness value is higher than that of the antlion, the position 
of the antlion is updated to the present position of the ant. 
The relevant formula is given in Equation VII:

Antlion Ant f t f tj
t

i
t

obj
ant

obj
antlion� � � � � �, � (VII)

where Antlionj
t  is the position of the antlion at the t-th 

iteration; Anti
t  is the position of the ant at the t-th iteration; 

Figure  4. Hyperparameter results for the Ant Lion Optimization-
optimized self-organizing map across 100 discrimination subtrials.

Figure 5. Box plot of 100 identification results comparing the ALO–SOM 
model and the SOM model. Data points marked with red triangles are 
identified as outliers in the box plot.
Abbreviations: ALO: Ant Lion Optimization; SOM: Self-organizing map.

Table 1. Statistical summary of 100 comparison tests 
between the ALO–SOM and SOM models

Identification model Accuracy

Mean (%) SD Range CV IQR

SOM 96.5904 1.9303 10.8434 0.0200 2.4096

ALO–SOM 99.3373 1.1662 4.8193 0.0117 1.2048

Abbreviations: ALO: Ant Lion Optimization; CV: Coefficient of 
variation; IQR: Interquartile range; SOM: Self‑organizing map; 
SD: Standard deviation.
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and f tobj
ant ( )  and f tobj

antlion ( )  are the fitness function values of 
the ant and antlion, respectively, at the t-th iteration.

2.1.5. Elite antlion strategy

The movement of the ant is influenced by both the present 
elite antlion position and the antlion position selected 
by the roulette wheel. The ant position is defined by 
Equation VIII:

Ant
R l R l

i
t A

t
E
t

� �
� � � � �1

2
� (VIII)

where Anti
t+1  represents the position of the i-th ant in 

iteration t + 1; R lA
t ( )  is the latest position of the random 

walk steps near the antlion selected by roulette at the t-th 
iteration; and R lE

t ( )  is the position of the ant in the random 
walk of l steps near the elite antlion at iteration t (the best 
antlion position found at each iteration).

2.2. Self-organizing feature mapping neural 
network

SOM is an unsupervised machine learning method, also 
known as the Kohonen network. Its key idea is to map and 
compress high-dimensional data onto a two-dimensional 
plane while preserving the topological structure of the 
original data to obtain the feature similarity distribution 
of the output layer. It has advantages, such as effective 
processing of non-linear data, producing intuitive and visual 
results, and not requiring preset labels. The calculation steps 
of the SOM network are detailed in the following sections.

2.2.1. Competition process

The Euclidean distance between the input vector X and 
the weight vector Wj of the competition layer neuron is 
calculated based on Equation IX:

d X W x t w tj j
i

m

i ij� � � � � � � �� �
�
�

1

2
� (IX)

Where X = (x1,x2,…,xm)T is the input vector; Wj is the 
weight vector of the competition layer neuron j; wij is the 
weight connecting input neuron i and competition neuron j.

The best matching unit (BMU) is defined as the neuron 
with the smallest dj:

BMU min X W
j j� �arg  � (X)

2.2.2. Cooperation process

During the cooperation process, the weights of the BMU and 
its adjacent neurons are updated. The adjacent spatial range 
is defined by the Gaussian function h, where σ decreases with 
time t, thereby dynamically adjusting the adjacent spatial 
range of the BMU. The formula is given in Equation XI:

h j BMU t distance j BMU
t

, , exp ( , )
( )

� � � �
�

�
�

�

�
�

2

22�
� (XI)

2.2.3. Adaptation process

To make the BMU approach the input vector, this process 
introduces the learning rate η and the Gaussian function 
h to update the BMU and the weights of its neighboring 
neurons. The learning rate η decreases with the number of 
iterations based on the initial learning rate η0, as defined in 
Equation XII:

� �
�

t t� � � ��

�
�

�

�
�0 exp � (XII)

where τ is the time constant that determines the decay 
rate of the learning rate.

Wj (t + 1) is the weight vector of the competition layer 
neuron j at time t + 1.

Wj (t + 1) = Wj (t) + η (t) ⋅ h (t) ⋅ (x − Wj (t))� (XIII)

2.2.4. Training process

During the training process, weights are initialized, 
samples are randomly selected to calculate the BMU, and 
the BMU, along with its neighboring weights, are updated. 
Simultaneously, the neighborhood radius and learning rate 
decrease as the number of iterations increases.

2.3. ALO–SOM model recognition principle

The classification results of SOM networks are influenced 
by multiple network hyperparameters and must be 
controlled in combination with other methods to obtain 
more accurate and stable unsupervised clustering results. 

Table 2. Statistical summary of the recognition effect of 100 
rounds of six machine learning models

Identification 
method

Mean

Accuracy (%) Recall (%) F1‑score (%)

LDA 94.4458 95.0857 96.0652

Decision tree 94.7590 96.7272 96.2864

SVM 96.7470 97.8544 97.7154

PLDA 94.7229 95.5762 96.2838

AdaBoost 94.2892 95.8346 96.0004

CNN 93.4504 94.6401 95.0182

ALO–SOM 99.3373 99.1479 99.4557

Abbreviations: ALO: Ant Lion Optimization; CNN: Convolutional 
neural network; LDA: Linear discriminant analysis; 
PLDA: Probabilistic linear discriminant analysis; SOM: Self‑organizing 
map; SVM: Support vector machine.
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To achieve this, the ALO algorithm, which mimics the 
antlion’s strategy of setting traps to hunt ants, is introduced to 
optimize certain SOM hyperparameters (e.g., competition 
layer dimension and network training iterations), thereby 
developing a new model capable of adaptively training 
for earthquake and explosion recognition on the training 
dataset.

Figure  1 illustrates the process of the ALO algorithm 
optimizing the SOM neural network hyperparameters and 
performing pattern recognition. The ALO algorithm uses 
two hyperparameters from the SOM—the dimension of 
the competition layer and the number of network training 
iterations—as optimization variables. It employs the root 
mean squared error between the actual prediction result 
vector 



R and the theoretical category label vector 


T
obtained from SOM recognition using the test set as the 
fitness function for ALO optimization (Equation XIV):

fitness RMSE R T� � �


, � (XIV)

Based on the training set, the optimal hyperparameter 
values that satisfy the iteration stopping criteria are 
obtained, and finally, the ALO–SOM recognition model is 
used to identify the test set.

3. CEEMDAN MDE feature extraction
An efficient and reasonable new neural network model 
does not necessarily guarantee high accuracy in effectively 
distinguishing between earthquakes and explosions; it also 
requires a reliable seismic waveform feature extraction 
process. In this section, we provide a detailed introduction 
to the basic concepts and computational process of 
CEEMDAN, which enables the extraction of seismic 
waveform features across multiple frequency scales, thereby 
enabling a more comprehensive and precise analysis of 
the time–frequency differences between earthquakes and 
explosions.

3.1. CEEMDAN

CEEMDAN is an advanced signal decomposition method 
based on EMD and EEMD techniques. It enhances signal 
decomposition by adding complementary pairs of adaptive 
white noise to the original signal, performing multiple 
EMD decompositions, and averaging the results. This process 
effectively minimizes parameter interference and suppresses 
mode aliasing by isolating residual components. CEEMDAN 
overcomes key limitations of earlier methods—including 
modal overlap, low reconstruction accuracy, reliance on 
fixed parameters, and low decomposition efficiency—thus 
significantly improving the reconstruction purity of IMFs. 
It is particularly suitable for analyzing non-linear and non-
stationary signals, such as complex seismic data.

(a)	 Step 1
	 m pairs of positive and negative Gaussian white noises 

ωi (t)(i = 1,2,…,m) with zero mean and constant SD are 
added to the original signal x(t), generating m synthetic 
noisy signals X ti

1( )  based on Equation XV:

X t x t ti
q

i
1 1( ) ( ) ( )� � � � � � �� � � (XV)

where β is the noise coefficient related to the amplitude, 
and q = 1,2.

(b)	 Step 2
	 Empirical mode decomposition is applied to the noisy 

signals to obtain the first-order components. Each 
signal X ti

1( )  is decomposed by EMD into an IMF 
component IMF ti

1( ) and a residual component r ti
1( ) , 

as expressed in Equation XVI:

X t IMF t r ti i i
1 1 1� � � � � � � � � (XVI)

The first-order IMFs IMF ti
1( )  of all m m  synthetic 

noisy signals X ti
1( )  are calculated, and their arithmetic 

average is taken to obtain the first-order IMF1(t) IMF t1( )  
of the CEEMDAN algorithm. The relevant formulas are 
given in Equations XVII and XVIII:

IMF t
m

IMF t
i

m

i
1

1

11� � � � �
�
� � (XVII)

r t x t IMF t1 1� � � � � � � � � (XVIII)

(c)	 Step 3
	 Using a similar calculation strategy as in Equations 

XV–XVIII, the next-order component IMFk−1 (t) is 
calculated step by step: for the residual rk−1 (t)(k ≥ 2) 
obtained in the previous step, positive and negative 
noise (−1)q βk−1 Ek−1 (ωi[t]) are added, respectively, to 
obtain m new signals X ti

k−1( ) , where βk−1 is the 
dynamically reduced noise coefficient, and Ek−1 (⋅) is 
the residual after the (k−1)-th order EMD 
decomposition of the white noise ωi(t). Performing 
EMD decomposition on each X ti

k−1( )  yields m 
components IMF ti

k−1( ) , as given in Equation XIX:

X t IMF t r ti
k

i
k

i
k� � �� � � � � � � �1 1 1 � (XIX)

Taking the arithmetic average yields the (k−1)-th order 
component IMFk−1(t) of the CEEMDAN algorithm. The 
relevant formulas are given in Equations XX and XXI:

IMF t
m

IMF tk

i

m

i
k�

�

�� � � � ��1

1

11 � (XX)

r t r t IMF t kk k k� � �� � � � � � � � �1 2 1 2, � (XXI)
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(d)	 Step 4
	 After the iterative calculation is completed, the original 

signal is reconstructed. The iterative calculation from 
the previous step stops when the residual component 
becomes a monotonic function or when its extreme 
points are insufficient for further EMD decomposition. 
A  total of k−1 CEEMDAN IMFs are obtained; the 
original signal x(t) can be reconstructed by summing 
the k−1 IMFs and the final residual component rk−1(t) 
as follows (Equation XXII):

x t r t IMF t k KK

k

K
k( ) ( ) ( ), ,...,� � ��

�

��1

2

1 2   � (XXII)

The hyperparameters of the CEEMDAN algorithm are 
set as follows: the SD of white noise is 0.2, the number 
of noise additions is 24, and the maximum number of 
iterations allowed is 3,600. Figure 2 shows the CEEMDAN 
decomposition results of natural earthquake signals (left) 
and artificial blasting signals (right), where rows 1–12 
correspond to the IMF1–IMF12 components obtained by 
CEEMDAN decomposition. The waveform signal length is 
L = 4,000 and the components are arranged in descending 
order of frequency or energy size.

3.2. Calculation of MDE using CEEMDAN

DistEn is a parameter used in information theory to 
measure the uncertainty of data distribution or the 
complexity of a time series.28,29 DistEn obtains the 
probability density function by directly calculating 
the Chebyshev distance and kernel density estimation 
between reconstructed vectors, thereby avoiding the 
problem of manually selecting the tolerance parameter r 
used in sample entropy. In addition, it has the advantages 
of being parameter-free and robust.

The original seismic signal is decomposed into several 
IMFs with monotonically decreasing frequencies and 
significant differences in energy distribution by using the 
adaptive noise CEEMDAN. By sequentially calculating 
the DistEn values of all IMF components obtained from 
decomposition (i.e., the DistEn of IMF1–IMF12 shown in 
Figure  3), a one-dimensional vector that describes the 
different frequency distribution characteristics of the 
original signal is formed, referred to as MDE. This method 
can effectively extract multiscale pure characteristic 
parameters that characterize different source systems 
and enables robust identification of signals generated 
by different dynamic mechanisms. The horizontal axis 
of Figure  3 represents the sequence numbers of 414 
earthquake and explosion waveforms, while the vertical 
axis shows the DistEn values of the IMF components 
obtained from CEEMDAN decomposition.

4. Data and experiments
In this study, we first organized the collected data and 
developed an experimental framework to rigorously 
evaluate the effectiveness and specific capabilities of the 
proposed method in distinguishing between earthquake 
and blasting events. A  total of 414 sets of multi-source 
strong motion observation data were utilized, as follows:
(i)	 Earthquake case data publicly shared by the National 

Earthquake Data Center (data.earthquake.cn) and 
the Institute of Engineering Mechanics of the China 
Earthquake Administration: 2021 Jiangtianning MS 
4.2 earthquake strong motion acceleration records 
(96 records); 2021 Jiangsu Dafeng MS5.0 earthquake 
strong motion acceleration records (117 records); and 
2021 Yunnan Yangbi MS6.4 main shock aftershock 
sequence acceleration records (magnitude range 
MS2.9-3.9, 84 records).

(ii)	 Controllable artificial blasting test acceleration 
waveforms (117 records) provided by the Geotechnical 
Engineering Institute, China Institute of Water 
Resources and Hydropower Research (www.geoeng.
iwhr.com).

All data pre-processing and numerical analyses were 
implemented on the MATLAB 2019a (The MathWorks, 
Inc., United States) computing platform. The formulas for 
accuracy, recall, and F1-score are as follows:

(i)	 Accuracy indicates the proportion of samples correctly 
predicted by the model to the total number of samples 
(Equation XXIII).

Accuracy TP TN
TP TN FP FN

%�
�

� � �
�100 � (XXIII)

(ii)	 Recall refers to the proportion of positive samples 
correctly identified by the model to all actual positive 
samples (Equation XXIV).

Recall TP
TP FN

%�
�

�100 � (XXIV)

(iii)	The F1-score is the harmonic mean of precision and 
recall and is an important indicator for measuring the 
overall performance of the model (Equation XXV).

F score Accuracy Recall
Accuracy Recall

%1 2 100� �
� �

�
� � (XXV)

In these formulas, TP indicates true positive, TN 
represents true negative, FP is false positive, and FN 
signifies false negative.

Considering that the randomness of the initial 
parameters of the neural network may cause fluctuations 
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in the prediction results and lead to potential large 
deviations, this study conducted a 100-cycle Monte 
Carlo test to systematically evaluate the effectiveness and 
robustness of the ALO–SOM model. By introducing key 
hyperparameter perturbations, the stability of the model’s 
earthquake identification performance under parameter 
variations was tested. The training set and test set were 
strictly split in an 8:2 ratio (i.e., 331:83  samples). The 
statistical characteristics of the repeatability test results are 
presented in Figures 4 and 5, Table 1.

Figure  5 presents a box plot comparing the 
100 identification results of the ALO–SOM and SOM 
models, which simultaneously illustrates the data 
dispersion and statistical characteristics of the multiple 
rounds of prediction results from the two neural network 
models. The upper and lower boundaries of the box in the 
figure represent the upper quartile (Q3) and lower quartile 
(Q1) of the parameter results, respectively. The solid line 
inside the box indicates the median of the parameter 
results. Data points marked with red triangles are 
identified as outliers in the box plot. The horizontal solid 
lines above and below the box represent the maximum and 
minimum values, respectively. The performance difference 
between the ALO–SOM and SOM models was analyzed 
using parameters, such as the mean, SD, range, CV, and 
interquartile range (IQR).

Based on Figure  5, the recognition curve of the SOM 
model exhibits irregular oscillations, with approximately 50% 
of the recognition results below 97%, and a small number even 
below 90%, indicating a degree of instability in earthquake and 
explosion recognition. The SOM model optimized by ALO 
demonstrates stronger adaptability to data features and can 
effectively utilize matching competition layer dimensions and 
training iterations to recognize earthquakes and explosions. 
The worst result is above 95%, and most recognition 
results exceed 99%. Its performance across multiple 
indicators—mean, SD, range, CV, and IQR (99.3373%, 1.1662, 
4.8193, 0.0117, and 1.2048, respectively)—demonstrates 
stronger robustness and accuracy.

Figure 4 presents a box plot of the calculation results for 
the ALO-optimized SOM hyperparameter values across 
100 identification sub-tests. The search domain was set 
to [1,10,] which illustrates both the data dispersion and 
statistical characteristics of the 100 optimization results 
for the two SOM hyperparameters. The upper and lower 
boundaries of the box in the figure represent the upper 
quartile (Q3) and lower quartile (Q1) of the parameter 
results, respectively. The solid line within the box represents 
the median of the parameter results. The horizontal solid 
lines above and below the box indicate the maximum and 
minimum values, respectively. As shown in Figure 4, the 

SOM competition layer dimension and SOM training 
iterations optimized by ALO exhibit a certain degree of 
randomness and are not consistently stable values. This 
variability is related to the random division of the training 
set and the early termination of ALO iterations.

Table  1 presents the statistical results of the 
100 comparison tests between the ALO–SOM model 
and the traditional SOM model. The results indicate that 
the ALO–SOM model outperforms the SOM model in 
all indicators, exhibiting higher accuracy and stability. 
Specifically, the average accuracy of the ALO–SOM model 
over 100 prediction rounds was 99.3373%, significantly 
higher than that of the SOM model (96.5904%), suggesting 
that the ALO–SOM model can provide more accurate 
results in earthquake identification tasks, with an accuracy 
improvement of 2.7469%.

In addition, the SD of the 100-round prediction accuracy 
for the ALO–SOM model was 1.1662, significantly lower 
than that of the SOM model (SD = 1.9303), indicating that 
its prediction results exhibit lower variability and higher 
stability, making it suitable for processing earthquake 
monitoring data that requires highly reliable results. 
Furthermore, the IQR of the ALO–SOM model’s 100-round 
prediction accuracy was 4.8193, which is also significantly 
smaller than that of the SOM model (IQR = 10.8434), 
further suggesting that the ALO–SOM model’s prediction 
results are more concentrated and less influenced by 
extreme values, thereby demonstrating better robustness. 
The CV and IQR of the ALO–SOM model highlight its 
superiority in prediction result consistency, with a CV of 
0.0117 for ALO–SOM and 0.0200 for SOM, and an IQR of 
1.2048 for ALO–SOM and 2.4096 for SOM.

To evaluate the superior performance of the ALO–SOM 
model and the differences in performance between machine 
learning algorithms based on different principles, we 
introduced six classic models: linear discriminant analysis 
(LDA), decision tree, SVM, probabilistic LDA (PLDA), 
convolutional neural network (CNN), and AdaBoost 
ensemble learning. These models have distinct strengths 
and weaknesses. For example, SVM is effective in handling 
non-linear problems but is sensitive to noisy data and 
outliers; LDA is suitable for large-scale linear datasets 
but may encounter singularity issues in the inter-class 
covariance matrix; AdaBoost has moderate tolerance for 
noise and outliers but is prone to overfitting; and decision 
tree models are highly interpretable but are still prone to 
overfitting and sensitive to outliers. The parameters for this 
model comparison experiment were kept constant, with 
100 consecutive recognition tests conducted using a fixed 
training-to-test set ratio of 8:2. The comparison results are 
presented in Table 2 and Figure 6.
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Figure 6. Comparison of seismic wave prediction performance across 100 rounds by six machine learning models.
Abbreviations: ALO: Ant Lion Optimization; CNN: Convolutional neural network; LDA: Linear discriminant analysis; PLDA: Probabilistic linear 
discriminant analysis; SOM: Self-organizing map; SVM: Support vector machine.
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As shown in Figure  6 and Table  2, the earthquake 
and explosion signal recognition performance (in terms 
of accuracy, recall rate, and F1-score) of the ALO–SOM 
model was significantly better than that of classic machine 
learning models, including LDA, decision tree, SVM, PLDA, 
CNN, and AdaBoost, with all metrics exceeding 99%. This 
demonstrates that the model has potential applicability in 
small-sample earthquake event classification and offers 
room for further research and improvement.

To calculate the recognition accuracy of the ALO–SOM 
model for small-sample events, such as blast events, 
we employed MATLAB interpolation and resampling 
techniques to increase the number of blast signals from 117 
to 351, while maintaining the number of natural signals at 
297. The sampling rate remained at 200  Hz, resulting in 
a total of 648 signals used in the subsequent recognition 
experiments. The training-to-test set ratio was set to 8:2 
(i.e., 518:130). The experimental results are illustrated in 
Figure 7.

Under resampling conditions, the average recognition 
accuracy of the ALO–SOM model over 100 prediction 
rounds was 99.2308%, with an SD of 0.6468, which was 
essentially equivalent to the recognition performance of 
the original experiment without resampling blast events. In 
addition, it was found that the mean recognition accuracy 

rates for both seismic and blast signals improved compared 
to previous results, reaching 99.5923% and 99.6385%, 
respectively. The SDs for accuracy rates were 0.5729 
and 0.5295 for seismic and blast signals, respectively, 
indicating that the ALO–SOM model demonstrates good 
recognition performance for both seismic and blast signals 
in small-sample datasets.

5. Discussion
This study proposes a new hybrid model, combining 
CEEMDAN–MDE and ALO–SOM, for high-precision 
discrimination of seismic and blast signals. Experimental 
results showed that the model achieved excellent 
performance, with an accuracy of 99.337%, a recall of 
99.148%, and an F1-score of 99.456%—significantly better 
than those of traditional machine learning methods, 
such as LDA, decision tree, SVM, PLDA, and AdaBoost. 
The combination of MDE feature extraction based on 
CEEMDAN and the SOM neural network optimized by 
ALO effectively addresses the problems of insufficient 
feature expression and insufficient model stability in 
seismic signal classification.

The practical significance of this study is that the 
CEEMDAN–MDE feature set provides a standardized 
framework for quantifying the complexity of seismic signals, 

Figure 7. Seismic identification results of the Ant Lion Optimization–self-organizing map model under resampling conditions.
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which can be extended to other waveform classification 
tasks (e.g., volcanic earthquakes, industrial vibrations). The 
stability and interpretability of the ALO–SOM model make 
it suitable for deployment in seismic monitoring systems, 
especially in scenarios requiring rapid discrimination 
between natural and man-made events (e.g., nuclear test 
monitoring, mine safety assessment). The high recall of the 
model (99.148%) is particularly important for reducing 
false negatives in early warning systems.

Despite the strengths of this study, several limitations 
remain. First, the dataset, although carefully curated, 
comprises 414 samples from specific regions (e.g., Jiangsu, 
Yunnan), which may limit the generalizability of the 
model in different geological environments. Second, 
environmental noise (e.g., wind, traffic) is not explicitly 
simulated, which may affect the model’s performance in 
noisy, real-world environments. Third, the computational 
cost of CEEMDAN–MDE feature extraction and ALO 
optimization, while justified by improved accuracy, may 
hinder real-time applications on low-power edge devices. 
Finally, the model relies on all 12 initial functions (IMFs), 
and no feature selection was performed, which may 
introduce redundancy—methods, such as wrapper-based 
selection could simplify this process.

Future research should focus on: (i) expanding the 
dataset to cover global earthquake events and diverse noise 
conditions to enhance model robustness; (ii)  exploring 
lightweight variants of CEEMDAN (e.g.,  online 
CEEMDAN) and entropy metrics (e.g., fuzzy entropy) to 
enable real-time deployment; (iii) integrating attention 
mechanisms or Transformer architectures to enhance 
feature learning; (iv) studying hybrid models that combine 
ALO–SOM with ensemble techniques (e.g., stacking) 
to address the class imbalance problem in rare event 
detection. In addition, applying this framework to other 
geophysical signal classification tasks (e.g., landslide 
vibration, structural health monitoring) would help verify 
its broader practicality.

In summary, the CEEMDAN–MDE–ALO–SOM 
model represents a significant advancement in the field of 
earthquake signal recognition, providing both theoretical 
innovation and practical value. Addressing its limitations 
through collaborative data sharing and algorithmic 
improvements will be key to advancing earthquake 
monitoring technology.

6. Conclusion
The accurate distinction between natural earthquake 
signals and artificial explosion signals is crucial to 
ensuring the reliability of earthquake early warning 
information release and advancing artificial intelligence-

based seismology research. Based on small-sample data 
from multiple seismic stations across the country, this 
study extracted MDE features from the 12-dimensional 
CEEMDAN spectrum decomposition of normalized 
seismic wave signal, employed the SOM self-organizing 
feature mapping network as the basic learner, and combined 
the ALO algorithm to optimally tune its competition layer 
dimensions and training iterations, thereby improving 
the recognition accuracy and operational stability of the 
original model. Accordingly, the following conclusions are 
drawn:
(i)	 Compared with the standard SOM neural network 

model, LDA, decision tree, SVM, PLDA, AdaBoost 
ensemble learning, and other commonly used 
machine learning models, the ALO–SOM model 
achieved significantly higher earthquake and 
explosion recognition accuracy, with a recognition 
rate of 99.3373% and an SD of only 1.1662.

(ii)	 The multiscale spectrum feature set CEEMDAN–DisEn, 
which contains the IMF component DistEn values of 
different frequency bands, demonstrated a stronger 
capability for subdividing seismic wave features.

(iii)	Several limitations remain in this study. First, a large 
amount of environmental noise may mask the effective 
components of seismic waves, thereby affecting the 
accuracy of waveform spectrum feature extraction. 
Second, this study used all 12-dimensional IMF 
components obtained by CEEMDAN decomposition 
for feature extraction without applying feature 
selection or high-dimensional data compression, 
which could reduce prediction efficiency and 
cause some loss of accuracy. If feature selection 
methods, such as filtering, encapsulation, and 
embedding, or dimension reduction methods—such 
as principal component analysis and low-variance 
filtering—were applied for feature processing, the 
accuracy of distinguishing between earthquakes 
and explosions could be further improved, while 
moderately reducing algorithm redundancy 
and iteration time. Therefore, future studies are 
encouraged to integrate principal component analysis 
to perform feature engineering compression on 
all IMF components from CEEMDAN, producing 
2–3 new features that best represent the multiscale 
characteristics of seismic waveforms. This would 
reduce the complexity of the input matrix for the 
prediction model, thereby improving model training 
speed and prediction efficiency. Finally, due to 
the model’s outstanding unsupervised clustering 
performance, it could be applied to the fault diagnosis 
of seismic instrument systems in the future, accurately 
distinguishing between data acquisition faults, power 
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supply faults, electromagnetic interference, and 
other abnormal signals, thus ensuring the effective 
recording and observation of environmental noise 
data and seismic event signals by seismic instruments.
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