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INTRODUCTION

Owing to increasingly complex surface conditions of land seismic acquisition
in petroleum exploration, conventional wired acquisition has become
environmentally unfeasible, leading to the dramatic increase in exploration cost
and security risks of field operation. These challenges have made oil companies
and service contractors flinch. Wireless node acquisition developed in the latest
years based on some key techniques, such as storage technology, battery life, and
time correction, 1s much superior to wired acquisition in surface environmental
feasibility and operational flexibility and thus makes seismic exploration come
true in the prospects with complicated surface conditions.

not subject to transmission cables and thus more
cable (OBC) technique. Besides, OBN techniqu

has been widely used in reservoir mon
OBN for reservoir monitoring in
2 'and in Bonga deepwater field 2008, obtaining data of higher
quality than streamer acquisition Geosolution researched into the
equipment of automatic quiSition. Shell developed a new generation
of OBN equipment (E

ition cannot be monitored in the process of
ic data gaps caused by abnormal performance of
erformance of continuous nodes. In serious cases,

restoration and reconstruction to replace the process of field reshooting and re-
acquirement technically.

Seismic data reconstruction is to technically recover the gaps in field seismic
data at defined sampling rate and enrich seismic data with sufficient geophysical
information to support geophysical exploration and development. There are three
routine methods: filter, wave field operator, and transform domain, the sampling
rate of which should be large enough to satisfy the requirement of the Nysuist
sampling theorem; hence, large storage space is needed. To break through the
limitation of routine methods, compressed sensing was developed 7 to encode
original signals using the frequencies far below the Nyquist frequency and then
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restore signals accurately or reconstruct signals approximately with small errors
using a reconstruction algorithm. As to compressed sensing essentially, if the
signals are sparse in an orthogonal transform domain and a measurement matrix
is defined to make the orthogonal bases of its sparse transform uncorrelated,
the signals will be projected from a higher space to a low-dimensional space
using this matrix; high frequencies can be restored and reconstructed using a
recovery algorithm 1, This process includes three steps: sparse representation of
signals, measurement matrix (sampling method) definition, and reconstruction
algorithm design.

Sparse representation of signals can be accomplished through Fourier
transform, wavelet transform, curvelet transform, etc. FQ transform
realizes signal analysis in the frequency domain based on
between time domain and frequency domain, but it is a

formulated the short-time Fourier transform !°
for local partition of signals and Fourier anal
The window size and geometry are co
complex seismic data owing to great
wavelet transform, the geometry of the
resolution can be tuned according
application to seismic prospecting
data characterization. Curvg

ocal frequencies.
us it is unfeasible for
variation with time ', For
ction is varied; hence, time
41, However, despite its wide

uses curvilinear transform basis [1°
s and in different directions ', As an

;and wave field simulation #2331, The algorithm
on curvelet transform was created by integrating

alternati¥ys random undersampling, which can mitigate aliasing by converting
aliases into low-amplitude noises and then filtering them out. Consequently, it
1s possible to accomplish data restoration and reconstruction at the frequencies
below the Nyquist frequency. Gaussian random sampling, a commonly used
method in compressed sensing, suffers from the problem that the spacing
interval between missing traces is beyond control; thus, seismic data cannot
be recovered because many continuous traces may be lost . Compared with
Gaussian random sampling, Jitter sampling divides the zone to be processed into
many subzones, in each of which forced random sampling is performed at each
point to control the spacing interval between two neighboring missing traces
to a great extent for compressed sampled data reconstruction ¢, Hennenfent
and Herrmann (2007) introduced 1D sampling into curvelet transform-based
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compressed sampling 2%, Tang (2010) generalized the sampling from one
dimension to two dimensions and obtained good results of data restoration 7).

Reconstruction algorithm focuses on how to reconstruct complete data
accurately using the sparse representation of signals; it is essentially a convex
optimization problem to minimize L1 norm. A common method is basis pursuit
(BP) algorithm, which searches for the most matched atom in the compressed
sensing matrix in each iteration ¥, BP algorithm can be realized using interior
point method, which is time consuming ! despite accurate reconstruction
of signals. Another common algorithm for convex optimization is iterative
shrinkage-thresholding, which is simple but slow in convergence rate M1,
Matchmg pursult (MP) algorlthm searches for the atom 1n thg Ing matrix

thqM8parse representation of signals using a
recogprs and reconstructs the original high-
fin optimization problem. There are two
ignals, and the other is that the sampling matrix

sentation of signals is to brief signal representation by
o signals and extracting key sparsities. Commonly used methods
include Fourier transform, short-time Fourier transform, wavelet transform,
ridgelet transform, and curvelet transform. Fourier transform is a global time-
frequency analysis method, which deals with the overall features of signals in
the time domain and cannot effectively identify local features. On the basis
of Fourier transform, short-time Fourier transform divides the signals into
a number of segments in the time domain by using a window function and
then performs Fourier transform for each segment so as to characterize local
features. The problem is that constant window size and geometry indicate a
single resolution. Wavelet transform uses a damping wavelet basis with finite
length, instead of an infinite basis of trigonometric function used in Fourier
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transform, to identify local features, which are restricted to point singularities.
With respect to the issue of linear singularity, ridgelet transform converts linear
singularities into point singularities through Radon transform and then uses
point singularities identified by wavelet transform to capture linear singularities
of signals. This method of linear singularity characterization is unfeasible for
seismic signals with curved events. Based on wavelet transform and ridgelet
transform, curvelet transform introduces an orientation parameter to accomplish
optimum non-linear approximation of seismic data. Owing to multi-scale,
multi-direction, and anisotropic properties, curvelet transform has been widely
applied to seismic data restoration and reconstruction.

Figure 1 illustrates seismic wavefront approximated
basis function, and Figure 2 shows the original seismic d
reconstruction results by using Fourier transform in (b),
and curvelet transform in (d) '*). As shown in Figure

1s at the minimum and close to zero when th is perp@fidicular to seismic
wavefront. Hence, this part of data can be arsely using a few large
coefficients in parallel with seismic wavgfront. Suych behavior can be illustrated
by reconstructing the 1% largest coeffici@ts usin@different methods, as shown
in Figure 2. Reconstruction by Fougier tr
and missing data (Figure 2(b)).
not suffer from the proble intefgfence, but wavefront texture with linear
singularities cannot be e
exist in the reconstrucig
used curvelet basis

mpurvelet transform (Figure 2(d)). Thus, we
tepresentation in our study.

Large Curvelet

curvelet coefficier coefficient-0

The orange box indicates an enlarged view. The orange ellipses represent curvelet basis.

Figure 1 Diagram of approximating seismic wavefront by using curvelet basis function
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Measurement
Compre sing solves an underdetermined problem, which recovers
and re gnals ~ with the length of ¥ from the measured data

M (M <N provided that the signals are k-sparse and the
atrix ¥ is uncorrelated with the sparse matrix ¥ ©4 If ©

e sensing matrix © =®Y¥ will be obtained based on the designed
sampling Matrix ©.

Methods

The sampling matrix R is designed in terms of sampling method. As per

developmental sequence, sampling methods are classified as regular sampling
and random sampling.

Regular sampling

A regular sampling method adopts uniform sampling with equal interval. If
the Nysuist sampling theorem is satisfied, complete signals will be reconstructed



7

without frequency aliasing. If the sampling frequency is below the Nyquist
frequency, aliasing will happen; thus, it is impossible to reconstruct original
signals accurately.

Random sampling

Random sampling is performed at heterogeneous intervals between sampling
points. Unsampled points are uncorrelated with each other; hence, aliasing can
be alleviated and eliminated effectively. Figure 3 illustrates several associations
of sampling methods, where the lateral axis denotes the direction of receiver
points and the vertical axis denotes the direction of shot points.
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Figure 3 Diagrams of two-dimensional sampling methods

Method comparison

Figures 4 and 7 show the reconstruction results through curvelet-based
compressed sensing for regular sampling and random sampling. The result
of reconstruction improves with increasing irregularity and incoherence of
sampling points.



(a) Sampling result (b) Reconstruction result (c) Reconstruction error

Figure 4 Reconstruction results for curvelet transform with regular sqagplge method

(a) Sampling result (c) Reconstruction error

Figure 5 Reconstructio et transform with random sampling method

APPLICATION

Sampling ix constription

In th igementation of seismic data processing, the sampling
' in accordance with the distribution of sampling points

rates and Sempling methods are used to gap and sample data, followed by data
restoration. For real seismic data, the sampling method may be designed in
accordance with data distribution. How to construct the sampling matrix is
dependent on missing traces in original data.

Figure 6 shows the process of construction. A sampling matrix is designed
to be equal in size to original data (Figure 6(a)), in which the sampling value is
equal to 1 at the point with measured data and to 0 at the point with no measured
data. Hence, a sampling matrix corresponding to original data is established
(Figure 6(b)). Original data are equivalent to the sampling results of complete
seismic data using the sampling matrix. After that, real seismic data will be
recovered and reconstructed.
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Figure 6 Construction of samplig@’ma

Model tests

For effective data restoration and recofiStructiog, four parameters were tested
using modelled data. The parameters are§ghreshold, data integrity on both sides

of missing traces in the time do nu missing traces, and curvelet
scale.
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Figure 7 Testing data for threshold analysis
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8 onsgCtion results of curvelet transform with different thresholds

ted data agree well with original data in curve shapes as the
increases; but a large threshold may lead to a blurred image. This
means tha®there is an optimal threshold or threshold range in data processing.

The following part deals with original data integrity on both sides of missing
traces in the time domain to discuss why there are gaps in reconstructed data.

Influence of data integrity

If original data are incomplete on both sides of the missing trace in the time
domain (Figure 9(a)), these incomplete traces labelled as effective traces in
the measurement matrix will lead to the gaps in recovered data (Figure 10(a)),
which represent missing information in original data. If original data are
complete without null values on both sides of the missing trace (Figure 9(b)),
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data restoration will yield good results (Figure 10(b)). In summary, original data
integrity on both sides of missing traces in the time domain is a prerequisite to
data restoration with good results.

0.00

0.204

0.304
0,304

(a) Incomplete data on both sides of the (b)
missing trace

Figure 9 Testing data for the integrity angllysis on b@th sides of the missing trace

(a) Reconstruction of incomplete data (b) Reconstruction of complete data

Figure 10 Reconstruction results of curvelet transform

Another test with several missing traces (Figure 11(a)) further illustrates
good results of data restoration (Figure 11(b)).
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Figure 11 Reconstruction results of seismic data

Influence of number of missing traces

The following part deals with the nun@iber of massing traces in the context of
complete data on both sides of missing tRaces (Figure 12).

Different numbers of missing tr3
restoration results are good

e tested. For a data size of 350%350,
below 20, acceptable for the number
of 30, and unsatisfacto ber of 40. This means that the scale of
curvelet basis 1s restri ords, restoration results are good for the
curvelet scale of 6 missMg traces less than 6%.

0,301 0. 30

(a) 10 missing traces (b) Reconstruction results for 10 missing
traces



(c) 20 missing traces (d) Reconstruction 18

(e) 30 mi trace (f) Reconstruction results for 30 missing
traces

(g) 40 missing traces (h) Reconstruction results for 40 missing
traces

Figure 12 Reconstruction results for seismic data with different numbers of missing traces
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Influence of curvelet scale

Figure 13 shows the influence of curvelet scale on data restoration for 20
missing traces, which account for 5.7% of total traces.

0.00 . . . 0.00

(a) Original data Curveld@scale of 6

1 St 101 151 201 251 301 380

) Curvelet scale of 4 (d) Curvelet scale of 2
Figt®® 13 Reconstruction results for seismic data with different curvelet scales

Curvelet scale has little impact on data restoration. An increase in curvelet
scale is helpful to the restoration of details, which is unnecessary in this test.
Hence, data restoration with different scales yielded similar results.

Originally incomplete data on both sides of missing traces in the time domain
led to an inaccurate measurement matrix. The gaps in recovered data represent
missing information in original data. If original data are complete without null
values on both sides of missing traces, data restoration will yield good results.
Hence, original data integrity on both sides of missing traces in the time domain
1s a prerequisite to data restoration with good results.
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Different numbers of missing traces were tested. For a data size of 350x350,
restoration results are good for the number below 20, acceptable for the number
of 30, and unsatisfactory for the number of 40. This means that the scale of
curvelet basis is restrictive. Restoration results are good for the curvelet scale
of 6 and missing traces less than 6%.

Field Data

OBN data (as shown in Figure 14) with single-ended spread have 1378 shots
and 350 channels per shot. Group interval is 50 m; record length is 8000 ms;
sampling interval is 2 ms. For the convenience of analysis, the data of the first
shot (Figure 15(a)) were processed first. In Fi igure 15(b) w1t issing traces
plotted in red, the number of continuous missing traces is
least. We used 6 curvelet scales, 8 angles at the largest
and 100 iterations for data restoration. The results ar L ighre 16(a)
Figure 16(b) shows the restoration results of compre ' ing Fourier
transform for comparison.

Figure 14 Field OBN data

4.00

(a) Single-shot data (b) Missing traces
Figure 15 Single-shot OBN data and missing traces
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Figure 16 Reconstruction resul ingle-s BN data

ng is often attributed to node
’s of missing traces lead to good

# on Fourier transform. Owing to a large number of missing
traces eld data, restored data in Figure 16(b) show serious aliases. This
means thaPcurvelet transform is more feasible for OBN data restoration based
on compressed sensing.

Compressed sensing based on curvelet transform was performed to reconstruct
OBN data of 1378 shots (as shown in Figure 17). Except for several areas with
too many missing traces, restored data in additional areas show more continuous
events and abundant information than original data (shown in Figure 14).



odel tests, data restoration is
sides of missing traces and
o define threshold and curvelet
ation to OBN data of 1378 shots

missing traces less than 6% of tota
scale depends on measured data.

CONCLUSIO
To solv lem of data missing in wireless OBN data acquisition, we
developgd a d sensing technique, which takes full advantage of the

of seismic data in the time—space transform domain, for

of seismi8 rospectlng. Centering on the theory of compressed sensing, we
discussed the basic theory of compressed sensing, methods related to three steps
in compressed sensing, and application to model data and field data. Following
conclusions are arrived.

(1) As per theoretical analysis, compressed sensing can reconstruct original
data at the frequencies far below the Nyquist frequency, which cannot be
accomplished using conventional methods. This is the greatest strength of
compressed sensing; thus, this technique is significant to seismic data restoration
and reconstruction.
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(2) Compressed sensing mainly includes three steps: sparse representation of
signals, measurement matrix design, and signal restoration and reconstruction,
each of which can be implemented using many methods. As per comparative
analysis, curvelet transform features multi-scale, locality, and multi-direction,
and can accomplish optimum non-linear approximation of seismic wavefront;
random sampling mitigates and even eliminates aliasing; iterative shrinkage-
thresholding features simple operation, fast iteration, and good performance
for noisy data. For OBN data with curved events and missing traces of
random distribution, compressed sensing based on curvelet transform, random
sampling, and iterative shrinkage-thresholding is the most feasible method for
data restoration and reconstruction.

curvelet scale is dependent on measured dat
1378 shots yielded good results of missin
Compared with original data, improv
content demonstrate the validity of com
reconstruction.

ACKNOWLEDGEMENT

This work was partia oject of Oil & Gas Survey (No.(2023)-
YCO05).

BN technology[J]. Offshore Oil, 2014,34(03):75
C, Olofsson B, et al. Polarisation Analysis of Ocean

Technical Program Expanded NSFC 2018 Abstracts|C]. The United
States2012, pp.1-5

Lv Junru. Research on seismic converted wave stacking method for Ocean
Bottom Nodes[D]. Xi’an: Chang’an University, 2019

Donoho D. L. Compressed sensing[J]. IEEE Trans on Inf Theory, 2006,
52(4):1289-1306

Candés E. Compressive sampling. Proceedings of International Congress of
Mathematicians, 2006:1433-1452

Ma Lijing. Adaptive image coding algorithm based on compressive sensing[D].
Beijing: Beijing Jiaotong University, 2017

Liu Jicheng, Wang Minying, Li Haoran. Image Reconstruction Based on



19

Improved of CoSaMP Algorithm[J]. Computer and Modernization,
2015(5): 48-52

Heng Tong. Wavelet analysis and its application[D]. Chengdu: Sichuan
University, 2003

Gabor D. Theory of communications. Proceedings of the Institute of Electrical
Engineers, 1946, 93:429-457

Zhang Bo. Research of seismic data denoising methods based on sparse
transform[D]. Zhejiang: Zhejiang University, 2013

Li Xiaojing. Research on damage identification of the steel truss arch best on
wavelet analysis[D]. Chongqing: Chongqing University, 2010

Liu Yanwei. Cardiovascular dynamic parameter detectlon methods based

Technology (12015
Daubechise I. Ten lectures on wavelets. Philadelphia: S
Applied Mathematics, 1992
Zhang Luoyi. Research on High Precision Seismi

Cheng Bingjie, Xv Tianji. Multi-Scale Freqnc d AbSorption Attributes
of Seismic Signals. Xinjiang Petrol ], 2008, 29(3):314-317
Huang Handong, Zhang Ruwei, Guo 1Visi

ersion results|D]. Xi’an: Chang’an University, 2017

a, Liu Wei, et al. Denoising methods of OBS data based

gparse® representation[J]. Chinese Journal of Geophysics, 2018,

:1519-1528

Ma J., Plofika G. A review of curvelets and recent applications. IEEE Signal
Processing Magazine, 2010, 27(2):118-133

Herrmann F. J., Wang D., Hennenfent G., et al. Curvelet-based seismic data
processing: A multiscale and nonlinear approach. Geophysics, 2008,
73(1): A1-AS

Neelamani R., Baumstein A., Gillard D. Coherent and random noise attenuation
using the curvelet transform. The Leading Edge, 2008, 27(2):240-248

Hennenfent G., Herrmann F. J. Seismic denoising with nonuniformly sampled
curvelets. Comput. Sci. Eng., 2006, 16(25):16-25

Herrmann F. J., Boeniger U., Verschuur D. J. Nonlinear primary-multiple
separation with directional curvelet frames. Geophysical Journal



20

International, 2007, 170:781-799

Hennenfent G., Herrmann F. J. Simply denoise: wavefield reconstruction via ed
under sampling. Geophysics, 2008, 73(3):19-28

Herrmann F. J., Hennenfent G. Non-parametric seismic data recovery with
curvelet frames. Geophysical Journal International, 2008, 173(1):233-248

Tang G., Shahidi R., Ma J., et al. Two-dimensional randomized sampling
schemes for curvelet-based sparsity-promoting seismic data recovery.
Geophysical Prospecting, 2010

Tang G., Shahidi R., Herrmann F. J., et al. Higher dimensional blue-noise
sampling schemes for curvelet-based seismic data recovery[A]. SEG[C],
The United States, 2009

Herrmann F.J., Erlangga Y. A., Lin T. Compressive simultaneq aveform
simulation. Geophysics, 2009, 74: A35-A40

Sun B., Ma J., Chauris H., et al. Solving the wave e
domain: a multi-scale and multi-direction
Exploration, 2009, 18:385-399

Kong Liyun, Yu Siwei, Cheng Lin, et al. Appli n of
seismic data reconstruction[J]. Acta Seisiffolo Sini
666

Tang Gang, Yang Huizhu. Seismic data @ompresgion and reconstruction based
on Poisson Disk sampling[J]. Cli@ese Jglrnal of Geophysics, 2010,
53(9):2181-2188

Zhang Hua, Chen Xiaohong. Sei reconstruction based on jittered
sampling and curvele ]. Chinese Journal of Geophysics, 2013,
56(5): 1637-1649

Tang Gang. Seismic

Sensing and

curvelet
Seismic

ssive sensing to
,2012,34(5):659-

ion and Denoising based on Compressive
ntation[D]. Beijing: Tsinghua University, 2010

¥8on: application to compressed sensing and other inverse

ems[J]. IEEE J P, 2007, 1(4):586-598

Fornasier WI., Rauhut H. Iterative thresholding algorithms[J]. Applied and
Computational Harmonic Analysis, 2008, 25(2):187-208

Tropp J. A. Greed is good: algorithmic results for sparse approximation[J].
IEEE Trans. Information Theory, 2004, 50(10): 2231-2242

Tropp J. A.[]Gilbert A. C. Signal recovery from random measurements via
orthogonal matching pursuit [J][/IEEE Trans. Information Theory, 2007,
53(12):4655-4666

Chen Chuchu. Compressive Sensing Reconstruction Method Based on Bayesian
Theory[D]. X1’anl1Xidian University[ 12014

Rui Guosheng, Wang Lin, Tian Wenbiao. Improved algorithm based basis
pursuit for compressive sensing reconstruction[J]. Electronic Measurement




21

Technology, 2010, 33(4):38-41

Ye Zhishen, Zhang Shaojun, Huang Rentai. Compressed Sensing Theory and
Its Reconstruction Algorithm[J]. Journal of Dongguan University of
Technology, 2010, 17(3):32-35

Li Jie. Research on Demodulation Methods of MFSK Based on Compressed
Sensing[D]. Xidian University[ 12013

Duanmu Chunjiang, Xiao Yanli. A survey of reconstruction algorithms based
on matching in compressive sensing[J]. Computer Era, 2011, (4):15-17,20

Tang Xingjia, Li Libo, Zhao Qiang, et al. Study on Single Dispersion Spectral
Imager Based on Compressed Coding[J]. Spectroscopy and Spectral
Analysis[12017, 37(9):2919-2926

Li Shutao, Wei Dan. A Survey on Compressive Sensing[J]. 4
Sinica, 2009, 35(11):1369-1377

Candes E. J., Donoho D. L. New tight frames of
representations of objects with C2 singulariti
Math, 2004, 57: 219-266

Tong Zhongfei. The Study on Seismic Data D
Curvelet Thresholding Iterative Method[®]. g Chtin: Jilin University,
2009

Gao Zhenbing. Denoising method ismgg data based on Curvelet
transform[D]. Nanchang: East Chitl@Univegity of Technology( 12014

e thresholding algorithm for

constrains. Communications on
Pure and Applied Math I 004, 57(11):1413-1457

Elad M., Starck J. L., Qug : imultaneous Cartoon and Texture Image
Inpainting usin al Component Analysis (MCA). Applied

and Computajd Renic Analysis, 2005, 19(3): 340-35



http://new.wanfangdata.com.cn/details/detail.do?_type=perio&id=dglgxyxb201003008



