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ABSTRACT

Hyperspectral Remote Sensing (HRS) is crucial for detecting and mapping the exact
position of minerals by analyzing their spectral characteristics in various formations of
rock within the Visible Near Infra-Red (VNIR) and Short-Wave Infra-Red (SWIR) range
of the electromagnetic radiation spectrum using spaceborne and airborne data. Airborne
data availability facilitates the straightforward identification of economically prosperous
mineral rich areas. The research has been conducted using the hyperspectral dataset
from the Airborne Visible Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)
in the Pichavaram area of Chidambaram town, located in the Cuddalore district of Tamil
Nadu, India. This study aims to detect minerals by analyzing the spectral reflectance curve
of images in conjunction with the USGS Laboratory spectra of minerals included in the
ENVI library. This research seeks to identify abundant mineral deposits like vermiculite,
antigorite, diopside, rectorite, and ammonio jarosite along the coastal areas. The Spectral
Angle Mapper (SAM) and Spectral Feature Fitting (SFF) algorithms are utilized for mapping
and analysis—the investigation aimed to identify economically valuable areas with mineral
wealth using AVIRIS-NG data. In future work, machine learning models (MLMs) using
supervised classifiers can improve the availability and accurate identification of minerals.

KEY WORDS: AVIRIS-NG, SAM, SFF, Hyperspectral Remote Sensing, Clay and Silicate
Minerals
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INTRODUCTION AND LITERATURE SURVEY

The use of remote sensing methods has significantly enhanced the field
of geology and mineral identification since their inception. Remote sensing
images can help geologists differentiate between mineral deposits (Agrawal
et al., 2024). Mineral mapping using the old method is time-consuming,
intricate, and demanding (Tripathi and Govil, 2019). Precise mineral mapping
1s essential for identifying valuable mineral deposits and managing geological
dangers. Various forms of remote sensing, including airborne and satellite-
based methods, provide in-depth data on surface characteristics over vast and
hard-to-reach regions (Mishra et al., 2024).

Hyperspectral Imaging (HSI) is the combination of remote sensing and
spectroscopy. Since the beginning of evolution, it has become vital to identify,
differentiate, and map the earth’s surface characteristics according to its chemical
composition and structures (Guha, 2020). Each mineral exhibits unique spectral
absorption properties at a distinct wavelength determined by its chemical
structure and physical attributes (Girija and Sundararajan, 2019). The broader
spectral resolution of multispectral remote sensing limits its ability to identify
mineral resources. This restriction results in ambiguities in the identification of
mineral deposits (Mondal et al., 2022).

Over the past thirty years, advancements in HRS have led to the creation
of various spaceborne and airborne sensors like “Advanced Visible Infrared
Imaging Spectrometer (AVIRIS), Hyperspectral Digital Imagery Collection
Experiment (HYDICE), Hyperspectral Mapper (HM), and Hyperion™ (Tripathi
and Govil, 2019). Hyperspectral sensors enable the identification and mapping of
minerals based on spectral features (Agrawal etal., 2024). According to Peyghambari
and Zhang (2021), HRS data has primarily been utilized for geological applications,
such as lithology and mineral exploration, ore deposits, surface maps of different
materials (rocks and minerals), and image classification of industrial mining.

Low signal-to-noise ratio (SNR), striping, and geometric distortions,
including smile and keystone errors, were among the shortcomings of Hyperion
and AVIRIS sensors (Tripathi and Govil, 2019). The Jet Propulsion Laboratory, a
division of the National Aeronautics and Space Administration (JPL NASA) with
ISRO, is developing a potential solution to solve these problems by creating a new
advanced airborne sensor called AVIRIS-NG (NASA AVIRIS-NG, 2015 and SAC,
2016). The mission flights were conducted on March 4%, 2018, to acquire satellite
images for mineral identification along the coastal regions of Tamil Nadu, India.

Within the 400 nm to 2500 nm range, the AVIRIS-NG sensor offers 425
wavelength channels with exceptional geographical and wavelength clarity.
It is specifically made to improve identification, differentiation, and charting
capacities. Agrawal et al., (2024), In light of its high SNR, the sensor boasts
superior wavelength and geographical clarity than spaceborne sensors,
permitting it to acquire an extensive amount of spectrally pristine target pixels
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(Mishra et al., 2024). AVIRIS-NG has evolved into the most sophisticated data
source for mineral detection and charting in airborne hyperspectral remote
sensing (HRS) (Govil et al., 2018; Govil et al.,2019). Some of the research
works done by the spaceborne and airborne sensors are discussed.

Oskouei and Babakan (2016) analyzed hyperion data to identify potential
minerals like kaolinite and opal in the Lahroud area. The linear mixture model
(LMM) is used for data processing; however, identification is challenging
because of the Hyperion sensor’s poor SNR. Mineral exploration is desirable,
considering its cost-effectiveness and time efficiency.

Tripathi and Govil (2019) utilized the AVIRIS-NG data to identify clay
minerals in the Jahajpur area. The SAM and SFF algorithms accurately identified
valuable mineral locations.

Agrawal et al., (2024) exploited AVIRIS-NG data for mineral detection,
employing several MLMs such as “Support Vector Machines (SVM), K
Nearest Neighbour (KNN), Decision Tree (DT), Random Forest (RF), Logistic
Regression (LR), Artificial Neural Network (ANN), Linear Discriminant
Analysis (LDA), and Naive Bayes (NB)”. SAM Classification is applied to
establish the reference mineral distribution for various minerals. Conclusions
showed that AVIRIS-NG maps prospective mapping zones using Machine
learning algorithms (MLA). Kumar et al., (2020) focussed on using spectral
enhancement methods and MLA with AVIRIS-NG for automated lithological
analysis. Several MLMs were compared, showing that specific models
provided higher accuracy and kappa coefficient for identifying minerals such
as metabasalt, amphibolite, granite, acidic intrusive, and migmatite.

Priya and Ghosh (2024) identified an abundance of soil clay minerals like
“kaolinite, montmorillonite, and illite” using the AVIRIS-NG data. The SFF
algorithm was used for the analysis, and results were found to be better and
with excellent accuracy in the Udaipur region of Rajasthan. Mondal et al.,
(2022) combine AVIRIS-NG and Landsat-8 OLI data for mapping minerals in
the lithological units of Sittampundi. The Constrained Energy Minimization
(CEM) and SAM approaches were utilized for the study. The results indicate
that AVIRIS-NG data outperforms Landsat-8 OLI data in mapping metagabbro/
mafic minerals.

Mishra et al., (2024) compared aerial AVIRIS-NG and spaceborne PRISMA
datasets to map hydrothermally changed minerals in the Jahazpur district of
Rajasthan. SAM is used in the research area to detect “talc, soapstone, and
kaolinite” minerals. The results indicated that AVIRIS-NG data is more efficient
in mapping tiny mineral particles due to its superior spatial resolution and SNR
values compared to PRISMA hyperspectral data.

From the above literature, it is evident that AVIRIS-NG data has been used
for mineral exploration in different regions using SAM and SFF methods. Due
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to its higher SNR with better spatial and spectral resolution, identification
becomes easier compared to spaceborne sensors like Hyperion.

The current work aims to use the AVIRIS-NG dataset for mineral mapping
in Pichavaram Village near Chidambaram town, located in Cuddalore district
in Tamil Nadu, India. This study aims to explore the mineral deposits along the
coastal regions using the SAM and SFF methods.

Geological Settings of the Study Area

Tamil Nadu is a significant contributor to the country’s mineral resources,
and according to a study, it accounts for approximately 50% (79% vermiculite,
65% dunite, 52% molybdenum, 48% garnet, 30% titanium mineral, and
25% sillimanite and magnesite) (Angusamy et al., 2005). Pichavaram area
(11°24°59.8”N 79°47°55.8”E) 1is located in Cuddalore district, Tamil Nadu,
India. The geology of Cuddalore is filled with black clay, silty clay, red clayey
sand, conglomerate, and calcareous sandstone and is made up of sedimentary
rock formations as shown in figure. 1. The study area is made of quaternary
and laterite deposits along the region with the boundary of AVIRIS-NG data
as shown in figure. 2. The abundant minerals present in this region are clay,
silicate, and iron oxide-based minerals (Angusamy et al., 2005; Ravisankar
et al., 2012). The study area in this work explores the following minerals:
vermiculite, antigorite, diopside, rectorite, and ammonio jarosite. The SAM
and SFF methods confirmed the presence of minerals.

Dataset description

The AVIRIS-NG dataset used in this study was obtained on March 4™, 2018,
as part of collaboration between JPL NASA with ISRO campaign. It is a cutting-
edge HSI sensor that can produce hyperspectral images of 425 continuous bands
in the 380 nm-2510 nm range with a better spectral resolution of 5 nm (NASA,
2015). The collected data has a spatial resolution of 8.1 meters. The details of
the AVIRIS-NG dataset utilised in the investigation are presented in Table 1.

Table 1. AVIRIS-NG Data Specifications

Parameters Range

Sensor Altitude 4-8 km

Spatial Resolution 8.1m

Swath Width 4-6 km

VNIR Range 400 nm- 1000 nm
IFOV (mrad) 1.0 mrad

Spectral Range 380 nm -2500 nm
Spectral Coverage Continuous
Spectral Resolution 5 nm

SWIR Range 900 nm — 2500 nm

Total number of bands 425



79°0I'0"E

79°39'0"E

Geology Cuddalore

z

S

el L
&

—

—

N .
I 1
79°0'0"E 79°30'0"E

Legend

Il ACID TO INTERMEDIATE CHARNOCKITE
[TARGILLACEQUS SANDSTONE
N BLACK CLAY (ACTIVE TIDAL FLAT)

Il BLACK CLAYEY SAND (TIDAL CHANNEL BAR)
I BLACK SILTY CLAY (ACTIVE FLOOD PLAIN)
71 BROWN FINE SAND (PALAEO BEACH RIDGE)
I BROWN SILT (ACTIVE LEVEE)

[ BROWN SILTY CLAY (PALAEO FLOODPLAIN)
I BROWN SILTY CLAY (PALAEO TIDAL FLAT)
I CALCAREOUS SANDSTONE

BN CLAY

[TISANDY LIMESTONE

N SILTY CLAY (TIDAL CHANNEL)

COARSE SAND WITH ROCK FRAGMENTS

(ACTIVE CHANNEL)
8 CONGLOMERATE

11°30'0"N

8 FOSSILIFEROUS CALCAREOUS SANDSTONE
[IBLACK CLAY UNDERLAIN BY COARSE SAND (PALAEO) Bl FOSSILIFEROUS MARLY LIMESTONE

GREY FINE SAND
(ACTIVE BEACH RIDGE AND SPIT)

[ HORNBLENDE-BIOTITE GNEISS

B LIMESTONE

B MOTTLED SANDSTONE

[ MUD (MUD FLAT)

7 PYROXENE GRANULITE

I RED CLAYEE SAND (MANGROVE SWAMP)
B SAND (CHANNEL BAR/ POINT BAR)

B SANDSTONE

Figure 1. represents the geology map of cuddalore region
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Data and methodology

AVIRIS-NG data have a high SNR when compared with the Hyperion data

(Tripathi and Govil, 2019). Some initial steps involved in the preprocessing of

images include atmospheric correction, noisy band removal, and radiometric
calibrations. AVIRIS-NG extracted image spectra were verified with a calibrated
USGS spectral library. The following phase entails identifying minerals based
on their wavelength reflectance curves and absorption feature depths at various
wavelengths using subjective image interpretation. The reflectance bands
extracted from AVIRIS-NG images were compared with the USGS mineral
spectral database for mineral analysis. In the process of mineral identification,
the steps involved in the processing of AVIRIS-NG data are shown in the

figure.3.
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Figure 3. Flow diagram of the mineral mapping identification




Preprocessing of AVIRIS-NG data

Many closely spaced bands in the hyperspectral information leads
to radiometric errors. Image rectification requires the preprocessing of
hyperspectral data. The data set provided has been exploited in its original,
unprocessed state. The data obtained from the agency needs to be corrected for
radiometric, geometric, or atmospheric factors. The data collection needs to be
corrected due to atmospheric effects. Atmospheric adjustment and radiometric
calibration are necessary. The smile effect does not affect the AVIRIS-NG data
set due to its better SNR (Hamlin et al., 2011; Thorpe et al., 2016; Govil et al.,
2018b).

Atmospheric correction

A remote sensing sensor captures the radiant energy that travels from the
sun to the earth’s surface, then from the earth to the sensor, passing through the
earth’s atmosphere. Obtaining the accurate reflectance energy of an item on the
earth’s surface necessitates specific atmospheric coefficients for atmospheric
correction. Compensating for atmospheric coefficients such as surface altitude,
surface albedo, aerosol, water vapour column, surface and atmospheric
temperatures, cloud optical depths, and scene visibility is necessary to obtain
ground reflectance (Adler-Golden et al., 1994). Water vapour estimation is
calculated independently for each pixel in AVIRIS-NG images during the
atmospheric correction.

FLAASH

The FLAASH model operates based on a conventional equation for spectral
radiance at a sensor pixel, specifically for flat Lambertian materials, L (FLAASH
User’ S Guide, 2005). The equation is given as —

L=(1:4:es)+(1lj:;:s)+l'a M

Where- p — “Pixel surface reflectance™; p - “Radiance at sensor Atmospheric
spherical albedo”; L - “Backscattered radiance by atmosphere”; “A & B are
coefficients” (which depend upon atmospheric and geometric condition).

MNF transformation

The hyperspectral imagery contains a large amount of data, leading to
extensive data processing and sophisticated computations (Mondal et al.,
2022). MNF reduces the dimensionality of data from a higher to a lower level
while retaining all the information with higher eigen values for the initial bands
as shown in figure.4. MNF transform is mainly used to extract and separate
the majority of endmembers pixel information from the random noise thus by
reducing the data dimensionality without losing the accurate signal information
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from the image data (Guha, 2020). The MNF transformation method was created

by Green et al., in 1988 to reduce dimensionality and qualitatively analyze
images by transforming image components into a meaningful sequence.
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Figure 4. MNF plot showing bands having higher eigenvalues

End member extraction

The spectral endmembers are extracted from the AVIRIS-NG data using the
spectral hourglass approach in ENVI, which involves some standard methods of
MNPF, PPI, and N-D visualizer. According to Van Der Meer et al., (2011), the PPI
1s the best method to extract the pure pixel from the MNF image. Usually, PPI
1s computed automatically using the higher eigenvalues from MNF data through
convex geometry, which is possible by repeated projections on the N-D scatter
plots. The brightness of pixels in the PPI image indicates the higher relative
purity with recording of extreme pixels. Evaluating end member determination
involves creating a scatter plot of 10,000 projections and applying a 2.5 threshold
factor to the MNF band picture to isolate purer materials from mixed ones and
pick the purest PPI pixels as shown in figure.S5.
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Figure 5. PPI method to extract the pure pixel
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In Image classification, extracting pure pixel spectra plays a vital role in
identifying and mapping minerals through the spectral mixing concept of the
N-D visualizer (Boardman and Kruse, 2011). The extreme pixels with higher
values are chosen as regions of interest (ROI) from the N-D visualizer as shown
in figure. 6. The pure pixel and spectra are recovered using an N-D visualizer
approach applied to the ROI on the MNF image (Boardman et al., 1995). The
spectral reflectance curves are derived through atmospheric correction of
calibrated images by comparing the spectra with the USGS standard spectral
library (Nahry and Altinbas, 2006).

Figure 6. N-D visualizer for identification of endmembers

SAM Algorithm

SAM techniques, which evaluate the similarity between reference and image
spectrum by calculating the spectral angle between two vectors with the exact
origin as given 247 in equation (2), are used to identify minerals (Guha, 2020).

i=1€ili
(Eiae? [Tz )

Spectral feature fitting (SFF)

cos @ =

SFF matches the absorption features of reference spectra with the obtained
image spectra (Van Der Meer, 2004). The most important point of SFF is based
on the correlation coefficients of the original image pixel spectrum (S) and
Continuum (C) Curve, as shown in equation (3) and their results in the figure.7.

SCR=S/C 3)
Where SCR- “Continuum removed spectra”,
S — “Original spectra”,

C- “Continuum curve”.
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SFF provides information for forecasting each pixel’s absorption
characteristics’ structure and magnitude (Guha, 2020).

RESULTS AND DISCUSSION

At the location of the Pichavaram region, the spectral reflectance curve of
clay, silicate, and iron-oxide-based minerals shows different deep absorption
features at specific wavelengths based on mineral category (Angusamy et al.,
2005; Guha, 2020).

Clay minerals usually have an absorption feature in the SWIR region due
to the vibration of molecular bonds that mainly occur in combinations like the
bending of metal-OH bonds and the stretching of O-H bonds—the absorption
features of clay minerals at 1400 nm and 1900 nm (Fan et al., 2012; Guha,
2020). The different clay minerals will have absorption features to locate the
precise and identify the minerals in the spectral range of 2100 nm — 2300 nm
(Guha, 2020). The six minerals classified in this work are vermiculite, antigorite,
rectorite, diopside, and ammonio jarosite.

Vermiculite is a type of clay mineral with a vital absorption feature at 1900
nm and a weak absorption feature at 2200 nm is shown in figure.7. (a) and also,
it has excellent positive correlation absorption depth at 900 nm -1000 nm. Due
to the multiple water molecules in the minerals, the combination of O-H-O
and OH bonds create stronger absorption features from 1000 nm to 2300 nm
wavelengths than metal-OH bonds (Guha, 2020).

Antigorite is classified under a non-clay phyllosilicate structure based
mineral category and belongs to the serpentine group (Fan et al., 2012). It has a
vital absorption feature at 1400 nm and 2300 nm as shown in figure.7. (b). The
absorption depth is very similar and comparable to clay minerals (Guha, 2020).

The contribution of silicate-based minerals to the earth’s planet is about
90%, and they also play an important role in classifying minerals (Fan et al.,
2012). Minerals like rectorite and diopside are used in this analysis. Minerals’
absorption features exist in the range of 1000 nm — 2400 nm wavelength
(Guha, 2020).

Rectorite minerals are classified under the structure of phyllosilicate of clay
mineral group (Fan et al., 2012). Figure. 7. (¢) produces the robust absorption
features are availableat 1400nm, 1910 nm, and 2200 nm to 2400 nm wavelengths.

Diopside is classified as an inosilicate mineral in the silicate-based mineral
category and belongs to the Pyroxene group (Fan et al., 2012). Its absorption
features are available in the range of 400 nm—2300 nm. Robust absorption
features are available at 1100 nm, and moderate absorption features are available
at 2200 nm, as shown in the figure.7. (d).
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Figure 8. Shows the SAM classified mineral maps for (a) mineral map distribution of
pichavaram region (b) vermiculite, (c) antigorite, (d) rectorite, (e) diopside, & (f) ammonio
jarosite

Ammonio jarosite is classified under the iron oxides-based mineral category
and belongs to the jarosite group (Fan et al., 2012). The absorption features
are available at 910 nm, 1470 nm, 1940 nm, and 2270 nm wavelengths, which
will be used to locate the jarosite mineral in the hyperspectral sensing data,
as shown in the figure.7. (e). The above range of features are used to locate
precise mineral classifications in the spectral domain. The minerals in the earth
and other planets can be identified using the chemical properties, structure and
absorption feature depths (Guha, 2020).

The mineral maps are prepared from the AVIRIS-NG hyperspectral data by
analysing 250 out of 425 bands after the radiance conversion to reflectance.
The bands have been selected from the range of 400 nm —2500 nm. Most of the
information available in the first 16 bands is chosen with higher eigenvalues
with a dimensionality of 10, and the rest of the bands contained noise in the
dataset. The specific absorption features are identified in the following regions
are 400 nm —2500 nm. Eight endmembers are extracted after the processing
of the image, which involves the following minerals such as a, vermiculite,
antigorite, rectorite, diopside, and ammonio jarosite.

SAM algorithm has been used to compare the similarity of the obtained
image spectra from the image with the USGS reference spectral available in
the ENVI library. The map for the particular mineral is generated based on
the higher threshold value of SAM for classification. The threshold values for,
vermiculite, antigorite, rectorite, diopside, and ammonio jarosite are, 0.06, 0.07,
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0.06, 0.07, and 0.05 radians. In the SAM classified image, different colours are
mapped as shown in Figure 8, green for vermiculite, blue for antigorite, pink
for rectorite, yellow for diopside, and magenta for ammonio jarosite.

Finally, the classified map of SAM and spectral reflectance curve of SFF
classified the same minerals, which resulted in better accuracy in predicting the
mineral location using the AVIRIS-NG hyperspectral data.

CONCLUSIONS

Clay (vermiculite), silicate (antigorite, rectorite, diopside) and iron-oxide
(ammonio jarosite) minerals are explored using the AVIRIS-NG hyperspectral
data. The obtained reflectance spectrum results matched the USGS spectral
library spectra in the ENVI software. Vermiculite shows a result of a vital
absorption feature at 1900 nm and a weaker absorption feature at 2200 nm,
mainly because of higher SNR and better spectral /spatial resolution available
in AVIRIS-NG data. The antigorite mineral shows a more robust diagnostic
absorption at 1400 nm and 2300 nm, which are similar and comparable to
clay minerals. The rectorite minerals show strong absorption features at 1400
nm,1910 nm, and 2200 nm to 2400 nm wavelengths. The diopside minerals
show stronger absorption features at 1100 nm and moderate at 2200 nm. Finally,
the iron-oxide-based mineral of ammonia jarosite shows that the absorption
features are available at 910 nm, 1470 nm, 1940 nm, and 2270 nm wavelengths.
The spectral reflectance curve obtained from the AVIRIS-NG data shows
excellent similarity and accuracy with the reference spectral curve from the
USGS library.

The SAM algorithm is used to prepare the mineral map. The minerals
present in the Pichavaram region are classified into vermiculite, antigorite,
rectorite, diopside, and ammonio jarosite. The SFF algorithms show an
excellent similarity between the reflectance curve’s absorption feature and the
depth of the above-listed minerals. This study shows that excellent mapping of
minerals using AVIRIS-NG data has higher reliability and detailed analysis of
minerals. Airborne sensors of AVIRIS-NG data prove to have good efficiency
and achieve high accuracy because of higher SNR and high spectral/spatial
resolution compared to other space-borne sensors. The results prove to be one
of the best methods to identify mapping of minerals using AVIRIS-NG data.
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