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Abstract

Deep learning framework based on physical constraints and improved interpretability
has revolutionized 4D seismic interpretation. This study proposes a physics-informed long
short-term memory (PI-LSTM) framework integrated with interpretability enhancement
techniques for high-precision time-lapse seismic difference prediction, addressing key
challenges in reservoir monitoring. The model embeds the first-order velocity-stress
wave equation into the LSTM gating mechanism, reducing the physical residual of
North Sea field data from 62.3 kPa to 15.2 kPa—a 75.6% decrement. An interpretability
enhancement module combines Shapley additive explanation value dynamic weighting
with physical attention templates, reducing the seasonal fluctuation of feature
importance by 38% (measured as AS). Key innovations include adaptive geological
parameter mapping, where the physical constraint weight was automatically raised
to 0.89 + 0.04 when porosity exceeded 15%. In dual benchmark tests using Society of
Exploration Geophysicists Synthetic Data and North Sea Field Surveys, PI-LSTM achieved
a time-lapse prediction accuracy of 0.71-2.1 ms, equivalent to a hydrocarbon interface
localization error of <3 m, outperforming commercial software by 62.9%. The framework
demonstrates strong versatility across 12 reservoir types, maintaining prediction stability
(coefficient of variation: <12%) under varying signal-to-noise ratios (15-40 dB). For high-
pressure reservoirs (>35 MPa), the model reduced the wave equation residual to 18.6 kPa,
67.5% lower than conventional LSTMs, whereas fluid displacement volume prediction
deviates by only 1.8% from well data. This work establishes a new paradigm for physics-
guided 4D seismic interpretation, validated through multiscale experiments spanning
from core-scale rock physics (8% error in grain contact stiffness) to field-scale reserve
assessment (displacement volume R? = 0.94).

Keywords: Physics-informed long short-term memory; Time-lapse seismic data;
Interpretable machine learning; Reservoir monitoring; Wave equation constraints
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1. Introduction
1.1. Research background and significance

Time-lapse seismic monitoring is the core technology
for dynamic descriptions of oil and gas reservoirs. Its
core challenge lies in accurately extracting weak fluid
front signals from a strong noise background.! With the
advancement in unconventional oil and gas development,
conventional interpretation methods based on travel time
difference and amplitude change face severe challenges: On
the one hand, the anisotropy and complex pore structure
of shale reservoirs lead to seismic response distortion rates
as high as 35%; on the other hand, the non-linear wave
field changes caused by multiphase fluid interaction during
injection and production far exceed the prediction range
of conventional rock physics models.>* This contradiction
between “increasing geological complexity” and “the
hypertension of physical models” has caused time-lapse
difference interpretation errors in typical work areas,
for example, those at the North Sea oilfield remained at
3.2-7.8 ms for a long time, seriously restricting the accurate
prediction of remaining oil distribution. More importantly,
the linear time-lapse correction algorithm used by current
commercial software is difficult to handle the eight types of
geological noise (e.g., multiple waves and diffraction waves)
that are prevalent in actual data, resulting in the prediction
errors of fluid displacement volumes often exceeding 20%.

1.2. Literature review

The application of physics-informed machine learning
has gained significant attention for enhancing predictive
capabilities in complex systems such as earthquake
forecasting. According to a comprehensive review,
integrating physical information within data-driven
models offers distinct advantages, including improved
interpretability and adherence to physical laws; however,
it also presents certain limitations related to model
complexity and data requirements.*

Time-series  forecasting using deep learning
architectures, particularly recurrent neural networks
(NNs) such as the long short-term memory (LSTM) model,
has been extensively explored for various applications,
including those related to environmental and geophysical
phenomena. These models leverage the sequential nature
of data, enabling the effective modeling of temporal
dependencies.” LSTM networks, in particular, are well-
suited for time-series data due to their ability to capture
long-term dependencies, which is crucial for earthquake
prediction tasks.®

Recent studies have demonstrated the utility of LSTM
in predicting seismic responses and related geophysical

variables. For example, performance improvements
in seismic response prediction have been achieved
by combining physical insights with LSTM models,
addressing issues of physical interpretability that purely
data-driven approaches often lack.” Similarly, multivariate
LSTM models have been employed for renewable energy
forecasting, illustrating their capacity to handle complex,
multivariate time-series data.?

The integration of physical models with LSTM
architectures has been shown to revolutionize scientific
prediction tasks. Notably, coupling physical models with
LSTM enables the incorporation of domain-specific
knowledge, which enhances model robustness and
interpretability.’ This approach aligns with the broader
trend of physics-aware machine learning, where physical
constraints guide the learning process, leading to more
reliable and physically consistent predictions.

In the context of earthquake prediction, recent
overviews highlight the potential of combining artificial
intelligence with Internet of Things data streams to improve
spatial and temporal forecasting of earthquake magnitudes.
While conventional methods provide valuable insights,
incorporating physical information through models
such as physics-informed LSTM (PI-LSTM) can address
limitations related to data scarcity and interpretability.
Furthermore, boosting techniques have been employed to
enhance predictive performance, particularly in scenarios
that require classifying event severity or damage levels.”

Overall, the convergence of physics-informed
modeling, LSTM-based time-series forecasting, and
interpretability boosting methods presents a promising
avenue for advancing earthquake difference prediction.
This integrated approach leverages the strengths of
each component—long-term dependency modeling,
physical law adherence, and interpretability—to enhance
the accuracy and reliability of time-lapse earthquake
predictions.

1.3. Overview of innovations

The PI-LSTM framework proposed in this study breaks
through the above limitations through three innovations:
First, the parameterized wave equation is coupled in
the gating mechanism to transform the velocity-stress
relationship into the physical memory term of the LSTM
unit, reducing the physical residual of the North Sea
oilfield’s actual data from 62.3 kPa to 15.2 kPa (a decrease
of 75.6%); second, the interpretability boosting module
is designed to reduce the quarterly fluctuation of
feature importance by 38% (AS index) through the joint
optimization of Shapley additive explanation (SHAP) value
dynamic weighting and physical attention template; more
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importantly, the adaptive mapping relationship between
geological parameters and network weights is established
for the first time. When the porosity exceeded 15%, the
framework automatically increased the physical constraint
weight to 0.89 + 0.04, realizing the intelligent matching
of “geological scene-network parameters.” This three-way
collaborative mechanism of “physical law guidance +
data feature mining + geological knowledge integration”
improved the time-shift difference prediction accuracy
to 0.71-2.1 ms (corresponding to oil and gas interface
positioning error <3 m) in a dual benchmark test using
Society of Exploration Geophysicists (SEG) simulation
data and North Sea actual data, 62.9% higher than the
existing method.

1.4. Structure arrangement

The structure of this paper follows the logical context of
“method innovation-verification deepening-application
expansion;” Section 2 elaborates on the wave equation
embedding strategy and interpretability enhancement
mechanism of PI-LSTM, focusing on the mathematical
coupling between physical constraint gating and attention
templates; Section 3 introduces a cross-scale verification
system, including rock physics parameter inversion at
the micro core scale, time-shift difference prediction
at the meso work-area scale, and reserve assessment at
the macro oilfield scale; Section 4 establishes a method
applicability matrix through industrial tests across 12
representative oilfields, providing a quantitative guide
for parameter configuration under different geological
conditions; and Section 5 discusses the balance between
physical-modeling depth and data-driven flexibility, while
highlighting improvements for two special scenarios:
Ultra-high-temperature (>150°C) reservoirs and carbonate
caves. This closed-loop argumentation structure of
“theory-method-application” not only ensures the depth
of technical innovation but also strengthens the feasibility
of industrial implementation. Finally, Section 6 presents
the conclusion and future outlook, highlighting the study’s
core breakthroughs, its practical implications for industrial
applications, and key areas for future research.

2, Methodology

The PI-LSTM framework proposed in this study achieved
a breakthrough in time-lapse earthquake difference
prediction through three key modules: A physically
constrained LSTM architecture, an interpretability
enhancement module, and a multiscale coupled prediction
framework. The collaboration of these modules not only
addressed the lack of physical consistency in traditional
methods butalso significantly enhanced the interpretability
and predictive accuracy of the framework.

2.1. Physics-informed LSTM architecture

Conventional LSTM networks have the inherent defect
of distorting physical laws in time-lapse earthquake
prediction, primarily manifested in issues such as
excessive residuals of the wave equation (>60 kPa) and
non-conservation of energy.!' To address this, this work
innovatively embedded the first-order velocity-stress wave
equation into the hidden layer of LSTM and established
a gating mechanism with explicit physical meaning. This
architecture, as shown in Figure 1, extends a standard
LSTM (left) by incorporating a parallel physical constraint
branch (right).

The previous hidden state h _, encoding physical
variables such as velocity and stress, was fed into a wave
equation solver to compute the physics-dictated state
update F(h,_,). The physical constraint term @(p,) was
derived from the difference between this physics update
and the network’s candidate update ¢, . This term was then
added to the candidate cell state, directly driving the
memory cell ¢, to evolve according to the laws of physics.
The pore pressure p, was adaptively integrated via a gating
mechanism. The entire process was differentiable, allowing
end-to-end training.

The core of the PI-LSTM framework is to leverage the
first-order velocity-stress wave equations to guide the
evolution of the LSTM’s cell, ensuring it adheres to known
physical principles. The coupled wave equations are given
by:

ov, oo, Oo, 1)
P ==
ot 0x 0z
%:(ﬂ+2y)av" +/16L (IT)
ot Ox oz

Where p represents density, 4 and x are Lamé constants,
and v and o represent the particle velocity and stress
components, respectively.

To integrate these continuous equations into the
discrete-time LSTM framework, they were first discretized
using an explicit finite-difference scheme. The temporal
derivatives are approximated as:
ov, vi-v"' oo, o —o!

ot At At

(I11)

5 ~

ot

Substituting these into Equation II and rearranging
terms, discrete update rules that predict the next time step’s
physical state from the current one were obtained:
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Figure 1. Schematic diagram showing the architecture of the physics-informed long short-term memory framework.
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This set of discrete equations, which are denoted as
F(',6'";p,A, 1), defines the correct physical evolution.
In the proposed LSTM architecture, the hidden state h, was
designed to encode these physical variables. Therefore, the
physical constraint term @(p) was formulated as
the discrepancy between the LSTM’s predicted state and
the state mandated by the physical law:

f(p,)=F(h,_,)—tanh(W[h,_,,x,]+b.) (VD)

Where F(h, ) represents the output of the discrete
wave equation function (a layer that computes the physics-
based update) given the previous hidden state. The term
tanh(W [k, ,x,]+b.) is the standard LSTM candidate
state update. Thus, @(p,) acts as a physics-based correction,
nudging the LSTM’ internal dynamics to minimize
violation of the wave equation.

This physical constraint was implemented through
differentiable programming, allowing gradients from
the physics loss to be back-propagated into the network
parameters. The time-varying pore pressure p, was
integrated as a source term influencing the physical

evolution and was adaptively adjusted via a bidirectional
gating structure:

f (p)=n, -tanh(W, -, +b,) (VII)

Where 1, is a dynamic adjustment coefficient
determined by the current hidden state h, _, and the input
x, ensuring a seamless blend of data-driven and physics-
driven learning.

Finally, in the memory unit update at time step t, in
addition to the conventional input gate i, forget gate fand
output gate o, the physical constraint term ®(p) was
introduced to ensure dynamic consistency:

¢, =f Oc,, +i, Otanh(W.[h,_,,x,]+b +D(p,))  (VIII)

2.2. Interpretability boosting module

To address the black-box problem of deep learning
models, this work designed a multilayered interpretability
enhancement framework. At the feature importance
quantification level, an improved SHAP value calculation
method is used:

4o 3 Lsla-lsin:

ScFEN\{i} d!

FsOli)-r(s) @)

Where F represents the total feature set, d is the feature
dimension, and S is the feature subset.
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Different from the conventional SHAP method, this
study introduced physical prior constraints, took the
theoretical sensitivity derived from the wave equation as
the benchmark value, and achieved a balance between
physical constraints and data-driven through the following
optimization objectives:

Ly =allA=P||. +BDy, (g, Il p,) X)

Where A is the data-driven attention matrix, P is the
ideal attention template derived from physical theory. The
values of ot = 0.7 and B = 0.3 were determined through
a systematic grid search combined with a five-fold
cross-validation on the training dataset. The goal was to
maximize physical consistency (measured by the wave
equation residual) while maintaining high prediction
accuracy (measured by the mean squared error [MSE]).
The grid search was performed over a range of values
(a, p € {0.1, 0.3, 0.5, 0.7, 0.9}), with a constraint of
a + f = 1.0 to ensure a balanced regularization effect. The
pair (0.7, 0.3) was identified as the optimal configuration,
achieving the best trade-off: The higher weight of the
Frobenius norm (oo = 0.7) is crucial for enforcing the
physical prior and ensuring that the model’s interpretation
is grounded in wave theory; whereas the lower weight of
the KL divergence (f = 0.3) is sufficient to maintain the
statistical fidelity of the learned features while remaining
within the physical constraints.

2.3. Time-shift difference prediction coupling
framework

To make full use of the multiscale characteristics of seismic
data, this work proposed a three-level feature fusion
strategy:

Froion = Zzzlyk -Conv,, (Upsample(E,)) (X1)

Where F, represents feature maps of different scales, y, is
the adaptive fusion weight calculated through the physical
constraint attention mechanism. In terms of uncertainty
quantification, the Bayesian NN framework was used
to infer the posterior distribution of the approximate
parameters through variational inference:

0,0 = N (| 16),0* =3 (3,3, (xm)

The framework not only provides point predictions but
also outputs confidence intervals. The end-to-end training
of the entire model adopted a multitask learning strategy
to jointly optimize the prediction loss, physical constraint
loss, and interpretability loss:

L,

total

=AL

1~"pred

+A,L, +AL

2 phy 3 int

(XIII)

Where 4, 4,, and A, were dynamically adjusted based
on the gradient amplitude of each task to avoid dominant
effects during the optimization process.

3. Experimental design
3.1. Dataset construction

The actual time-lapse seismic data from the North Sea
oilfield and the simulated data from the SEG Advanced
Modeling Program used in this study were subjected to
a series of preprocessing steps to ensure data quality and
enhance experimental comparability.!*** The actual data
were acquired from eight repeated acquisitions between
2015and 2022 in the North Sea oilfield area using traditional
reflection wave measurement technology. The simulated
data were high-fidelity model data generated using the SEG
simulation platform based on known geological parameters.

To eliminate the impact of differences in data from
different sources on the experimental results, both types
of data were uniformly preprocessed. The actual data
first underwent a denoising process. In this process,
bandpass filtering was applied to remove low-frequency
noise and high-frequency artifacts. In particular, noises
such as multiple waves and side scattering, both of which
are common in seismic data, were effectively removed.
The specific denoising process can be described by the
following filtering formula:

d(t)=[""d(t (e~ )dt (XIV)
Where d(t) is the original seismic signal, h(#) is the
impulse response of the bandpass filter, and is the denoised
signal. This formula uses a convolution operation to filter
the original signal with the filter, removing components
outside the frequency range. For actual data, the filter
design was optimized based on the signal’s frequency
band characteristics to ensure that the signal’s effective
components were preserved as much as possible.

After denoising, the actual data were also normalized
because they were significantly affected by factors such
as the environment, equipment, and time. The amplitude
values under different acquisition conditions might vary
significantly, resulting in poor comparability across data.
Therefore, all data underwent a normalization step to
unify their amplitudes before subsequent analysis. The
normalization formula is as follows:

_d()-p,

F

d. . (XV)
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where d(t) is the original signal, #, and o, are the mean
and standard deviation of the signal, respectively, and d
(¢) is the normalized signal. This process ensured consistent
dimension and scale of the data across acquisition time

periods, making subsequent analysis more stable and reliable.

In addition, due to certain velocity field errors in the
actual data, the velocity field was estimated through
interwell interpolation, with the velocity field errors
ranging from 3.2% to 7.8%. To ensure data quality, all
velocity field data were normalized before processing,
ensuring comparability across different temporal and
spatial resolutions.

Compared to the actual data, the SEG simulated data
were from a more reliable source, generated using a
simulation program that takes into account variations in
actual geological conditions. Preprocessing of the simulated
data was relatively straightforward, focusing primarily
on signal denoising and normalization. As the simulated
data exhibited a high signal-to-noise ratio (SNR) and low
noise level, the denoising process primarily targeted high-
frequency artifacts. Bandpass filtering techniques, similar
to those used for the actual data, were also employed.
Unlike the actual data, the simulated data’s velocity field
was idealized, resulting in near-zero errors. This resulted
in superior velocity accuracy compared to the actual data.

The normalization formula for the simulated data
was identical to that used for the actual data, ensuring
consistency in temporal and spatial resolution. The time
sampling interval of the simulated data was fixed at 1.0 ms.
Compared with the variable sampling interval of the actual
data (2.0-4.0 ms), the simulated data demonstrated obvious
advantages in the accuracy of thin-layer identification.

As shown in Figure 2, the actual data consisted of 3D
seismic volumes (covering an area of 12 x 8 km?), acquired
8 times between 2015 and 2022, with a time sampling
interval of 2 ms, and contained a total of 1258 valid gathers.

The North Seaoilfield work areain Figure 2A (12 x 8km?)
shows a typical shelf sea geological environment, with
seismic lines regularly distributed in the north-south
direction (track spacing 25 m), covering the latitude range
of 58.2°N-60.1°N. Three major faults (strike NNE) are
developed in the work area, resulting in an average time-
shift anomaly of 7.8 ms near the fault surface of the seismic
event axis, thereby providing a natural experimental field
for verifying the fault response capability of the algorithm.
The simulation data were generated by decoupling the
acoustic wave equation:

G_P:Vz(a_P+6_Pj+s(t)

XVI
ot? ox*> o7’ (XVI)

The velocity field v (x, z, t) was dynamically adjusted
according to the North Sea formation parameters. Table 1
compares the key characteristics of the two datasets. It can
be seen that the simulated data has advantages in SNR
(235 dB) and label completeness, while the actual data
contains more complex geological noise.

From the perspective of time resolution, the
simulated data used a fixed sampling interval of 1.0
ms, which was better than the variable sampling rate
of 2.0-4.0 ms of the actual data. This difference led to
a theoretical accuracy improvement of more than 50%
in the thin-layer identification ability of the simulated
data. The spatial coverage showed that the 12x8-km?
work area of the actual data contained a denser fault
system (an average of 3.2 faults/km?®), whereas the
10x10 km? simulated data used a regular grid design,
and the uniformity of its facet size improved the spatial
sampling consistency by 37%.

The SNR index showed a significant differentiation.
The SNR of the simulated data (>35 dB) far exceeded the
range of 18-25 dB of the actual data. After calculation, its
background noise energy was 1-2 orders of magnitude
lower than that of the actual data. Velocity field error
analysis showed that there was a velocity modeling
deviation of 3.2-7.8% in the actual data, mainly due
to the uncertainty of inter-well velocity interpolation,
while the theoretical velocity field of the simulated
data completely avoided such errors. In terms of label
completeness, only 62.5% of the layers in the actual data
completed time-shift annotations, while the simulated
data achieved 100% layer control, which increased
the latter’s training sample availability in supervised
learning tasks by 60%.

The complexity of geological features showed an
inverse trend. The actual data contained eight typical
noise patterns, primarily multiples, side scattering,
diffraction waves, interlayer multiples, random noise,
pattern noise, velocity anisotropy noise, and absorption
attenuation variation noise. The fault/fracture system’s
geological complexity rating was 40% higher than the
simulated data. However, in terms of key fluid monitoring
metrics, the simulated data, attributed to its clear amplitude
rate gradient (average gradient of 0.28/dB), achieved a 2.3-
fold improvement in fluid front identification compared
to the actual data. This parametric comparison validated
that the combined use of the two data types resulted in a
comprehensive verification system with complementary
temporal and spatial characteristics (simulated data had a
31% higher temporal resolution, whereas the actual data
had a 40% higher spatial complexity) and a wide SNR
(17 dB dynamic range).
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Figure 2. Comparison of the spatial distribution of (A) North Sea oilfield data and (B) Society of Exploration Geophysicists simulation data.

Abbreviation: SNR: Signal-to-noise ratio.

Table 1. Comparison of characteristics of the two benchmark datasets

SEG simulation data range Measurement method

Characteristics Actual North Sea data range
Temporal resolution (ms) 2.0-4.0

Spatial coverage (km?) 12x8

Effective bandwidth (Hz) 8-80

Average signal-to-noise ratio (dB) 18-25

Velocity field error (%) 3.2-7.8
Time-shift label completeness (%) 62.5

Fault/crack complexity High

Fluid front identifiability Limited

1.0 (Fixed) Wavelet zero-crossing interval
10x10 Bin sizexnumber of channels
5-100 -3 dB power spectrum cutoff
35-c0 Effective signal/background noise root mean square
0.0 Comparison with well logging data
100 Effective layer labeling ratio
Medium Geological expert evaluation
Clear Amplitude change rate gradient

Abbreviation: SEG: Society of Exploration Geophysicists.

3.2. Comparative experimental settings

To verify the superiority of PI-LSTM, this study designed
three types of baseline comparisons: Conventional LSTM,
physics-informed NN, and the time-shift analysis module
of the commercial software Petrel 2022.1 (SLB, United
States).'*** Among them, the conventional LSTM model
adopted a single-layer structure with a hidden layer size of
512 units, the optimizer was Adam (learning rate 1 x 107,
weight decay 1 x 10~°), and the training rounds were fixed at
100. The physics-informed fully connected NN introduced
a regularization term based on the wave equation in the
fully connected network, and its loss function is defined as:

Where L, ., is the MSE between the predicted value and
the true label, the second term is the physical constraint
loss, and A has a value of 0.1. To ensure fairness, the fully
connected NN’s training hyperparameters (learning rate,
optimizer, and number of iterations) were the same as
those of the PI-LSTM framework, with a fully connected
network structure being used only.

For commercial software comparison, this study used
the Petrel 2022 software. Its time-lapse analysis module
was configured as follows: The seismic input used the
same 3D time-lapse data volume, the interpolation
method was selected as cubic spline, and the frequency

o pe pe 2 bandwidth was set to 8-80 Hz, consistent with the actual
L=L+A f —vz[ 12) + 1; J (XVII) data preprocessing. The time-lapse calculation method
ot ox” Oz 2 was the cross-correlation time window method with a time
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window length of 100 ms. The noise suppression parameter
was the default median filter (3 x 3). All experiments were
conducted in the Petrel 2022.1 (build 233) environment.
It should be noted that different versions of Petrel may
have slight differences in the implementation of the time-
lapse processing algorithm. However, the version used
in this study was the 2022 mainstream stable version.
Its processing process is consistent with the current
common configuration in the industry, thus ensuring high
comparability.

Figure 3 shows the prediction results of the gas reservoir
front movement in the simulated data processed by the
four methods. PI-LSTM recorded the smallest prediction
error in the gas—water contact (GWC) position (2.1 m vs.
5.7 m of the conventional LSTM).

The prediction results of commercial software showed
obvious boundary blurring, with an average prediction
fluctuation of + 8.3 m near the GWC, especially at the
structural turning point (x = 600-750 m interval), with a
maximum positioning deviation of 12.1 m. Although the
physics-informed NN improved the overall trend fitting
(R* = 0.78), there was still a systematic deviation, resulting
in an average prediction error of 5.7 m at the top of the

A

Commercial Software

- ——
=== True GWE

400
Distance (m)

600 800

c Conventional LSTM D
0
E E
= =
& &
[} (=}
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gas reservoir (z = 450-500 m). This was closely related to
its insufficient characterization of complex pore structures.

The conventional LSTM showed advantages in data
fitting, and its root mean squared error (RMSE = 3.5 m)
was 38.6% lower than that of the physics-informed NN.
However, there was still local prediction failure in the
sensitive areas of pressure changes (x = 400-500 m),
attributed to the instability of the gating mechanism
caused by the lack of physical constraints of the LSTM unit.
In contrast, PI-LSTM showed the most stable prediction
consistency, with a GWC positioning error of only 2.1 m
(standard deviation = + 0.8 m), 63.2% lower than the
conventional LSTM method. In the oil-water transition
zone at the bottom of the gas reservoir (z = 550-600 m),
PI-LSTM identified a thin fluid interface with a thickness
of only 3.2 m, and its prediction results were consistent
with the logging interpretation by 91.4%.

The experiment adopted a strict five-fold cross-
validation strategy to ensure the statistical reliability of
the model evaluation, and its data partitioning scheme is
systematically presented in Table 2. From the perspective of
sample allocation, seven wells with a total of 5632 samples
were used for each training iteration, equivalent to 70% of

Physics-Informed NN

620

400 600 800 1000
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Proposed PI-LSTM

8
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800 1000

Figure 3. Comparison of the prediction results of the gas reservoir front across models: (A) commercial software, (B) physics-informed neural network,
(C) conventional long short-term memory (LSTM), and (D) physics-informed LSTM.

Abbreviation: RMSE: Root mean squared error.

Volume 34 Issue 3 (2025)

32

doi: 10.36922/JSE025310049


https://dx.doi.org/10.36922/JSE025310049

Journal of Seismic Exploration

Physics-informed LSTM for seismic prediction

the total data volume, whereas 1 well (804 samples) and
2 wells (1608 samples) were retained for single validation
and testing, respectively, constituting 10% and 20% of the
strictly isolated data. This partitioning method ensured
that each sample was used for validation once in five cycles.
The final test set cumulatively covers data from all 10 wells
(8040 samples), ensuring that the evaluation results were
fully representative.

The allocation of well numbers across folds adopted a
non-overlapping strategy (B-12/B-19, C-07/C-15, etc.) to
maximize the spatial distribution difference of geological
characteristics in the test set. Quantitative analysis showed
that the training and validation sets were maintained
at a fixed ratio of 7:1. This design enabled the model to
access 1124 independent geological units in each iteration
(calculated as one geological unit for every five samples),
while the 804 samples of the validation set provided a
generalization ability test benchmark of 160 independent
units. The 1608 samples of the test set, twice the size of
the validation set, further enhanced statistical significance
by narrowing the confidence intervals of the evaluation
results to £2.3% (95% confidence level), compared with
+5.1% under single-fold validation.

3.3. Evaluation indicator system

In addition to the conventional RMSE and mean absolute
error (MAE), this study innovatively proposed the physical
consistency error E_and interpretability score:?

1 N . 2u‘pred
Ephy =—>»[V-(C: Vuf’ )— o (XVIII)
i=1
¢gea ¢pred |
:—z] . — < x100% (XIX)

¢ geo

Where ¢ is the feature importance annotated by
geological experts. Figure 4 shows that PI-LSTM improved
the two new indicators by 41.2% and 38.7%, respectively
(p<0.01, t-test).

Table 3 compares the performance of each indicator
in eight key layers in detail. It can be seen that PI-LSTM
demonstrated a significant advantage in deep high-
pressure layers (>2500 m).

The average RMSE of the shallow layers
(1200-1800 m) was 2.12 + 0.28 ms, while that of the
deep layers (2700-3300 m) was significantly reduced to
1.34 £ 0.06 ms, a decrease of 36.8%. At the turning point ata
depth of 2400 m, the MAE (1.28 ms) of this layer was 32.3%
lower than that of the layer at an overlying depth of 1800 m.

At the same time, the predictive accuracy of fluid pressures
rose to 88.7%, indicating a qualitative change in the models
adaptability to high-pressure reservoirs (>30 MPa). The
pressure prediction index was strongly correlated with
depth (R? = 0.89). The 28.5 kPa error of the shallow layer
at 1200 m was reduced to 22.4 kPa at a depth of 3000 m,
a decrease of 21.4%. The average prediction accuracy of
deep layers (>2400 m; 90.8%) was 13.8% higher than that
of shallow and medium layers (1200-2100 m; 79.8%).
This was positively correlated with the improvement of

Table 2. Five-fold cross-validation data allocation (Unit:
number of samples)

Folds Training set Validation set Test set Hash sign
1 5632 804 1,608 B-12,B-19
2 5632 804 1,608 C-07,C-15
3 5632 804 1,608 D-03,D-11
4 5632 804 1,608 E-09, E-22
5 5632 804 1,608 F-14, F-17

Table 3. Performance comparison of the indicators of the
proposed PI-LSTM framework across eight layers

Layer depth (m) RMSE (ms) MAE (ms) E oy (kPa) S, (%)
1200 1.78 1.32 28.5 82.1
1500 2.15 1.67 352 79.8
1800 2.43 1.89 41.7 77.5
2100 1.95 1.52 38.9 85.3
2400 1.62 1.28 32.1 88.7
2700 1.37 1.05 25.8 91.2
3000 1.29 0.98 224 92.5
3300 1.41 1.11 26.3 90.8

Abbreviations: Ephy: Physical consistency error; MAE: Mean
absolute error; PI-LSTM: Physics-informed long short-term memory;
RMSE: Root mean squared error; Sint: Interpretability score.
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Figure 4. Improvement of innovation indicators.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.
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the SNR of deep seismic signals (35 dB>42 dB). The data
showed that when the reservoir pressure exceeds 32 MPa
(corresponding to a depth of 2400 m), the MAE of the
model stabilized at 1.10 £ 0.13 ms, 19.7% lower than the
theoretical error, verifying the special optimization effect of
PI-LSTM for high-pressure environments.

The interlayer difference in error distribution has
important engineering significance. The maximum RMSE
of the 1800 m layer (2.43 ms) was equivalent to 1.88 times
that of the 3000 m layer (1.29 ms). This depth-related error
gradient change was highly consistent with the uncertainty
distribution of the regional velocity field (correlation
coeficient 0.76). The error at a depth of 3300 m rebounded
slightly (RMSE increased by 9.3%), reflecting the
interference of ultra-deep temperature effects (>120°C) on
seismic attributes.

3.4. Ablation experiment scheme

To verify the contribution of each module, four sets of
ablation experiments were designed: Complete PI-LSTM,
physical constraints only, interpretability improvement
only, and baseline LSTM. The radar chart in Figure 5 shows
that removing the interpretability module decreased S, , by
27.3%, while removing the physical constraints decreased
E,, by 53.6%.

Table 4 reveals the differentiated dependence of different
earthquake attributes on the physical constraint module
and the interpretability module through quantitative
analysis, providing data support for understanding the
working mechanism of the model.

Speed-related parameters (Vp, Vs, and Vp/Vs) showed
the strongest dependence, among which Vp/Vs ranked
the highest with a Pearson correlation coefficient of 0.89
in physical constraint contribution, 36.9% higher than
coherence (0.65) and 17.1% higher than anisotropy (0.76).
The interpretability contribution showed an opposite
distribution trend. Complex fluctuation characteristic
indicators, such asattenuation attributes (0.83) and coherence
(0.87), showed stronger interpretability requirements, 13.6%
higher than the speed parameters on average. The synergy
coefficient further quantified the coupling effects of the dual
modules. Vp/Vs led significantly with a synergy value of
1.41, 18.5% higher than the impedance attribute (1.19). For
the anisotropy attribute, the physical constraint contribution
(0.76) and interpretability contribution (0.79) were mostly
balanced (the difference was only 3.9%), and the synergy
coeflicient of 1.22 was at the middle level.

Figure 6 demonstrates the performance of the proposed
framework in time-shift difference prediction across eight
reservoir layers and time intervals. The prediction accuracy
of the complete PI-LSTM in the fluid front position (error

Complete PI-LSTM
Interpretability Improvement Only
~—— Physical Constraints Only

= Baseline LSTM

Prediction Accuracy  100% Interpretability

80%

Computational Efficiency Physical Consistency

Generalization

Feature Stability

Figure 5. Comparison of radar images of ablation experiments.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.

Table 4. Module contribution analysis

Seismic Physical constraint Interpretability Synergy effect
attributes contribution contribution coefficient
Vp 0.87 0.76 1.32

Vs 0.85 0.72 1.28
Vp/Vs 0.89 0.81 1.41
Impedance 0.78 0.68 1.19
Poisson’s ratio 0.82 0.75 1.25
Attenuation 0.71 0.83 1.17
Anisotropy 0.76 0.79 1.22
Coherence 0.65 0.87 1.08

<3 m) reached 92.5%, 68.3-79.7% significantly better than
other variants. The synergistic effect of physical constraints
and interpretability modules was verified by the control
variable method:

A=t -1, + B My +7 My M (XX)
A fitting coefficient y of 0.38 (p<0.001) indicates that
there was a significant interaction between the two modules.

4, Results analysis
4.1. Prediction accuracy verification

The comparison of the time-shift difference prediction
results across the four methods in the B12 block of the
North Sea oilfield is shown in Figure 7. The RMSE of
PI-LSTM (2.1 m) at the GWC was significantly lower than
that of the conventional LSTM method (5.7-8.3 m).

By systematically comparing the time-shift prediction
errors across the four methods, as shown in Table 5,
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Figure 6. Time-shift difference prediction accuracy heat map of the proposed physics-informed long short-term memory framework.

A
True GWC
550 Commercial Software (RMSE=7.6m)
Physics-Informed NN (RMSE=4.3m)
525 Conventional LSTM (RMSE=3.5m)

PI-LSTM (RMSE=1.6m)

Depth (m)
W
S

475
450
0 200 400 600 800 1000
Distance (m)
B c P <0.001 (ANOVA)
Commercial Software (4=-1.8, 6=7.4)
Physics-Informed NN (u=0.1, 0=4.3) ’é\
Conventional LSTM (u=-0.1, 5=3.5) = 10
PI-LSTM (u=0.2, 6=1.6) g
2
0

cio) \S"E“N \“f o t\oml\LSTM I LSTM
Error (m) CommeTT oy osies” Conven

Figure 7. Comparative results across four methods. (A) Time-shift prediction comparison. (B) Prediction error distribution. (C) Absolute error statistics.
Abbreviations: GWC: Gas-water contact; NN: Neural network; PI-LSTM: Physics-informed long short-term memory; RMSE: Root mean squared error.
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Figure 8. Spatial distribution of wave equation residuals in (A) conventional LSTM and (B) PI-LSTM.

Abbreviation: PI-LSTM: Physics-informed long short-term memory.

Table 5. Comparison of time-shift prediction errors across
methods

Table 6. Comparison of physical residuals across methods
under varying SNR conditions

Layer Commercial Physics-informed Conventional PI-LSTM SNR Commercial Physics-informed Conventional PI-LSTM
depth (m) software (ms) NN (ms) LSTM (ms) (ms) (dB) software (kPa) NN (kPa) LSTM (kPa) (kPa)
1200 3.21 2.78 1.98 1.12 40 52.3 38.7 45.2 15.8
1500 3.45 2.95 2.15 1.28 30 68.5 45.2 57.8 18.3
1800 3.87 3.24 2.43 1.45 25 85.7 53.6 68.9 22.4
2100 3.32 2.87 1.95 1.08 20 102.4 67.2 82.5 26.7
2400 2.98 2.56 1.62 0.92 15 125.8 85.3 103.6 31.2
2700 2.67 2.18 1.37 0.78 10 158.2 112.7 132.5 38.9
3000 2.54 2.05 1.29 0.71 5 203.6 153.8 178.3 47.5
3300 2.81 2.27 1.41 0.85 0 265.3 215.4 243.7 63.8

Abbreviations: NN: Neural network; PI-LSTM: Physics-informed long
short-term memory.

the PI-LSTM model reported significant advantages in
reservoir monitoring tasks.

All methods showed a trend of decreasing error with
increasing depth. The commercial software reached a
maximum error of 3.87 ms at a shallow depth of 1800 m,
whereas PI-LSTM achieved the highest accuracy of
0.71 ms at a depth of 3000 m, a 5.45-fold difference.
Although the physics-informed NN was 22.7% higher
than the commercial software on average (from 3.11 ms
to 2.41 ms), its improvement was significantly lower than
the 62.9% reduction of PI-LSTM, especially at shallow
depths of 2400 m, where the MAE of the physics-
informed NN was still 1.83 + 0.21 ms higher than that
of PI-LSTM.

4.2, Physical consistency verification

Through the wave equation residual analysis in Figure 8,
the degree of physical constraint violation of PI-LSTM
on SEG simulation data was reduced to 31.7% of the
conventional LSTM method.

Abbreviations: NN: Neural network; PI-LSTM: Physics-informed long
short-term memory; SNR: Signal-to-noise ratio.

The residual energy norm was used to quantify the
discrepancy between the predicted seismic wave behavior
and the actual physical wave equation over a given time
period. It was calculated using the following formula:

2

j — o*u
E =— —=V-(C:Vu XXI
e o Zt:l Y atz ( ) ( )

2

Where E__represents the residual energy norm, which
measures the physical error by comparing the predicted
wave behavior with the actual behavior governed by the
wave equation. T is the total number of time steps,
reflecting the temporal resolution of the seismic data. The

term p denotes the density of the medium, crucial for
2

R . u . .
seismic wave propagation, and e is the second time
t

derivative of the displacement field u, representing the
acceleration of seismic waves. The term V-(C:Vu) refers
to the divergence of the stress tensor, where C is the
elasticity tensor and Vu is the spatial gradient of the
displacement field. This term models the spatial variation
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Figure 9. Physical residual statistical distribution histogram.
Abbreviation: PI-LSTM: Physics-informed long short-term memory.
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Figure 10. Feature contribution heatmap with eight seismic attributes and four quarters.
in the stress and strain within the medium as the seismic Table 6 demonstrates that under different SNR
waves propagate. The squared Euclidean norm ||| conditions, PI-LSTM maintained stable physical
measures the magnitude of the difference between the consistency (residual <28 kPa), especially in high-pressure
predicted and actual wave behaviors. areas (>2500 m).
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Figure 11. Time-varying feature importance curves.
Abbreviation: SHAP: Shapley additive explanation.

In terms of SNR sensitivity, when the SNR decreased from
40 dB to 0 dB, the physical residual of the commercial software
increased by 407.3% (from 52.3 kPa to 265.3 kPa). In contrast,
the PI-LSTM framework only increased by 303.8% (from 15.8
kPa to 63.8 kPa), a 34.1% improvement in noise immunity.
In particular, under the critical operating condition of deep,
high-pressure zones (SNR > 25 dB), the PI-LSTM residuals
remained within 22.4 kPa, a 67.5% reduction compared to
the conventional LSTM (p<0.001). This advantage is directly
due to its built-in rock physics constraint mechanism, which
effectively suppresses 68.2% of non-physical solutions when
SNR deteriorates.

The residual distribution histogram in Figure 9 reveals
that the conventional LSTM method exhibited a bimodal
distribution (R? = 0.63), whereas the PI-LSTM framework
reported a unimodal Gaussian distribution (R* = 0.92).

4.3. Interpretability enhancement effect

The feature contribution heat map in Figure 10 shows
that the SHAP value of the speed parameter (Vp/Vs) in
PI-LSTM was increased to 0.42 + 0.07, compared with 0.29
+ 0.05 for the conventional LSTM method.

Analysis of time-varying patterns is presented in
Figure 11. Physical constraints reduced feature importance
fluctuations by 38%.

The metric AS is used to quantify the improvement
in the time-varying stability of feature importance,
measuring  PI-LSTM’s  improvement in feature
weight fluctuation compared to conventional LSTM. The

Table 7. Comparison of feature interpretation stability
(coefficient of variation, %)

Properties Q1 Q2 Q3 Q4 Mean
Vp 9.2 8.7 7.5 8.3 8.4
Vs 10.1 9.8 8.2 9.1 9.3
Vp/Vs 7.8 6.5 5.9 6.8 6.8
Impedance 11.2 10.5 9.8 10.7 10.6
Poisson’s ratio 8.5 7.9 6.7 7.5 7.7
Attenuation 12.3 11.8 10.2 11.5 11.5
Anisotropy 10.7 9.3 8.9 9.8 9.7
Coherence 13.5 12.1 11.8 12.9 12.6
formula is:

ZT,lwzpl —w |
AS=1- = (XXII)

Z,T:J thSTM —phsT™ |

Where 4S is a quantitative indicator of the time-varying
stability of feature importance, indicating the degree of
improvement of PI-LSTM on feature weight fluctuation.
T is the number of time steps, that is, the length of the time
series that measures the fluctuation of feature weight. In
this formula, w” and w"*™  respectively, represent the

t t

weights of each feature in the PI-LSTM and conventional
LSTM models at the t" moment, while %" and w"™ are
the time averages of the weights of each feature in the

PI-LSTM and LSTM models, respectively, reflecting the
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overall importance of the features. The numerator of
the formula calculates the sum of the fluctuations of each
feature weight in the PI-LSTM model, indicating the
variation of the feature weight of PI-LSTM over time. On
the other hand, the denominator calculates the sum of the
fluctuations of the feature weight in the conventional
LSTM model. By comparing the fluctuations of PI-LSTM
and conventional LSTM, AS quantifies the improvement of
the PI-LSTM model in the time-varying stability of
features. The closer the value is to 1, the better the PI-LSTM
performs in terms of time-varying stability, the smaller the
fluctuation of feature weights, and the more stable the
model prediction process.

Table 7 compares the interpretation stability of eight
seismic attributes in four quarters. The quarterly coeflicient
of variation of PI-LSTM (CV <12%) was significantly better
than that of the conventional LSTM method (CV >27%).

The Vp/Vs parameter showed the highest stability,
with a quarterly CV average of only 6.8%, 42.3% lower

Table 8. Prediction accuracy of fluid displacement volume
across different methods

Methods RMSE MAE R*  Error distribution
(x10°m?)  (x10°m?) skewness
Commercial software 4.7 35.2 0.61 1.85
Physics-informed NN 32.5 268  0.73 1.12
Conventional LSTM 25.3 19.7 0.82 0.78
PI-LSTM 12.8 9.6 0.94 0.31

Abbreviations: MAE: Mean absolute error; NN: Neural network;
PI-LSTM: Physics-informed long short-term memory; RMSE: Root
mean squared error.

Fluid Change Probability
0.4 0.6

than the anisotropy parameter (9.7%). This result is highly
consistent with rock physics theory—the velocity ratio
parameter is least affected by seasonal fluid changes. All
attributes showed the lowest CV in Q3 (8.4% on average),
23.6% lower than Q1 (10.4%). This seasonal difference is
directly related to the improvement of offshore acquisition
conditions in summer—wave height decreased by 37% and
acquisition ship speed increased by 22%.

w. W

phy data

B Cov( )

P (XXIIIT)

c phy o-dutu

The synergy coefficient between the rock physics
interpretation weight W _and the data-driven weight W,
reached 0.81.

4.4, Time-shift difference detection case

Figure 12 shows the 4D seismic difference prediction
results of the B-19 well area from 2019 to 2022. PI-LSTM
successfully identified three oil-water front movements
(positioning error <2.5 m), while the commercial software
missed one and misreported two false anomalies.

Table 8 quantifies the prediction accuracy of fluid
displacement volume. The correlation coefficient of
PI-LSTM (R* = 0.94) was significantly better than the
other methods (0.61-0.82). The reserve change rate AV/V,
calculated based on the prediction results, deviated only
1.8% from the actual logging data.

The error skewness of PI-LSTM (0.31) was only 39.7%
of that of the conventional LSTM (0.78), indicating that
its prediction error is closer to a normal distribution.
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Figure 12. Examples of 4D difference detection in the B-19 well area across true fluid movement, commercial software detection, and the physics-
informed long short-term memory detection.
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Figure 13. Thermal map of performance improvement across geological units.

Abbreviations: FZI: Flow zone indicator; TOC: Total organic carbon.

This characteristic narrowed the confidence intervals of
reserve assessments to = 7.2 x 10° m® (+ 21.5 x 10°* m® for
commercial software). Specifically, in different development
stages, the MAE of PI-LSTM was stable at 6.3 + 2.1 x 10° m?
in the early stage of water injection (displacement volume
<50 x 10° m?). In addition, it maintained an accuracy of 13.5
+3.8 x 10° m*in the high production period (>150 x 10° m?),
and the fluctuation range was reduced by 62.3% compared
with physics-informed NN. This stability comes from the
physical constraints of the model on the propagation law
of the fluid front, which reduces the correlation coeflicient
between the prediction error and the volume size from 0.65
in the conventional LSTM method to 0.19.

5. Discussion
5.1. Effectiveness of geological prior fusion

Figure 13 presents the enhancement in the prediction
performance of the PI-LSTM framework in different
geological units of the North Sea oilfield. The MAE of the
fracture development zone (flow zone indicator >1.5 um)
was improved by 52.3%, significantly higher than that of
homogeneous sandstone (28.7%). This difference is due
to the adaptive adjustment of the model to geomechanical
parameters by coupling fracture density y and LSTM forget
gate.

0.5

emert (;Z;‘)ASE Reductio® (-%)\ Coﬂs'\S‘e“cy Gain Featur

FZI> 1.5um

0.7 6>22%

40

$<10%
30

TOC > 5%

‘Vug Present

20

Performance Improvement Index

Halite Content

Fracture Density

Cleat System

Improvement Scale:

. Stability 0-20%: Minimal

20-40%: Moderate
40-60%: Significant

Table 9. Analysis of the geological parameter fusion effects

Reservoir type Porosity Clay y Error
(%) content (%) mean reduction (%)

High-porosity 223 8.2 0.89 47.2
sandstone

Low-porosity 12.1 15.7 0.76 32.5
sandstone

Fractured limestone 18.5 5.3 0.92 53.1
Dense sandstone 7.8 22.4 0.65 25.8
Bioreef limestone 25.6 3.8 0.94 56.3
Sandstone-mudstone 14.2 35.6 0.58 21.7
interlayer

Gypsum-salt layer 3.2 18.9 0.42 15.2
Volcanic rock 9.7 27.3 0.61 23.9

weathering crust

Table 9 compares the effects of geological parameter
fusion on various typical reservoir types. The error
reduction varied significantly across reservoir types,
ranging from 15.2% (gypsum-salt layer) to 56.3% (bioreef
limestone). This difference is correlated with the geological
parameters, particularly the impact of porosity and clay
content on the physical constraint weight (y). Specifically,
porosity and clay content are important factors influencing
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the elastic wave propagation characteristics and prediction
error in geological reservoirs.

In reservoirs with high porosity and low clay content—
such as high-porosity sandstone, fractured limestone, and
bioreef limestone—the contribution weight of physical
constraints was high (20.89). The physical properties of
these reservoirs make elastic wave propagation relatively
stable, and physical constraints can effectively reduce
prediction errors, resulting in a significant error reduction
of 47.2-56.3%.

In contrast, reservoirs with high clay content or
low porosity—such as gypsum-salt layers, interbedded
sandstone and mudstone, and tight sandstone—showed
less error reduction. This is because high clay content
typically leads to significant impedance differences,
complicating elastic wave propagation. The physical
constraint model has lower adaptability and prediction
accuracy in these reservoirs, resulting in a smaller error
reduction (15.2-32.5%). Furthermore, low-porosity
reservoirs generally result in lower wave velocities, which
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limits the contribution of physical constraints. In particular,
despite a porosity of only 18.5%, fractured limestone’s
extremely low clay content (5.3%) and well-developed
fracture network significantly enhanced the contribution
of physical constraints (y = 0.92), even surpassing that
of some highly porous reservoirs. This indicates that the
presence of fractures enhances elastic wave propagation,
effectively reducing prediction errors, demonstrating a
significant error reduction of 53.1%.

The cross-validation results in Figure 14 show that
introducing a priori formation dip angles reduced the
prediction error of the structural flank by 39.8% (p<0.01),
confirming the effectiveness of embedding geological
knowledge.

5.2. Sensitivity of physical constraint weights

Figure 15 reveals the non-linear influence of the physical
constraint weight f in the range of 0.3-1.2.

When £ = 0.8, the model reached the optimal balance
on SEG data (RMSE = 1.23 ms, Ephy = 18.6 kPa), and its
regulation mechanism can be expressed as:

total

(-B)L,,, +BL,, + 2|6 (XXIV)

Where L, represents the data fitting error, Lphy
represents the physical equation residual, and A [|0 | is
the regularization term. The introduction of the weight f
can be understood as a multiobjective optimization
mechanism: When two objective functions differ in terms
of scale and value, a weighted sum is used to achieve a
Pareto optimal balance. Theoretically, if £ is small, the loss
function relies primarily on the data-driven component,
leading to overfitting and loss of physical interpretability. If
p is large, it is equivalent to introducing overly strong
Lagrangian constraints during the optimization process,
resulting in a decrease in the physical residual but a

significant deterioration in the data fit. Table 10 shows the
multimetric performance for different § values.

As f increased from 0.0 to 0.8, the CV of each
parameter showed a monotonically decreasing pattern.
The Vp/Vs ratio reached optimal stability (CV = 6.8%) at
£ =0.8,a79.2% reduction compared to the unconstrained
state (§ = 0.0). This pattern indicates that adjusting £ is not
simply a matter of empirical results but rather is determined
by a constraint balance mechanism. At § = 0.8, both the
predicted RMSE and the physical residual curves reached
an inflection point, reflecting a balance between data
consistency and physical consistency. Further increasing
pled to physical over-regularization. For example, at f= 1.5,
the RMSE rebounded to 23.4%, while the improvement in
the physical residual converged significantly.

Further experiments showed that the optimal value
of f was significantly correlated with SNR data. Through
comparative experiments on multiple sets of SEG
simulation data and measured data in the North Sea
oilfield, the empirical regression formula of # and SNR was
obtained:

/)’opt = 0.62 + 0.18tanh(0.35(SNR-15)) (XXV)

This relationship revealed the theoretical basis for f:
When the SNR is low, the data term L, is not reliable,
and the proportion of physical constraints needs to be
increased; however, under high SNR conditions, overly
strong physical constraints weaken the discriminative
power of the data, indicating a need to reduce £.

When f exceeded 1.2, physical overconstraint occurred,
resulting in a sharp drop in data fit by 23.7% (the inflection
point effect shown in Figure 16).

Industrial data validation shows that the optimal § and
SNR satisfy the following:

ﬁopf = 0.62 + 0.18tanh(0.35(SNR-15)) (XXVI)
Table 10. Multi-index prediction error and physical residual under different physical constraint weights 8
P value Prediction RMSE Physical residual Vp Vs Vp/Vs Impedance Poisson’s ratio Density Anisotropy
0.0 18.7 62.3 254 281 32.7 229 30.5 19.8 352
0.2 15.2 45.6 189 217 15.8 17.3 22.4 15.1 28.7
0.4 12.5 32.8 14.2 16.3 11.2 13.6 17.8 12.4 23.5
0.6 9.8 21.4 10.7 125 8.5 10.2 13.2 9.6 18.9
0.8 7.3 15.2 8.1 9.4 6.8 7.9 9.7 7.3 14.2
1.0 10.5 9.7 12.3 14.1 8.2 11.5 14.8 10.9 19.7
1.2 15.8 7.5 18.6 203 10.4 16.9 21.5 15.2 253
1.5 234 6.2 27.1 29.8 14.7 24.6 30.2 21.8 33.6
Abbreviation: RMSE: Root mean squared error.
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Table 11. Performance of the proposed physics-informed
long short-term memory framework in various industrial
environments

Oilfield types SNR Pressure Temperature RMSE
(dB)  (MPa) (°C) (ms)
Deep-sea sandstone 253 42.1 135 1.78
Continental shale 18.7 38.5 98 2.05
Fractured carbonate rock  15.2 52.3 142 3.21
Tight gas 22.8 45.6 110 1.92
Heavy oil sand 8.5 123 65 4.78
Coalbed methane 28.1 15.8 75 1.35
Pre-salt carbonate rock 20.4 63.2 158 2.87
Volcanic rock reservoir 13.7 32.7 185 3.45

5.3. Industrial application boundary conditions

Based on field data from 12 representative oilfields
worldwide, the adaptability of PI-LSTM was systematically
evaluated in various industrial environments, as shown in
Table 11.

When the SNR exceeded 18 dB (covering seven
reservoir types, including deep-sea sandstone and
continental shale), the model’s average RMSE remained
stable at 2.05 + 0.52 ms, with a CV of only 25.4%,
demonstrating excellent robustness. However, once the

SNR dropped below 10 dB, the prediction error increased
sharply to 4.78 ms, a 133.2% performance degradation
compared to the 18-dB SNR threshold. This non-
linear degradation is closely related to the noise energy
spectrum. When the ambient SNR fell below 15 dB,
the power share of the effective signal in the 8-80 Hz
main frequency band dropped from 78.3% to 52.1%,
significantly reducing the applicability of the physical
constraint module.

In a high-temperature, high-pressure, subsalt carbonate
environment (63.2 MPa, 158°C), despite maintaining an
excellent SNR of 20.4 dB, the RMSE reached 2.87 ms, 112.6%
higher than that of coalbed methane reservoirs at ambient
temperature and pressure (15.8 MPa, 75°C). In-depth analysis
revealed that when temperatures exceeded 150°C, the thermal
expansion of quartz grains caused abnormal fluctuations in
compressional wave velocity by 3.2-5.7%, a boundary effect
not yet fully modeled by the current physical constraint
module. In contrast, the impact of pressure on model
performance is relatively linear—for every 10 MPa increase
in pressure, the RMSE increased by only 0.31 ms (R*> = 0.76),
demonstrating that the PI-LSTM rock physics framework can
effectively compensate for changes in effective stress.

Under ultra-low SNR conditions (<10 dB), such as
heavy oil sands reservoirs (SNR = 8.5 dB, RMSE = 4.78 ms),
the prediction error was significantly higher than that of
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Figure 17. Industrial applicability matrix of the proposed physics-informed long short-term memory framework.

other types. This failure is primarily due to the swamping
of the effective signal by the noise spectrum. Specifically,
when the SNR fell below 15 dB, the energy content of
background noise in the 8-80 Hz primary frequency
band surged from 21.7% to 47.9%, disrupting the input
conditions of the physical constraints established based
on this frequency band. While the model’s LSTM module
has a certain degree of noise tolerance, when the effective
signal power falls below the noise floor, the learned time
series features become decoupled from the actual physical
processes, leading to a sharp non-linear drop in predictive
performance.

In ultra-high temperature environments (>150°C),
for example, volcanic reservoirs (185°C) and pre-salt
carbonates (158°C), the RMSE (3.45 ms and 2.87 ms,
respectively) remained significantly high, even with
a suitable SNR of 13.7-20.4 dB. The root cause lies in
unmodeled physical effects triggered by extremely high
temperatures. When temperatures exceeded 150°C,
sensitive minerals such as quartz in the reservoir rock
undergo significant thermal expansion, causing abnormal
fluctuations in compressional wave velocity of 3.2-5.7%.
This effect exceeds the scope of the classical rock physics

Table 12. Prediction accuracy of rock physics parameters

Sample  Porosity Theoretical Predicted Error
(%) lambda_p (GPa) lambda_p (GPa) (%)
S1 18.2 12.57 12.83 2.1
S2 15.7 15.32 14.91 2.7
S3 22.3 9.85 10.12 2.7
S4 8.9 21.45 22.18 3.4
S5 26.8 7.21 7.45 3.3
S6 13.5 17.63 16.88 4.3
S7 31.2 5.47 591 8.0
S8 114 19.76 19.82 0.3

theoretical framework underlying the current physical
constraint module. This results in systematic deviations
in the output of the physical module, which, through
cascading propagation, undermines the input assumptions
of the LSTM module, ultimately causing the model to fail
in adaptability under ultra-high temperature conditions.

The applicability matrix in Figure 17 shows that this
method maintained a detection accuracy of 94.3% in high-
pressure, high-temperature reservoirs (pressure >35 MPa,
temperature >120°C), but its applicability drops to 68.7%
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for carbonate cave reservoirs. This decrease is primarily
attributed to the inherent challenges posed by the extreme
heterogeneity and complex spatial structure of fractures
and cavities in these reservoirs, posing physical constraint
modeling challenges.

5.4. Rock physics theory compatibility

The prediction results of PI-LSTM were highly consistent
with the theoretical calculation of the Biot-Gassmann
equation (R? = 0.91), and its fluid replacement module can

be expressed as:?%*

c —x 1-K, /K,)
= +
T GIK, +(1-¢)/K, -K, /K,

dry

(XXVII)

Data in Table 12 further verifies that the model’s
response to rock physics sensitive parameters (Xp, 1)
conformed to the Hertz-Mindlin contact theory, where
the particle contact stiffness prediction error was <8%.

The error of conventional reservoir sections (porosity
10-25%) was controlled within 3.0% (samples S1-S6),
which was significantly better than the industry’s 5%
accuracy requirement. When the porosity increased to
31.2% (sample S7), the error reached a maximum of 8.0%.
This result is consistent with the applicable boundary of the
theoretical model under high porosity conditions (<30%),
reflecting the natural limitations of the particle contact
theory in loose media. Sample S8 showed an astonishing
0.3% error at the low porosity end (11.4%), proving that
the model has an extraordinary ability to capture the elastic
behavior of tight sandstone.

5.5. Future direction

To improve the applicability of the proposed framework for
cave reservoirs, future research could address the following
optimizations: First, a discrete fracture-cavity network
model could be incorporated into the physical modeling
process, combined with multiscale karst characterization
techniques to enhance the explicit characterization of the
fracture-cavity coupling system. These approaches allow
for more accurate representations of fracture and cavity
interactions, which are crucial in cave reservoirs. Second,
azimuthal anisotropy information from well bypasses and
long-offset seismic gathers could be integrated to improve
the accuracy and robustness of spatial imaging of large cave
systems. This can address the challenges of heterogeneity
and enhance spatial resolution. Furthermore, generative
adversarial networks could be used to synthesize more
representative cave samples, enhancing the generalization
performance of deep learning models for irregular
geological features. Preliminary numerical experiments

indicate that this combined strategy can potentially increase
the predictive applicability of these reservoirs to over 80%.

For future research, three directions are focused on: At
the theoretical level, it is necessary to develop cross-scale
modeling methods to solve the scale fracture problem of the
current physical constraint module between millimeter-
level pores and kilometer-level working areas. To address
this, future work should incorporate multiscale modeling
techniques, specifically integrating micro-mechanical
models (such as mesoscale or nanoscale simulations)
with macroscopic geological models. These models can
enable a more seamless representation of the relationships
between microscopic pore structures and the macroscopic
geological framework. In addition, the use of non-local
elastic mechanics operators, which have shown promise in
preliminary experiments to improve predictions for ultra-
deep layers (>3500 m), can be explored. These operators
could potentially reduce prediction errors by up to 18.7%,
providing a more accurate representation of the physical
properties of deeper geological formations.

At the technical level, the development of a real-time
prediction system based on edge computing is imminent.
By lightweighting PI-LSTM to <50 MB and deploying it
to seismic acquisition nodes, it is expected to achieve a
synchronous closed loop of “acquisition-interpretation”
of time-shift differences, such as the B-19 well area case
shown in Figure 11. This real-time capability can advance
the water drive front warning time by 4-6 months.
The next steps can involve optimizing edge computing
infrastructure and refining model performance for real-
time deployment in offshore oilfields.

In the longer term, building a digital twin platform
that integrates multimodal data, such as seismic, logging,
and core data, could become a trend. This platform would
allow for the continuous monitoring of oilfield dynamics
at centimeter-level spatiotemporal resolution. By 2025,
we aim to develop this digital twin technology, leveraging
the interpretability framework presented in this study as a
foundation for multisource data fusion. This will provide
a more accurate and real-time digital representation of oil
and gas reservoirs, helping to transition time-lapse seismic
technology from a simple “interpretation tool” into a
comprehensive “intelligent decision-making system” for oil
and gas management. These advancements will support the
goal of achieving transparent, real-time management of the
entire lifecycle of oil and gas reservoirs, providing significant
benefits for both exploration and production activities.

6. Conclusion

This study established a new generation of an intelligent
analysis framework for time-lapse seismic difference
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prediction through the deep coupling of PI-LSTM and
interpretability enhancement. Its core breakthroughs are
reflected in three aspects: First, the first-order velocity—
stress wave equation is innovatively transformed into the
physical memory unit of LSTM, and the dynamic fusion
of wave field propagation law and data characteristics is
realized through the gating mechanism. In the testing on
actual data from the North Sea oilfield, the physical residual
is reduced from 62.3kPa of the conventional LSTM method
to 15.2kPa, a decrease of 75.6%. Second, the proposed
interpretability enhancement module reduces the quarterly
fluctuation of feature importance by 38% (4S) through
the coordinated optimization of SHAP value dynamic
weighting and physical attention template, addressing the
“black box dilemma” of deep learning models in seismic
interpretation. Third, and more importantly, an adaptive
mapping mechanism of geological parameters and network
weights is constructed. When the porosity is >15%, the
physical constraint weight is automatically increased to
0.89 + 0.04. In the dual benchmark test consisting of SEG
simulation data and actual North Sea oilfield data, the time-
shift difference prediction accuracy reaches 0.71-2.1 ms
(corresponding to the oil and gas interface positioning error
of <3 m), which is 62.9% higher than that of the existing
commercial software. These innovations not only provide a
new paradigm for time-lapse seismic interpretation but also
have universal guiding values for geophysical fields, such as
well logging interpretation and microseismic monitoring.

For industrial application scenarios, this study extracts
a three-level implementation path. For conventional
sandstone reservoirs (porosity of 15-25%, SNR of >18 dB),
the standard PI-LSTM model can be directly used, and its
pre-trained parameters have achieved 92.5% fluid front
recognition accuracy in Block B12. For complex reservoirs
(such as fractured carbonate rocks or ultra-high temperature
reservoirs), it is recommended to use a flexible constraint
modewitha/0f0.55+0.05, combined with wavelet denoising
preprocessing, as shown in Figure 16. This configuration
reduces the prediction error of volcanic reservoirs from 3.45
ms to 2.12 ms. For the real-time monitoring needs in offshore
oilfield development in particular, it is recommended
to adopt the updated strategy of “monthly incremental
learning + quarterly full parameter fine-tuning,” and use
the quarterly stability characteristics (CV <12%), as shown
in Table 7, to maintain long-term prediction reliability. Field
applications indicate that this solution can shorten the 4D
seismic interpretation cycle from the traditional 3-6 months
to within 2 weeks, while controlling the reserve assessment
error within + 1.8% (Table 8), providing unprecedented
timeliness and accuracy for oilfield development decisions.

The direction of future research should involve
incorporating more detailed and specific models, refining

computational techniques, and integrating cutting-
edge technologies such as edge computing and digital
twin platforms. These steps can enhance the practical
applicability and scientific rigor of the PI-LSTM framework,
driving further innovations in seismic interpretation and
oilfield management.

Acknowledgments

None.

Funding

This research was financially supported by Mahasarakham
University; 2025 Doctoral Special Support Program Project
of Chengdu Jincheng College (NO.2025JCKY(B)0018),
and the Key Research Base of Humanities and Social
Sciences of the Education Department of Sichuan Province,
Panzhihua University, Resource-based City Development
Research Center Project (NO.ZYZX-YB-2404).

Conflict of interest

The authors declare they have no competing interests.

Author contributions

Conceptualization: Tianwen Zhao, Guoqing Chen, Cong
Pang, Palakorn Seenoi,

Formal analysis: Tianwen Zhao, Cong Pang, Guoqing
Chen, Palakorn Seenoi, Nipada Papukdee

Investigation: Tianwen Zhao, Cong Pang, Piyapatr
Busababodhin, Palakorn Seenoi, Nipada Papukdee

Methodology: Tianwen Zhao, Guoqing Chen, Piyapatr
Busababodhin, Palakorn Seenoi, Nipada Papukdee

Visualization: Tianwen Zhao, Guoqing Chen, Piyapatr
Busababodhin

Writing-original draft: Tianwen Zhao, Guoging Chen,
Piyapatr Busababodhin, Nipada Papukdee

Writing—review & editing: Tianwen Zhao, Guogqing Chen,
Cong Pang, Piyapatr Busababodhin, Palakorn Seenoi

Availability of data

Some data used in this study cannot be shared publicly due
to collaborative agreement restrictions, but are available
from the corresponding author upon reasonable request.

References

1. WuYH,PanSL,Lan HQ, et al. Dynamic reservoir monitoring
using similarity analysis of passive source time-lapse seismic
images: Application to waterflooding front monitoring in
Shengli Oilfield, China. Petrol Sci. 2025;22(3):1062-1079.

doi: 10.1016/j.petsci.2024.12.008

2. Ding PB, Gong E, Zhang F, Li XY. A physical model study of
shale seismic responses and anisotropic inversion. Petrol Sci.

Volume 34 Issue 3 (2025)

46

doi: 10.36922/JSE025310049


https://dx.doi.org/10.36922/JSE025310049
http://dx.doi.org/10.1016/j.petsci.2024.12.008

Journal of Seismic Exploration

Physics-informed LSTM for seismic prediction

10.

11.

12.

13.

2021;18(4):1059-1068.
doi: 10.1016/j.petsci.2021.01.001

Liu P, Zhao ], Li Z, Wang H. Numerical simulation of
multiphase multi-physics flow in underground reservoirs:
Frontiers and challenges. Capillarity. 2024;12(3):72-79.

doi: 10.46690/capi.2024.03.02

Wu Y, Sicard B, Gadsden SA. Physics-informed machine
learning: A comprehensive review on applications in
anomaly detection and condition monitoring. Expert Syst
Appl. 2024;255:124678.

doi: 10.1016/j.eswa.2024.124678

Lim B, Zohren S. Time-series forecasting with deep
learning: A survey. Philos Trans R Soc A Math Phys Eng Sci.
2021;379(2194):20200209.

doi: 10.1098/rsta.2020.0209

Cao C, Debnath R, Alvarez RM. Physics-based machine
learning for predicting Urban air pollution using decadal
time series data. Environ Res Commun. 2025;7(5):051009.

doi: 10.1088/2515-7620/add795

Kim S, Lee D, Lee S. Performance improvement of seismic
response prediction using the LSTM-PINN hybrid method.
Biomimetics (Basel). 2025;10(8):490.

doi: 10.3390/biomimetics10080490

Pwavodi J, Ibrahim AU, Pwavodi PC, Al-Turjman E
Mohand-Said A. The role of artificial intelligence and IoT in
prediction of earthquakes. Artif Intell Geosci. 2024;5:100075.

doi: 10.1016/j.aiig.2024.100075

Xu Q, Shi Y, Bamber J, et al. Physics-Aware Machine Learning
Revolutionizes Scientific Paradigm for Machine Learning and
Process-Based Hydrology. [arXiv Preprint]; 2023.

doi: 10.48550/arXiv.2310.05227

Jain P, Coogan SC, Subramanian SG, et al. A review of
machine learning applications in wildfire science and
management. Environ Rev. 2020;28(4):478-505.

doi: 10.1139/er-2020-0019

Marano GC, Rosso MM, Aloisio A, Cirrincione G. Generative
adversarial networks review in earthquake-related engineering
fields. Bull Earthquake Eng. 2024;22(7):3511-3562.

doi: 10.1007/510518-023-01645-7

Kloosterman HJ, Kelly RS, Stammeijer J, et al. Successful
application of time-lapse seismic data in shell expros gannet fields,
Central North Sea, UKCS. Petrol Geosci. 2003;9(1):25-34.

doi: 10.1144/1354-079302-513

Haverl MC, Aga M, Reiso E. Integrated Workflow for
Quantitative use of Time-Lapse Seismic Data in History
Matching: A North Sea field Case. In: Paper Presented At:
SPE Europec Featured at EAGE Conference and Exhibition;

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

2005. Madrid, Spain. SPE-94453.
doi: 10.2118/94453-MS

Dong Y, Shen Y, Guo K, et al. Advanced workflow for time-
lapse seismic monitoring of CO, storage in saline aquifers
with its application in a field basin. Sci Rep. 2025;15(1):21345.

doi: 10.1038/s41598-025-09476-2

Koster K, Gabriels P, Hartung M, Verbeek ], Deinum G,
Staples R. Time-lapse seismic surveys in the North Sea and
their business impact. Lead Edge. 2000;19(3):286-293.

doi: 10.1190/1.1438594

Alizadegan H, Rashidi Malki B, Radmehr A, Karimi H,
Ilani MA. Comparative study of long short-term memory
(LSTM), bidirectional LSTM, and traditional machine
learning approaches for energy consumption prediction.
Energy Explor Exploit. 2025;43(1):281-301.

doi: 10.1177/01445987241260319

Botunac I, Bosna J, Mateti¢ M. Optimization of traditional
stock market strategies using the LSTM hybrid approach.
Information. 2024;15(3):136.

doi: 10.3390/info15030136

Kiran Kumar V, Ramesh KV, Rakesh V. Optimizing
LSTM and Bi-LSTM models for crop yield prediction and
comparison of their performance with traditional machine
learning techniques. Appl Intell. 2023;53(23):28291-28309.

doi: 10.1007/s10489-023-05005-5

Zhao C, Zhang F, Lou W, Wang X, Yang J. A comprehensive
review of advances in physics-informed neural networks
and their applications in complex fluid dynamics. Phys
Fluids. 2024;36(10):101101.

doi: 10.1063/5.0226562

Qi S, Sarris CD. Physics-informed deep operator network
for 3-d time-domain electromagnetic modeling. IEEE Trans
Microw Theory Tech. 2024;72(12):5204-5216.

doi: 10.1109/TMTT.2024.3521389

Liu B, Pang Y, Jiang P, et al. Physics-driven deep learning
inversion for direct current resistivity survey data. IEEE
Trans Geosci Remote Sens. 2023;61:1-11.

doi: 10.1109/TGRS.2023.3263842

Moser P, Fenz W, Thumfart S, Ganitzer I, Giretzlehner M.
Modeling of 3D blood flows with physics-informed neural
networks: Comparison of network architectures. Fluids.
2023;8(2):46.

doi: 10.3390/fluids8020046

Fawad M, Mondol NH. Monitoring geological storage of CO,
using a new rock physics model. Sci Rep. 2022;12(1):297.

doi: 10.1038/s41598-021-04400-7
Jo TH, Djezzar S, Barajas-Olalde C, Richards T. Utilizing 3D

Volume 34 Issue 3 (2025)

doi: 10.36922/JSE025310049


https://dx.doi.org/10.36922/JSE025310049
http://dx.doi.org/10.1016/j.petsci.2021.01.001
http://dx.doi.org/10.46690/capi.2024.03.02
http://dx.doi.org/10.1016/j.eswa.2024.124678
http://dx.doi.org/10.1098/rsta.2020.0209
http://dx.doi.org/10.1088/2515-7620/add795
http://dx.doi.org/10.3390/biomimetics10080490
http://dx.doi.org/10.1016/j.aiig.2024.100075
http://dx.doi.org/10.48550/arXiv.2310.05227
http://dx.doi.org/10.1139/er-2020-0019
http://dx.doi.org/10.1007/s10518-023-01645-7
http://dx.doi.org/10.1144/1354-079302-513
http://dx.doi.org/10.2118/94453-MS
http://dx.doi.org/10.1038/s41598-025-09476-z
http://dx.doi.org/10.1190/1.1438594
http://dx.doi.org/10.1177/01445987241260319
http://dx.doi.org/10.3390/info15030136
http://dx.doi.org/10.1007/s10489-023-05005-5
http://dx.doi.org/10.1063/5.0226562
http://dx.doi.org/10.1109/TMTT.2024.3521389
http://dx.doi.org/10.1109/TGRS.2023.3263842
http://dx.doi.org/10.3390/fluids8020046
http://dx.doi.org/10.1038/s41598-021-04400-7

Journal of Seismic Exploration

Physics-informed LSTM for seismic prediction

25.

mechanical earth models for calibration and validation in
a large-scale carbon capture and storage project in North
Dakota. In: Proceedings of the 17" Greenhouse Gas Control
Technologies Conference (GHGT-17). Calgary, Canada;
2024.

doi: 10.2139/ssrn.5027942

El Bilali A, Brouziyne Y, Attar O, Lamane H, Hadri A,
Taleb A. Physics-informed machine learning algorithms
for forecasting sediment yield: An analysis of physical
consistency, sensitivity, and interpretability. Environ Sci
Pollut Res Int. 2024;31(34):47237-47257.

26.

27.

doi: 10.1007/s11356-024-34245-2

Saxena N. Exact results for generalized Biot-Gassmann
equations for rocks that change in pore shape and grain
geometry. Geophys J Int. 2015;203(3):1575-1586.

doi: 10.1093/gji/ggv386

Bemer E, Hamon Y, Adelinet M. Consistent
experimental investigation of the applicability of
Biot-Gassmann’s equation in carbonates. Geophysics.
2019;84(4):WA97-WA113.

doi: 10.1190/ge02018-0631.1

Volume 34 Issue 3 (2025)

48

doi: 10.36922/JSE025310049


https://dx.doi.org/10.36922/JSE025310049
http://dx.doi.org/10.2139/ssrn.5027942
http://dx.doi.org/10.1007/s11356-024-34245-2
http://dx.doi.org/10.1093/gji/ggv386
http://dx.doi.org/10.1190/geo2018-0631.1

