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Data-driven high-resolution gas-bearing
prediction in tight sandstones: A case study from
block L, Eastern Ordos Basin

Lixin Tian®*, Shuai Sun*®, Qixin Li2, Jingxue Shi

Cnooc Research Institute Ltd., Chaoyang District, Beijing, China

(This article belongs to the Special Issue: Geophysical Inversion and Intelligent Prediction
Technologies for Complex Hydrocarbon Reservoirs)

Abstract

The Upper Paleozoic Shihezi Formation in Block L of the eastern Ordos Basin harbors
extensive tight sandstone gas reservoirs. However, these reservoirs exhibit strong
heterogeneity, thin sand bodies, and overlapping elastic properties between gas-and
water-bearing layers, which significantly limit the effectiveness of conventional
pre-stack inversion methods in delineating thin sand bodies and predicting gas
saturation. To address these challenges, we propose an integrated high-resolution
gas prediction technique combining geostatistical inversion with deep learning. First,
within a Bayesian sequential inversion framework, we jointly inverted well-log data,
seismic data, and geological constraints to obtain high-resolution elastic parameters,
substantially improving the identification of thin sand bodies (<5 m). Second, we
employed a long short-term memory network to extract temporal features from
inverted elastic parameter sequences and establish a non-linear mapping between
gas/water-sensitive attributes and water saturation; this step incorporates horizon
constraints and an attribute optimization strategy to enhance prediction accuracy.
Field applications demonstrated that our method achieved superior performance
compared to conventional approaches, with an 85% consistency rate between
predicted gas saturation and drilling results. The integration of geostatistical
inversion and deep learning provides a robust workflow for characterizing thin,
heterogeneous tight gas reservoirs, offering significant potential for optimizing
exploration and development strategies in the Ordos Basin.

Keywords: Ordos Basin; Tight sandstone gas; Geostatistical inversion; Deep learning;
Long short-term memory network; Gas-bearing prediction

1. Introduction

The Permian Shihezi Formation in Block L of the northeastern Ordos Basin harbors
large-scale tight sandstone gas reservoirs with proven geological reserves exceeding 10
billion cubic meters, making it a critical gas-producing interval in the basin.'"* These
reservoirs are deposited in a fluvial-deltaic environment influenced by seasonal flooding,
characterized by thin-bedded (2-12 m thick, with 70% of layers <5 m) and lenticular
sand bodies exhibiting strong lateral heterogeneity and frequent vertical interbedding
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with mudstones. The lithology primarily comprises quartz
sandstones underlain by coal-bearing source rocks of the
Shanxi-Taiyuan Formations, forming typical tight gas
reservoirs through a “source-reservoir pressure differential”
driving mechanism.> However, reservoir prediction in this
area faces three major challenges: (i) impedance contrast
limitations: post-stack impedance inversion is hindered
by the minimal acoustic impedance contrast between
sandstone and mudstone, restricting effective spatial
prediction of sand bodies. (ii) Resolution constraints:
conventional pre-stack inversion is limited by the seismic
data’s dominant frequency (30 Hz in the target zone),
resulting in a theoretical resolution limit (A/4 = 38 m)
that far exceeds the average sandstone thickness (<15 m).
(iii) Fluid discrimination difficulty: gas-bearing and water-
bearing layers exhibit substantial overlap in P-impedance
versus Vp/Vs crossplots, rendering rock physics template
methods ineffective for gas saturation prediction.
Geostatistical inversion, which integrates geological priors
with stochastic simulation, has emerged as a key solution
for thin-bed reservoir characterization.® This approach has
been successfully validated in continental thin sandstones’
and coal bed methane reservoirs.®

Extensive research has focused on seismic gas-
bearing prediction.”** Since gas saturation has minimal
influence on seismic waveforms (often obscured by noise),
conventional methods typically derive elastic parameters
through seismic inversion before identifying gas-bearing
zones. For instance, Zong et al."® developed fluid-sensitive
factors via direct P- and S-wave inversion, while Zong and
Yin'® constructed sensitivity factors using amplitude versus
offset (AVO) linear equations to estimate Young’s modulus
and Poisson’s ratio, thereby reducing cumulative errors
from traditional elastic parameter inversion. Although pre-
stack inversion-derived elastic parameters can effectively
identify reservoirs,'”*® they remain limited by thin-bed
tuning effects.

For the Shihezi Formation’s thin tight sandstones—
where gas-water overlap is severe—conventional fluid
identification methods fail due to insufficient seismic
resolution and ineffective elastic sensitivity factors. Recent
advances in deep learning have introduced data-driven
approaches for gas prediction.'** Early work by Hampson
et al?* demonstrated successful porosity prediction
using probabilistic neural networks to extract seismic
attributes from waveform data. Similarly, Zhong et al.?
showed that connected neural network (CNN)-based
permeability prediction models outperform traditional
genetic algorithms, while Das and Mukerji*® achieved
direct porosity and clay content inversion from post-
stack data using CNN-trained synthetic models. Notably,
Chen et al.* found that recurrent neural networks (RNNs)

significantly outperform support vector machines and
random forests in well-log time-series modeling, offering
new opportunities for time-sensitive reservoir parameter
prediction.

To address these challenges, this study proposes a data-
driven high-resolution gas-bearing prediction framework
for tight sandstones, combining: (1) pre-stack geostatistical
inversion to integrate well-log, seismic and geological data
for high-resolution elastic parameter estimation and (2) a
long short-term memory (LSTM) network to establish a
nonlinear mapping between time-series elastic parameters
and water saturation (Sw), constrained by geological
horizons and optimized attribute selection. Field applications
demonstrate that our method significantly improves thin-
bed identification and gas-prediction accuracy, providing
a robust technical solution for tight gas exploration in the
Ordos Basin with broader applicability to similar reservoirs.

2. Methodology
2.1. Technical workflow

The direct inversion of Sw from seismic data remains
challenging due to its significantly weaker sensitivity to
seismic waveform characteristics compared to elastic
parameters.” In contrast, elastic parameters not only
predominantly control seismic wavefield dynamics* but
also exhibit more quantifiable physical relationships with
Sw through established rock physics models. To address
these challenges, we developed an integrated workflow
combining geostatistical inversion with deep learning
(Figure 1), which consists of three key components:
(i) high-resolution geostatistical inversion: conducting
pre-stack geostatistical inversion using well logs, geological
structural frameworks, and 3D seismic data to overcome
the bandwidth limitations of conventional seismic
inversion and obtain high-resolution elastic parameters for

| Geological information || Well logging datal | Seismic data |

l ! {

| Pre-stack geostatistical inversion methodology |

l

| High-resolution elastic parameter |

| Geological horizon constraints H

| Attribute op i I

Input
| LSTM network |

\I/Output

| Predicted water saturation |

Figure 1. The workflow of data-driven high-resolution gas-bearing
property prediction
Abbreviation: LSTM: Long short-term memory.
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thin sand body identification; (ii) LSTM-based saturation
modeling: leveraging the unique sequential modeling
capability of LSTM networks while incorporating horizon
constraints for segmented refinement learning, where
attribute optimization techniques are employed to select
elastic attribute combinations most sensitive to Sw, thereby
establishing a sequential mapping between high-resolution
elastic data and Sw to address the overlap issue of elastic
parameters in gas-water layers; (iii) Model training and
application: training the network using inverted traces
adjacent to wells, with the fully trained LSTM model
ultimately being applied to the tight sandstone reservoirs
of the Shihezi Formation.

2.2. Geostatistical inversion

Unlike conventional deterministic inversion, geostatistical
inversion statistically integrates prior information from well
logs and geological data with seismic observations d,,, and
estimates the posterior distribution of model parameters,
m, through Bayesian inversion.”” The expectation of the
posterior probability solution is given by:

m=m,, +C,G"(GC,G" +C))"(d,,~Gm,, ) (O
The posterior covariance is expressed as:
C,=C, -C,G'(GC,G"+C,)"'GC, (1n)

wherem
vector composed of smoothed background models for
P-wave velocity, S-wave velocity, and density. C,, denotes
the 3n,, x 3n,, prior model covariance matrix; C, is the
seismic covariance matrix, estimated through well
synthetic seismograms and field seismic data adjacent to

wells.

T
=[anp,ans,lan is a 3n, column

Building upon the sequential simulation concept,'®?*
the sequential inversion framework classifies observed
data into two distinct categories: Type A and Type B
data. Type A data are direct measurements of model
parameters, including well log data and previously
simulated grid points. Type B data are indirectly
acquired measurement data, specifically referring to
pre-stack seismic angle gathers in this context. By jointly
incorporating both data types, the forward equation can
be reformulated as:

dobsA _ GA 0 mA + eA
dobsB - 0 GB mB eB

Where d,,, G,, m,, e, represent the observed data,
forward operator, model parameters, and error terms
for Type A data, respectively; d,,,, G,, m,, e, denote the

(1I1)

observed data, forward operator, model parameters, and
error terms for type B data, respectively; G, is simply an
identity matrix. Performing Bayesian inversion on the
joint data in Equation III yields the posterior expectation
constrained by both well log data (type A) and pre-stack
seismic data (type B):

bd _ T T -1
mA+B - mpﬁorA+B + CmA+BGA+B (GA+BCmA+BGA+B + CdA+B)
(dobsA - GmpriorA+B ) (IV)

and posterior covariance:

~ _ T T -1
CmA+B - CmA+B - CmA+BGA+B (GA+BCmA+BGA+B + CdA+B )
GA+BCmA+B (V)

where the covariance matrices C,,,,, (model) and C,,,,
(data) are formally expressed as:

CmAA CmAB 0 O
CmA+B :|: ’CdA+B = 0 C
dBB

C;AB CmBB

The model covariance matrices for Type A and Type B
data are denoted as C,,, and C,,, respectively, while
C, ..z represents their cross-covariance matrix. The data
covariance matrix for type B observationsisspecifiedas C,,.
The Bayesian sequential stochastic inversion framework
treats well log data and previously simulated points as hard
constraints. Under the joint constraints of geostatistical
information and seismic data, these data participate in
computing subsequent grid points. Consequently, well-
derived information propagates throughout the stochastic
simulation path, endowing the inverted elastic parameters
with high-resolution characteristics.

(VD)

2.3.LSTM network

LSTM networks,” a specialized variant of RNNs,* were
specifically designed to address the vanishing gradient
problem in traditional RNNs while preserving long-range
temporal dependencies. The basic LSTM unit, illustrated
in Figure 2, consists of three core components: the input
gate, forget gate, and output gate. These gates selectively
regulate information flow, enabling the modeling of long-
term temporal dependencies. Specifically, this mechanism
allows the network to dynamically store or discard temporal
features, significantly enhancing its ability to process long
sequential data. The input-output relationship of an LSTM
unit can be described by the following equations:

fi=o(W X, + WY, +W, oC_ +b,) (VIL-a)
it = O'(Wx,-Xt + Wint_l + VVd o Ct—l T bt) (VIL-b)
Ct - ft ° Ct_l + it ° tanh(chXt + Wcht—l + bc) (VII-c)
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Ot = O-(quXt + W)’athl + ma ° Ct + ba) (VII-d)

Y, =0, tanh(C,) (VII-e)

where o denotes the Hadamard product; *represents
convolution; W and b correspond to the weight matrices
and bias vectors of the LSTM network, respectively; X,
signifies the input data; Y,denotes the output parameters; C,
represents the cell state (memory unit); and i,, f, and O,
indicate the input gate, forget gate, and output gate,
respectively.

Figure 3 illustrates the deep learning architecture for Sw
prediction based on an LSTM network. The core feature
of this architecture lies in its use of elastic parameter

time series as network inputs, as opposed to traditional
single-point input patterns. Specifically, at each time step
t, a multidimensional elastic vector X = [EP (t), EP(t),
EP,(t)...] is fed into the network. This design offers dual
advantages: first, the temporal characteristics of the data are
explicitly modeled through the LSTM gating mechanism;
second, the joint input of elastic parameters at the same
time step (such as P-impedance and Vp/Vs) captures the
petrophysical correlations between parameters. In terms of
technical implementation, the length in the time dimension
is selected based on the wavelength of the seismic wavelet,
while the choice of elastic data is determined through
attribute optimization results. Regarding the network
output mechanism, the LSTM outputs the hidden state Y,
at each time step, which serves as input to a fully connected

l

v

(tanh]

$]

X

v

Figure 2. The architecture of the LSTM network. Symbol “N” represents the unit of LSTM; the terms X,, t=12,..,n and Y,, t=1,2,..,n represent

input and output sequence data, respectively.
Abbreviation: LSTM: Long short-term memory.

High r elastic par ters Water saturation
P-wave S-wave Density
e— X, N Yo Swy —
g
L} R . S — X, N Y, Sw, ————
- x.l. N YT I Sw‘l

[ Unit of LSTM . Fully connected neural network ]

Figure 3. Deep learning-based high-resolution gas-bearing property prediction architecture. Symbol “N” represents the unit of LSTM, with detailed
structure shown in Figure 2. Symbol “D” represents the FCNN, which is used in the conversion of time-series to Sw.
Abbreviation: FCNN: Fully connected neural network; LSTM: Long short-term memory; Sw: Water saturation.
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neural network (FCNN). The predicted Sw value can be
expressed as:

SW! = O'p(Wth + bp) (VIII)

where the weight matrix W, and bias vector b, constitute
the trainable parameters of the FCNN, and Y, represents
the hidden state output of the LSTM unit at time step t.
The network employs ReLU activation functions® for
nonlinear transformation: 6,(x) = max (0,x). Notably, this
architecture adopts a time-step-shared weight parameter
mechanism, meaning the FCNN’s weights and biases
remain constant across different time steps. This design
achieves parameter efficiency and overfitting suppression.
The complete set of learnable parameters includes:

40%

..

8~10

30%

20%

Frequency

10%

0%
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Figure 4. Statistical distribution of gas-bearing sandstone thickness in
the Shihezi Formation, Ordos Basin
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3. Case study

3.1.Target formation overview

The target interval of the Shihezi formation in the study area
is predominantly composed of tight sandstone intercalated
with mudstone. Statistical analysis reveals that individual
sand bodies have an average thickness below 15 m, with
gas-bearing sand bodies thinner than 6 m constituting over
80% of the total reservoir units (Figure 4). Petrophysical
characterization demonstrates that these tight sandstones are
distinguished by remarkably low Vp/Vs ratios (Vp/Vs < 1.8).
Figure 5 presents a comparative analysis between Vp/Vs
curves derived from well log interpretation (red solid line)
and conventional pre-stack inversion (blue solid line), with
lithological interpretation indicating sandstone intervals
in yellow and gas-bearing sandstones in red. Due to
resolution constraints inherent in conventional inversion
methodologies, only thicker sand bodies can be confidently
identified, while thinner sand bodies exhibit poor resolution.
This resolution limitation directly compromises accurate
reservoir assessment. Furthermore, petrophysical cross-plot
analysis indicates substantial overlap between gas-bearing
and water-bearing layers within the sandstone reservoirs

Sw Lithology

voVs Raho trans ’ | Water Saturation 1 ’ Lithology |
20 % 100 10 unitiess 0.1
T Color Key

Thin sand body X ‘L f

Thick sand body v

Thin sand body X

Thick sand body V

—— G0 e - -

-~

Figure 5. Lithology identification using conventional pre-stack inversion Vp/Vs. The red and blue solid lines represent the well logging and conventional
pre-stack inverted Vp/Vs curves, respectively. In the lithology interpretation, yellow and red colors indicate sandstone and gas-bearing sandstone,

respectively.
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(Figure 6). This overlap significantly challenges effective
fluid discrimination when employing conventional elastic
parameter cross-plotting techniques.

3.2. High-resolution pre-stack geostatistical
inversion

3.2.1. Vertical range determination from well log
statistics

The variogram, serving as a fundamental geostatistical
tool, provides quantitative characterization of reservoir
parameter spatial variability.’? The range parameter plays
a particularly crucial role in defining reservoir thickness
and lateral continuity patterns. Analysis of 94 well logs
from the Shihezi Formation (Figure 7) and geological data
demonstrates that thin sand layers are widely developed in
the study area, with approximately 80% of gas-bearing sand
bodies having thicknesses <6 m. Based on this finding, the
vertical range was determined to be 1 ms. Simultaneously,

26
Mudstone
Dry zones
O Gas-bearing layers
2471 O Water-bearing layers
22
2
s 2
>
1.8
1.6
14 L L L L L L L )
0.7 0.8 0.9 1 1.1 1.2 13 14 15

P-impedance((m/s)*(g/cc)) x10*

Figure 6. Crossplot analysis of P-impedance versus Vp/Vs in Shihezi
formation, where green, yellow, blue, and red circles represent shale, dry
layer, water-bearing layer, and gas-bearing layer, respectively. Significant
overlap is observed between gas-bearing and water-bearing sandstones.

statistical results reveal significant lateral variations in tight
sandstones, with 85% of sand body widths distributed
within the 300-1500 m range. Consequently, the lateral
range was set to 800 m. It must be emphasized that
determining the lateral range requires comprehensive
consideration of both the depositional characteristics of
the target formation and reservoir prediction results to
ensure the rationality of parameter settings.

3.2.2. Application results of elastic parameter
inversion

The pre-stack geostatistical inversion method integrates
four key data types: (i) geological grid models,
(ii) variogram parameters, (iii) well-log data, and
(iv) pre-stack seismic data to construct a Bayesian
inversion framework for estimating posterior probability
distributions. We employed sequential Gaussian
simulation to generate multiple realizations (n = 100) of
elastic parameters from the tight sandstone reservoirs in
the Shihezi Formation, Block L. The inversion used pre-
stack seismic gathers with 20 m CDP spacing, 1 ms time
sampling, and 5°-35° incidence angles. Figure 8 compares
three datasets near well A: (i) measured well-log data
(black curves), (ii) conventional pre-stack inversion results
(blue curves), and (iii) P50 geostatistical inversion results
(red curves) for Vp, Vs, density, and Vp/Vs ratio. Applying
the Vp/Vs < 1.8 sandstone discrimination criterion, the
geostatistical approach resolved thin gas-bearing sand
layers (2-5 m thickness) that conventional inversion
failed to detect. Figure 9 displays cross-well sections
comparing: (i) conventional versus (ii) Geostatistical
inversion results, annotated with lithology interpretations
from Wells B-D (yellow: sandstone; red: gas-bearing
sand). The geostatistical Vp/Vs results show superior
vertical resolution (arrow indicators). Collectively, these
results demonstrate that pre-stack geostatistical inversion
technology can significantly improve resolution and enable
detailed characterization of thin sand bodies.

0 10 20 30 4;.) 5[0 6? 70 8[0 90 100
1 A Well logging data
Moy
£
L
g @ Vi del d
5 0.5 ariogram model data
. Variogram curve
0 10 20 30 40 50 60 720 80 S0 100

Depth (number of layers)

Figure 7. Variogram analysis of well logging parameters in Shihezi formation.
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Figure 8. Comparison of inversion results near Well A seismic gather. The black, blue, and red solid lines represent the well log data, conventional pre-stack

inversion results, and geostatistical pre-stack inversion results, respectively.
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Figure 9. Comparative analysis of well-tie profiles based on elastic parameter inversion. (A) Conventional pre-stack inversion. (B) High-resolution

geostatistical pre-stack inversion.

3.3.LSTM-based Sw prediction
3.3.1. Geological horizon constraints implementation

In this section, we employ a geological horizon-constrained
approach to enhance the predictive performance of the

LSTM network. The specific implementation procedure is
as follows: first, we utilize the horizon information of the
Shihezi formation to segment both well logging and seismic
data. During data processing, we adhere to the “intra-
horizon cross-validation” principle, meaning that data
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from the same horizon can be mutually used as training
and testing sets, while data from different horizons are
strictly isolated. For the experiment, Well A was selected as
the blind test well, with data from Wells B, C, and D used to
train the LSTM network. Figure 10 presents a comparative
analysis of the results before and after applying constraints:
Figure 10A displays the unconstrained data from Well A,
including three Vp, Vs, and density; Figure 10B shows
the horizon-constrained data, where eight distinct colors
represent eight different depositional periods; Figure 10C
compares the lithology prediction results: the left side
presents well log interpretation results (yellow indicating
sandstone and brown indicating mudstone), where
the unconstrained LSTM predictions show significant
misjudgment in sand-rich intervals with lower resolution
for thin sand layers; whereas after applying geological
constraints, the accuracy of sandstone-mudstone
identification improves markedly. This improvement stems
from the following mechanism: the macroscopic trends of
well logs reflect variations in depositional environments
across different geological periods. By dividing well logs
into contemporaneous depositional segments through
geological constraints, the differences in data distribution
within each segment more authentically reflect lithological
variations, thereby enabling the LSTM network to more
accurately learn reservoir characteristics.

3.3.2. Attribute optimization and model training

An LSTM neural network model was constructed for gas-
bearing prediction using high-resolution elastic inversion
results as training data. The fundamental elastic parameters,
including Vp, Vs, and density, were mathematically
processed to compute multiple gas-sensitive indicators
such as Vp/Vs ratio, Poisson’s ratio, acoustic impedance,

Vp (m/s) Vs (m/s) Density lg/cm") Vp (m/s)
1550 | 1550 1 1550 1550
1600 | 11600 1 1600 1600
1650 | 1 1650 ¢ 1 1650 1650
1700 | 1700 11700 ~ 1700
g8 g
z =
S1750 | 1750 1 1750 1 21750
=] =
1800 ¢ 1800 1 1800 ¢ 1800
1850 | 1850 1 1850 1850
1900 ¢ 1900 1 1900 1900
1950 ¢ 1950 11950 1950
2000 4000 6000 1000 2000 3000 2 2000 4000 6000

1550

1600

1650

1700

1750

1800

1850

1900

1950

1000 2000 3000 2

and bulk modulus. Additional sensitive attributes
were subsequently generated through mathematical
transformations. During network training, an attribute
selection method based on loss function gradient
descent was employed, ultimately identifying the 15 most
contributive key attributes (Figure 11), which were then
used as the final input sequences for the LSTM network.
The specific architectural parameters of the LSTM network
are presented in Table 1. The input vector X adoptsa 150 ms
time-series length, with this parameter setting matching
both the seismic wavelet length and LSTM timesteps.
The network structure comprises 32 hidden units, with
the output layer Y, having dimensions of 150 x 32. After
transformation through the fully connected layer, the final
output is a predicted sequence of Sw with dimensions of
150 x 1. Model validation results (Figure 12) demonstrate
that on the training set, the average correlation coeflicient
of predictions across multiple wells reached 0.86, with a
mean absolute error of Sw at 3.9%. In blind well validation,
the average correlation coefficient was 0.76, with Sw mean
absolute error approximately 8%, confirming the neural
network model’s excellent training effectiveness and
prediction accuracy. Furthermore, statistical results of
drilling confirmation rates (Figure 12C) show that all eight
validation wells achieved match rates exceeding 75%, with
Wells 1 and 5 reaching 85%, thereby further verifying the
reliability of this method in practical applications.

3.3.3. Application results of gas-bearing prediction

The trained LSTM model was applied to predict tight
sandstone reservoirs in the Shihezi Formation of the Ordos
Basin. Figure 13 displays a gas saturation prediction profile
intersecting wells, visualized using a gradient color scale
from blue to red (representing gas saturation ranging from

C Welllog

Density ( o/cm’)

LSTM  LSTM (HC)

Vs (m/s)

1550

1600

1650

1700
1750
1800
1850

1900

A

25 3

1950

Figure 10. Comparison of lithology prediction results in Well A with/without horizon constraints, yellow and brown represent sandstone and mudstone,
respectively. (A) Before applying horizon constraints. (B) Applying horizon constraints. (C) Comparison of lithology prediction results.
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Figure 11. Fifteen optimized elastic attributes as LSTM network inputs
Abbreviation: LSTM: Long short-term memory.
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Figure 12. Training and validation results of LSTM neural network for water saturation prediction. (A) Training results of Well A. (B) Blind well testing of
Well C. (C) Multi-well cross-validation DCR statistics.
Abbreviations: DSR: Drilling confirmation rate; LSTM: Long short-term memory.

0% to 60%). The prediction results demonstrate excellent 4. Discussion

agreement with well log interpretations, validating the
reliability and applicability of the LSTM network in
quantitative gas saturation prediction. Further analysis
of horizon slice results for key well groups in the He8
Member (Figure 14) reveals that the lateral distribution
characteristics of gas saturation closely align with both
sand body distribution and hydrocarbon indications from
well logs. The application results indicate that this method
can effectively enhance the characterization accuracy of
tight sandstone gas reservoirs, providing a novel technical
approach for the exploration and development of similar
hydrocarbon reservoirs.

The study has several limitations that warrant further
improvement in future work:

(i) Geostatistical inversion sensitivity: The inversion
results are highly sensitive to variogram parameters
and prior models. While enhancing resolution,
this approach may introduce modeling artifacts.
Therefore, caution must be exercised when applying
geostatistical methods for resolution improvement.
Physics-aware LSTM development: Current data-
driven LSTM networks lack explicit rock physics
constraints. Future research should integrate rock

(ii)
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Figure 13. Well-tie profile of gas saturation prediction using LSTM neural network
Abbreviation: LSTM: Long short-term memory.
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Figure 14. Inversion horizon slice of He8 member reservoir parameters. (A) Tight sand distribution. (B) Gas saturation prediction map.

Table 1. Architecture parameters of LSTM network for water physics models to develop physics-constrained LSTM
saturation prediction approaches for gas-bearing property prediction.
Parameter Value In summary, geostatistical inversion relies heavily on
Dimension of the input vector X,, t=1,2,..., 150x15 prior geological knowledge, while deep learning techniques
Dimension of the LSTM output vector Y, t=1,2,..., n 150%32 require extensive training datasets. Given the mature
Dimension of the FCNN output vector S,, t=1,2,..., 150 geological understanding and data availability during

) hydrocarbon development phases, this methodology is
Number of time steps 150 . .

. . particularly suitable for late-field development stages,
Hidden units 32 providing critical support for well placement optimization.
Layers of LSTM 1
Layers of FCNN 1 5. Conclusion
Dimension of W,.,W,,W,,W,,,W,,W,,W, 150x32 This study focuses on tight sandstone reservoirs in block L of

the Ordos Basin and develops a data-driven high-resolution
Dimension of W ,W W, ,W _,W, 32x1

o gas-bearing prediction technology for tight sandstones.
Dimension of b..b.b b 32 The proposed method effectively predicts thin sand
bodies and their gas-bearing potential, providing critical
support for well placement optimization. The key findings
Abbreviations: FCNN: Fully connected neural network; LSTM: Long are summarized as follows: first, the implementation of
short-term memory. geostatistical methods to construct detailed 3D grid models

yi2 Tlye> Thyo?

Dimension of b ", L
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and statistical variograms significantly enhances seismic
inversion resolution, enabling the successful identification
of thin sand bodies with thicknesses below 5 m in the
Ordos Basin. Second, the application of geological horizon
constraints, which systematically organizes training data
according to sedimentary cycles, effectively mitigates
interference between data from different depositional
periods and substantially improves prediction accuracy.
Finally, the prediction model based on LSTM networks
fully considers the time-varying characteristics of elastic
parameter sequences, overcoming the limitations of
traditional deep neural networks that rely on single-point
predictions. When combined with attribute optimization
techniques, this approach significantly improves the
accuracy of seismic reservoir prediction and provides
reliable guidance for well placement and optimization in
tight gas blocks.
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