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Abstract
Effectively recovering signals buried in noise remains a challenging topic in seismic 
data denoising. Many conventional methods often fail to accurately capture 
the characteristics of seismic signals. To address this issue, this study proposed 
an effective method called variational mode decomposition (VMD)–denoising 
convolutional neural network (DnCNN). The method first applies VMD to decompose 
the originally noisy signal into multiple intrinsic mode functions (IMFs) with band-
pass characteristics, thereby achieving effective decoupling of different frequency 
components and noise separation. Selected IMFs are then combined into a multi-
channel input and fed into the DnCNN for end-to-end modeling and denoising 
reconstruction. By decomposing the noisy signal into IMFs corresponding to specific 
frequency bands and learning them through DnCNN, the network can better extract 
features within each frequency band. Serving as a front-end filter, the VMD module 
enhances the network’s ability to represent effective frequency components, 
suppresses high-frequency random noise, and improves the resolution of weak 
signals. Experimental results demonstrated that the proposed method effectively 
captures signal characteristics and recovers signals from both real and synthetic 
seismic data. In conclusion, the proposed VMD–DnCNN method provides a robust 
and efficient solution for seismic signal denoising.

Keywords: Variational mode decomposition; Denoising convolutional neural network; 
Intrinsic mode functions; Recover weak signals; Seismic denoising

1. Introduction
Seismic signals are often characterized by non-stationary properties and are susceptible 
to various external interferences during acquisition, such as complex mixed noise caused 
by exploration instruments, wind, and transportation activities.1,2 These types of noise 
can significantly degrade the quality of subsequent imaging and interpretation processes. 
To better extract geological information from seismic data, it is crucial to effectively 
isolate signals from noise. Moreover, the accurate recovery of weak signals can further 
enhance geological exploration efforts.3-5 Therefore, many researchers have investigated 
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effective seismic signal recovery under low signal-to-noise 
ratio (SNR) conditions.6 Currently, denoising methods can 
be broadly categorized into four groups: Time–frequency 
analysis methods, decomposition-based methods, low-
rank-based methods, and deep learning methods.

Time–frequency analysis methods aim to exploit the 
differences in time–frequency distributions between useful 
seismic reflections and noise. By applying time–frequency 
transformations, seismic data can be represented in a joint 
time–frequency domain, enabling the separation and 
suppression of noise from signal components. For example, 
the wavelet transform7 achieves denoising by decomposing 
the signal into different frequency bands, retaining the 
dominant frequency components associated with the signal 
while removing high-frequency components typically 
attributed to noise. The short-time Fourier transform8 
utilizes its localized time–frequency resolution to expand 
non-stationary seismic signals in the time–frequency 
domain, allowing for clearer distinction between signal 
and noise. Likewise, the S-transform9 constructs a two-
dimensional time–frequency representation and leverages 
the seismic signal’s concentration and continuity in local 
frequency content to facilitate signal–noise separation. 
However, these methods often suffer from difficulties 
in identifying optimal basis functions and are highly 
sensitive to thresholding strategies. The performance of 
these approaches is strongly dependent on the threshold 
level and the specific selection scheme, where improper 
thresholds may lead to significant degradation in denoising 
quality and signal preservation. These limitations are 
not unique to the aforementioned methods, but are also 
observed in other time–frequency analysis techniques, 
such as the  seislet transform,10 curvelet transform,11 and 
contourlet transform.12

Decomposition-based methods aim to extract intrinsic 
structures from noisy signals by separating effective 
components from noise interference and subsequently 
reconstructing the denoised seismic signal. For example, 
empirical mode decomposition13,14 is an adaptive and data-
driven technique for processing non-stationary signals. 
It decomposes the original signal into a set of intrinsic 
mode functions (IMFs) with localized time-frequency 
characteristics. By analyzing the frequency and energy 
features of each component, noise-dominated modes can be 
identified and discarded, followed by signal reconstruction 
for denoising. Variational mode decomposition (VMD)15 
formulates a variational optimization problem to 
decompose the original signal into a set of band-limited 
sub-signals (mode components). Noise-dominated 
components are recognized and removed based on 
their frequency and energy characteristics, achieving 
efficient denoising. On the other hand, singular value 

decomposition16 decomposes the seismic data matrix into 
ordered components according to their energy. Principal 
components represent the effective signal, while low-
energy components correspond to noise, and denoising is 
performed through reconstruction. The major challenge 
of decomposition-based methods lies in the mode mixing 
phenomenon, where certain modes contain both noise and 
signal components, complicating their separation.

Low-rank-based methods exploit the strong structural 
properties of seismic noise signals in time and space 
domains. When arranged as matrices or tensors, seismic 
signals typically exhibit low-rank characteristics, whereas 
noise is random and high-rank. Low-rank decomposition 
techniques can therefore extract the structured signal 
components while suppressing high-rank noise. For 
example, principal component analysis17 projects seismic 
data onto a set of principal components, retaining the 
first few components that contain the main information 
and discarding the subsequent minor components, thus 
achieving denoising. Cadzow filtering18 constructs a 
Hankel matrix from the signal and iteratively applies 
singular value decomposition, low-rank approximation, 
and Hankel structure reconstruction to preserve the 
primary signal components while suppressing noise. 
Both methods treat the effective signal as a low-rank 
structure and extract meaningful cycles by reducing the 
rank. However, a notable limitation of these approaches 
is that their performance heavily depends on the prior 
assumptions regarding the rank.

Deep learning methods19,20 essentially construct end-
to-end mapping functions that automatically learn the 
relationship between noisy and clean signals, thereby 
achieving noise suppression and signal recovery. Previous 
studies have systematically demonstrated how neural 
networks can be applied to seismic signal denoising, 
successfully employing deep learning for this purpose.21 
For example, edge-feature-guided wavelet U-Net22 
integrates wavelet transforms to design dual decoders 
aimed at edge detection, capturing shape and edge 
information of effective signals. Other studies introduced 
the representation of seismic data in the time–frequency 
domain as input to neural networks,23 enabling the model 
to learn the characteristics of seismic signals in the 
time–frequency space more effectively, and proposed an 
identification-based denoising approach.24 Noise locations 
are first identified, and then the network performs targeted 
denoising, thereby more accurately removing noise while 
avoiding the inadvertent removal of useful signals. Some 
transformer-based methods innovatively combined sparse 
channel-wise attention transformers with diffusion models 
through a seismic prior extraction network, achieving 
efficient and high-quality seismic data interpolation.25 
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In addition, a transformer-based seismic data denoising 
model has been introduced, incorporating a novel self-
supervised pretraining strategy to effectively capture 
long-range dependencies and improve noise attenuation 
while preserving weak signals.5 To enhance seismic 
data denoising performance, most methods involve 
modifications to neural network architectures; however, 
these improvements often come at the cost of increased 
computational time.

In summary, traditional seismic denoising methods 
often suffer from limitations related to performance and 
parameter tuning. Whether it is time–frequency methods, 
decomposition-based methods, or low-rank methods, 
parameter adjustments are typically required according 
to the noise intensity. A  common challenge lies in how 
to properly decompose the signal in a way that removes 
noise while preserving the useful signal. This leads to 
these methods lacking adaptability to varying noise 
levels. For deep learning methods, when noise levels are 
excessively high, it is often difficult to effectively capture 
the characteristics of seismic signals. The construction of 
end-to-end mappings can introduce bias, resulting in poor 
learning of weak signals and consequently unsatisfactory 
denoising performance. Therefore, effectively addressing 
the limitations of these approaches constitutes a major 
challenge in seismic signal processing and is the central 
focus of this study.

Decomposition-based and deep learning-based 
methods each have their advantages and drawbacks. Deep 
learning methods can effectively handle non-Gaussian 
and nonlinear noise, whereas decomposition-based 
methods rely primarily on frequency decomposition 
and are less capable of adapting to complex background 
noise. Furthermore, these approaches can identify low-
amplitude reflections that decomposition methods may 
mistakenly remove as noise, especially for weak high-
frequency reflections. However, deep learning implicitly 
models frequency information and lacks explicit frequency 
band control. In contrast, decomposition-based methods 
explicitly separate different frequency bands, facilitating 
the removal of band-specific noise and improving the 
preservation of waveform structures, particularly the low-
frequency primary components.

Motivated by the strong learning capabilities of 
deep learning models and the intrinsic decomposition 
principles, this study proposed a VMD–denoising 
convolutional neural network (DnCNN) framework. This 
approach leverages the advantages of deep learning models 
to compensate for the shortcomings of traditional methods, 
while utilizing the strengths of decomposition models 
to complement deep learning models’ limitations. VMD 

effectively decomposes seismic data to extract intrinsic 
features, enabling DnCNN26 to learn the characteristics 
of different IMFs more effectively. Through training, 
DnCNN can mitigate the mode mixing problem inherent 
in VMD by continuously learning which IMFs are useful 
and which should be discarded. Experiments conducted 
on both synthetic and field seismic data demonstrated that 
this method not only effectively suppresses noise but also 
outperforms several traditional denoising techniques in 
terms of denoising performance.

2. Methods
In decomposition-based methods, mode mixing often 
occurs, resulting in decomposed modes that may contain 
noise components, which is unavoidable. Whether the 
decomposition extracts components from high frequency 
to low frequency, optimizes for band-limited signals so that 
each mode concentrates on a specific frequency band, or 
employs other decomposition techniques, it is essentially 
impossible to prevent noise from being introduced into 
the decomposed components. However, deep learning 
networks possess strong learning capabilities and can 
progressively distinguish between noise and useful signals 
through continuous training. Therefore, deep learning 
networks were combined with traditional methods to form 
a VMD–DnCNN denoising architecture.

Seismic signals are often represented as seismic profiles. 
Let the function c(x, y) denotes the ideal noise-free signal 
and n(x, y) represents the noise component, where x is the 
sampling time and y is the trace number. The observed 
noisy data can then be expressed as:

f x y c x y n x y( , ) ( , ) ( , )� � � (I)

The 2D VMD method was applied to decompose the 
noisy seismic data. The formulation of 2D VMD is as 
follows:
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where, uk(x, y) denotes the K decomposed mode, ωk is 
its center frequency along the x direction, and ∇ represents 
the two-dimensional gradient operator, which measures 
the smoothness or bandwidth of the mode in the frequency 
domain. The term e j xk� �  performs a frequency shift of the 
mode to concentrate it around the low-frequency baseband, 
facilitating a unified calculation of the mode’s bandwidth.

After decomposing the signal into three modes based 
on bandwidth, these modes were combined with the 
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original signal as a four-channel data input to the network, 
allowing the deep learning model to learn the process of 
reconstructing the original signal from the three modes 
during training. By decomposing the data through VMD, 
different band-limited signal components were formed, 
significantly reducing the learning burden on the deep 
learning network. Compared to the original single-channel 
structure, where only noisy data are input to the network, 
this approach alleviates the heavy learning load and makes 
it easier for the network to capture features of both the 
seismic signal and noise.

When inputting the decomposed modes into the 
network, the model first learns the characteristics of 
different frequency bands. Furthermore, since the primary 
noise frequency bands have already been separated 
through decomposition, the network can more readily 
identify the main noise components during training. Even 
when non-noise dominant frequency bands are mixed 
with some noise, the network can leverage the features 
learned from the noise-dominant bands to recognize and 
denoise these components effectively. Moreover, effective 
signal information may also be present within the primary 
noise frequency bands. In this case, the useful signal 
features learned from the non-noise-dominant bands help 
the network capture and preserve valid signal components 
within the noise-dominant bands.

As a denoising network, DnCNN has been widely 
used for processing seismic signals. The architecture 
of DnCNN is illustrated in Figure  1. The network first 
passes the input through a convolutional layer, followed 
by a rectified linear unit (ReLU) activation function. 
Sixty-four convolutional kernels are used to extract 
preliminary low-level seismic features, including local 
waveform shapes, edges, and frequency components. The 
ReLU activation enhances the nonlinear representation 
capability, helping to distinguish seismic signal structures 
from high-frequency noise. The middle part of the 
network consists of 18 repeated blocks, each comprising 
a convolutional layer, batch normalization, and a 
ReLU activation. Batch normalization balances feature 
distributions across different batches, suppressing outliers. 
Through these 18 repeated operations, the network 

progressively extracts abstract seismic features, enabling it 
to ignore unstructured noise while preserving waveforms 
with reflective patterns. Finally, the output passes through 
a convolutional layer that compresses the 64 deep feature 
channels back to the original channel number, yielding 
the final denoised result.

The input structure of DnCNN was modified to better 
enable it to learn seismic signal information. By applying 
VMD to decompose noisy signals, the noise is separated 
into three modal components: High-frequency IMF, 
mid-frequency IMF, and low-frequency IMF. These 
three modes approximately correspond to high-, mid-, 
and low-frequency seismic phases and noise structures, 
facilitating the network’s ability to distinguish and 
process noise in different frequency bands. Each of the 
three IMFs from VMD concentrates around a certain 
center frequency, which is dynamically adjusted during 
iterations to ensure each mode focuses on a specific 
frequency band.

In practice, IMF1 captures high-frequency details, 
often containing seismic noise and sharp reflections; 
IMF2 captures mid-frequency seismic phases, which 
include seismic signals but may also contain noise; 
IMF3 corresponds to low-frequency main structures, 
encompassing the primary seismic phases and reflection 
interfaces. Thus, decomposing the seismic signal into 
these three frequency bands effectively separates high-
frequency disturbances, mid-frequency seismic phases, and 
low-frequency structural components.

The overall denoising process is illustrated in Figure 2. 
The VMD–DnCNN denoising procedure consists of two 
steps: The first step is model training, and the second step 
is seismic data denoising. In the first step, the selected 
synthetic data are segmented by time windows, followed 
by data selection using a Monte Carlo strategy. This 
produces the training labels for the network. Gaussian 
noise is then added to the labels to generate the noisy 
samples. These samples are decomposed using 2D VMD 
into three IMFs, which serve as the channels of the input 
samples. Subsequently, the time-domain channels of 
the labels are concatenated with the IMF channels of the 

Figure 1. Structure of a denoising convolutional neural network.
Abbreviations: BN: Batch normalization; Conv: Convolutional layer; ReLU: Rectified linear unit.
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samples to form the final time–frequency training samples 
required by VMD–DnCNN. By training the network with 
these labels and samples, the final model is obtained. In 
the second step, the seismic data to be denoised are first 
processed by 2D VMD to obtain pseudo-labels and seismic 
data decomposed into three IMF modes. The pseudo-label’s 
time-domain data and the three IMF modes are combined 
to form a four-channel seismic input. Finally, these data are 
denoised by the trained VMD–DnCNN model.

3. Network training

The performance of neural network models is highly 
dependent on the quality of the training dataset; therefore, 
constructing a high-quality dataset and applying proper 
preprocessing are particularly critical. Given that the 
recordings before the onset of direct waves primarily consist 
of background noise without useful seismic information, 
this study removed certain non-informative data during 

Figure 2. Main workflow of the proposed method.
Abbreviations: DnCNN: Denoising convolutional neural network; IMF: Intrinsic mode function; VMD: Variational mode decomposition.
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the preprocessing stage to enhance training efficiency. The 
overall data generation process is illustrated in Figure  3. 
A Monte Carlo strategy27 was adopted to eliminate invalid 
synthetic data, incorporating non-zero label filtering and 
effective fluctuation filtering mechanisms. Specifically, 
silent segments before the arrival of direct waves, smooth 
sections, and other training-irrelevant samples were 
excluded. Samples with zero-valued amplitudes were 
directly discarded, and samples with a standard deviation 
<10−3 were also removed. After filtering, the data underwent 
Max–Abs normalization to standardize the seismic signal 
amplitude range to the interval [−1,1]. This normalization 
accelerates model convergence during training and ensures 
amplitude consistency across different traces and samples, 
thereby reducing model bias. The training parameters for 
all models are listed in Table 1. All models used the ADAM 
optimizer.28 The sample length was set to 256 points, with 
one sample selected every 128 points. When the remaining 
trace length was less than 256 points, it was padded 
forward to meet the required length. The initial learning 
rate was set to 10−4 and decayed by a factor of 10 every 40 
epochs. The total number of training epochs was set to 200.

The synthetic seismic data used for training was 
derived from the 2007 British Petroleum (BP) Anisotropic 
Velocity Benchmark, a two-dimensional synthetic dataset 
released by BP. The dataset consists of 1,641 shot gathers, 
each containing 800 seismic traces. Each trace has 1,151 
sampling points, with a sampling rate of 125  Hz and a 
sampling interval of 8 ms, resulting in a trace duration of 
9.208 s. Due to the similarity between adjacent shot gathers, 
a subset of 20 gathers was selected for training by sampling 
five consecutive shots every 500 gathers. Specifically, the 
selected training gathers were 1–5, 501–505, 1,001–1,005, 
and 1,501–1,505. Shot gathers 10, 510, 1,010, and 1,510 
were used for denoising evaluation. This sampling strategy, 

which spans different and dispersed seismic environments, 
facilitates the model to learn more representative and 
generalizable feature representations. Gaussian noise with 
a mean of 0 and a standard deviation of 0.3921 was added to 
the synthetic data to simulate noisy conditions. According 
to the characteristics of the Gaussian distribution, 99.7% 
of the SNR values of the added noise lie within the range 
[−3,3]. A total of 98,900 samples were generated from the 
20 shot gathers. For all models, 80% of the samples were 
used for training and the remaining 20% for validation.

4. Synthetic experiment
In this section, the denoising performance of the proposed 
VMD–DnCNN model was evaluated using synthetic 
seismic data. As shown in Figure  4, Gaussian noise was 
added to shot gathers 10, 510, 1,010, and 1,510 to achieve 
SNRs of 6 dB, 0 dB, −5 dB, and −10 dB, respectively. To 
better assess the denoising effectiveness of VMD–DnCNN, 
comparative analyses were conducted with several typical 
seismic denoising methods, including both conventional 
and deep learning-based approaches. It was observed that 
when the noise level corresponded to an SNR of 6 dB, some 

Figure 3. Training dataset generation process.

Table 1. Training parameters of convolutional neural 
network‑based methods

Hyperparameter DnCNN U‑Net VMD–DnCNN

Optimizer ADAM ADAM ADAM

Patch size 256 256 256

Batch size 100 100 100

Epoch 200 200 200

Learning rate range [10−4, 10−7] [10−4, 10−7] [10−4, 10−7]

Input channels 1 1 4

Abbreviations: DnCNN: Denoising convolutional neural network; 
VMD: Variational mode decomposition.
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seismic reflections were still barely visible. However, as the 
noise increased to 0 dB, most of the seismic signals were 
overwhelmed by noise, and only a small portion remained 
observable. At −5 dB, only the strong direct wave energy 
was distinguishable. When the noise level reached −10 dB, 
almost no valid seismic information was visually identified.

To evaluate the denoising performance of the proposed 
VMD–DnCNN model, it was compared with several 
widely used seismic denoising methods, including 
traditional techniques, such as the wavelet transform and 
VMD, as well as deep learning-based approaches, such as 
the DnCNN and U-Net model.29 For parameter settings, 
the number of IMFs in the VMD was set to three, and a six-
level Daubechies-4 (db4) wavelet was used for the wavelet 
transform. Thresholds in both the VMD and wavelet 
methods were adaptively adjusted based on the complexity 
of the noise in the seismic data. To ensure experimental 
fairness, all denoising methods were implemented and 
tested on an Nvidia GeForce RTX 4060 Ti GPU with 16 GB 
of video memory. In addition, to quantitatively assess the 
denoising performance of each method, four commonly 
used evaluation metrics for seismic signal quality were 

adopted: SNR, root mean square error (RMSE), peak SNR 
(PSNR), and structural similarity index measure (SSIM). 
The specific formulations of these two metrics are defined 
as follows:
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where X represents the original seismic signal; Ŷ  
represents either the noisy seismic data or the denoised 
seismic data, which are used to calculate the SNR and 

Figure 4. Noise-free data and the corresponding data with added Gaussian noise under varying conditions: (A) 6 dB, (B) 0 dB, (C) –5 dB, and (D) −10 dB.
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RMSE for the original signal or the denoised result, 
respectively; M and N represent the number of receivers 
(traces) and the number of sampling points per receiver, 
respectively; µX and µY are the mean amplitudes of X and Y, 
respectively; σ X

2  and σY
2  are the variances; σXY is the 

covariance between X and Y; the constants C1 and C2 are 
small positive numbers introduced to avoid division by 
zero; MAXX

2  is the squared maximum amplitude of the 
reference signal; and MSE is the mean squared error 
between X and Y. The SSIM ranges from −1 to 1, with 
higher values indicating greater structural similarity 
between the two signals. The PSNR is expressed in decibels 
(dB), and higher values indicate better reconstruction 
quality with smaller differences from the reference signal.

A comparative analysis of denoising performance 
was conducted using the synthetic seismic data with 
added Gaussian noise (Figure 4). The denoising results 
of various methods are presented under different SNRs. 
To better illustrate the robustness of each method under 
varying noise levels, a performance comparison curve 
was additionally generated by adding Gaussian noise 
ranging from −10  dB to 6  dB in 1  dB increments to 
shot gather 1,510. This allows for the evaluation of how 
effectively each method performs against different noise 
intensities.

First, the visual denoising results of each method across 
different synthetic shot gathers were examined (Figure 5). 
When the noise level was 0 dB, traditional methods such as 
the wavelet and VMD models left noticeable background 
noise, and much of the noise remained entangled with the 
seismic signals. In contrast, deep learning methods like 
DnCNN and U-Net effectively suppressed background 
noise, although some seismic signals were inadvertently 
removed. Nevertheless, continuous signals across traces 
were better preserved. At −5 dB and −10 dB noise levels, 
the VMD method showed even more background 
noise residue, while the wavelet method exhibited 
increasingly severe artifacts. Under these conditions, 
DnCNN and U-Net also struggled to remove background 
noise effectively, and the retained signals were heavily 
contaminated by residual noise. In particular, at −10 dB, 
it became nearly impossible to identify any valid seismic 
information using these methods. In contrast, the 
VMD–DnCNN model demonstrated superior denoising 
performance. At 0 dB, although some background noise 
remained, it preserved more continuous and weak signals 
than other methods, maintaining better signal continuity. 
At −5  dB, it successfully removed most background 
noise while retaining the underlying seismic signals, 
achieving a near-complete recovery. Even at −10 dB, the 
VMD–DnCNN model was still capable of recovering 
meaningful signals; although some noise remained, the 

overall clarity of the signal was significantly better than 
with other methods. From this comparison, it is evident 
that VMD–DnCNN consistently outperformed other 
methods under both strong and weak noise conditions. 
Notably, in scenarios with severe noise contamination 
where other methods failed to recover seismic signals 
effectively, VMD–DnCNN retained finer details of the 
signal. Within the red rectangles in Figure  5, it can be 
seen that both the strong direct arrivals and the weaker 
reflections following the direct waves were better restored 
using VMD–DnCNN compared to other methods. Even 
under strong noise conditions, the proposed method 
was able to improve SNR to over 20  dB, whereas the 
performance of other methods—especially deep learning 
models—declined under such noisy scenarios. As 
shown in Table  2, the quantitative results also confirm 
that VMD–DnCNN achieved the highest improvements 
in both SNR and RMSE metrics compared to the other 
benchmark methods.

The importance of computational efficiency in seismic 
signal processing should not be overstated. Therefore, 
the computational performance of different denoising 
methods was analyzed by evaluating their performance 
under various noise levels. The SNR improvements 
achieved by each method across different noise intensities 
are illustrated in Figure  6, and the detailed performance 
metrics are summarized in Table  3. All methods were 
evaluated under identical denoising environments with 
consistent hyperparameter settings, including the number 
of training epochs, sample length, and learning rate. The 
training times required for VMD–DnCNN, DnCNN, and 
U-Net were 0.504 h, 0.498 h, and 2.144 h, respectively, while 
the traditional methods did not require any pretraining. 
In terms of average inference time per denoising task, 
the VMD–DnCNN, DnCNN, U-Net, VMD, and wavelet 
models required 2.178 s, 2.1012 s, 3.343  s, 66.26 s, and 
1.291 s, respectively. Their corresponding average SNR 
improvements were 29.05 dB, 11.53 dB, 12.83 dB, 9.34 dB, 
and 8.95 dB. Both VMD–DnCNN and DnCNN consisted 
of 20 convolutional layers, while U-Net contained 19 
convolutional layers along with four downsampling 
and four upsampling operations. Although U-Net 
slightly outperformed DnCNN in terms of denoising 
results, it required nearly four times the training time of 
DnCNN. While VMD achieved slightly better denoising 
results than the wavelet method, its time and memory 
consumption were significantly higher compared to the 
other methods, making it less practical for large-scale 
applications. Furthermore, DnCNN and VMD–DnCNN 
exhibited similar inference speeds and were slightly faster 
than U-Net. Although their inference times were longer 
than those of the wavelet method, they remained within 
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an acceptable range for practical use. Although deep 
learning methods required a one-time model pretraining 
phase, the training time was relatively acceptable. Once 
trained, the model could be reused without retraining, 
making the cost of pretraining negligible in the long 
term.

The robustness of each method across 17 different SNR 
levels was also analyzed using the performance curves, 
as shown in Figure  6. While all methods demonstrated 
a generally linear increase in SNR with decreasing noise, 
VMD–DnCNN achieved optimal denoising performance 
within the noise levels that were close to those used during 

Figure 5. Denoising performance of different methods under different SNR conditions. Panels A–F display, from top to bottom, the denoised results 
corresponding to varying SNR levels for each respective method: (A) VMD, (B) wavelet, (C) DnCNN, (D) U-Net, and (E) VMD–DnCNN.
Abbreviations: DnCNN: Denoising convolutional neural network; SNR: Signal-to-noise ratio; VMD: Variational mode decomposition.
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training. Even outside that range, although it did not always 
yield the highest SNR, it still consistently outperformed 
the other methods in denoising effectiveness. This 
phenomenon occurs because, outside the training interval, 

the frequencies of the high-, mid-, and low-frequency 
modes decomposed by 2D-VMD vary in response to 
differing noise intensities. Consequently, the network 
applies denoising based on signal feature frequencies 
learned during training, which may not accurately 
correspond to the characteristics of the input data.

As a frequency-domain analysis can better highlight 
seismic signal characteristics, this section further analyzes 
the denoising results using frequency–wavenumber (F–K) 
spectra, as shown in Figure 7. The denoising results of shot 
gather 510 were used as an example for detailed analysis. 
As shown in Figure 7A, the left panel shows the noise-free 
data, while the right panel demonstrates the data after 
adding Gaussian noise. Figure 7B–F displays the denoised 
results from different methods on the left, and the 
corresponding removed noise components on the right. 
As shown in Figure  7A, the dominant frequency of the 
original seismic signal lay in the range from 20–50 Hz. After 
adding noise, the frequency content shifted significantly 
into the 70–80  Hz range, completely overwhelming the 
original signal. By examining the denoising results, both 
the VMD and wavelet methods were found to remove 
portions of the strong direct wave signals. Specifically, 
VMD tended to misclassify parts of the original signal 
as noise, and its output was centered around 50 Hz. The 
wavelet method partially restored the original 20–50 Hz 
range in some regions, but also retained components in 
the higher-frequency band, indicating inconsistency 
in noise suppression. Among deep learning-based 
approaches, both U-Net and DnCNN exhibited better 
overall denoising performance. However, they tended to 
suppress certain high-  and low-frequency components 

Table 2. Result of processing at different SNRs by deep 
learning methods

Noisy 
record 
(dB)

Parameter VMD Wavelet DnCNN U‑Net VMD–
DnCNN

6 SNR 12.40 12.87 19.45 19.77 23.07

RMSE 0.6166 0.5842 0.2736 0.2639 0.1806

PSNR 54.54 55.22 61.73 62.32 65.41

SSIM 0.9992 0.9990 0.9998 0.9998 0.9999

0 SNR 7.85 9.14 17.90 18.15 27.03

RMSE 1.0524 0.9072 0.3307 0.3216 0.1156

PSNR 51.28 51.40 60.08 48.38 69.29

SSIM 0.9981 0.9977 0.9997 0.9943 0.9999

−5 SNR 5.67 5.23 4.19 5.81 24.95

RMSE 1.4332 1.5068 1.6990 1.4099 0.1556

PSNR 47.87 46.99 45.76 48.38 66.71

SSIM 0.9944 0.9939 0.9920 0.9943 0.9999

−10 SNR 0.80 2.25 −5.73 −3.47 23.23

RMSE 2.8440 2.4054 6.0296 4.6496 0.2148

PSNR 42.05 42.93 35.39 37.23 63.91

SSIM 0.9817 0.9851 0.9173 0.9238 0.9998

Abbreviations: DnCNN: Denoising convolutional neural network; 
PSNR: Peak signal‑to‑noise ratio; RMSE: Root mean square error; 
SNR: Signal‑to‑noise ratio; SSIM: Structural similarity index measure; 
VMD: Variational mode decomposition.

Figure 6. Denoising performance curves of the VMD, wavelet, DnCNN, U-Net, FFT, and VMD–DnCNN methods under different SNR conditions.
Abbreviations: DnCNN: Denoising convolutional neural network; FFT: Fast Fourier transform; SNR: Signal-to-noise ratio; VMD: Variational mode 
decomposition.
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of the original signal, resulting in the recovered signals 
being mainly concentrated around the 30–40  Hz range. 
In contrast, the VMD–DnCNN method demonstrated 
superior performance by preserving both high-  and 
low-frequency information. Within the red rectangular 
regions in Figure  7, VMD–DnCNN was observed to 
more effectively restore the seismic signal in areas with 
wider frequency separation, retaining more detailed 
seismic features. Overall, the VMD–DnCNN method 
demonstrated superior capability in restoring the signal’s 
frequency content to its original distribution, thus offering 

Table 3. Computer performance analysis

Hyperparameter VMD Wavelet DnCNN U‑Net VMD–
DnCNN

Average processing 
time (s)

66.260 1.291 2.012 3.343 2.178

Training time (h) 0 0 0.498 2.144 0.501

Average improved 
SNR (dB)

9.34 8.95 11.53 12.83 29.05

Memory cost (MB) 125.73 7.63 0.89 22.52 0.89

Abbreviations: DnCNN: Denoising convolutional neural network; 
SNR: Signal‑to‑noise ratio; VMD: Variational mode decomposition.

Figure 7. Frequency–wavenumber (F–K) spectrum analysis of noisy shot gathers 510 under different denoising methods: (A) clean F–K spectra, (B) VMD, 
(C) wavelet, (D) DnCNN, (E) U-Net, and (F) VMD–DnCNN.
Abbreviations: DnCNN: Denoising convolutional neural network; VMD: Variational mode decomposition.
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a more accurate and comprehensive reconstruction in the 
frequency domain.

Subsequently, how the VMD–DnCNN network learns 
seismic signal features was analyzed by examining feature 
activation heatmaps at different network layers. The 
denoising results of shot 1,510 were used as the case study. 
As illustrated in Figure 8, the heatmaps correspond to the 
1st, 4th, 10th, and 16th  layers of the network, displayed 
from left to right. It can be observed that the network 
predominantly focused on low-frequency components 
of the seismic signals, with these features being 
highlighted from the initial layer, albeit in a relatively 
simplistic form. By the fourth layer, the network 
began to learn features at even lower frequencies while 
simultaneously capturing high-frequency components 
associated with direct arrivals. At the 10th  layer, the 
features remained primarily low-frequency; however, 
by the 16th  layer, the learned features shifted toward 
higher frequencies, incorporating both low-  and high-
frequency information. Given that seismic signals 
primarily consisted of low-frequency components, 
decomposing the signals into low-, mid-, and high-
frequency bands through 2D VMD facilitated more 
effective feature learning by the network, surpassing the 
limitations of single time-domain feature extraction.

5. Field data experiment
In this section, the denoising performance of the 
proposed VMD–DnCNN model was evaluated using 
real seismic data, specifically marine seismic records. The 
real seismic data used in this experiment are shown in 
Figure 9A. By processing the field data, the effectiveness of 
VMD–DnCNN was demonstrated in real-world scenarios. 
For comparative analysis, the same baseline methods used 

in the synthetic data experiments were adopted. The real 
marine dataset used for evaluation was the 2D Mobil AVO 
Viking Graben Line 12 dataset. This dataset consists of 
1,011 shot gathers, each containing approximately 119 
seismic traces with 1,500 sampling points per trace. The 
sampling interval is 4,000 µs (i.e., 250 Hz sampling rate), 
resulting in a trace duration of 6 s. Shot gather 1 was 
selected for denoising analysis in this study. The denoising 
results of different methods applied to the real marine 
seismic data are shown in Figure 9.

Among the traditional methods, VMD effectively 
removed a significant amount of background noise and 
successfully separated weak signals from noise; however, 
some residual artifacts remained, and small portions of 
continuous strong signals were mistakenly removed as 
noise. Overall, the performance was relatively good. The 
wavelet method, on the other hand, tended to remove 
weak signals during denoising, produce residual artifacts 
around continuous strong signals, and leave some noise 
behind. For deep learning methods, both DnCNN 
and U-Net successfully suppressed background noise. 
However, the denoising effect of U-Net was inferior to that 
of DnCNN, as U-Net did not preserve weak signals well 
and exhibited residual artifacts in regions of continuous 
strong signals. In contrast, DnCNN showed relatively 
better overall denoising performance. Although some 
continuous strong signals were erroneously treated as 
noise, the continuity of the signals was largely preserved. 
In terms of weak signal processing, while residual noise 
still existed, a portion of the weak signals was retained, 
resulting in comparatively good denoising performance. In 
the case of VMD–DnCNN, although residual artifacts and 
incomplete removal of background noise remained, the 
method achieved a clear separation between weak signals 

Figure 8. The VMD–DnCNN feature activation heatmap.
Abbreviation: Variational mode decomposition–denoising convolutional neural network.
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Figure  9. Denoising results on real marine seismic data by different methods: (A) noisy data, (B) VMD, (C) wavelet, (D) DnCNN, (E) U-Net, and 
(F) VMD–DnCNN.
Abbreviations: DnCNN: Denoising convolutional neural network; VMD: Variational mode decomposition.
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and noise while preserving more weak signals overall. By 
examining the red-highlighted regions of the denoised 
results in Figure 10, as shown in the enlarged views of areas 
I and II, the VMD and wavelet methods left most of the 
noise residuals; U-Net recovered only a small fraction of 

the signals; DnCNN recovered some components, but with 
residual noise; and VMD recovered signals well. However, 
when these results were compared to VMD–DnCNN, 
the recovered signals by VMD–DnCNN were noticeably 
clearer.
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Figure 10. Crimson rectangular areas in Figure 9. From top to bottom are the zoomed-in views of regions I and II from different methods: (A) VMD, 
(B) wavelet, (C) DnCNN, (D) U-Net, and (E) VMD–DnCNN.
Abbreviations: DnCNN: Denoising convolutional neural network; VMD: Variational mode decomposition.
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6. Conclusion
Traditional decomposition methods for seismic signal 
processing often suffer from the problem of mode mixing, 
making them difficult to completely prevent noise 
components from being incorporated into each mode, 
thereby reducing denoising accuracy. To address this 
issue, this study proposed a novel seismic signal denoising 
method that combines VMD with DnCNN—referred 
to as VMD–DnCNN. Seismic signals are primarily low-
frequency, while noise is concentrated in high-frequency 
bands. Therefore, decomposition through VMD enables 
the network model to learn the characteristics of both 
seismic signals and noise more effectively. This method 
first applies VMD to decompose the noisy signal into 
three frequency-specific modes, corresponding to high-
frequency noise, mid-frequency seismic phases, and low-
frequency structural components. These modes, together 
with the original noisy signal, are used to construct a four-
channel input, providing the deep learning network with 
clearer and more distinguishable frequency information. 
With this decomposition, the network not only learns 
to differentiate between effective signal and noise 
features across frequency bands but also leverages the 
complementary characteristics of different modes to better 
detect and preserve weak signals, especially under high-
noise conditions. By adapting the DnCNN architecture and 
expanding the input channels, the VMD–DnCNN model is 
capable of extracting deep semantic features from seismic 
data while integrating both time-domain and frequency-
domain information. This significantly enhances the 
model’s denoising performance and generalization ability. 
Experimental results demonstrate that the proposed 
method outperforms both traditional and standalone deep 
learning approaches under various noise levels, and it 
remains effective in preserving fine signal structures even 
under low SNR conditions.

Despite its clear advantages in denoising accuracy 
and robustness, the VMD–DnCNN method has certain 
limitations in practical applications. First, it relies on a 
pre-decomposition step, where VMD must be applied to 
the input signal before feeding data into the network. This 

preprocessing not only increases the overall computational 
cost and complexity of the workflow but also makes 
performance highly sensitive to the VMD parameter 
settings. Inaccurate parameter choices may lead to 
suboptimal mode separation, which can adversely affect 
network learning. Second, as a variational optimization 
technique, VMD is computationally intensive—especially 
when dealing with large-scale 2D seismic data—and may 
significantly increase resource consumption. Moreover, 
mode mixing remains present to some extent, with noise 
potentially remaining in effective modes, interfering with 
the network’s learning process. Therefore, future research 
can explore learnable decomposition mechanisms or 
end-to-end jointly optimized frameworks that integrate 
decomposition and network training in a unified 
architecture, further enhancing the automation and 
adaptability of seismic denoising.
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