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Abstract
Microseismic event location plays a pivotal role in industrial applications, such as 
coal mining and hydraulic fracturing, by revealing subsurface fracture dynamics 
through the spatiotemporal analysis of seismic events. As a cornerstone of 
microseismic monitoring, accurate event localization enables critical insights 
into underground structural integrity. Traditional arrival-time-based methods 
employ optimization algorithms to minimize residuals between observed and 
theoretical arrival times. While this classical approach has proven effective, 
its accuracy is often compromised by two key limitations: suboptimal initial 
iteration values and inaccuracies in velocity parameter estimation. To address 
these challenges, we propose an innovative localization method integrating a 
grid-searching strategy with a Newton–Raphson-based optimizer. Our approach 
begins by generating initial iterative vectors—comprising event coordinates 
and velocity parameters—through a systematic grid-searching technique. 
Subsequently, the Newton–Raphson optimizer refines these estimates within a 
four-dimensional search space to achieve high-precision inversion results. The 
efficacy of the proposed method was rigorously evaluated using both synthetic 
and field datasets, with comparative analyses conducted against four established 
localization techniques. Experimental results demonstrate that our method 
significantly enhances localization accuracy and robustness, reliably inverting 
both event locations and velocity parameters. These findings provide a valuable 
technical reference for advancing microseismic monitoring systems, offering 
improved precision in industrial applications.

Keywords: Microseismic event location; Grid-searching method; Newton–Raphson-
based optimizer

1. Introduction
Microseismic monitoring has gained significant attention across multiple disciplines 
including mining engineering,1 carbon capture and utilization,2 volcanic activity 
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monitoring,3 and hydrocarbon reservoir characterization.4 
The accuracy and reliability of microseismic event 
localization are paramount in these applications, as the 
methodology must maintain robustness and stability when 
processing potentially noise-contaminated datasets.

Current localization approaches typically utilize the 
residuals between theoretical and observed P-wave arrival 
times as the primary criterion for evaluating inversion 
quality. The standard workflow involves: (i) identifying 
actual P-wave arrivals from recorded waveforms, 
(ii)  implementing optimization algorithms to iteratively 
determine the spatial coordinates that minimize the 
discrepancy between calculated and observed travel 
times.

Time-based localization methods, which rely on arrival 
time picking, ray tracing, primarily originate from the 
classical Geiger algorithm.5 These methods determine 
the source location by identifying the spatial coordinates 
that minimize the residuals between observed first-arrival 
times and theoretical travel times.6,7 However, the accuracy 
of such localization results is fundamentally constrained 
by inherent limitations in velocity model accuracy,8-11 
often leading to suboptimal positioning performance. 
To address these challenges, recent research efforts have 
focused on two key aspects: (1) developing enhanced 
optimization algorithms12,13 and (2) optimizing sensor 
array configurations.14-17

The integration of multiple optimization methods 
has proven to be an effective strategy for enhancing the 
accuracy of microseismic event localization. Several 
hybrid approaches have demonstrated promising results: 
Jiang and Pei.18 developed a combined grid search 
and Newton–Raphson iteration method; Lü et al.19 
implemented a hybrid algorithm incorporating simulated 
annealing with the simplex method; and Luo et al.20 
proposed a novel approach utilizing seagull optimization 
combined with quantile difference analysis. These hybrid 
methods have shown significant improvements in 
localization accuracy compared to conventional single-
algorithm approaches.

However, the velocity model remains a critical factor 
affecting localization precision. Dong et al.21 addressed 
this challenge by developing a velocity-independent 
localization method that eliminates the need for pre-
measured velocity parameters. While this approach 
effectively mitigates velocity related errors, it inherently 
lacks the capability to simultaneously invert for velocity 
parameters during the localization process.

We present a novel microseismic event localization 
method that combines the grid searching rule with a 

Newton-Raphson-based optimizer (GNRBO). Unlike 
conventional Newton-Raphson implementations that 
employ random initial assignments, our approach 
systematically generates initial iterative vectors (comprising 
both event coordinates and velocity parameters) through 
comprehensive grid sampling. The Newton-Raphson 
optimizer then refines these estimates within a four-
dimensional parameter space, simultaneously solving for 
both the microseismic source location and the average 
velocity model.

To evaluate the method’s performance, we conducted 
extensive testing using both synthetic and field datasets, 
assessing the algorithm’s accuracy and stability under 
various conditions. For comparative analysis, we 
implemented three established optimization techniques: 
the Hooke-Jeeves (H-J) direct search method, Genetic 
Algorithm (GA), and Particle Swarm Optimization 
(PSO). Results demonstrate that our proposed GNRBO 
method outperforms these benchmark approaches in both 
localization accuracy and computational stability.

2. Methods
2.1. Target function

Time-based microseismic localization methods utilize 
the minimization of residuals between theoretical and 
observed arrival times as their fundamental principle. 
Through optimization algorithms, these methods 
systematically search the potential source space to identify 
spatial coordinates where the travel-time residuals satisfy 
predetermined convergence criteria. The source location 
is considered accurately determined when the minimized 
residuals achieve the required inversion precision 
threshold.

The theoretical arrival time of microseismic waves 
at geophones can be expressed as a function of three key 
parameters as follows: (1) the spatial coordinates of the 
seismic source, (2) the receiver positions, and (3) the 
velocity model of underground wave propagation. This 
fundamental relationship forms the basis for time-based 
localization methods and can be mathematically described 
as follows:

T x y z v T T t x y z vP
i

P
i

0 0 0 0 0 0 0 0 0 0, , , , , , ,� � � � � � � (I)

Where TP
i  denotes the observed P-wave arrival time at 

the i-th receiver (Equation I), and T0 represents the origin 
time of the event.

tP
i  (Equation II) corresponds to the theoretical P-travel 

time from the location (x0, y0, z0) to the i-th receiver at 
(Xi, Yi, Zi) and the velocity parameter is v0:
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After eliminating the origin time T0, the inversion 
problem reduces to four unknown parameters in the 
objective function R(x,y,z,v), namely the source coordinates 
R(x,y,z) and the effective P-wave velocity (v0). This function 
quantifies the travel-time residuals between observed and 
theoretical arrivals as follows:
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T x y z vp
i , , ,� �  is the theoretical P-arrival time:

( ) ( )= +0̂, , , , , ,i i
p PT x y z v T t x y z v � (IV)

0̂T  is the estimate of the origin time of the event:

( ) ( )( )
=

= −∑0 0 0 0 0
1

1ˆ , , , , , ,
N

i i
p P

i

T T x y z v t x y z v
N

� (V)

According to Equation III, when the inversion 
unknowns approach the true value, the target function 
value is smaller. Inversions based on the location and 
velocity of the microseismic event are process in which the 
optimization algorithm is used to solve the unknowns of 
the target function, so that the target function tends to 0 
and achieves the global optimum.

As shown in Equation III, the objective function 
exhibits an inverse relationship with parameter accuracy, 
achieving its minimum value when the inverted 
parameters converge to their true values. The inversion 
process for microseismic event location and velocity 
determination constitutes an optimization problem 
where the algorithm iteratively adjusts the unknown 
parameters (x,y,z,v) to the minimization of the objective 
function toward zero.

2.2. Grid-searching method

The grid-search method systematically discretizes the 
parameter space to generate initial candidate solutions 
and establishes a set of potential solutions through a rough 
spatial sampling for the subsequent Newton-Raphson 
optimization. The searching rule is defined as:
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Where (xmin, ymin, zmin, vmin) is the lower bounds in 
the searching space and (Δx, Δy, Δz, Δv) specifying the 
discrete interval between adjacent grid points along 
each axis. nx, ny, nz and nv are sampling numbers in 
each axis.

We define the swarms in the searching space as:

X x y z vn i j k l i j k l( , , , ) , , ,� � � � (VII)

According to Equation VII, there are N = nx × ny × 
nz × nv vectors (swarms in the searching space). The 
initial iteration vectors then are used for Newton-Raphson 
searching rule in the next section.

2.3. Newton-Raphson searching rule

The Newton-Raphson searching rule is:

NRSR randn
X X x
X X X

w b

w b n

� �
�� ��

� � � �� �
 �

2 2
� (VIII)

randn is a normally distributed random number with 
zero mean, and unit variance; Xw is the worst performing 
solution vector (maximum objective function value); Xb is 
the best performing solution vector (minimum objective 
function value); Xn is the n-th generation of the searching 
swarm population.

The iteration rule is:

X X NRSRn
IT

n
IT� �1  - � (IX)

Xn
IT  represents the n-th generation of the swarm 

population.

According to Sowmya et al.,22 the iteration rule can be 
optimized further as:
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Where r1 denotes a uniformly distributed random 
variable on the interval (0,1), and rand(1, dim) represents 
a dim-dimensional random vector with components 
independently drawn from U(0,1). The updated iterative 
scheme is then given by:

https://dx.doi.org/10.36922/JSE025320052


Journal of Seismic Exploration Microseismic event locations

Volume 34 Issue 2 (2025)	 63� doi: 10.36922/JSE025320052 

X r r X r X r X

X X
n
IT

n
IT

n
IT

n
IT

n
IT

n
IT

� � � � � �� �� �� � � � �� �
� �

1
2 2 2 21 1 2 1 3

1 NNRSR
X X NRSR

X X X X

a X X

n
IT

b

n
IT

n
IT

n
IT

n
IT

b n
I

�

� � �

� � � �� �
� � �

�

�

�

�

2

3 2 1
TT

t
IT

t
ITb X X

IT
MAX IT

� � � � �� �
� �

��

�
�

�

�
�

�

�
�

�

�
�

�

�

�
�
�
�
�

�

�
�
�

1 2

5

1 2
�

_
��
�

	� (XI)

Where a and b are random values in (0,1), t1 and t2 are 
random integers in the range of the number of iteration 
vector N. MAX_IT is the maximum generation number of 
the searching swarm population.

To enhance the robustness of the optimization process 
and prevent premature convergence to local optima, a Trap 
Avoidance Operator (TAO) is considered to dynamically 
evaluate and adjust the iteration vectors. This mechanism 
operates as follows:
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Where θ1 is a random value in (−1,1), θ2 is a random 
value in (−0.5,0.5), while μ1 and μ2 are represented by:
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During the iteration, if the random number is less than 
the decision factor (DF, which is 0.6 in this paper), the 
particles are updated so that:

X Xn
IT IT

TAO
� �1 � (XIV)

According to Sowmya et al.,22  β denotes a binary 
number, either 1 or 0. If the value of a random value 
between 0 and 1 is ≥0.5, then the value of β is 0; otherwise, 
the value is 1. We assume that the optimization algorithm 
obtains the best performing solution when the iteration 
process is finished. Figure 1 illustrates the workflow of the 
proposed approach to visualize the key steps.

3. Synthetic data tests
The numerical simulation establishes a three-dimensional 
monitoring volume spanning 1000m (x-axis) × 1000m 
(y-axis) × 500m (z-axis). The sensor network consists 
of eight seismic receivers (blue rectangular markers) 

deployed underground, while 10 synthetic microseismic 
sources (red spherical markers) are distributed throughout 
the volume to test localization performance (Figure 2).

The coordinates of the sensors and events, along with 
the average velocity of the monitoring area and the origin 
times of events, are presented in Tables 1 and 2.

To evaluate the performance of the proposed method 
in terms of positioning accuracy and convergence stability, 
we conducted tests using simulated P-wave travel times. 
For comparison, three established algorithms—the H-J 

Figure 2. Sensor arrays and distribution of microseismic events.

Figure 1. The flowchart of the proposed method.
Abbreviations: NRBO: Newton–Raphson-based optimizer; 
NRSR: Newton–Raphson Search Rule.
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algorithm, GA, PSO, and NRB)—were selected and 
benchmarked against the proposed approach.

3.1. Inversion results analysis on a single event

To evaluate the localization performance, synthetic P-wave 
arrival times were used, with each positioning method 
tested 10  times under identical conditions. For the H-J 
algorithm, 10 random initial values were generated per 
trial to assess robustness. The iteration parameters for the 
GA, PSO, NRBO, and the proposed method are detailed 
in Table 3.

As shown in Table  4, the location errors and velocity 
inversion errors were evaluated based on the residual 
values of the objective function for each method. The 
results demonstrate that the PSO, NRBO, and the proposed 
method achieve higher positioning accuracy compared to 
the H-J algorithm and GA. The inversion results reveal that 
although the H-J algorithm converges close to the actual 
source location and approximates the average velocity 
in most cases, its solution often fails to reach the global 
optimum due to sensitivity to initial values, so the H-J 
method’s positioning accuracy is significantly influenced 
by the selection of initial iteration points.

Furthermore, we observed that GNRBO achieves 
the same localization accuracy as NRBO. The proposed 
method employs a grid-search strategy for initial vector 
assignment instead of the random initialization used 
in NRBO. This approach is motivated by the fact that 
completely random initialization may concentrate all 
initial individuals in an unfavorable region of the search 
space. If this region is distant from the global optimum, 
the algorithm would require more time to explore other 
promising areas. In contrast, grid search ensures a uniform 
distribution of the initial population across the entire search 
space. As a result, GNRBO maintains the location accuracy 
of NRBO while mitigating the effects of random vector 
initialization. Given the near-identical characteristics of 
the two methods, the remainder of this paper discusses the 
performance of GNRBO only.

To evaluate the inversion accuracy and stability of 
the four comparison methods, we analyzed the residual 
curves of their objective functions (Figure 3). The results 
demonstrate that both the PSO method and the proposed 
method achieve superior localization accuracy compared 
to the other two approaches. Furthermore, both the 
H-J algorithm and PSO demonstrate susceptibility to 
local optima convergence. While the GA avoids this 
pitfall, its overall convergence performance remains 
suboptimal. Consequently, all three methods exhibit 
large standard deviations in their inversion results, 
indicating unsatisfactory stability in solution quality. As 

Table 2. Microseismic event locations and average velocities

Event Event locations 
(m)

Velocity model 
(m/ms)

Origin time 
(ms)

X Y Z V T0

1 409 595 132 5 200

2 263 603 401 5 200

3 712 222 15 4.5 300

4 118 297 465 4.5 300

5 439 186 354 5.2 400

6 381 489 377 5.2 400

7 765 445 138 4.8 500

8 796 646 339 4.8 500

Table 3. Iteration parameters of three algorithms for comparison

Method The range of the searching spaces Numbers of iteration 
vectors

Maximum number of 
iterations X (m) Y (m) Z (m) Velocity (m/ms)

GA [0,1000] [0,1000] [0,500] [3,7] 1000 500

PSO [0,1300] [0,1300] [0,700] [2,7] 144 500

NRBO [0,1300] [0,1300] [0,700] [2,7] 144 500

GNRBO [−100,1300] [−100,1300] [−200,700] [2,7] 144 (nx=ny=4; nz=nv=3) 500

Abbreviations: GA: Genetic Algorithm; GNRBO: Grid searching rule with an NRBO; PSO: Particle Swarm Optimization;  
NRBO: Newton‑Raphson‑based optimizer.

Table 1. Coordinates of sensors in the monitoring area

Sensor Coordinates of the sensors (m)

X Y Z

A 0 0 0

B 0 0 500

C 1000 0 0

D 1000 0 500

E 1000 1000 0

F 1000 1000 500

G 0 1000 0

H 0 1000 500
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Table 4. Inversion results of each algorithm for No. 3 event

Method No. Inversion results

Values of target functions Errors on X‑axis (m) Errors on Y‑axis (m) Errors on Z‑axis (m) Velocity error (m/ms)

H‑J 1 1.1869 195.8000 91.4000 56.4000 1.6800 

2–3 8.2000×10‑03 5.9380×10‑01 8.3750×10‑01 5.9380×10‑01 1.2500×10‑02

4–10 5.2000×10‑03 3.7190×10‑01 5.2500×10‑01 3.7190×10‑01 7.8000×10‑03

GA 1 5.1360×10‑01 8.4152 1.2599 2.6763 1.3820×10‑01

2 2.2280×10‑01 14.3609 22.7735 15.0000 3.0720×10‑01

3 2.3600×10‑01 16.4304 24.4575 15.0000 3.4540×10‑01

4 2.4420×10‑01 2.6870 12.3826 6.6679 1.3020×10‑01

5 3.9530×10‑01 13.0293 27.4312 15.0000 2.8820×10‑01

6 1.7180×10‑01 10.1305 10.5638 7.8552 1.9130×10‑01

7 2.0160×10‑01 13.8512 17.0293 11.3937 2.7560×10‑01

8 4.9790×10‑01 24.8079 42.9948 15.0000 5.6530×10‑01

9 4.9280×10‑01 10.9521 2.8080×10‑01 5.3883 8.1000×10‑02

10 7.9480×10‑01 38.7396 64.3853 15.0000 8.5510×10‑01

PSO 1 1.7880×10‑01 11.2537 −15.7844 −15.0000 2.3200×10‑01

2 8.9595×10‑08 5.4599×10‑06 −7.8945×10‑06 −6.3069×10‑06 1.0492×10‑07

3 8.3187×10‑08 −3.6918×10‑06 6.0611×10‑06 4.7165×10‑06 −9.6966×10‑08

4 1.7880×10‑01 11.2537 −15.7844 −15.0000 2.3200×10‑01

5 9.9985×10‑08 5.8431×10‑06 −6.4691×10‑06 −7.0337e×10‑06 1.1145×10‑07

6 5.6938×10‑08 −3.6316×10‑06 3.8118×10‑06 2.8562×10‑06 −5.8678×10‑08

7 8.0253×10‑08 −3.8333×10‑06 6.8407×10‑06 4.7161×10‑06 −8.4923×10‑08

8 8.6374×10‑08 5.561×10‑06 −7.7736×10‑06 −3.8296×10‑06 1.1169×10‑07

9 8.4415×10‑08 5.6505×10‑06 −7.6209×10‑06 −4.5538×10‑06 1.0542×10‑08

10 5.8019×10‑08 3.5668×10‑06 −5.1631×10‑06 −2.4781×10‑06 7.1341×10‑07

NRBO 1 7.6025×10‑08 −4.6379×10‑06 4.9587×10‑06 3.3803×10‑06 −8.8197×10‑08

2 7.9791×10‑08 5.4871×10‑06 −7.5024×10‑06 −5.0411×10‑06 1.1702×10‑07

3 4.5000×10‑08 6.4174×10‑07 1.9462×10‑07 1.2416×10‑06 2.6760×10‑09

4 7.9854×10‑08 4.8676×10‑06 −6.5382×10‑06 −6.4612×10‑06 1.0161×10‑07

5 9.4780×10‑08 −3.5855×10‑06 6.8877×10‑06 6.4291×10‑06 −8.9947×10‑08

6 5.4590×10‑08 1.4160×10‑06 −2.6378×10‑06 −2.7416×10‑07 4.1030×10‑08

7 7.7556×10‑08 −3.5248×10‑06 4.6793×10‑06 5.2870×10‑06 −8.0933×10‑08

8 9.6337×10‑08 2.8062×10‑06 −4.5705×10‑06 −5.1877×10‑06 8.0992×10‑08

9 5.8400×10‑08 2.5450×10‑06 −2.3882×10‑06 −3.6217×10‑06 4.1128×10‑08

10 8.9179×10‑08 9.6326×10‑07 6.7787×10‑07 1.6863×10‑06 −1.3462×10‑08

GNRBO 1 7.3513×10‑08 2.7158×10‑06 −4.2334×10‑06 −4.5209×10‑06 5.0032×10‑08

2 9.2696×10‑08 8.009×10‑07 −1.7469×10‑06 −3.9857×10‑06 1.1163×10‑08

3 6.325×10‑08 1.1668×10‑06 −1.4645×10‑06 −3.254×10‑06 3.1566×10‑08

4 9.0051×10‑08 −1.1876×10‑06 −1.2955×10‑06 1.5039×10‑06 1.5501×10‑09

5 7.6197×10‑08 −2.2943×10‑06 2.9585×10‑06 1.3215×10‑06 −6.004×10‑08

6 9.9034×10‑08 2.2049×10‑06 −6.1565×10‑06 −3.8511×10‑06 7.6597×10‑08

7 9.2146×10‑08 −3.2821×10‑06 5.5135×10‑06 6.2409×10‑06 −6.9132×10‑08

8 5.795×10‑08 −3.2644×10‑06 4.9046×10‑06 4.1342×10‑06 −7.6801×10‑08

9 4.4129×10‑08 −4.2491×10‑06 −2.9997×10‑06 −2.7219×10‑06 3.5641×10‑08

10 5.1647×10‑08 2.8383×10‑06 −5.1605×10‑07 −1.2372×10‑06 9.7152×10‑09

Abbreviations: GA: Genetic Algorithm; GNRBO: Grid searching rule with an NRBO; H‑J: Hooke‑Jeeves algorithm; PSO: Particle Swarm Optimization; 
NRBO: Newton‑Raphson‑based optimizer.
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evidenced by the residual curves, the improved algorithm 
demonstrates superior performance with both the smallest 
mean error and standard deviation in inversion results. 
These metrics confirm that the enhanced method achieves 
optimal accuracy and stability among the four compared 
approaches. Figure  4 presents a comparative analysis of 
location errors between the PSO method and the proposed 
method. While PSO results affected by local optima are 
omitted from the graph, the boxplot analysis reveals that 
the proposed method achieves superior convergence and 
stability in all three coordinate directions (X,Y,Z), with 
consistently lower location errors compared to PSO.

3.2. Inversion results analysis on multiple events

Using the theoretical P-wave arrival times derived from 
Tables  1 and 2, we applied four comparative localization 
methods to determine the source locations and velocity 
parameter for the eight microseismic events shown in 
Figure  3. Table  5 presents the comparative performance 
metrics for each method, including location errors, 
velocity inversion errors, and corresponding objective 
function values.

The results demonstrate that the H-J algorithm fails 
to accurately locate No.6 event, with positioning errors 
exceeding 50 m in both the X and Z directions. Additionally, 
the method yields a wave velocity error >3 mm/s.

The GA demonstrates unsatisfactory performance in 
both event localization and velocity inversion across all 
eight source events. The method fails to converge reliably 
to true values.

The PSO method demonstrates generally robust 
inversion performance, successfully converging to 
accurate estimates for all eight source events. However, 
convergence accuracy varies significantly across events, 
with particularly degraded performance for No.1 and 6 
events compared to the other cases.

The proposed method demonstrates consistently 
accurate inversion results across all eight source events. 
The algorithm achieves unified inversion accuracy with 
the objective function converging to 10-8 magnitude. 
Spatial positioning errors in all three coordinate directions 
(X<Y, Z) converge to 10-7 magnitude, while velocity 
inversion errors stabilize at approximately magnitude.

Figure  5 presents the objective function residuals for 
all four methods, providing clear visual evidence of the 
proposed method’s superior localization accuracy and 
stability. The residual distributions demonstrate that 
our approach consistently outperforms the comparison 
methods in both convergence precision and solution 
robustness.

Figure 6 presents a comparative analysis of localization 
errors between the PSO method and the proposed 
method. The boxplot visualization demonstrates superior 
performance of our approach in all three coordinate 
directions (X, Y, Z), exhibiting both enhanced convergence 
precision and greater solution stability compared to PSO.

4. Field data tests
To validate the practical engineering performance of the 
enhanced Newton–Raphson method, we conducted field 
verification using artificial blasting test data from a coal 
mine. The experimental setup included five controlled 

Figure 4. Location error analysis No.3 event, GNRBO-X,Y,Z are location 
errors on X,Y,Z directions obtained from GNRBO, PSO-X,Y,Z are 
location errors on X,Y,Z directions obtained from PSO function.
Abbreviations: CI: Confidence interval; GNRBO: Grid searching rule 
with an NRBO; PSO: Particle Swarm Optimization; NRBO: Newton–
Raphson-based optimizer.

Figure 3. Residuals of the target functions of each location method for 
No.3 event.
Abbreviations: GA: Genetic Algorithm; H-J: Hooke-Jeeves algorithm; 
PSO: Particle Swarm Optimization.
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Table 5. Location results of each algorithm for each source

Method No. Inversion results

Values of target functions Errors on X‑axis (m) Errors on Y‑axis (m) Errors on Z‑axis (m) Velocity error (m/ms)

H‑J 1 1.5800×10‑02 3.0125 3.1500 3.8563 1.6370×10‑01 

2 1.7500×10‑02 3.6625 1.4562 2.0937 7.2500×10‑02 

3 5.2000×10‑03 3.7190×10‑01 5.2500×10‑01 3.7190×10‑01 7.8000×10‑03 

4 1.0500×10‑02 1.4187 6.5000×10‑01 5.8750×10‑01 1.4400×10‑02 

5 3.1900×10‑02 2.2000 13.2375 3.7250 1.9750×10‑01 

6 1.2450×10‑01 51.5000 4.7000 54.5000 2.2200 

7 9.7000×10‑03 3.5000 6.3750×10‑01 1.3031 5.8400×10‑02 

8 2.1400×10‑02 4.0625 1.7875 9.6250×10‑01 6.1300×10‑02 

GA 1 1.5100×10‑01 24.2526 21.5841 28.3689 1.2074 

2 2.8220×10‑01 15.6375 4.5920×10‑01 8.1980×10‑01 2.3230×10‑01 

3 1.2350×10‑01 8.6080 11.1370 6.5965 1.7040×10‑01 

4 4.4900×10‑01 46.0113 17.4678 22.8855 4.8210×10‑01 

5 2.2850×10‑01 8.4517 56.6445 13.4975 7.2600×10‑01 

6 8.8500×10‑02 16.3381 1.2082 20.0927 7.4680×10‑01 

7 2.7640×10‑01 108.8177 18.3472 41.8598 1.7117 

8 3.4350×10‑01 70.7686 28.7896 15.1159 1.0203 

PSO 1 1.7831×10‑07 −3.3764×10‑05 3.5527×10‑05 −4.3877×10‑05 1.8437×10‑06

2 9.2647×10‑08 3.7085×10‑06 −3.0127×10‑06 −5.1292×10‑06 −9.4259×10‑08

3 8.0139×10‑08 −1.0875×10‑06 2.8362×10‑06 −2.2989×10‑07 −2.0578×10‑08

4 9.3529×10‑08 −1.0386×10‑05 −4.7081×10‑06 6.3319×10‑06 1.0535×10‑07

5 9.1667×10‑08 −6.5514×10‑06 −3.6093×10‑05 1.07×10‑05 5.3501×10‑07

6 9.0373×10‑06 3.802×10‑03 3.8134×10‑04 4.005×10‑03 1.6129×10‑04

7 9.688×10‑08 3.4813×10‑05 −6.3431×10‑06 −1.3297×10‑05 5.7872×10‑07

8 9.6529×10‑08 −1.6689×10‑05 −8.0528×10‑06 −3.9844×10‑06 −2.4895×10‑07

GNRBO 1 4.327×10‑08 4.2794×10‑06 −3.3897×10‑06 5.2613×10‑06 −2.1536×10‑07

2 9.0878×10‑08 −1.4828×10‑05 5.6007×10‑06 6.2505×10‑06 2.9693×10‑07

3 9.7437×10‑08 −3.2897×10‑06 2.0745×10‑06 1.8301×10‑06 −2.9323×10‑08

4 9.5457×10‑08 −5.2046×10‑06 −6.455×10‑07 9.316×10‑07 5.0079×10‑08

5 6.9913×10‑08 −4.8094×10‑07 −2.5568×10‑05 6.3122×10‑06 3.8051×10‑07

6 7.8638×10‑08 −1.9404×10‑05 −5.3375×10‑07 2.061×10‑06 8.487×10‑07

7 6.8855×10‑08 6.8963×10‑07 −1.4791×10‑06 −7.0659×10‑07 1.2122×10‑08

8 8.4659×10‑08 −1.1105×10‑05 −4.7895×10‑06 −3.5174×10‑06 −1.8259×10‑07

Abbreviations: GA: Genetic Algorithm; GNRBO: Grid searching rule with an NRBO; H‑J: Hooke‑Jeeves algorithm; PSO: Particle Swarm Optimization; 
NRBO: Newton‑Raphson‑based optimizer.

blasts, with sensor and blast locations detailed in 
Figure 7A and Tables 6, 7. The parameters of the GNRBO 
are illustrated in Table  8. Field-acquired P-wave arrival 
times, documented in Table  9, served as input data for 
the inversion. Note that neither the velocity model nor 
the exact origin times of the blasts were known a priori, 
reflecting realistic field conditions.

The localization results are presented in Figure  7A-D 
and Table 10 presents a comparative analysis of localization 

results between the proposed method and the coal mine’s 
existing monitoring system. The P-wave arrival times used 
for both methods were selected based on signal-to-noise ratio 
criteria from the field data. The location results compared to 
the existing monitoring system, particularly in the vertical 
direction. Notably, the method achieves sub-10 m vertical 
accuracy for four out of five test events, representing a critical 
improvement for coal mine microseismic monitoring 
applications where vertical precision is paramount.
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Figure  6. Location error analysis for eight events. GNRBO-X,Y,Z are 
location errors on X,Y,Z directions obtained from GNRBO, while 
PSO-X,Y,Z are location errors on X,Y,Z directions obtained from PSO.
Abbreviations: CI: Confidence interval; GNRBO: Grid searching 
rule with an NRBO; PSO: Particle Swarm Optimization; 
NRBO: Newton–Raphson-based optimizer.

Figure 5. Residuals of the target functions of each location method for 
all events.
Abbreviations: GA: Genetic Algorithm; H-J: Hooke-Jeeves algorithm; 
PSO: Particle Swarm Optimization.

Table 6. Coordinates of sensors in the monitoring area

Sensor Coordinates of the sensors (m)

X Y Z

A 1490.0000 1939.3000 −870.0000

B 1416.3000 2172.4000 −887.2000

C 1350.3000 2381.5000 −890.6000

D 1519.3700 1847.5200 −866.2000

E 1767.6000 1972.2000 −900.1000

F 1699.6000 2188.7000 −908.1000

G 1623.4000 2428.4000 −915.2000

H 1685.0900 2233.5400 −904.0000

I 1467.2700 2011.5000 −878.0000

J 1399 2228.1800 −891.0000

K 1416 2170.4000 −908.5000

L 1454.9800 2050.4900 −875.7000

M 1758.3400 2001.6200 −905.0000

N 1668.1300 2287.6100 −912.0000

Table 7. True locations of microseismic events

Events Event locations (m)

X Y Z

1 1474.1840 1984.0200 −858.0000

2 1480.6530 1955.5570 −862.0000

3 1707.8340 2139.8480 −879.0000

4 1707.2180 2129.1720 −879.0000

5 1710.8630 2130.2520 −879.0000

5. Discussion
The current study introduces a novel approach to 
microseismic event location that integrates grid search 
principles with a Newton-Raphson-based optimizer 
(GNRBO). Unlike conventional arrival-time-based 
localization techniques, the proposed method does not 
require an a priori velocity model. Instead, it refines estimates 
within a four-dimensional search space (X, Y, Z, and velocity) 
to achieve high-precision inversion results. Given that 
accurate velocity parameters are often difficult to estimate 
or may vary during microseismic monitoring, this velocity-
independent approach enhances localization accuracy.

Existing methods, such as the original NRBO22 and PSO, 
initialize search particles randomly within the solution space, 
which may lead to convergence at local optima rather than the 
global optimum—as demonstrated by the results in Table 4. 
In contrast, GNRBO ensures robustness by systematically 
generating initial iterative vectors through uniform sampling 
of the search space. This strategy increases the likelihood 
of at least one particle being sufficiently close to the global 
optimum, thereby improving convergence reliability.

In the synthetic data tests, we first evaluated the 
inversion performance for a single microseismic event. 
As illustrated in Figures  3-5, the proposed GNRBO 
method achieves significantly higher localization accuracy 
and greater stability compared to the three benchmark 
methods (H-J, GA, and PSO). While H-J and GA yield 
suboptimal results, PSO exhibits a tendency to converge to 
local optima, compromising its reliability.

Subsequently, we extended the analysis to multiple 
events. Figure  5 demonstrates that GNRBO successfully 
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Table 9. P‑wave arrival time from the field data

Sensors Arrival times of each event (s)

No. 1 No. 2 No. 3 No. 4 No. 5

1 14.1120 6.0780 10.2340 9.7020 6.7560 

2 14.1460 6.1340 10.2340 9.7040 6.7580 

3 14.1880 / 10.2660 9.7360 6.7900 

4 14.1360 6.1000 10.2460 9.7140 /

5 / / 10.2060 / 6.7280 

6 14.1560 / 10.1780 9.6500 6.7040 

7 14.2000 / 10.2360 9.7080 6.7600 

8 14.1600 / 10.1880 9.6600 6.7140 

9 14.0960 6.0940 10.2280 9.6980 6.7520 

10 14.1520 6.1440 10.2400 9.7100 6.7640 

11 14.1360 6.1400 10.2280 9.6960 6.7500 

12 / / / / /

13 14.1740 6.1380 / 9.6740 /

14 14.1680 6.1700 / 9.6800 6.7300 

Table 8. Iteration parameters of GNRBO

Method The range of the searching spaces Numbers of iteration 
vectors

Maximum number 
of iterations X (m) Y (m) Z (m) Velocity (m/ms)

GNRBO [1000,2000] [1500,2500] [−700,−1000] [3.5] 3025 (nx=ny=11; nz=nv=5) 500
Abbreviations: GNRBO: Grid searching rule with an NRBO; NRBO: Newton‑Raphson‑based optimizer.

locates all eight events with high precision, outperforming 
the other methods. A detailed comparison of localization 
errors along the X, Y, and Z axes (Figure 6) further confirms 
the robustness of GNRBO, as evidenced by the consistently 
smaller error distributions in the boxplot visualization. 
These results conclusively demonstrate that GNRBO 
delivers reliable and accurate event localization in synthetic 
datasets, validating its superiority over benchmark method 
in this paper.

To evaluate the practical performance of GNRBO, we 
conducted field tests using artificial blasting data from a 
coal mine, comparing results against the mine’s installed 
monitoring system. As demonstrated in Figure  7 and 
Table 10, GNRBO significantly outperforms the conventional 
monitoring system in localization accuracy. Detailed analysis 
reveals that GNRBO achieves vertical accuracy within 10 m 
for 80% of test events (4 out of 5), demonstrating particular 
improvement in vertical positioning—a critical factor for 
coal mine safety monitoring. These results confirm GNRBO’s 

Figure 7. Microseismic monitoring in a coal mine. (A) Location results (X-Y-Z); (B) Location results (X-Y); (C) Location results (X-Z); (D) Location results (Y-Z).
Abbreviations: GNRBO: Grid searching rule with an NRBO; MS: Monitoring system; NRBO: Newton–Raphson-based optimizer.
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Table 10. Location results based on the field datasets

Event no. Location error (monitoring system) Location error (GNRBO)

Horizontal error (m) Vertical error (m) Horizontal error (m) Vertical error (m) Sensors used

1 45.5400 19.5000 44.5300 −17.4600 A, B, C, D, F, G, H, I, J, K, M, N

2 22.4900 13.0000 17.9900 −1.5200 A, B, D, I, J, K

3 32.7700 27.7000 31.7100 −6.9900 A, B, C, D, F, G, H, I, J, K, M, N

4 7.3300 18.4000 2.1300 0.7800 A, B, C, D, F, G, H, I, J, K, M, N

5 4.2400 14.9000 17.1800 1.3500 No. 1,2,3,5,6,7,8,9,10,11,14 A, B, C, E, F, G, H, 
I, J, K, N

superior performance in real-world applications compared 
to existing monitoring solutions.

6. Conclusion
This study presents an enhanced microseismic localization 
and velocity inversion approach that synergistically 
combines grid search methodology with the Newton-
Raphson algorithm. The hybrid method demonstrates 
significant improvements in localization accuracy and 
solution stability. Through comprehensive validation 
using both synthetic and field datasets, we comparatively 
evaluate our method against three established optimization 
techniques: the H-J algorithm, GA, and PSO. The key 
findings are summarized as follows:
(i)	 The grid search method systematically partitions the 

solution space to eliminate unreliable localization 
results caused by randomly-assigned initial vectors. By 
providing optimized initial parameters for the Newton-
Raphson algorithm, this approach maintains high 
positioning accuracy while significantly improving 
solution stability. The grid-derived initialization 
vectors effectively prevent convergence to local optima.

(ii)	 Using synthetic data, we evaluated the inversion 
performance of the Newton-Raphson method in 
comparison with three established optimization 
approaches: the H-J algorithm, GA, and PSO. Through 
comprehensive analysis of objective function values, 
localization errors, and average velocity inversion errors, 
the results demonstrate that the proposed method 
achieves superior and more stable positioning accuracy.

(iii)	 The proposed method was validated using field data 
from a coal mine microseismic monitoring system. 
Comparative analysis with the existing localization 
system demonstrates superior accuracy of our 
approach, particularly in vertical positioning. The 
results reveal consistent improvements in depth 
estimation precision, achieving sub-10-m vertical 
accuracy for of seismic events (4 out of 5 test cases), 
which represents a critical enhancement for mine 
safety applications.

Acknowledgments
None.

Funding
This research was supported by the National Natural Science 
Foundation of China (42474189), the Open Fund Project 
of State Key Laboratory for Fine Exploration and Intelligent 
Development of Coal Research (SKLCRSM23KFA04), and 
the Science and Technology Innovation Team of Shandong 
Earthquake Agency (TD202404).

Conflict of interest
The authors declare they have no competing interests.

Author contributions
Conceptualization: Tianqi Jiang
Formal analysis: Shaohui Zhou, Yu Wang, Yajun Li
Investigation: Peng Lin
Methodology: Tianqi Jiang
Visualization: Peng Lin
Writing–original draft: Shaohui Zhou, Junhao Qu
Writing–review & editing: Shaohui Zhou

Availability of data
Data is available from the corresponding author upon 
reasonable request.

References
1.	 Ge M, Mrugala M, Iannacchione AT. Microseismic 

monitoring at a limestone mine. Geotech Geol Eng. 
2009;27(3):325-339.

	 doi: 10.1007/s10706-008-9234-z

2.	 Verdon JP, Stork AL, Kendall JM. Geomechanical modelling, 
microseismic monitoring and CO2 storage. In: EAGE/
SPE Workshop on Integrated Geomechanics in Exploration 
and Production. Netherlands: European Association of 
Geoscientists and Engineers; 2016. p. 1-5.

3.	 Kim K, Lees JM. Imaging volcanic infrasound sources 

https://dx.doi.org/10.36922/JSE025320052
http://dx.doi.org/10.1007/s10706-008-9234-z


Journal of Seismic Exploration Microseismic event locations

Volume 34 Issue 2 (2025)	 71� doi: 10.36922/JSE025320052 

using time reversal mirror algorithm. Geophys J Int. 
2015;202(3):1663-1676.

	 doi: 10.1093/gji/ggv237

4.	 Rentsch S, Buske S, Lüth S, Shapiro SA. Fast location of 
seismicity: A  migration-type approach with application to 
hydraulic-fracturing data. Geophysics. 2007;72(1):S33-S40.

	 doi: 10.1190/1.2401139

5.	 Geiger L. Probability method for the determination of 
earthquake epicenters from the arrival time only. Bull St 
Louis Univ. 1912;8:60-71.

6.	 Li N, Wang E, Ge M, Sun Z. A  nonlinear microseismic 
source location method based on simplex method and its 
residual analysis. Arab J Geosci. 2014;7(11):4477-4486.

	 doi: 10.1007/s12517-013-1121-0

7.	 Dong L, Li X, Zhou Z, Chen G, Ma J. Three-dimensional 
analytical solution of acoustic emission source location 
for cuboid monitoring network without premeasured 
wave velocity. Trans Nonferrous Met Soc China. 
2015;25(1):293-302.

	 doi: 10.1016/S1003-6326(15)63604-4

8.	 Kushnir A, Varypaev A, Dricker I, Rozhkov M, Rozhkov N. 
Passive surface microseismic monitoring as a statistical 
problem: Location of weak microseismic signals in the 
presence of strongly correlated noise. Geophys Prospect. 
2014;62(4):819-833.

	 doi: 10.1111/1365-2478.12124

9.	 Zheng J, Lu J, Jiang T, Liang Z. Microseismic event denoising 
via adaptive directional vector median filters. Acta Geophys. 
2017;65(1):47-54.

	 doi: 10.1007/s11600-017-0005-1

10.	 Zheng J, Lu J, Peng S, Jiang T. An automatic microseismic 
or acoustic emission arrival identification scheme 
with deep recurrent neural networks. Geophys J Int. 
2018;212(3):1389-1397.

	 doi: 10.1093/gji/ggx487

11.	 Li Y, Wang H, Fehler M, Fu Y. Wavefield characterization of 
perforation shot signals in a shale gas reservoir. Phys Earth 
Planet Inter. 2017;267:31-40.

	 doi: 10.1016/j.pepi.2017.04.003

12.	 Prange MD, Bose S, Kodio O, Djikpesse HA. An information-
theoretic approach to microseismic source location. Geophys 
J Int. 2015;201(1):193-206.

	 doi: 10.1093/gji/ggv009

13.	 Jia B, Li F, Pan Y, Zhou L. Microseismic source locating 
method based on variable step size accelerated search. Rock 
Soil Mech. 2022;43(9):1-9.

	 doi: 10.16285/j.rsm.2021.5872

14.	 Cheng J, Song G, Liu T, Hu B, Wang J, Wang J. High precision 
location of micro-seismic source in underground coal mine. 
Chin J Geophys. 2016;59(2):734-743.

	 doi: 10.1002/cjg2.30021

15.	 Gong S, Dou L, Ma X, Liu J. The method to identify the 
optimal channel numbers for increasing the location 
accuracy of microseismic events in coal mine. J China Coal 
Soc. 2010;35(12):2017-2021.

	 doi: 10.13225/j.cnki.jccs.2010.12.014

16.	 Gong S, Dou L, Ma X, Mu Z, Lu C. Optimization algorithm 
of network configuration for improving location accuracy 
of microseism in coal mine. Chin J Rock Mech Eng. 
2012;31(1):8-17.

17.	 Duncan PM, Eisner L. Reservoir characterization 
using surface microseismic monitoring. Geophysics. 
2010;75(5):139-146.

	 doi: 10.1190/1.3467760

18.	 Jiang T, Pei S. Micro-seismic event location based on Newton 
iteration method and grid-search method. J Min Sci Technol. 
2019;4(6):480-488.

	 doi: 10.19606/j.cnki.jmst.2019.06.002

19.	 Lü J, Jiang Y, Zhao Y, Zhu J, Wang X, Tao L. Study of 
microseismic positioning based on steady simulated 
annealing-simplex hybrid algorithm. Rock Soil Mech. 
2013;34(8):2195-2203.

	 doi: 10.16285/j.rsm.2013.08.024

20.	 Luo H, Yu J, Pan Y, Song B, Liu L, Liang J. Seagull 
optimization based on quantile difference mine earthquake 
location method. Prog Geophys. 2022;37(1):421-429.

	 doi: 10.6038/pg2022FF0401

21.	 Dong L, Li X, Tang L, Gong F. Mathematical functions 
and parameters for microseismic source location 
without pre-measuring speed. Chin J Rock Mech Eng. 
2011;30(10):2057-2067.

22.	 Sowmya R, Premkumar M, Jangir P. Newton-Raphson-
based optimizer: A  new population-based metaheuristic 
algorithm for continuous optimization problems. Eng Appl 
Artif Intell. 2024;128:107532.

	 doi: 10.1016/j.engappai.2023.107532

https://dx.doi.org/10.36922/JSE025320052
http://dx.doi.org/10.1093/gji/ggv237
http://dx.doi.org/10.1190/1.2401139
http://dx.doi.org/10.1007/s12517-013-1121-0
http://dx.doi.org/10.1016/S1003-6326(15)63604-4
http://dx.doi.org/10.1111/1365-2478.12124
http://dx.doi.org/10.1007/s11600-017-0005-1
http://dx.doi.org/10.1093/gji/ggx487
http://dx.doi.org/10.1016/j.pepi.2017.04.003
http://dx.doi.org/10.1093/gji/ggv009
http://dx.doi.org/10.16285/j.rsm.2021.5872
http://dx.doi.org/10.1002/cjg2.30021
http://dx.doi.org/10.13225/j.cnki.jccs.2010.12.014
http://dx.doi.org/10.1190/1.3467760
http://dx.doi.org/10.19606/j.cnki.jmst.2019.06.002
http://dx.doi.org/10.16285/j.rsm.2013.08.024
http://dx.doi.org/10.6038/pg2022FF0401
http://dx.doi.org/10.1016/j.engappai.2023.107532

