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Abstract

High-precision sand thickness data are fundamentally important for optimizing
exploration strategies in petroleum geology. In the Chengbei work area of
the Jiyang Depression, the stratigraphic channels are chaotically developed,
with channels of varying sizes in different strata overlapping, intersecting, and
exhibiting narrow widths. The actual well-seismic relationship is poor. Therefore,
individual seismic attributes in this area exhibit extremely low correlation with
channel sandstone thickness. Conventional attributes such as root mean square
amplitude show no distinct channel characteristics, necessitating the integration
of multiple seismic attributes for effective prediction. Moreover, the high
multicollinearity among seismic attributes introduces significant interference
in prediction results. Therefore, this study integrates the Pearson correlation
coefficient and variance inflation factor (VIF) to optimize seismic attribute
selection, effectively eliminating redundant attributes and those with low
correlation. To further enhance prediction accuracy and address the significant
bias inherent in single-model predictions, this study introduces the ensemble
learning XGBoost model, which integrates predictions from multiple weak
learners to improve the precision of sandstone thickness estimate. The Newton-
Raphson-based optimization algorithm was employed to fine-tune the XGBoost
parameters. Results from test wells demonstrate a remarkable improvement in
prediction accuracy, achieving reliable sandstone thickness estimation despite
poor well-seismic correlations. This research provides valuable insights and offers
a widely applicable methodology for predicting the thickness of complex channel
sand bodies.

Keywords: River channel sand body; Thickness prediction; Variance inflation factor;
Newton-Raphson based optimization optimization; XGBoost

1. Introduction

Reservoir characterization constitutes a critical component in oil and gas field
exploration and development. Scholars in related fields have conducted innovative
research on reservoir thickness prediction, enhanced wettability characterization
accuracy, and sandstone reservoir petrophysical properties.'” Accurate prediction of
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reservoir thickness is fundamental to detailed reservoir
characterization and optimal exploration well placement,
with increasingly stringent requirements for prediction-
match rates. Given the high costs associated with acquiring
fundamental seismic data, fully leveraging seismic data
for reservoir thickness prediction holds significant
importance for cost reduction and efficiency improvement
in hydrocarbon exploration. To better utilize seismic data,
geophysicists specializing in seismic data processing have
integrated emerging technologies such as deep learning
networks with wavelet transform methods to enhance
seismic data resolution.* Seismic attributes, which are key
information extracted from seismic data, contain abundant
reservoir characteristics. Channel sand bodies represent
one of the most important reservoir types in continental
petroliferous basins. The Chengbei work area of Jiyang
Depression studied in this paper exhibits chaotic channel
development, where channel sand bodies demonstrate poor
well-seismic relationships due to unfavorable conditions,
including thin individual layers, narrow channel widths,
severe overlapping and intersecting patterns, and
multiple interbedded layers. These factors result in weak
correlations between individual seismic attributes and
sand body characteristics, necessitating multi-attribute
seismic prediction. However, the strong multicollinearity
among different seismic attributes precludes the simple
superposition of multiple attributes with relatively strong
correlations to sand body features for thickness prediction.®

The reservoir prediction for such complex channel sand
bodies in this area has become a challenging issue, urgently
requiring a novel method capable of effectively predicting
sandstone thickness in such contexts.

In the field of reservoir thickness prediction, numerous
studies have been conducted by petroleum geophysicists.
Widess®first proposed estimating thin-bed thickness using
reflection amplitude, but this method was only applicable
to ideal reservoirs with equal-magnitude and opposite-
polarity reflection coefficients. Chung and Lawton’
improved uponthisapproach,achievingsomeenhancement
in the prediction accuracy for very thin layers. However,
the amplitude values remained constrained by the absolute
values of the top and bottom reflection coefficients of the
sand bodies, resulting in poor performance with actual
data. Multi-attribute inversion has also been employed
for sand body thickness prediction, utilizing seismic
attributes sensitive to sand thickness combined with
nonlinear optimization algorithms to calculate thickness.
Nevertheless, this method suffers from low computational
efficiency and is only effective in well-controlled areas,
performing poorly in non-well-controlled regions.*’
Some scholars have proposed spectral decomposition
techniques, using the “spectral notch” period to determine

thin-bed thickness.'*'? However, the “spectral notch”
phenomenon is significantly influenced by factors such
as wavelet bandwidth, limiting its practical application.
Other approaches include identifying channel boundaries
and predicting sand thickness using peak frequency-to-
amplitude ratios, but these methods require high well-
seismic correlation and are unsuitable for complex channel
sand bodies with poor well-seismic relationships.'® Barnes
et al."* analyzed the relationship between frequency and
reservoir thickness, establishing a corresponding formula
for thickness distribution. However, this method shows
low accuracy in complex areas with overlapping channels.
Wang et al.'® applied supervised learning based on fully
connected neural networks to establish a nonlinear
mapping between wavelet time-frequency components of
seismic data and reservoir sand thickness, which, to some
extent, reduced errors in validation wells.

Modern regression analysis frequently employs
machine learning implementations, particularly tree-
based ensemble methods like Random Forest, and
kernel transformation techniques such as support vector
regression (SVR) have demonstrated promising results
in predicting sand body thickness.'®"” While SVR models
offer advantages for small-sample predictions and are
theoretically suitable for areas with limited well data, their
reliance on kernel functions for spatial mapping limits
their ability to accurately handle nonlinear problems,
resulting in weak nonlinear modeling capabilities.
Chopra and Marfurt'® were the first to utilize supervised
learning algorithms, such as neural networks, to map
multiple preferred attributes into reservoir thickness.
Some researchers have employed eXtreme Gradient
Boosting (XGBoost) models for sand thickness prediction,
achieving favorable outcomes."” Furthermore, the XGBoost
algorithm has found extensive utilization across multiple
domains such as transportation, medicine, environment,
and computer science.”® Liu et al** employed spectral
decomposition-derived seismic characteristics combined
with stacked generalization methodology to estimate
reservoir thickness, which improved accuracy compared
to other models. Currently, among various machine
learning approaches, ensemble learning models show the
most significant performance. However, challenges remain
in optimal seismic attribute selection and parameter
optimization for these ensemble models.

Based on the above research background, this paper
proposes a VIF-NRBO-XGBoost reservoir thickness
prediction model. To address the issues of strong
multicollinearity among seismic attributes and low
correlation between individual seismic attributes and
reservoir thickness in complex channel sand bodies,
this study combines variance inflation factor (VIF) and
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Pearson correlation coefficient to conduct multicollinearity
analysis and optimal seismic attribute selection.® To
overcome the large prediction errors of single models and
further improve prediction accuracy, an ensemble learning
XGBoost model is introduced to enhance sand body
thickness prediction precision by integrating predictions
from multiple weak learners.?® VIF serves as a diagnostic
tool for detecting multicollinearity in multiple linear
regression models, effectively eliminating redundant
seismic attribute information. In general, a VIF value
exceeding the threshold of 10 indicates unacceptable
strong multicollinearity. Tree-based XGBoost ensemble
learning demonstrates superior predictive performance
for poor-quality data. However, this algorithm involves
numerous parameters whose default settings typically
fail to maximize model performance. Manual parameter
adjustment proves excessively laborious and blind, making
it practically infeasible. Currently, common parameter
optimization methods include particle swarm optimization
(PSO) and Bayesian optimization algorithms. For sand
thickness prediction, PSO performs relatively poorly
due to limited well data samples. Although Bayesian
optimization shows improvement over PSO, it tends to
converge to local optima, making it still challenging to find
optimal parameter combinations for channel sand bodies
with inherently poor well-seismic relationships. This
study employs the Newton-Raphson-based optimization
(NRBO) for model hyperparameter optimization.”” The
algorithm utilizes the Newton-Raphson search rule (NRSR)
and the Trap Avoidance Operator (TAO) mechanisms to
explore the search domain and enhance convergence speed.
NRBO exhibits strong evolutionary capability, fast search
speed, and excellent optimization performance. Finally,
the prediction results are compared with other models to
demonstrate the reliability of the proposed method.

2. Methodology
2.1.Variance inflation factor

Multicollinearity refers to the existence of linear
relationships among independent variables. The VIF is a
metric used to quantify the severity of multicollinearity
among features in a regression model. A higher VIF value
indicates stronger multicollinearity between the features.
The VIF is calculated using the following formula:

VIF =

@
1-R’
Where R’ represents the determination coefficient
quantifying the linear relationship between the i-th
selected feature and other features in the dataset. The

computational method sequentially designates each

feature as the response variable while considering the
remaining features as predictors, fitting a regression model
accordingly, and finally computes the ratio of mean squared
errors between the independent and dependent variables.
A VIF value near 1 suggests that the feature exhibits
negligible multicollinearity. In general, two thresholds are
set: when 5 < VIF < 10, it indicates relatively severe
multicollinearity for that feature, requiring careful
consideration; when VIF > 10, it signifies extremely strong
multicollinearity, necessitating elimination.

2.2. Fundamental principles of the XGBoost model

XGBoost represents an enhanced machine learning
framework derived from the gradient boosting decision
tree (GBDT) architecture, constituting an advanced
implementation within the gradient boosting algorithmic
paradigm. It consists of multiple decision trees that combine
predictions from several weak learners to produce the
final predictive outcome. Reservoir thickness prediction
represents a typical regression problem, generally expressed
through the following regression prediction formula:

b= fi(x) (In)

Where x_represents the input sample, f, (x) is the
prediction result calculated by the k-th tree, and by
applying the principle of ensemble learning, the prediction
results of the k trees are superimposed to obtain the final
prediction result ¥, of XGBoost. XGBoost assigns weights
to each tree, and the subsequent trees will focus on the
prediction information from the previous trees. Through
multiple rounds of iterations, they converge to the final
prediction result. Moreover, a regularization term is added
to increase the model complexity:

0=Y" L(y.5.)+2, Qf) (1)

Where O represents the objective function established,
L is the loss function to be calculated, and Q is the
regularization term added. Different from the conventional
GBDT methods, the regularization term of XGBoost is:

1 T,
Q(fk)ZVTJfgﬂzq:l”q av)

Where y represents the penalty factor, T indicates the
number of leaf nodes, A is the regularization parameter
for leaf weights, w represents the weight assigned to
the leaf node at this time, and the regularization term is
used to prevent the decision tree from being too large in
scale, limit the number of leaf nodes, improve the model’s
out-of-sample performance, and mitigate overfitting risks
through regularization constraints. The loss function is:
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y.y)=(y.—».) (V)

The XGBoost algorithm constructs its optimization
objective function by integrating the prediction error term
from the tree ensemble model with the model complexity
regularization constraints:

W= T(red " L) (A)FC (v

Where C represents a constant, and the target function
is expanded using the Taylor series:

wo=y {J(yc e >)+gcfu(xc)+—hcfé(xc)}

+T+=1Y, o +C
(VII)

Where g =00l 5 )0 b =0l JO)
denote the initial and successive rate-of-change measures
in the differentiation hierarchy of the prediction error with
respect to the model. Taking the first-order derivative of
,, we obtain the optimal objective function of XGBoost:

(VIID)

The formula provides a structural scoring mechanism
for tree models, with lower numerical values indicating
superior topological configurations.

Take the derivative of Equation VI to obtain the
optimal solution as follows:

) b (IX)
0 =-
1 R +1

Where F = chq g R = chq h, represent the sum

of the first-order derivatives and the sum of the second-
order derivatives of all input data mapped to leaf node q. I
is the sample set of leaf nodes.

2.3. The principle of NRBO method

The NRBO is a novel metaheuristic optimization method
whose inspiration primarily stems from two key principles:
The NRSR and the TAO. By employing NRSR and TAO,
the algorithm explores the search domain while enhancing
convergence speed. NRBO exhibits strong evolutionary
capabilities, rapid search performance, and excellent
optimization ability.
(1) Exploratory starting point configuration: Throughout
the primary population establishment process, NRBO
creates a uniformly distributed candidate population

spanning the solution space boundaries, which serves
as the foundation for subsequent iterative refinement.
Suppose there are N populations; NRBO uses Equation
10 to generate the random population:

B =Ib+ randx(ub—lb),k =12,....N,,,p= 1,2,...,dim( |
X

In the population matrix representation, element k"
stores the position value of the k-th candidate solution
in its p-th dimensional component, r and represents a
random number within the range of (0, 1), and the
search space is constrained by /b (minimum value)
and ub (maximum value) for each parameter. Formula
11 depicts the population matrix of all dimensions:

b by hy,
N
H= " 2 . (XD)
thnp h;‘]op . hNOP

dim Ny pxdim

(2) The NRSR is developed by adapting the classical
Newton-Raphson method, with dual objectives of
enhancing trend discovery capability and improving
convergence rate. The Newton method is an iterative
process used to find the roots of an equation. It obtains
the next estimate by performing a two-dimensional
Taylor Series (TS) around the current estimated
minimum value. The iteration continues until the first
derivative of the function approaches the threshold,
and the minimum point estimate is finally determined.
Formula XII represents the second-order Taylor
Series of v(h) at h;:

1 1 . 1 .
v(h):af(h0)+1—!(h—h0)v (h0)+2—!(h—h0)2v(ho) (XI1)
By taking the derivative of both sides of the above

equation and setting it equal to zero, we obtain the
following equation:

v (h)=v (h)+v (h)(h=h))=0 (XI1D)
The above equation can be solved as:
h=h,- L (1) (XIV)

v (k)

The above process is repeated until a point with zero
derivative is obtained. Formula XV is the iterative formula
for the obtained point:

nop o) (XV)
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In order to obtain NRSR from the above equation, the
second-order Taylor series of v(h + Ah) and f(h-Ah) are
written as follows:

vl 8h) =v(R)+v (b, A+ ()0 (XVI)

v(h=8k)=v(h)=v ()Ah+v (h)AR OXVID

By subtracting or adding Formulas XVI and XVII, the
expressions of v’ (h) and v” (h) can be obtained:
)= v(h+Ah)—v(h—Ah)

y ( ) AR (XVIII)

h+Ah)+v(h—Ah)-2v(h)
AR

V"(h):"( (XIX)
Substitute Formulas XVIII and XIX into Formula XV,
and the updated root positions are as follows:
e (v(h, +AR)=v(h, - Ah))x A X%
2><(v(h,1 + Ah)+v(hn —Ah)—2>< v(hn ))

Where h + Ah and h -Ah respectively represent the
positions of adjacent X’s to each other, and NRSR is defined
as follows:

(H, —H,)xAh

NRSR =randnx
2x(H, +XH,-2xh,)

(XXI)

Where randn generates random scalars drawn from the
standard normal distribution (u = 0, 6> = 1). H and H,,
respectively, denote the worst and best positions.

Ah =rand(1,dim )x |Hh ~-H" (XXII)

Where H, represents the current optimal solution,
and rand(1,dim) is a set of random numbers with dim
decision variables. Then, by using NRSR, Formula XI is
modified to:

h, =h - NRSR (XXIII)

A guidance parameter p is introduced to direct the
population’s positional updates toward the optimal
solution region:
p=ax(H,—H)+bx(H" -H) (XXIV)
Where a and b are random numbers within the range

of (0, 1), s, and s, are different integers selected, and the
current position of the vector is updated by Formula XXV:

Hl,iT:h,I,T—{mndnx (HW_Hb)XAh J

2(H,+H,-2xH,)
+(a(m,-H]"))+bx(H -H) (XXV)

Where the vector H1;' represents the updated position
derived from k' through the enhanced NRSR, which
constitutes an optimized variant of the standard Newton-
Raphson Method (NRM). Formula XXI becomes:

()’w _yb)XAh

NRSR =randnx (XXVI)
2x(y, +y,—-2xh,)
7, =5, %(Mean(M,,, +h,)+s xAh) (XXVII)
¥, =s,%(Mean(M,,, +h,)~s,x Ah) (XXVIII)
(H,—H,)xAh
M, =h, —randnx (XXIX)

2x(H, +H,-2xh,)

Where y_and y, denote position vectors derived from
M and h, respectively, where s, ~ U(0,1), represents a
uniformly distributed random coefficient. The candidate
solution for the subsequent generation is determined by:

(7, =2,)0h
Z(h(yw +y, —2hk))
+(a(H, B[ )+b(H] -HT))

H,ﬁT = thT —| randn
(XXX)

(3) TAO: The TAO framework integrates an advanced
optimization operator developed by Ahmadianfar
et al.,”® which significantlyboosts NRBO’s performance
in real-world applications while mitigating local
optimum convergence risks. This implementation
activates when the stochastic variable rand (uniformly
distributed in [0,1]) falls below the decisive factor DF
(default threshold: 0.6). Then, the solution Xj,, is
generated using the following formula:

Xpno =X 4+0x X(py xx, -, x X1

+Ox Xx6x X(u, ><Mean(XiT)—/,t2 ><X;T),/yt1 <0.5

(XXXI)
Ko =%, +0x X xx, = 1, x X,1)
+Ox X x 8 x X(p, x Mean(X!") =, x X7, 1, 20.5
xm=x0 (XXXII)

Where rand is arandom number, 8, and 6, are uniformly
distributed random numbers within the range of (-1,1)
and (-0.5,0.5), respectively. The parameters y, and pu,
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are assigned stochastic values during initialization. The
randomness of y, and u, prevents the population from
falling into local optima.

2.4.VIF-NRBO-XGBoost reservoir prediction
workflow

The VIF-NRBO-XGBoost-based prediction workflow
for channel sand reservoir thickness proceeds as follows:
First, seismic attributes are extracted and preliminarily
optimized, prioritizing those with clear geological
significance and superior quality. The selected seismic
attributes then undergo outlier removal and normalization
processing. Subsequently, VIF values are calculated for
all extracted seismic attributes, combined with Pearson
correlation coefficients for comprehensive attribute
analysis. Hyperparameter selection for the XGBoost
algorithm is accomplished through NRBO optimization.
The processed seismic attributes are then paired with
corresponding well-point thickness data to train the
NRBO-XGBoost reservoir thickness prediction model.
To ensure evaluation stability, K-fold cross-validation
(with K = 5 in this study) is implemented, using the
mean absolute error from five validation wells to assess
prediction accuracy. Finally, the model predicts reservoir
thickness for other target areas within the work zone. The
complete workflow is illustrated in Figure 1.

3. Correlation analysis combined with VIF
for selecting optimal seismic attributes

The typical lithofacies bodies in Jiyang Depression have
rich reservoir types. The ancient river channel sand bodies
are representative lithofacies among them. This paper takes
Chengbei Oilfield as the research area, and the study section
is the upper part of the Guantao Formation. The large

Seismic attribute | | Data
extraction preprocessing

p

and small river channels are superimposed and crossed,
while the single sand body reservoir is thin. According
to the geological meaning of seismic attributes and the
comprehensive data quality, a total of 11 distinct seismic
attributes from different categories were extracted from the
target formation, including: Root mean square amplitude
(RMS_amp), bandwidth (BW), zero-crossing count (ZCC),
arc length (AL), energy half-time (EHT), average energy
(AE), average instantaneous frequency (AIF), average
amplitude (AA), positive amplitude sum (PAS), dominant
frequency (DF), maximum amplitude (MA).

3.1. Correlation analysis of seismic attributes

In machine learning regression experiments, the Pearson
correlation coeflicient, scatter plots, and linear models
are the three most commonly used methods. Figure 2
comprehensively displays the following: (i) Complete
inter-variable linear dependencies are shown in the
matrix upper triangle, quantifying how each of the
11 seismic attributes covaries with formation thickness at
well locations; (ii) The lower triangle presents scatter plots
of correlations between different attributes, as well as
between all attributes and thickness, with overlaid linear
regression lines. To better visualize the linear relationship
between individual seismic attributes and thickness,
along with statistical reliability, 95% confidence intervals
are included in the scatter plots; (iii) The diagonal displays
normalized distribution histograms and Kernel density
estimation of the seismic attributes, clearly reflecting
their distribution patterns. From the data and scatter
plots as shown in Figure 2, individual seismic parameters
demonstrate limited predictive capability for thickness
estimation in reservoir formations, and the distribution
of single attributes shows no significant patterns.

Cor i r—1
coefficient ana!;sls ) e e
Advantageous 1
seismic attributes

< Cross-validation >
iCross-validation

XGBoost reservoir
prediction model

A
NRBO
Optimization
Initialize the parameters
of NRBO

’ Establish the NRBO- \‘

Newton-Raphson search N
rule (NRSR

o — ¥
(" Escape operator Tteration
TAO steps >N

>

NRBO-XGBoost
Optimal parameter
combination

VIF-NRBO-XGBoost
Reservoir prediction
model

-
results of

) Prediction J
(_ thickness

y

Figure 1. VIF-NRBO-XGBoost process for predicting reservoir thickness of riverbed sedimentary rocks
Abbreviations: NRBO: Newton-Raphson-based optimization; VIF: Variance inflation factor; XGBoost: eXtreme gradient boosting.
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Figure 2. Correlation analysis

This further demonstrates the geological complexity of
the study area.

3.2. Selection of VIF attributes

Before conducting attribute selection using VIF, to prevent
the interference of seismic attributes with low correlation
to reservoir thickness from affecting the attribute
screening, leveraging the identified attribute-thickness
correlations, the three seismic attributes with correlation
<0.2 with reservoir thickness, namely bandwidth, AIF,
and DE were removed first.* Then, VIF analysis was

conducted on the remaining seismic attributes. Figure 3
shows the VIF values and correlation coeflicients of the
remaining eight seismic attributes. It can be seen that the
VIF value of the RMS amplitude is very high, indicating
that there is severe multicollinearity between it and the
other seismic attributes, and it must be eliminated. The
VIF values of ZCC and EHT are very low, indicating that
the multicollinearity of these two seismic attributes is very
weak. In addition, the VIF values of AL, AE, AA, PAS,
and MA are similar. As can be observed from Figure 2,
among these four seismic attributes, AL shows the highest
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correlation with thickness. Finally, three seismic attributes,
namely AL, ZCC, and EHT, were retained for reservoir
thickness prediction.

4.VIF-NRBO-XGBoost reservoir thickness
prediction

To prevent overfitting or underfitting, considering the
characteristics of limited sample data, the proportion
of the test set is set to 15%. After multiple verifications,
the general range of XGBoost’s hyperparameters is

found. Then, XGBoost is utilized to conduct prediction
comparisons between the seismic attributes that have not
undergone VIF screening and those that have undergone
VIF screening. As shown in Figure 4, it can be observed
that the degree of deviation of the prediction results of
the seismic attributes after VIF screening is lower, and the
prediction accuracy is higher.

The NRBO optimization, combined with cross-
validation, is utilized to search for the optimal solution for the
hyperparameters of XGBoost. The best parameter NRBO-

Figure 3. VIF of seismic attribute and correlation

Abbreviations: AA: Average amplitude; AE: Average energy; AL: Arc length; EHT: Energy half-time; MA: Maximum amplitude; PAS: Positive amplitude
sum; RMS_amp: Root mean square amplitude; VIF: Variance inflation factor; ZCC: Zero-crossing count.
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Figure 4. Comparison of XGBoost prediction results before (A) and after VIF screening (B)
Abbreviations: VIF: Variance inflation factor; XGBoost: eXtreme gradient boosting.
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Figure 5. The prediction results of reservoir thickness of riverbed sand in the study area. (A) Predictive outputs from the SVM; (B) predictive outputs from
the XGBoost, (C) predictive outputs from the VIF-XGBoost, and (D) predictive outputs from the VIF-NRBO-XGBoost.
Abbreviations: NRBO: Newton-raphson based optimization; SVM: Support vector machine; VIF: Variance inflation factor; XGBoost: eXtreme gradient

boosting.

XGBoost is developed for sandstone thickness estimation in
reservoir characterization, and the predictive outcomes are
systematically benchmarked against conventional XGBoost
results and Support Vector Machine (SVM) models that
have not been optimized. The prediction results are shown
in Figure 5, and the comparison of the average absolute
error and R? of the prediction results of the four models for
sand body thickness in the verification wells is presented in
Table 1. Based on the prediction results, evidence suggests
that the SVM model demonstrates low prediction accuracy
with significant absolute errors, failing to capture the

distinct morphological features of channel sand bodies.
Although the VIF-XGBoost model provides a more accurate
depiction of the eastern river channel sand bodies, its overall
prediction accuracy remains inadequate. VIF-NRBO-
XGBoost algorithm demonstrates dual capabilities in fluvial
reservoir characterization, successfully capturing both the
extensive channel systems in eastern sectors and accurately
forecasting subtle channel deposits in southwestern regions.

The VIF-NRBO-XGBoost modeling results reveal
distinct fluvial depositional patterns across the study
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Table 1. Comparison of prediction results and mean absolute
errors of four models for verification wells

Table 2. Comparison of XGBoost model parameters before
and after NRBO optimization

Well True SVM XGBoost  VIF-  VIF-NRBO-
name and thickness XGBoost XGBoost
evaluation

metric

CB245 8.9 m 169m 16.2m 14.48 m 9.7m
CB253 255m 188m 30.8m 29.3 m 242 m
CB255 33m 24.8 m 37 m 36.2m 31.1m
CB11 165m 98m 109m 12.1m 179 m
CB27 2425m 179m 18.24m 20.9 m 25.7 m
Mean \ 7.2m 5.6 m 4.1m 1.4 m
absolute error

R? \ 0.48 0.66 0.81 0.97

Abbreviations: NRBO: Newton-Raphson-based optimization;
SVM: Support vector machine; VIF: Variance inflation factor; XGBoost:
eXtreme gradient boosting.

area, with a prominent north-south-oriented channel
belt dominating the eastern sector. Central regions
exhibit maximum sandbody thickness accompanied
by a gradual southeastward deflection of the channel
axis. The southwestern domain contains smaller-scale
channel features with potential tributary systems,
displaying predominant northwest-to-southeast paleoflow
orientations.

5. Discussion

To address the complex development of underground
channel sand bodies in the Chengbei work area of the
Jiyang Depression, characterized by chaotic, intersecting,
and overlapping patterns, a novel VIF-NRBO-XGBoost
model for sand body thickness prediction was introduced.
The model was trained using 35 known wells and validated
with five known wells (CB245, CB253, CB255, CBl11,
CB27), followed by a comprehensive prediction across
the entire work area, effectively improving the thickness
prediction accuracy for such complex channel sand bodies.
The model primarily consists of the following steps:

First, 11 commonly used seismic attributes related to
reservoir information were extracted and normalized.
The Pearson correlation coefficient was employed to
preliminarily screen these 11 seismic attributes, removing
those with a correlation coefficient of <0.2 with sand
body thickness. To prevent multicollinearity among the
seismic attributes from affecting the prediction results,
the remaining eight seismic attributes were subjected to
multicollinearity analysis using VIFE, and attributes with
strong multicollinearity and redundant information were
eliminated.

Model parameter XGBoost NRBO-XGBoost
n_estimators 150 193
max_depth 7 12
min_child_weight 3 1
learning_rate 0.04 0.059
colsample_bytree 0.5 0.57
gamma 6 4.5

alpha 3 3.559

Abbreviations: Alpha: Regularization coefficient; colsample_bytree: Feature
random sampling ratio; gamma: Node splitting reduction coefficient;
learning_rate: Learning rate; max_depth: Maximum tree depth; min_
child_weight: Minimum leaf node weight; n_estimators: Number of
decision trees; NRBO: Newton-Raphson-based optimization; XGBoost:
eXtreme gradient boosting.

Due to the poor data quality in this region, single
machine learning models exhibited significant prediction
errors. An ensemble learning XGBoost model was
introduced to enhance prediction accuracy by integrating
the results of multiple weak learners. The performance
of the XGBoost model largely depends on the selection
of model parameters. In this study, the NRBO intelligent
optimization algorithm was used to optimize the XGBoost
model parameters, and the optimal parameter combination
was employed for sand body thickness prediction, resulting
in more refined channel sand body distribution predictions.
Table 2 lists the seven core parameters of the XGBoost
model before and after NRBO optimization: the number of
decision trees (n_estimators), maximum tree depth (max_
depth), minimum leaf node weight (min_child_weight),
learning rate (learning_rate), feature random sampling ratio
(colsample_bytree), node splitting reduction coeflicient
(gamma), and regularization coeflicient (alpha).

Although the VIF-NRBO-XGBoost model outperforms
other machine learning models in predicting the thickness
of complex channel sand bodies with higher accuracy, the
correlation analysis directly removed seismic attributes
with extremely low correlation to thickness, potentially
losing valuable information from these attributes. Future
research will consider the modal information of seismic
attributes to fully retain useful information from the
discarded attributes. Additionally, further optimization of
model parameters will be pursued to enhance the prediction
accuracy of complex channel sand body thickness.

The data used in this study constitutes a small sample
dataset. The performance of the aforementioned method
on large sample datasets remains unclear and may require
adjustments to the validation set ratio. The prediction
accuracy of this method is somewhat dependent on data
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quality and resolution, and the current model may exhibit
uncertainties in predicting extremely thin sandstone layers.
Future work will consider incorporating additional data
sources, such as seismic attribute modalities, to further
enhance the model’s generalization capability.

6. Conclusion

This study proposes a novel sand body thickness prediction
model —VIF-NRBO-XGBoost. The model utilizes
multiple attributes for reservoir thickness prediction while
fully considering the constraints of multicollinearity and
correlation among seismic attributes, employing NRBO
to optimize the parameters of the ensemble learning
XGBoost model. Through its application in predicting
complex channel sand bodies in the Chengbei area of
Jiyang Depression, the reliability of the model was verified,
with prediction results significantly outperforming other
models. This will provide crucial support for detailed
reservoir characterization and well placement in this
region. The study not only offers new insights for reservoir
thickness prediction in similar study areas, but also
provides valuable references for predicting other reservoir
parameters. It holds significant practical importance for
hydrocarbon exploration and development.
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