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Abstract
Deep learning framework based on physical constraints and improved interpretability 
has revolutionized 4D seismic interpretation. This study proposes a physics-informed long 
short-term memory (PI-LSTM) framework integrated with interpretability enhancement 
techniques for high-precision time-lapse seismic difference prediction, addressing key 
challenges in reservoir monitoring. The model embeds the first-order velocity–stress 
wave equation into the LSTM gating mechanism, reducing the physical residual of 
North Sea field data from 62.3 kPa to 15.2 kPa—a 75.6% decrement. An interpretability 
enhancement module combines Shapley additive explanation value dynamic weighting 
with physical attention templates, reducing the seasonal fluctuation of feature 
importance by 38% (measured as ΔS). Key innovations include adaptive geological 
parameter mapping, where the physical constraint weight was automatically raised 
to 0.89 ± 0.04 when porosity exceeded 15%. In dual benchmark tests using Society of 
Exploration Geophysicists Synthetic Data and North Sea Field Surveys, PI-LSTM achieved 
a time-lapse prediction accuracy of 0.71–2.1 ms, equivalent to a hydrocarbon interface 
localization error of <3 m, outperforming commercial software by 62.9%. The framework 
demonstrates strong versatility across 12 reservoir types, maintaining prediction stability 
(coefficient of variation: <12%) under varying signal-to-noise ratios (15–40 dB). For high-
pressure reservoirs (>35 MPa), the model reduced the wave equation residual to 18.6 kPa, 
67.5% lower than conventional LSTMs, whereas fluid displacement volume prediction 
deviates by only 1.8% from well data. This work establishes a new paradigm for physics-
guided 4D seismic interpretation, validated through multiscale experiments spanning 
from core-scale rock physics (8% error in grain contact stiffness) to field-scale reserve 
assessment (displacement volume R2 = 0.94).
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1. Introduction
1.1. Research background and significance

Time-lapse seismic monitoring is the core technology 
for dynamic descriptions of oil and gas reservoirs. Its 
core challenge lies in accurately extracting weak fluid 
front signals from a strong noise background.1 With the 
advancement in unconventional oil and gas development, 
conventional interpretation methods based on travel time 
difference and amplitude change face severe challenges: On 
the one hand, the anisotropy and complex pore structure 
of shale reservoirs lead to seismic response distortion rates 
as high as 35%; on the other hand, the non-linear wave 
field changes caused by multiphase fluid interaction during 
injection and production far exceed the prediction range 
of conventional rock physics models.2,3 This contradiction 
between “increasing geological complexity” and “the 
hypertension of physical models” has caused time-lapse 
difference interpretation errors in typical work areas, 
for example, those at the North Sea oilfield remained at 
3.2–7.8 ms for a long time, seriously restricting the accurate 
prediction of remaining oil distribution. More importantly, 
the linear time-lapse correction algorithm used by current 
commercial software is difficult to handle the eight types of 
geological noise (e.g., multiple waves and diffraction waves) 
that are prevalent in actual data, resulting in the prediction 
errors of fluid displacement volumes often exceeding 20%.

1.2. Literature review

The application of physics-informed machine learning 
has gained significant attention for enhancing predictive 
capabilities in complex systems such as earthquake 
forecasting. According to a comprehensive review, 
integrating physical information within data-driven 
models offers distinct advantages, including improved 
interpretability and adherence to physical laws; however, 
it also presents certain limitations related to model 
complexity and data requirements.4

Time-series forecasting using deep learning 
architectures, particularly recurrent neural networks 
(NNs) such as the long short-term memory (LSTM) model, 
has been extensively explored for various applications, 
including those related to environmental and geophysical 
phenomena. These models leverage the sequential nature 
of data, enabling the effective modeling of temporal 
dependencies.5 LSTM networks, in particular, are well-
suited for time-series data due to their ability to capture 
long-term dependencies, which is crucial for earthquake 
prediction tasks.6

Recent studies have demonstrated the utility of LSTM 
in predicting seismic responses and related geophysical 

variables. For example, performance improvements 
in seismic response prediction have been achieved 
by combining physical insights with LSTM models, 
addressing issues of physical interpretability that purely 
data-driven approaches often lack.7 Similarly, multivariate 
LSTM models have been employed for renewable energy 
forecasting, illustrating their capacity to handle complex, 
multivariate time-series data.8

The integration of physical models with LSTM 
architectures has been shown to revolutionize scientific 
prediction tasks. Notably, coupling physical models with 
LSTM enables the incorporation of domain-specific 
knowledge, which enhances model robustness and 
interpretability.9 This approach aligns with the broader 
trend of physics-aware machine learning, where physical 
constraints guide the learning process, leading to more 
reliable and physically consistent predictions.

In the context of earthquake prediction, recent 
overviews highlight the potential of combining artificial 
intelligence with Internet of Things data streams to improve 
spatial and temporal forecasting of earthquake magnitudes. 
While conventional methods provide valuable insights, 
incorporating physical information through models 
such as physics-informed LSTM (PI-LSTM) can address 
limitations related to data scarcity and interpretability. 
Furthermore, boosting techniques have been employed to 
enhance predictive performance, particularly in scenarios 
that require classifying event severity or damage levels.10

Overall, the convergence of physics-informed 
modeling, LSTM-based time-series forecasting, and 
interpretability boosting methods presents a promising 
avenue for advancing earthquake difference prediction. 
This integrated approach leverages the strengths of 
each component—long-term dependency modeling, 
physical law adherence, and interpretability—to enhance 
the accuracy and reliability of time-lapse earthquake 
predictions.

1.3. Overview of innovations

The PI-LSTM framework proposed in this study breaks 
through the above limitations through three innovations: 
First, the parameterized wave equation is coupled in 
the gating mechanism to transform the velocity–stress 
relationship into the physical memory term of the LSTM 
unit, reducing the physical residual of the North Sea 
oilfield’s actual data from 62.3 kPa to 15.2 kPa (a decrease 
of 75.6%); second, the interpretability boosting module 
is designed to reduce the quarterly fluctuation of 
feature importance by 38% (ΔS index) through the joint 
optimization of Shapley additive explanation (SHAP) value 
dynamic weighting and physical attention template; more 
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importantly, the adaptive mapping relationship between 
geological parameters and network weights is established 
for the first time. When the porosity exceeded 15%, the 
framework automatically increased the physical constraint 
weight to 0.89 ± 0.04, realizing the intelligent matching 
of “geological scene-network parameters.” This three-way 
collaborative mechanism of “physical law guidance + 
data feature mining + geological knowledge integration” 
improved the time-shift difference prediction accuracy 
to 0.71–2.1 ms (corresponding to oil and gas interface 
positioning error <3  m) in a dual benchmark test using 
Society of Exploration Geophysicists (SEG) simulation 
data and North Sea actual data, 62.9% higher than the 
existing method.

1.4. Structure arrangement

The structure of this paper follows the logical context of 
“method innovation–verification deepening–application 
expansion;” Section 2 elaborates on the wave equation 
embedding strategy and interpretability enhancement 
mechanism of PI-LSTM, focusing on the mathematical 
coupling between physical constraint gating and attention 
templates; Section 3 introduces a cross-scale verification 
system, including rock physics parameter inversion at 
the micro core scale, time-shift difference prediction 
at the meso work-area scale, and reserve assessment at 
the macro oilfield scale; Section 4 establishes a method 
applicability matrix through industrial tests across 12 
representative oilfields, providing a quantitative guide 
for parameter configuration under different geological 
conditions; and Section 5 discusses the balance between 
physical-modeling depth and data-driven flexibility, while 
highlighting improvements for two special scenarios: 
Ultra-high-temperature (>150℃) reservoirs and carbonate 
caves. This closed-loop argumentation structure of 
“theory–method–application” not only ensures the depth 
of technical innovation but also strengthens the feasibility 
of industrial implementation. Finally, Section 6 presents 
the conclusion and future outlook, highlighting the study’s 
core breakthroughs, its practical implications for industrial 
applications, and key areas for future research.

2. Methodology
The PI-LSTM framework proposed in this study achieved 
a breakthrough in time-lapse earthquake difference 
prediction through three key modules: A  physically 
constrained LSTM architecture, an interpretability 
enhancement module, and a multiscale coupled prediction 
framework. The collaboration of these modules not only 
addressed the lack of physical consistency in traditional 
methods but also significantly enhanced the interpretability 
and predictive accuracy of the framework.

2.1. Physics-informed LSTM architecture

Conventional LSTM networks have the inherent defect 
of distorting physical laws in time-lapse earthquake 
prediction, primarily manifested in issues such as 
excessive residuals of the wave equation (>60 kPa) and 
non-conservation of energy.11 To address this, this work 
innovatively embedded the first-order velocity–stress wave 
equation into the hidden layer of LSTM and established 
a gating mechanism with explicit physical meaning. This 
architecture, as shown in Figure  1, extends a standard 
LSTM (left) by incorporating a parallel physical constraint 
branch (right).

The previous hidden state ht-1, encoding physical 
variables such as velocity and stress, was fed into a wave 
equation solver to compute the physics-dictated state 
update  ( )ht−1 . The physical constraint term Φ(pt) was 
derived from the difference between this physics update 
and the network’s candidate update ct . This term was then 
added to the candidate cell state, directly driving the 
memory cell ct to evolve according to the laws of physics. 
The pore pressure pt was adaptively integrated via a gating 
mechanism. The entire process was differentiable, allowing 
end-to-end training.

The core of the PI-LSTM framework is to leverage the 
first-order velocity–stress wave equations to guide the 
evolution of the LSTM’s cell, ensuring it adheres to known 
physical principles. The coupled wave equations are given 
by:

σ σ
ρ
∂ ∂ ∂

= +
∂ ∂ ∂

x xx xzv
t x z

� (I)

σ
λ µ λ

∂ ∂ ∂
= + +

∂ ∂ ∂
( 2 )xx x zv v

t x z
� (II)

Where ρ represents density, λ and μ are Lamé constants, 
and v and σ represent the particle velocity and stress 
components, respectively.

To integrate these continuous equations into the 
discrete-time LSTM framework, they were first discretized 
using an explicit finite-difference scheme. The temporal 
derivatives are approximated as:

σ σ σ− −∂ − ∂ −
≈ ≈

∂ ∂

1 1

,
t t t t

x x x xx xx xxv v v
t t t tΔ Δ

� (III)

Substituting these into Equation II and rearranging 
terms, discrete update rules that predict the next time step’s 
physical state from the current one were obtained:
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This set of discrete equations, which are denoted as 
 ( , ; , , )vt t� �1 1� � � � , defines the correct physical evolution. 
In the proposed LSTM architecture, the hidden state ht was 
designed to encode these physical variables. Therefore, the 
physical constraint term Φ(pt) was formulated as 
the discrepancy between the LSTM’s predicted state and 
the state mandated by the physical law:

ƒ tanh( ) ( ) ( [ , ] )p h W h x bt t c t t c� � �� � 1 1 � (VI)

Where  ( )ht−1  represents the output of the discrete 
wave equation function (a layer that computes the physics-
based update) given the previous hidden state. The term 
tanh( [ , ] )W h x bc t t c� �1  is the standard LSTM candidate 
state update. Thus, Φ(pt) acts as a physics-based correction, 
nudging the LSTM’s internal dynamics to minimize 
violation of the wave equation.

This physical constraint was implemented through 
differentiable programming, allowing gradients from 
the physics loss to be back-propagated into the network 
parameters. The time-varying pore pressure pt was 
integrated as a source term influencing the physical 

evolution and was adaptively adjusted via a bidirectional 
gating structure:

ƒ tanh( ) ( )p W bt t p t p� � � �� � (VII)

Where ηt is a dynamic adjustment coefficient 
determined by the current hidden state ht-1 and the input 
xt, ensuring a seamless blend of data-driven and physics-
driven learning.

Finally, in the memory unit update at time step t, in 
addition to the conventional input gate it, forget gate ftand 
output gate ot, the physical constraint term Φ(pt) was 
introduced to ensure dynamic consistency:

− −= + + + 1 1tanh( [ , ] ( ))t t t t c t t c tc f c i W h x b pΦ � (VIII)

2.2. Interpretability boosting module

To address the black-box problem of deep learning 
models, this work designed a multilayered interpretability 
enhancement framework. At the feature importance 
quantification level, an improved SHAP value calculation 
method is used:

�i
S F i

S d S
d

f S i f S�
� � � �� � � � �

�
� �
{ }

| |!( | | )!
!

( )1 � (IX)

Where F represents the total feature set, d is the feature 
dimension, and S is the feature subset.

Figure 1. Schematic diagram showing the architecture of the physics-informed long short-term memory framework.
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Different from the conventional SHAP method, this 
study introduced physical prior constraints, took the 
theoretical sensitivity derived from the wave equation as 
the benchmark value, and achieved a balance between 
physical constraints and data-driven through the following 
optimization objectives:

att F KLA P D q p� � �� � � �  ( ) � (X)

Where A is the data-driven attention matrix, P is the 
ideal attention template derived from physical theory. The 
values of α = 0.7 and β = 0.3 were determined through 
a systematic grid search combined with a five-fold 
cross-validation on the training dataset. The goal was to 
maximize physical consistency (measured by the wave 
equation residual) while maintaining high prediction 
accuracy (measured by the mean squared error [MSE]). 
The grid search was performed over a range of values 
(α, β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}), with a constraint of 
α + β = 1.0 to ensure a balanced regularization effect. The 
pair (0.7, 0.3) was identified as the optimal configuration, 
achieving the best trade-off: The higher weight of the 
Frobenius norm (α = 0.7) is crucial for enforcing the 
physical prior and ensuring that the model’s interpretation 
is grounded in wave theory; whereas the lower weight of 
the KL divergence (β = 0.3) is sufficient to maintain the 
statistical fidelity of the learned features while remaining 
within the physical constraints.

2.3. Time-shift difference prediction coupling 
framework

To make full use of the multiscale characteristics of seismic 
data, this work proposed a three-level feature fusion 
strategy:

F Conv Upsample Ffusion k kk
� � ��� � 1 11

3 ( ( )) � (XI)

Where Fk represents feature maps of different scales, γk is 
the adaptive fusion weight calculated through the physical 
constraint attention mechanism. In terms of uncertainty 
quantification, the Bayesian NN framework was used 
to infer the posterior distribution of the approximate 
parameters through variational inference:

θ µ σ σ
=

= = −∑2 2 2
1

1( ) ( | ˆ, ), ( )n
i ii

q w w y y
n

 � (XII)

The framework not only provides point predictions but 
also outputs confidence intervals. The end-to-end training 
of the entire model adopted a multitask learning strategy 
to jointly optimize the prediction loss, physical constraint 
loss, and interpretability loss:

   total pred phy int� � �� � �1 2 3 � (XIII)

Where λ1, λ2, and λ3 were dynamically adjusted based 
on the gradient amplitude of each task to avoid dominant 
effects during the optimization process.

3. Experimental design
3.1. Dataset construction

The actual time-lapse seismic data from the North Sea 
oilfield and the simulated data from the SEG Advanced 
Modeling Program used in this study were subjected to 
a series of preprocessing steps to ensure data quality and 
enhance experimental comparability.12-15 The actual data 
were acquired from eight repeated acquisitions between 
2015 and 2022 in the North Sea oilfield area using traditional 
reflection wave measurement technology. The simulated 
data were high-fidelity model data generated using the SEG 
simulation platform based on known geological parameters.

To eliminate the impact of differences in data from 
different sources on the experimental results, both types 
of data were uniformly preprocessed. The actual data 
first underwent a denoising process. In this process, 
bandpass filtering was applied to remove low-frequency 
noise and high-frequency artifacts. In particular, noises 
such as multiple waves and side scattering, both of which 
are common in seismic data, were effectively removed. 
The specific denoising process can be described by the 
following filtering formula:

∞

∞

+

−
= −∫ ' ' '( ) ( )ˆ ( )d t d t h t t dt � (XIV)

Where d(t) is the original seismic signal, h(t) is the 
impulse response of the bandpass filter, and is the denoised 
signal. This formula uses a convolution operation to filter 
the original signal with the filter, removing components 
outside the frequency range. For actual data, the filter 
design was optimized based on the signal’s frequency 
band characteristics to ensure that the signal’s effective 
components were preserved as much as possible.

After denoising, the actual data were also normalized 
because they were significantly affected by factors such 
as the environment, equipment, and time. The amplitude 
values under different acquisition conditions might vary 
significantly, resulting in poor comparability across data. 
Therefore, all data underwent a normalization step to 
unify their amplitudes before subsequent analysis. The 
normalization formula is as follows:

d t
d t d

d
norm ( )

( )
�

� �
�

� (XV)
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where d(t) is the original signal, μd and σd are the mean 
and standard deviation of the signal, respectively, and dnorm 
(t) is the normalized signal. This process ensured consistent 
dimension and scale of the data across acquisition time 
periods, making subsequent analysis more stable and reliable.

In addition, due to certain velocity field errors in the 
actual data, the velocity field was estimated through 
interwell interpolation, with the velocity field errors 
ranging from 3.2% to 7.8%. To ensure data quality, all 
velocity field data were normalized before processing, 
ensuring comparability across different temporal and 
spatial resolutions.

Compared to the actual data, the SEG simulated data 
were from a more reliable source, generated using a 
simulation program that takes into account variations in 
actual geological conditions. Preprocessing of the simulated 
data was relatively straightforward, focusing primarily 
on signal denoising and normalization. As the simulated 
data exhibited a high signal-to-noise ratio (SNR) and low 
noise level, the denoising process primarily targeted high-
frequency artifacts. Bandpass filtering techniques, similar 
to those used for the actual data, were also employed. 
Unlike the actual data, the simulated data’s velocity field 
was idealized, resulting in near-zero errors. This resulted 
in superior velocity accuracy compared to the actual data.

The normalization formula for the simulated data 
was identical to that used for the actual data, ensuring 
consistency in temporal and spatial resolution. The time 
sampling interval of the simulated data was fixed at 1.0 ms. 
Compared with the variable sampling interval of the actual 
data (2.0–4.0 ms), the simulated data demonstrated obvious 
advantages in the accuracy of thin-layer identification.

As shown in Figure 2, the actual data consisted of 3D 
seismic volumes (covering an area of 12 × 8 km2), acquired 
8  times between 2015 and 2022, with a time sampling 
interval of 2 ms, and contained a total of 1258 valid gathers.

The North Sea oilfield work area in Figure 2A (12 × 8 km²) 
shows a typical shelf sea geological environment, with 
seismic lines regularly distributed in the north–south 
direction (track spacing 25 m), covering the latitude range 
of 58.2°N–60.1°N. Three major faults (strike NNE) are 
developed in the work area, resulting in an average time-
shift anomaly of 7.8 ms near the fault surface of the seismic 
event axis, thereby providing a natural experimental field 
for verifying the fault response capability of the algorithm. 
The simulation data were generated by decoupling the 
acoustic wave equation:

�
�

�
�
�

�
�
�

�

�
�

�

�
� �

2

2
2

2

2

2

2

p
t

v p
x

p
z

S t( ) � (XVI)

The velocity field v (x, z, t) was dynamically adjusted 
according to the North Sea formation parameters. Table 1 
compares the key characteristics of the two datasets. It can 
be seen that the simulated data has advantages in SNR 
(≥35  dB) and label completeness, while the actual data 
contains more complex geological noise.

From the perspective of time resolution, the 
simulated data used a fixed sampling interval of 1.0 
ms, which was better than the variable sampling rate 
of 2.0–4.0 ms of the actual data. This difference led to 
a theoretical accuracy improvement of more than 50% 
in the thin-layer identification ability of the simulated 
data. The spatial coverage showed that the 12×8-km2 
work area of the actual data contained a denser fault 
system (an average of 3.2 faults/km2), whereas the 
10×10 km2 simulated data used a regular grid design, 
and the uniformity of its facet size improved the spatial 
sampling consistency by 37%.

The SNR index showed a significant differentiation. 
The SNR of the simulated data (>35 dB) far exceeded the 
range of 18–25 dB of the actual data. After calculation, its 
background noise energy was 1–2 orders of magnitude 
lower than that of the actual data. Velocity field error 
analysis showed that there was a velocity modeling 
deviation of 3.2–7.8% in the actual data, mainly due 
to the uncertainty of inter-well velocity interpolation, 
while the theoretical velocity field of the simulated 
data completely avoided such errors. In terms of label 
completeness, only 62.5% of the layers in the actual data 
completed time-shift annotations, while the simulated 
data achieved 100% layer control, which increased 
the latter’s training sample availability in supervised 
learning tasks by 60%.

The complexity of geological features showed an 
inverse trend. The actual data contained eight typical 
noise patterns, primarily multiples, side scattering, 
diffraction waves, interlayer multiples, random noise, 
pattern noise, velocity anisotropy noise, and absorption 
attenuation variation noise. The fault/fracture system’s 
geological complexity rating was 40% higher than the 
simulated data. However, in terms of key fluid monitoring 
metrics, the simulated data, attributed to its clear amplitude 
rate gradient (average gradient of 0.28/dB), achieved a 2.3-
fold improvement in fluid front identification compared 
to the actual data. This parametric comparison validated 
that the combined use of the two data types resulted in a 
comprehensive verification system with complementary 
temporal and spatial characteristics (simulated data had a 
31% higher temporal resolution, whereas the actual data 
had a 40% higher spatial complexity) and a wide SNR 
(17 dB dynamic range).

https://dx.doi.org/10.36922/JSE025310049


Journal of Seismic Exploration Physics-informed LSTM for seismic prediction

Volume 34 Issue 3 (2025)	 31� doi: 10.36922/JSE025310049

3.2. Comparative experimental settings

To verify the superiority of PI-LSTM, this study designed 
three types of baseline comparisons: Conventional LSTM, 
physics-informed NN, and the time-shift analysis module 
of the commercial software Petrel 2022.1 (SLB, United 
States).16-24 Among them, the conventional LSTM model 
adopted a single-layer structure with a hidden layer size of 
512 units, the optimizer was Adam (learning rate 1 × 10−3, 
weight decay 1 × 10−5), and the training rounds were fixed at 
100. The physics-informed fully connected NN introduced 
a regularization term based on the wave equation in the 
fully connected network, and its loss function is defined as:

 � �
�
�

�
�
�

�
�
�

�

�
�

�

�
�MSE �

2

2
2

2

2

2

2
2

2
p

t
v p

x
p

z
� (XVII)

Where LMSE is the MSE between the predicted value and 
the true label, the second term is the physical constraint 
loss, and λ has a value of 0.1. To ensure fairness, the fully 
connected NN’s training hyperparameters (learning rate, 
optimizer, and number of iterations) were the same as 
those of the PI-LSTM framework, with a fully connected 
network structure being used only.

For commercial software comparison, this study used 
the Petrel 2022 software. Its time-lapse analysis module 
was configured as follows: The seismic input used the 
same 3D time-lapse data volume, the interpolation 
method was selected as cubic spline, and the frequency 
bandwidth was set to 8–80 Hz, consistent with the actual 
data preprocessing. The time-lapse calculation method 
was the cross-correlation time window method with a time 

Figure 2. Comparison of the spatial distribution of (A) North Sea oilfield data and (B) Society of Exploration Geophysicists simulation data.
Abbreviation: SNR: Signal-to-noise ratio.

BA

Table 1. Comparison of characteristics of the two benchmark datasets

Characteristics Actual North Sea data range SEG simulation data range Measurement method

Temporal resolution (ms) 2.0–4.0 1.0 (Fixed) Wavelet zero‑crossing interval

Spatial coverage (km2) 12×8 10×10 Bin size×number of channels

Effective bandwidth (Hz) 8–80 5–100 −3 dB power spectrum cutoff

Average signal‑to‑noise ratio (dB) 18–25 35–∞ Effective signal/background noise root mean square

Velocity field error (%) 3.2–7.8 0.0 Comparison with well logging data

Time‑shift label completeness (%) 62.5 100 Effective layer labeling ratio

Fault/crack complexity High Medium Geological expert evaluation

Fluid front identifiability Limited Clear Amplitude change rate gradient

Abbreviation: SEG: Society of Exploration Geophysicists.
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window length of 100 ms. The noise suppression parameter 
was the default median filter (3 × 3). All experiments were 
conducted in the Petrel 2022.1 (build 233) environment. 
It should be noted that different versions of Petrel may 
have slight differences in the implementation of the time-
lapse processing algorithm. However, the version used 
in this study was the 2022 mainstream stable version. 
Its processing process is consistent with the current 
common configuration in the industry, thus ensuring high 
comparability.

Figure 3 shows the prediction results of the gas reservoir 
front movement in the simulated data processed by the 
four methods. PI-LSTM recorded the smallest prediction 
error in the gas–water contact (GWC) position (2.1 m vs. 
5.7 m of the conventional LSTM).

The prediction results of commercial software showed 
obvious boundary blurring, with an average prediction 
fluctuation of ± 8.3  m near the GWC, especially at the 
structural turning point (x = 600–750 m interval), with a 
maximum positioning deviation of 12.1 m. Although the 
physics-informed NN improved the overall trend fitting 
(R2 = 0.78), there was still a systematic deviation, resulting 
in an average prediction error of 5.7 m at the top of the 

gas reservoir (z = 450–500 m). This was closely related to 
its insufficient characterization of complex pore structures.

The conventional LSTM showed advantages in data 
fitting, and its root mean squared error (RMSE = 3.5 m) 
was 38.6% lower than that of the physics-informed NN. 
However, there was still local prediction failure in the 
sensitive areas of pressure changes (x = 400–500  m), 
attributed to the instability of the gating mechanism 
caused by the lack of physical constraints of the LSTM unit. 
In contrast, PI-LSTM showed the most stable prediction 
consistency, with a GWC positioning error of only 2.1 m 
(standard deviation = ± 0.8  m), 63.2% lower than the 
conventional LSTM method. In the oil–water transition 
zone at the bottom of the gas reservoir (z = 550–600 m), 
PI-LSTM identified a thin fluid interface with a thickness 
of only 3.2  m, and its prediction results were consistent 
with the logging interpretation by 91.4%.

The experiment adopted a strict five-fold cross-
validation strategy to ensure the statistical reliability of 
the model evaluation, and its data partitioning scheme is 
systematically presented in Table 2. From the perspective of 
sample allocation, seven wells with a total of 5632 samples 
were used for each training iteration, equivalent to 70% of 

Figure 3. Comparison of the prediction results of the gas reservoir front across models: (A) commercial software, (B) physics-informed neural network, 
(C) conventional long short-term memory (LSTM), and (D) physics-informed LSTM.
Abbreviation: RMSE: Root mean squared error.
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the total data volume, whereas 1 well (804  samples) and 
2 wells (1608 samples) were retained for single validation 
and testing, respectively, constituting 10% and 20% of the 
strictly isolated data. This partitioning method ensured 
that each sample was used for validation once in five cycles. 
The final test set cumulatively covers data from all 10 wells 
(8040 samples), ensuring that the evaluation results were 
fully representative.

The allocation of well numbers across folds adopted a 
non-overlapping strategy (B-12/B-19, C-07/C-15, etc.) to 
maximize the spatial distribution difference of geological 
characteristics in the test set. Quantitative analysis showed 
that the training and validation sets were maintained 
at a fixed ratio of 7:1. This design enabled the model to 
access 1124 independent geological units in each iteration 
(calculated as one geological unit for every five samples), 
while the 804  samples of the validation set provided a 
generalization ability test benchmark of 160 independent 
units. The 1608  samples of the test set, twice the size of 
the validation set, further enhanced statistical significance 
by narrowing the confidence intervals of the evaluation 
results to ±2.3% (95% confidence level), compared with 
±5.1% under single-fold validation.

3.3. Evaluation indicator system

In addition to the conventional RMSE and mean absolute 
error (MAE), this study innovatively proposed the physical 
consistency error Ephy and interpretability score:25
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Where φ j
geo  is the feature importance annotated by 

geological experts. Figure 4 shows that PI-LSTM improved 
the two new indicators by 41.2% and 38.7%, respectively 
(p<0.01, t-test).

Table  3 compares the performance of each indicator 
in eight key layers in detail. It can be seen that PI-LSTM 
demonstrated a significant advantage in deep high-
pressure layers (>2500 m).

The average RMSE of the shallow layers 
(1200–1800  m) was 2.12 ± 0.28 ms, while that of the 
deep layers (2700–3300  m) was significantly reduced to 
1.34 ± 0.06 ms, a decrease of 36.8%. At the turning point at a 
depth of 2400 m, the MAE (1.28 ms) of this layer was 32.3% 
lower than that of the layer at an overlying depth of 1800 m. 

At the same time, the predictive accuracy of fluid pressures 
rose to 88.7%, indicating a qualitative change in the model’s 
adaptability to high-pressure reservoirs (>30 MPa). The 
pressure prediction index was strongly correlated with 
depth (R2 = 0.89). The 28.5 kPa error of the shallow layer 
at 1200 m was reduced to 22.4 kPa at a depth of 3000 m, 
a decrease of 21.4%. The average prediction accuracy of 
deep layers (>2400 m; 90.8%) was 13.8% higher than that 
of shallow and medium layers (1200–2100  m; 79.8%). 
This was positively correlated with the improvement of 

Figure 4. Improvement of innovation indicators.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.

Table 2. Five‑fold cross‑validation data allocation (Unit: 
number of samples)

Folds Training set Validation set Test set Hash sign

1 5632 804 1,608 B‑12, B‑19

2 5632 804 1,608 C‑07, C‑15

3 5632 804 1,608 D‑03, D‑11

4 5632 804 1,608 E‑09, E‑22

5 5632 804 1,608 F‑14, F‑17

Table 3. Performance comparison of the indicators of the 
proposed PI‑LSTM framework across eight layers

Layer depth (m) RMSE (ms) MAE (ms) Ephy (kPa) Sint (%)

1200 1.78 1.32 28.5 82.1

1500 2.15 1.67 35.2 79.8

1800 2.43 1.89 41.7 77.5

2100 1.95 1.52 38.9 85.3

2400 1.62 1.28 32.1 88.7

2700 1.37 1.05 25.8 91.2

3000 1.29 0.98 22.4 92.5

3300 1.41 1.11 26.3 90.8

Abbreviations: Ephy: Physical consistency error; MAE: Mean 
absolute error; PI‑LSTM: Physics‑informed long short‑term memory; 
RMSE: Root mean squared error; Sint: Interpretability score.
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the SNR of deep seismic signals (35 dB→42 dB). The data 
showed that when the reservoir pressure exceeds 32 MPa 
(corresponding to a depth of 2400  m), the MAE of the 
model stabilized at 1.10 ± 0.13 ms, 19.7% lower than the 
theoretical error, verifying the special optimization effect of 
PI-LSTM for high-pressure environments.

The interlayer difference in error distribution has 
important engineering significance. The maximum RMSE 
of the 1800 m layer (2.43 ms) was equivalent to 1.88 times 
that of the 3000 m layer (1.29 ms). This depth-related error 
gradient change was highly consistent with the uncertainty 
distribution of the regional velocity field (correlation 
coefficient 0.76). The error at a depth of 3300 m rebounded 
slightly (RMSE increased by 9.3%), reflecting the 
interference of ultra-deep temperature effects (>120°C) on 
seismic attributes.

3.4. Ablation experiment scheme

To verify the contribution of each module, four sets of 
ablation experiments were designed: Complete PI-LSTM, 
physical constraints only, interpretability improvement 
only, and baseline LSTM. The radar chart in Figure 5 shows 
that removing the interpretability module decreased Sint by 
27.3%, while removing the physical constraints decreased 
Ephy by 53.6%.

Table 4 reveals the differentiated dependence of different 
earthquake attributes on the physical constraint module 
and the interpretability module through quantitative 
analysis, providing data support for understanding the 
working mechanism of the model.

Speed-related parameters (Vp, Vs, and Vp/Vs) showed 
the strongest dependence, among which Vp/Vs ranked 
the highest with a Pearson correlation coefficient of 0.89 
in physical constraint contribution, 36.9% higher than 
coherence (0.65) and 17.1% higher than anisotropy (0.76). 
The interpretability contribution showed an opposite 
distribution trend. Complex fluctuation characteristic 
indicators, such as attenuation attributes (0.83) and coherence 
(0.87), showed stronger interpretability requirements, 13.6% 
higher than the speed parameters on average. The synergy 
coefficient further quantified the coupling effects of the dual 
modules. Vp/Vs led significantly with a synergy value of 
1.41, 18.5% higher than the impedance attribute (1.19). For 
the anisotropy attribute, the physical constraint contribution 
(0.76) and interpretability contribution (0.79) were mostly 
balanced (the difference was only 3.9%), and the synergy 
coefficient of 1.22 was at the middle level.

Figure 6 demonstrates the performance of the proposed 
framework in time-shift difference prediction across eight 
reservoir layers and time intervals. The prediction accuracy 
of the complete PI-LSTM in the fluid front position (error 

≤3 m) reached 92.5%, 68.3–79.7% significantly better than 
other variants. The synergistic effect of physical constraints 
and interpretability modules was verified by the control 
variable method:

η α η β η γ η η= ⋅ + ⋅ + ⋅ ⋅phy int phy intΔ � (XX)

A fitting coefficient γ of 0.38 (p<0.001) indicates that 
there was a significant interaction between the two modules.

4. Results analysis
4.1. Prediction accuracy verification

The comparison of the time-shift difference prediction 
results across the four methods in the B12 block of the 
North Sea oilfield is shown in Figure  7. The RMSE of 
PI-LSTM (2.1 m) at the GWC was significantly lower than 
that of the conventional LSTM method (5.7–8.3 m).

By systematically comparing the time-shift prediction 
errors across the four methods, as shown in Table  5, 

Figure 5. Comparison of radar images of ablation experiments.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.

Table 4. Module contribution analysis

Seismic 
attributes

Physical constraint 
contribution

Interpretability 
contribution

Synergy effect 
coefficient

Vp 0.87 0.76 1.32

Vs 0.85 0.72 1.28

Vp/Vs 0.89 0.81 1.41

Impedance 0.78 0.68 1.19

Poisson’s ratio 0.82 0.75 1.25

Attenuation 0.71 0.83 1.17

Anisotropy 0.76 0.79 1.22

Coherence 0.65 0.87 1.08
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Figure 6. Time-shift difference prediction accuracy heat map of the proposed physics-informed long short-term memory framework.

Figure 7. Comparative results across four methods. (A) Time-shift prediction comparison. (B) Prediction error distribution. (C) Absolute error statistics.
Abbreviations: GWC: Gas-water contact; NN: Neural network; PI-LSTM: Physics-informed long short-term memory; RMSE: Root mean squared error.
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the PI-LSTM model reported significant advantages in 
reservoir monitoring tasks.

All methods showed a trend of decreasing error with 
increasing depth. The commercial software reached a 
maximum error of 3.87 ms at a shallow depth of 1800 m, 
whereas PI-LSTM achieved the highest accuracy of 
0.71 ms at a depth of 3000  m, a 5.45-fold difference. 
Although the physics-informed NN was 22.7% higher 
than the commercial software on average (from 3.11 ms 
to 2.41 ms), its improvement was significantly lower than 
the 62.9% reduction of PI-LSTM, especially at shallow 
depths of 2400  m, where the MAE of the physics-
informed NN was still 1.83 ± 0.21 ms higher than that 
of PI-LSTM.

4.2. Physical consistency verification

Through the wave equation residual analysis in Figure 8, 
the degree of physical constraint violation of PI-LSTM 
on SEG simulation data was reduced to 31.7% of the 
conventional LSTM method.

The residual energy norm was used to quantify the 
discrepancy between the predicted seismic wave behavior 
and the actual physical wave equation over a given time 
period. It was calculated using the following formula:
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Where Eres represents the residual energy norm, which 
measures the physical error by comparing the predicted 
wave behavior with the actual behavior governed by the 
wave equation. T  is the total number of time steps, 
reflecting the temporal resolution of the seismic data. The 
term ρ denotes the density of the medium, crucial for 

seismic wave propagation, and ∂
∂

2

2

u
t

 is the second time 

derivative of the displacement field u, representing the 
acceleration of seismic waves. The term �� �( : )C u  refers 
to the divergence of the stress tensor, where C is the 
elasticity tensor and ∇u is the spatial gradient of the 
displacement field. This term models the spatial variation 

Table 6. Comparison of physical residuals across methods 
under varying SNR conditions

SNR 
(dB)

Commercial 
software (kPa)

Physics‑informed 
NN (kPa)

Conventional 
LSTM (kPa)

PI‑LSTM 
(kPa)

40 52.3 38.7 45.2 15.8

30 68.5 45.2 57.8 18.3

25 85.7 53.6 68.9 22.4

20 102.4 67.2 82.5 26.7

15 125.8 85.3 103.6 31.2

10 158.2 112.7 132.5 38.9

5 203.6 153.8 178.3 47.5

0 265.3 215.4 243.7 63.8

Abbreviations: NN: Neural network; PI‑LSTM: Physics‑informed long 
short‑term memory; SNR: Signal‑to‑noise ratio.

Table 5. Comparison of time‑shift prediction errors across 
methods

Layer 
depth (m)

Commercial 
software (ms)

Physics‑informed 
NN (ms)

Conventional 
LSTM (ms)

PI‑LSTM 
(ms)

1200 3.21 2.78 1.98 1.12

1500 3.45 2.95 2.15 1.28

1800 3.87 3.24 2.43 1.45

2100 3.32 2.87 1.95 1.08

2400 2.98 2.56 1.62 0.92

2700 2.67 2.18 1.37 0.78

3000 2.54 2.05 1.29 0.71

3300 2.81 2.27 1.41 0.85

Abbreviations: NN: Neural network; PI‑LSTM: Physics‑informed long 
short‑term memory.

Figure 8. Spatial distribution of wave equation residuals in (A) conventional LSTM and (B) PI-LSTM.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.
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in the stress and strain within the medium as the seismic 
waves propagate. The squared Euclidean norm ⋅ 
measures the magnitude of the difference between the 
predicted and actual wave behaviors.

Table  6 demonstrates that under different SNR 
conditions, PI-LSTM maintained stable physical 
consistency (residual <28 kPa), especially in high-pressure 
areas (>2500 m).

Figure 9. Physical residual statistical distribution histogram.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.

Figure 10. Feature contribution heatmap with eight seismic attributes and four quarters.
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In terms of SNR sensitivity, when the SNR decreased from 
40 dB to 0 dB, the physical residual of the commercial software 
increased by 407.3% (from 52.3 kPa to 265.3 kPa). In contrast, 
the PI-LSTM framework only increased by 303.8% (from 15.8 
kPa to 63.8 kPa), a 34.1% improvement in noise immunity. 
In particular, under the critical operating condition of deep, 
high-pressure zones (SNR ≥ 25 dB), the PI-LSTM residuals 
remained within 22.4 kPa, a 67.5% reduction compared to 
the conventional LSTM (p<0.001). This advantage is directly 
due to its built-in rock physics constraint mechanism, which 
effectively suppresses 68.2% of non-physical solutions when 
SNR deteriorates.

The residual distribution histogram in Figure 9 reveals 
that the conventional LSTM method exhibited a bimodal 
distribution (R2 = 0.63), whereas the PI-LSTM framework 
reported a unimodal Gaussian distribution (R2 = 0.92).

4.3. Interpretability enhancement effect

The feature contribution heat map in Figure  10 shows 
that the SHAP value of the speed parameter (Vp/Vs) in 
PI-LSTM was increased to 0.42 ± 0.07, compared with 0.29 
± 0.05 for the conventional LSTM method.

Analysis of time-varying patterns is presented in 
Figure 11. Physical constraints reduced feature importance 
fluctuations by 38%.

The metric ΔS is used to quantify the improvement 
in the time-varying stability of feature importance, 
measuring PI-LSTM’s improvement in feature 
weight fluctuation compared to conventional LSTM. The 

formula is:
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Where ΔS is a quantitative indicator of the time-varying 
stability of feature importance, indicating the degree of 
improvement of PI-LSTM on feature weight fluctuation. 
T is the number of time steps, that is, the length of the time 
series that measures the fluctuation of feature weight. In 
this formula, wt

PI  and wt
LSTM , respectively, represent the 

weights of each feature in the PI-LSTM and conventional 
LSTM models at the tth moment, while PIw  and wLSTM  are 
the time averages of the weights of each feature in the 
PI-LSTM and LSTM models, respectively, reflecting the 

Figure 11. Time-varying feature importance curves.
Abbreviation: SHAP: Shapley additive explanation.

Table 7. Comparison of feature interpretation stability 
(coefficient of variation, %)

Properties Q1 Q2 Q3 Q4 Mean

Vp 9.2 8.7 7.5 8.3 8.4

Vs 10.1 9.8 8.2 9.1 9.3

Vp/Vs 7.8 6.5 5.9 6.8 6.8

Impedance 11.2 10.5 9.8 10.7 10.6

Poisson’s ratio 8.5 7.9 6.7 7.5 7.7

Attenuation 12.3 11.8 10.2 11.5 11.5

Anisotropy 10.7 9.3 8.9 9.8 9.7

Coherence 13.5 12.1 11.8 12.9 12.6
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overall importance of the features. The numerator of 
the formula calculates the sum of the fluctuations of each 
feature weight in the PI-LSTM model, indicating the 
variation of the feature weight of PI-LSTM over time. On 
the other hand, the denominator calculates the sum of the 
fluctuations of the feature weight in the conventional 
LSTM model. By comparing the fluctuations of PI-LSTM 
and conventional LSTM, ΔS quantifies the improvement of 
the PI-LSTM model in the time-varying stability of 
features. The closer the value is to 1, the better the PI-LSTM 
performs in terms of time-varying stability, the smaller the 
fluctuation of feature weights, and the more stable the 
model prediction process.

Table  7 compares the interpretation stability of eight 
seismic attributes in four quarters. The quarterly coefficient 
of variation of PI-LSTM (CV <12%) was significantly better 
than that of the conventional LSTM method (CV >27%).

The Vp/Vs parameter showed the highest stability, 
with a quarterly CV average of only 6.8%, 42.3% lower 

than the anisotropy parameter (9.7%). This result is highly 
consistent with rock physics theory—the velocity ratio 
parameter is least affected by seasonal fluid changes. All 
attributes showed the lowest CV in Q3 (8.4% on average), 
23.6% lower than Q1 (10.4%). This seasonal difference is 
directly related to the improvement of offshore acquisition 
conditions in summer—wave height decreased by 37% and 
acquisition ship speed increased by 22%.

�
� �

�
Cov( , )W Wphy data

phy data

� (XXIII)

The synergy coefficient between the rock physics 
interpretation weight Wphy and the data-driven weight Wdata 
reached 0.81.

4.4. Time-shift difference detection case

Figure  12 shows the 4D seismic difference prediction 
results of the B-19 well area from 2019 to 2022. PI-LSTM 
successfully identified three oil–water front movements 
(positioning error <2.5 m), while the commercial software 
missed one and misreported two false anomalies.

Table  8 quantifies the prediction accuracy of fluid 
displacement volume. The correlation coefficient of 
PI-LSTM (R2 = 0.94) was significantly better than the 
other methods (0.61–0.82). The reserve change rate ΔV/V, 
calculated based on the prediction results, deviated only 
1.8% from the actual logging data.

The error skewness of PI-LSTM (0.31) was only 39.7% 
of that of the conventional LSTM (0.78), indicating that 
its prediction error is closer to a normal distribution. 

Figure 12. Examples of 4D difference detection in the B-19 well area across true fluid movement, commercial software detection, and the physics-
informed long short-term memory detection.

Table 8. Prediction accuracy of fluid displacement volume 
across different methods

Methods RMSE 
(×103 m3)

MAE 
(×103 m3)

R2 Error distribution 
skewness

Commercial software 42.7 35.2 0.61 1.85

Physics‑informed NN 32.5 26.8 0.73 1.12

Conventional LSTM 25.3 19.7 0.82 0.78

PI‑LSTM 12.8 9.6 0.94 0.31

Abbreviations: MAE: Mean absolute error; NN: Neural network; 
PI‑LSTM: Physics‑informed long short‑term memory; RMSE: Root 
mean squared error.
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Figure 13. Thermal map of performance improvement across geological units.
Abbreviations: FZI: Flow zone indicator; TOC: Total organic carbon.

This characteristic narrowed the confidence intervals of 
reserve assessments to ± 7.2 × 103 m3 (± 21.5 × 103 m3 for 
commercial software). Specifically, in different development 
stages, the MAE of PI-LSTM was stable at 6.3 ± 2.1 × 103 m3 
in the early stage of water injection (displacement volume 
<50 × 103 m3). In addition, it maintained an accuracy of 13.5 
± 3.8 × 103 m3 in the high production period (>150 × 103 m3), 
and the fluctuation range was reduced by 62.3% compared 
with physics-informed NN. This stability comes from the 
physical constraints of the model on the propagation law 
of the fluid front, which reduces the correlation coefficient 
between the prediction error and the volume size from 0.65 
in the conventional LSTM method to 0.19.

5. Discussion
5.1. Effectiveness of geological prior fusion

Figure  13 presents the enhancement in the prediction 
performance of the PI-LSTM framework in different 
geological units of the North Sea oilfield. The MAE of the 
fracture development zone (flow zone indicator >1.5 μm) 
was improved by 52.3%, significantly higher than that of 
homogeneous sandstone (28.7%). This difference is due 
to the adaptive adjustment of the model to geomechanical 
parameters by coupling fracture density γ and LSTM forget 
gate.

Table  9 compares the effects of geological parameter 
fusion on various typical reservoir types. The error 
reduction varied significantly across reservoir types, 
ranging from 15.2% (gypsum-salt layer) to 56.3% (bioreef 
limestone). This difference is correlated with the geological 
parameters, particularly the impact of porosity and clay 
content on the physical constraint weight (γ). Specifically, 
porosity and clay content are important factors influencing 

Table 9. Analysis of the geological parameter fusion effects

Reservoir type Porosity 
(%)

Clay 
content (%)

γ 
mean

Error 
reduction (%)

High‑porosity 
sandstone

22.3 8.2 0.89 47.2

Low‑porosity 
sandstone

12.1 15.7 0.76 32.5

Fractured limestone 18.5 5.3 0.92 53.1

Dense sandstone 7.8 22.4 0.65 25.8

Bioreef limestone 25.6 3.8 0.94 56.3

Sandstone‑mudstone 
interlayer

14.2 35.6 0.58 21.7

Gypsum‑salt layer 3.2 18.9 0.42 15.2

Volcanic rock 
weathering crust

9.7 27.3 0.61 23.9
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Figure 14. Verification of wing error reduction. (A) Reservoir structural model. (B) Time-shift prediction error comparison.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.
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the elastic wave propagation characteristics and prediction 
error in geological reservoirs.

In reservoirs with high porosity and low clay content—
such as high-porosity sandstone, fractured limestone, and 
bioreef limestone—the contribution weight of physical 
constraints was high (≥0.89). The physical properties of 
these reservoirs make elastic wave propagation relatively 
stable, and physical constraints can effectively reduce 
prediction errors, resulting in a significant error reduction 
of 47.2–56.3%.

In contrast, reservoirs with high clay content or 
low porosity—such as gypsum-salt layers, interbedded 
sandstone and mudstone, and tight sandstone—showed 
less error reduction. This is because high clay content 
typically leads to significant impedance differences, 
complicating elastic wave propagation. The physical 
constraint model has lower adaptability and prediction 
accuracy in these reservoirs, resulting in a smaller error 
reduction (15.2–32.5%). Furthermore, low-porosity 
reservoirs generally result in lower wave velocities, which 

Figure 15. Sensitivity curve of the physical constraint weight (β).
Abbreviation: RMSE: Root mean squared error.
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Table 10. Multi‑index prediction error and physical residual under different physical constraint weights β

β value Prediction RMSE Physical residual Vp Vs Vp/Vs Impedance Poisson’s ratio Density Anisotropy

0.0 18.7 62.3 25.4 28.1 32.7 22.9 30.5 19.8 35.2

0.2 15.2 45.6 18.9 21.7 15.8 17.3 22.4 15.1 28.7

0.4 12.5 32.8 14.2 16.3 11.2 13.6 17.8 12.4 23.5

0.6 9.8 21.4 10.7 12.5 8.5 10.2 13.2 9.6 18.9

0.8 7.3 15.2 8.1 9.4 6.8 7.9 9.7 7.3 14.2

1.0 10.5 9.7 12.3 14.1 8.2 11.5 14.8 10.9 19.7

1.2 15.8 7.5 18.6 20.3 10.4 16.9 21.5 15.2 25.3

1.5 23.4 6.2 27.1 29.8 14.7 24.6 30.2 21.8 33.6

Abbreviation: RMSE: Root mean squared error.

limits the contribution of physical constraints. In particular, 
despite a porosity of only 18.5%, fractured limestone’s 
extremely low clay content (5.3%) and well-developed 
fracture network significantly enhanced the contribution 
of physical constraints (γ = 0.92), even surpassing that 
of some highly porous reservoirs. This indicates that the 
presence of fractures enhances elastic wave propagation, 
effectively reducing prediction errors, demonstrating a 
significant error reduction of 53.1%.

The cross-validation results in Figure  14 show that 
introducing a priori formation dip angles reduced the 
prediction error of the structural flank by 39.8% (p<0.01), 
confirming the effectiveness of embedding geological 
knowledge.

5.2. Sensitivity of physical constraint weights

Figure 15 reveals the non-linear influence of the physical 
constraint weight β in the range of 0.3–1.2.

When β = 0.8, the model reached the optimal balance 
on SEG data (RMSE = 1.23 ms, Ephy = 18.6 kPa), and its 
regulation mechanism can be expressed as:

  total data phy� � � �( ) || ||1 2� � � � � (XXIV)

Where Ltotal represents the data fitting error, Lphy 
represents the physical equation residual, and � �|| ||2  is 
the regularization term. The introduction of the weight β 
can be understood as a multiobjective optimization 
mechanism: When two objective functions differ in terms 
of scale and value, a weighted sum is used to achieve a 
Pareto optimal balance. Theoretically, if β is small, the loss 
function relies primarily on the data-driven component, 
leading to overfitting and loss of physical interpretability. If 
β is large, it is equivalent to introducing overly strong 
Lagrangian constraints during the optimization process, 
resulting in a decrease in the physical residual but a 

significant deterioration in the data fit. Table 10 shows the 
multimetric performance for different β values.

As β increased from 0.0 to 0.8, the CV of each 
parameter showed a monotonically decreasing pattern. 
The Vp/Vs ratio reached optimal stability (CV = 6.8%) at 
β = 0.8, a 79.2% reduction compared to the unconstrained 
state (β = 0.0). This pattern indicates that adjusting β is not 
simply a matter of empirical results but rather is determined 
by a constraint balance mechanism. At β ≈ 0.8, both the 
predicted RMSE and the physical residual curves reached 
an inflection point, reflecting a balance between data 
consistency and physical consistency. Further increasing 
β led to physical over-regularization. For example, at β = 1.5, 
the RMSE rebounded to 23.4%, while the improvement in 
the physical residual converged significantly.

Further experiments showed that the optimal value 
of β was significantly correlated with SNR data. Through 
comparative experiments on multiple sets of SEG 
simulation data and measured data in the North Sea 
oilfield, the empirical regression formula of β and SNR was 
obtained:

βopt = 0.62 + 0.18tanh(0.35(SNR-15))� (XXV)

This relationship revealed the theoretical basis for β: 
When the SNR is low, the data term Ldata is not reliable, 
and the proportion of physical constraints needs to be 
increased; however, under high SNR conditions, overly 
strong physical constraints weaken the discriminative 
power of the data, indicating a need to reduce β.

When β exceeded 1.2, physical overconstraint occurred, 
resulting in a sharp drop in data fit by 23.7% (the inflection 
point effect shown in Figure 16).

Industrial data validation shows that the optimal β and 
SNR satisfy the following:

βopt = 0.62 + 0.18tanh(0.35(SNR-15))� (XXVI)
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Table 11. Performance of the proposed physics‑informed 
long short‑term memory framework in various industrial 
environments

Oilfield types SNR 
(dB)

Pressure 
(MPa)

Temperature 
(℃)

RMSE 
(ms)

Deep‑sea sandstone 25.3 42.1 135 1.78

Continental shale 18.7 38.5 98 2.05

Fractured carbonate rock 15.2 52.3 142 3.21

Tight gas 22.8 45.6 110 1.92

Heavy oil sand 8.5 12.3 65 4.78

Coalbed methane 28.1 15.8 75 1.35

Pre‑salt carbonate rock 20.4 63.2 158 2.87

Volcanic rock reservoir 13.7 32.7 185 3.45

5.3. Industrial application boundary conditions

Based on field data from 12 representative oilfields 
worldwide, the adaptability of PI-LSTM was systematically 
evaluated in various industrial environments, as shown in 
Table 11.

When the SNR exceeded 18  dB (covering seven 
reservoir types, including deep-sea sandstone and 
continental shale), the model’s average RMSE remained 
stable at 2.05 ± 0.52 ms, with a CV of only 25.4%, 
demonstrating excellent robustness. However, once the 

SNR dropped below 10 dB, the prediction error increased 
sharply to 4.78 ms, a 133.2% performance degradation 
compared to the 18-dB SNR threshold. This non-
linear degradation is closely related to the noise energy 
spectrum. When the ambient SNR fell below 15  dB, 
the power share of the effective signal in the 8–80  Hz 
main frequency band dropped from 78.3% to 52.1%, 
significantly reducing the applicability of the physical 
constraint module.

In a high-temperature, high-pressure, subsalt carbonate 
environment (63.2 MPa, 158°C), despite maintaining an 
excellent SNR of 20.4 dB, the RMSE reached 2.87 ms, 112.6% 
higher than that of coalbed methane reservoirs at ambient 
temperature and pressure (15.8 MPa, 75°C). In-depth analysis 
revealed that when temperatures exceeded 150°C, the thermal 
expansion of quartz grains caused abnormal fluctuations in 
compressional wave velocity by 3.2–5.7%, a boundary effect 
not yet fully modeled by the current physical constraint 
module. In contrast, the impact of pressure on model 
performance is relatively linear—for every 10 MPa increase 
in pressure, the RMSE increased by only 0.31 ms (R2 = 0.76), 
demonstrating that the PI-LSTM rock physics framework can 
effectively compensate for changes in effective stress.

Under ultra-low SNR conditions (<10  dB), such as 
heavy oil sands reservoirs (SNR = 8.5 dB, RMSE = 4.78 ms), 
the prediction error was significantly higher than that of 

Figure 16. Overconstrained knee effect.
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other types. This failure is primarily due to the swamping 
of the effective signal by the noise spectrum. Specifically, 
when the SNR fell below 15  dB, the energy content of 
background noise in the 8–80  Hz primary frequency 
band surged from 21.7% to 47.9%, disrupting the input 
conditions of the physical constraints established based 
on this frequency band. While the model’s LSTM module 
has a certain degree of noise tolerance, when the effective 
signal power falls below the noise floor, the learned time 
series features become decoupled from the actual physical 
processes, leading to a sharp non-linear drop in predictive 
performance.

In ultra-high temperature environments (>150°C), 
for example, volcanic reservoirs (185°C) and pre-salt 
carbonates (158°C), the RMSE (3.45 ms and 2.87 ms, 
respectively) remained significantly high, even with 
a suitable SNR of 13.7–20.4  dB. The root cause lies in 
unmodeled physical effects triggered by extremely high 
temperatures. When temperatures exceeded 150°C, 
sensitive minerals such as quartz in the reservoir rock 
undergo significant thermal expansion, causing abnormal 
fluctuations in compressional wave velocity of 3.2–5.7%. 
This effect exceeds the scope of the classical rock physics 

theoretical framework underlying the current physical 
constraint module. This results in systematic deviations 
in the output of the physical module, which, through 
cascading propagation, undermines the input assumptions 
of the LSTM module, ultimately causing the model to fail 
in adaptability under ultra-high temperature conditions.

The applicability matrix in Figure  17 shows that this 
method maintained a detection accuracy of 94.3% in high-
pressure, high-temperature reservoirs (pressure >35 MPa, 
temperature >120°C), but its applicability drops to 68.7% 

Figure 17. Industrial applicability matrix of the proposed physics-informed long short-term memory framework.

Table 12. Prediction accuracy of rock physics parameters

Sample Porosity 
(%)

Theoretical 
lambda_p (GPa)

Predicted 
lambda_p (GPa)

Error 
(%)

S1 18.2 12.57 12.83 2.1

S2 15.7 15.32 14.91 2.7

S3 22.3 9.85 10.12 2.7

S4 8.9 21.45 22.18 3.4

S5 26.8 7.21 7.45 3.3

S6 13.5 17.63 16.88 4.3

S7 31.2 5.47 5.91 8.0

S8 11.4 19.76 19.82 0.3
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for carbonate cave reservoirs. This decrease is primarily 
attributed to the inherent challenges posed by the extreme 
heterogeneity and complex spatial structure of fractures 
and cavities in these reservoirs, posing physical constraint 
modeling challenges.

5.4. Rock physics theory compatibility

The prediction results of PI-LSTM were highly consistent 
with the theoretical calculation of the Biot-Gassmann 
equation (R2 = 0.91), and its fluid replacement module can 
be expressed as:26,27

K K
K K

K K K Ksat dry
dry m

f m dry m

� �
�

� � �

( / )

/ ( ) / /

1

1

2

2� � � (XXVII)

Data in Table  12 further verifies that the model’s 
response to rock physics sensitive parameters (λp, μp) 
conformed to the Hertz–Mindlin contact theory, where 
the particle contact stiffness prediction error was <8%.

The error of conventional reservoir sections (porosity 
10–25%) was controlled within 3.0% (samples S1–S6), 
which was significantly better than the industry’s 5% 
accuracy requirement. When the porosity increased to 
31.2% (sample S7), the error reached a maximum of 8.0%. 
This result is consistent with the applicable boundary of the 
theoretical model under high porosity conditions (<30%), 
reflecting the natural limitations of the particle contact 
theory in loose media. Sample S8 showed an astonishing 
0.3% error at the low porosity end (11.4%), proving that 
the model has an extraordinary ability to capture the elastic 
behavior of tight sandstone.

5.5. Future direction

To improve the applicability of the proposed framework for 
cave reservoirs, future research could address the following 
optimizations: First, a discrete fracture-cavity network 
model could be incorporated into the physical modeling 
process, combined with multiscale karst characterization 
techniques to enhance the explicit characterization of the 
fracture-cavity coupling system. These approaches allow 
for more accurate representations of fracture and cavity 
interactions, which are crucial in cave reservoirs. Second, 
azimuthal anisotropy information from well bypasses and 
long-offset seismic gathers could be integrated to improve 
the accuracy and robustness of spatial imaging of large cave 
systems. This can address the challenges of heterogeneity 
and enhance spatial resolution. Furthermore, generative 
adversarial networks could be used to synthesize more 
representative cave samples, enhancing the generalization 
performance of deep learning models for irregular 
geological features. Preliminary numerical experiments 

indicate that this combined strategy can potentially increase 
the predictive applicability of these reservoirs to over 80%.

For future research, three directions are focused on: At 
the theoretical level, it is necessary to develop cross-scale 
modeling methods to solve the scale fracture problem of the 
current physical constraint module between millimeter-
level pores and kilometer-level working areas. To address 
this, future work should incorporate multiscale modeling 
techniques, specifically integrating micro-mechanical 
models (such as mesoscale or nanoscale simulations) 
with macroscopic geological models. These models can 
enable a more seamless representation of the relationships 
between microscopic pore structures and the macroscopic 
geological framework. In addition, the use of non-local 
elastic mechanics operators, which have shown promise in 
preliminary experiments to improve predictions for ultra-
deep layers (>3500 m), can be explored. These operators 
could potentially reduce prediction errors by up to 18.7%, 
providing a more accurate representation of the physical 
properties of deeper geological formations.

At the technical level, the development of a real-time 
prediction system based on edge computing is imminent. 
By lightweighting PI-LSTM to <50 MB and deploying it 
to seismic acquisition nodes, it is expected to achieve a 
synchronous closed loop of “acquisition-interpretation” 
of time-shift differences, such as the B-19 well area case 
shown in Figure 11. This real-time capability can advance 
the water drive front warning time by 4–6  months. 
The next steps can involve optimizing edge computing 
infrastructure and refining model performance for real-
time deployment in offshore oilfields.

In the longer term, building a digital twin platform 
that integrates multimodal data, such as seismic, logging, 
and core data, could become a trend. This platform would 
allow for the continuous monitoring of oilfield dynamics 
at centimeter-level spatiotemporal resolution. By 2025, 
we aim to develop this digital twin technology, leveraging 
the interpretability framework presented in this study as a 
foundation for multisource data fusion. This will provide 
a more accurate and real-time digital representation of oil 
and gas reservoirs, helping to transition time-lapse seismic 
technology from a simple “interpretation tool” into a 
comprehensive “intelligent decision-making system” for oil 
and gas management. These advancements will support the 
goal of achieving transparent, real-time management of the 
entire lifecycle of oil and gas reservoirs, providing significant 
benefits for both exploration and production activities.

6. Conclusion
This study established a new generation of an intelligent 
analysis framework for time-lapse seismic difference 
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prediction through the deep coupling of PI-LSTM and 
interpretability enhancement. Its core breakthroughs are 
reflected in three aspects: First, the first-order velocity–
stress wave equation is innovatively transformed into the 
physical memory unit of LSTM, and the dynamic fusion 
of wave field propagation law and data characteristics is 
realized through the gating mechanism. In the testing on 
actual data from the North Sea oilfield, the physical residual 
is reduced from 62.3kPa of the conventional LSTM method 
to 15.2kPa, a decrease of 75.6%. Second, the proposed 
interpretability enhancement module reduces the quarterly 
fluctuation of feature importance by 38% (ΔS) through 
the coordinated optimization of SHAP value dynamic 
weighting and physical attention template, addressing the 
“black box dilemma” of deep learning models in seismic 
interpretation. Third, and more importantly, an adaptive 
mapping mechanism of geological parameters and network 
weights is constructed. When the porosity is >15%, the 
physical constraint weight is automatically increased to 
0.89 ± 0.04. In the dual benchmark test consisting of SEG 
simulation data and actual North Sea oilfield data, the time-
shift difference prediction accuracy reaches 0.71–2.1 ms 
(corresponding to the oil and gas interface positioning error 
of <3 m), which is 62.9% higher than that of the existing 
commercial software. These innovations not only provide a 
new paradigm for time-lapse seismic interpretation but also 
have universal guiding values for geophysical fields, such as 
well logging interpretation and microseismic monitoring.

For industrial application scenarios, this study extracts 
a three-level implementation path. For conventional 
sandstone reservoirs (porosity of 15–25%, SNR of >18 dB), 
the standard PI-LSTM model can be directly used, and its 
pre-trained parameters have achieved 92.5% fluid front 
recognition accuracy in Block B12. For complex reservoirs 
(such as fractured carbonate rocks or ultra-high temperature 
reservoirs), it is recommended to use a flexible constraint 
mode with a β of 0.55 ± 0.05, combined with wavelet denoising 
preprocessing, as shown in Figure  16. This configuration 
reduces the prediction error of volcanic reservoirs from 3.45 
ms to 2.12 ms. For the real-time monitoring needs in offshore 
oilfield development in particular, it is recommended 
to adopt the updated strategy of “monthly incremental 
learning + quarterly full parameter fine-tuning,” and use 
the quarterly stability characteristics (CV <12%), as shown 
in Table 7, to maintain long-term prediction reliability. Field 
applications indicate that this solution can shorten the 4D 
seismic interpretation cycle from the traditional 3–6 months 
to within 2 weeks, while controlling the reserve assessment 
error within ± 1.8% (Table  8), providing unprecedented 
timeliness and accuracy for oilfield development decisions.

The direction of future research should involve 
incorporating more detailed and specific models, refining 

computational techniques, and integrating cutting-
edge technologies such as edge computing and digital 
twin platforms. These steps can enhance the practical 
applicability and scientific rigor of the PI-LSTM framework, 
driving further innovations in seismic interpretation and 
oilfield management.
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