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Abstract
The Hessian matrix, though computationally expensive, plays a critical role 
in ensuring inversion accuracy and mitigating cross-talk in multi-parameter 
inversion. The well-known wavefield reconstruction inversion (WRI) or extended 
space full-waveform inversion can reduce nonlinearity and mitigate cycle skipping 
in traditional FWI. However, most implementations omit the Hessian. In this study, 
the Hessian—formulated as a function of measurement and theoretical covariance 
matrices—is incorporated into WRI within a Bayesian inference framework. 
Furthermore, the connections between the data-  and model-domain Hessian 
equations are discussed, leading to a simplified calculation method for the extended 
source. Based on this approach, a new definition for the theoretical covariance 
matrix is proposed and validated through numerical tests, demonstrating its 
accuracy.
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1. Introduction
Full-waveform inversion (FWI),1,2 a tool commonly used to invert subsurface structures, 
has been widely used in geophysics exploration.3,4 However, as a data-fitting algorithm in 
the least squares sense, FWI suffers from cycle skipping and nonlinearity, primarily due 
to the difficulty of predicting the data resulting from the inexpressive wave equation and 
the limited acquisition aperture.5

There are methods specifically designed to address cycle skipping, which generally 
involves a complex operation for each trace6,7 or shot8 to achieve accurate matching. 
An advanced method for measuring distance using optimal transport distances has 
garnered the attention of a wide range of researchers and has been well-developed.9-12 
As for nonlinearity, the multi-scale strategy,12,13 changing the inversion domain,14 or 
modifying the objective function form15 can help alleviate this limitation.
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In addition to the above methods, two other directions 
have been proposed and developed into relatively mature 
methods. One is an extended space FWI (ES-FWI), which 
introduces another search space in the inversion.

There are two ways to build the ES-FWI method. The 
first approach is to add non-physical degrees of freedom 
to the model, thereby pushing the synthetic data to better 
fit the observed data.16 However, new space introduces 
additional computational costs through either increased 
calculation time for the new forward operator or more 
storage requirements for new variables. Various methods 
have been proposed to reduce computational cost,17,18 
in which the extended source FWI19 is a more efficient 
method, as it only inverts the extended source and the 
model parameters. A study by Symes20 provided a detailed 
analysis of why the extended source FWI is effective.

The other method is the wavefield reconstruction 
inversion (WRI), which starts by incorporating the wave 
equation into the objective function to reduce nonlinearity 
and computational cost.21 Leeuwen and Herrmann22 
conducted a more mathematical analysis of the proposed 
method and carefully analyzed the selection strategy of the 
penalty scalar.22 However, it was initially proposed in the 
frequency domain, requiring an augmented wave equation 
that is challenging to solve in the time domain. In addition, 
the physical meaning of certain variables (reconstructed 
wavefield, penalty scalar) and the tuning method for the 
penalty scalar when solving WRI require clarification.

Several studies have been conducted to address the 
above challenge, including rough approximations that 
enable WRI in the time domain,23,24 resulting in more 
precise solutions proposed. Rizzuti et al.25 proposed 
a data-dual formulation of WRI, where the Lagrange 
formula is used to reformulate the WRI, making it easier 
to apply to large three-dimensional models in the time 
domain.25,26 Moreover, the iterative refining-WRI method 
was proposed, in which an enhanced Lagrange method 
equipped with operator splitting is used instead of the 
penalty method, with its regularization and corresponding 
expansion in other media investigated accordingly.27-29 
For the adjustment of the penalty scalar, a rough local 
optimization method was used.30 Gholami et al.31 treated 
the penalty scalar as a variable that needs to be inverted. In 
addition, Gholami et al.32 discussed the physical meaning 
of the reconstructed wavefield, while Lin et al.33 elucidated 
the mechanism of low-wavenumber update in WRI.

In general, although both extended FWI and WRI are 
essentially ES-FWI, there are apparent differences between 
them. Extended FWI expands space by introducing 

seismic-related variables (e.g., offset, wavelet) into model 
space, while WRI uses model space in the sense of the 
wavefield. Extended FWI utilizes the introduced space 
or variables to achieve an accurate data fit, while WRI 
reduces the impact of non-linearity and non-physical 
data through wavefield matching. However, both methods 
require delicate settings of the inversion parameters. 
Operto et al.34 reviewed the above ES-FWI methods within 
the framework of inverse scattering theory, in which 
the Lippmann–Schwinger equation was used to govern 
modeling.34 In addition to ES-FWI, the Hessian is typically 
used to ensure inversion accuracy in traditional FWI. 
However, computing the Hessian remains challenging due 
to its large scale. Furthermore, the Hessian is commonly 
not included in WRI or ES-FWI.

In this paper, we analyze these inversion methods 
using the Bayesian inference theory. Notably, all inversion 
methods can be formulated uniformly using Bayesian 
inference theory, which can bring substantial advantages.3,35 
First, deriving inversion methods from Bayesian inference 
can provide a more accurate representation of the problem. 
Figueiredo et al.36 and Huang et al.37 used the Bayesian 
theory to develop a more precise inversion method for 
an anisotropic medium.36,37 Furthermore, a reduced non-
linear inversion can be obtained. Moreover, Leeuwen38 
and Lin et al.39 re-derived WRI from Bayesian inference 
and accelerated the inversion by redefining the theoretical 
covariance matrix.38,39

The main contribution of this paper is a simplified 
theoretical definition of the covariance matrix to alleviate 
the computational problem of WRI. This paper is organized 
as follows: first, the WRI is re-derived from Bayesian 
inference to illustrate how the statistical variables included 
in the model or data domain Hessian affect or improve the 
inversion methods. Next, by comparing the data and model 
domain methods, we provide a simplified extended source 
calculation method. Finally, corresponding numerical tests 
are shown to demonstrate the effectiveness of different 
theoretical covariance matrix definitions.

2. Theory
2.1. Seismic inversion based on Bayesian inference

Various ES-FWI methods have been developed for different 
concerns. In this section, we derive the original WRI from 
Bayesian inference, in which the Hessian is naturally 
introduced. First, the wavefield term u is introduced into 
the Bayesian inference (Equation I):39

� � �post like prioru m d d m u u m, , ,| |� � � � � � � � (I)
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in which m denotes the interested model parameters, 
d represents the observed data, P is the sampling operator, 
u denotes the seismic source, A is the forward operator, and 
∑obs, ∑syn are the measurement and theoretical covariance 
matrices, respectively (Equation II). ρprior denotes the prior 
knowledge of the wavefield and model parameters, which 
will be excluded in this paper to simplify the calculation. 
Maximizing the posterior leads to the following 
minimization problem:

* 1

* 1

( , )  ( ) ( )

                                  ( ( ) ) ( ( )
obs

syn

m u d Pu d Pu

q A m u q A m u

φ −

−

= − Σ − +

− Σ −
�(III)

There are two ways to solve Equation III, which will be 
discussed in the following section.

2.2. WRI based on the data-domain Hessian

We assumed the measurement uncertainty is random, and 
the measurement covariance matrix is �obs obs I

� �1  . 
Then, by keeping the model m fixed and setting the 
derivative of Equation III with respect to the wavefield to 
zero, we obtain Equation IV:

* * ˆ obs synAu q A P dλ δ−= + Σ � (IV)

Where  ˆ d d Puδ = −  and û  denotes the reconstructed 
wavefield. The reconstructed wavefield on both sides 
makes the above equation challenging to solve, and 
moving the reconstructed wavefield to one side is difficult 
to perform due to the complex combination of the forward 
operators. Approximate or alternative measurements have 
been proposed by Lin et al.12 to address these challenges.12 
Essentially, the above equation involves the data-domain 
Hessian, where δd can be solved by Equation V:

0
    dH d dδ δ= � (V)

where δd0 = d−Pu, u is the background or current 
wavefield, and

H PA PA Id obs syn� �� � ( ) ( )*1 1� � (VI)

as in Gholami et al.40 (Equation VI).

With the reconstructed wavefield, û  we can obtain 
an update for the model parameters by calculating the 
derivative of the objective function with respect to 

the model, and replacing the latter term according to 
Equation IV, we have Equation VII:

* 1 * * *( ) ( ) (ˆ )
ˆ ˆ

syn obs
Au Aug Au q A P d
m m

λ δ− −∂ ∂
= − Σ − = −

∂ ∂ � (VII)
The gradient is a zero-lag correlation between the 

reconstructed wavefield and the back-propagated residual 
blurred by the data-domain Hessian with the theoretical 
covariance matrix. The calculation of the data-domain 
Hessian is computationally infeasible due to its large 
scale. Lin et al.39 proposed a point spread function-based 
method to alleviate this challenge. Furthermore, a proper 
theoretical covariance matrix definition has been proven 
to be another way to mitigate the computational problem.39

2.3. WRI based on the model-domain Hessian

Clearly, the data-domain Hessian is challenging to compute; 
however, it remains essential for achieving accurate WRI. 
An alternative is to reformulate the problem in a different 
domain. By starting with the data-domain Hessian and 
the weighted residual in WRI and FWRI, and multiplying 
(PA−1)* on both sides of Equation V, we transform it into 
the model-domain equation (Equation VIII):

1 * 1
0[ ( ) ( ) ]ˆ  obs synPA PA I s sλ − − Σ + = � (VIII)

where 1 * 1 *  0
0  ( ) ,   (ˆ )obss PA d s PA dδ λ δ− −= = , similar 

to the adjoint state definitions.41 In this case, instead 
of inverting the data-domain Hessian, we consider the 
inversion of the model-domain Hessian (Equation IX):

H PA PA Im obs syn� �� � ( ) ( )*1 1 � � (IX)

In this case, the wavefield reconstruction process 
becomes Equation X:

1 ˆ ˆ obs synAu q sλ −= + Σ � (X)

The transformation significantly alleviates the 
computation memory problem, and the model gradient can 
be simplified into a straightforward form (Equation XI):

* *ˆ  ( ) ( , )ˆ ˆAg u q s s
m
∂

=
∂ � (XI)

Next, we can divide the gradient into two terms by 
separating the wavefields excited by different sources q 
(d ŝ ). The first term (Equation XII):

* *
1 0   ( ) ˆ ( ) ˆuAg q s

m
∂

=
∂ � (XII)

Which is also the traditional FWI gradient, except for 
the blurred residual. The second term is (Equation XIII):
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The above two terms are identical to the FWRI gradients 
developed in Lin et al.,33 and its original Equation XI is 
directly derived from WRI, similar to the source extended 
FWI except for the source or data differences.

By comparison, we can see that the only difference 
between the data-domain and model-domain solutions 
is the extended source calculation, and the gradient 
calculation can be made through Equations XII and XIII.

2.4. The comparison between the two Hessian 
matrices

Here we write the two Hessian-based equations as follows 
(Equations XIV & XV):

1 1 *  0[ ( ) ( ) ]   obs synPA PA I d dλ δ δ− −Σ + = � (XIV)

1 * 1  0[ ( ) )   ˆ( ]obs synPA PA I s sλ − − Σ + = � (XV)

Both equations are challenging to solve: Equation XIV 
involves a largeale matrix inverse calculation for the data 
residual, and Equation IV needs to operaten each wavefield 
or the extended source at each time step or frequency slice. 
A  source-based definition of the theoretical covariance 
matrix has been proposed to alleviate the data-domain 
computation problem. Similarly, a proper definition of the 
theoretical covariance matrix should simplify the model-
domain calculation problem.

Assuming the determinant of the first part of the 
model domain Hessian is significantly larger than the 
identity matrix, and all variables can be inverted, we 
have an approximated extended source expression 
(Equation XVI):

1 1 1 * * 0 ˆ obs syns AP P A sλ− − − −≈ Σ � (XVI)

Substituting the s0 definition into Equation XVI, we 
have Equation XVII:

1 1 1 * * * * 0 1 1 1  0    ˆ  obs syn obs syns AP P A A P d AP dλ δ λ δ− − − − − − − −= Σ = Σ

� (XVII)

Notably, the derivation of the above equations relies on 
rough approximations and extreme assumptions. For the 
first part, the value of the first term of the Hessian, which is 
larger than the identity matrix, can be easily satisfied since 
it is a diagonal domain matrix and can be scaled by the 
theoretical matrix. We selected an exponential function, 
which can ensure this assumption. As for the second 
assumption, it essentially used the inverse of two operators. 

One is the forward operator A, which is commonly used 
in inversion and imaging methods and applicable in the 
frequency codes. The other is the sampling operator P, 
which is mathematically incorrect to approximate the 
inverse of the adjoint P−1 = P*.

However, the sampling operator is a dimensionality 
reduction operator that reduces the whole model 
space data to the receiver points, which is inevitable in 
seismic exploration. Therefore, one can only hope that 
the reduced data can recover the wavefield in the whole 
model space through the forward operator. In other 
words, the approximation of the sampling operator 
is mathematically incorrect but physically applicable. 
Although Equation XVII is similar to the extended source 
Equation  XI in Huang et al.,18 the specific calculation is 
different: The SE-FWI method is a more accurate solution 
that requires additional calculation and storage of the Green 
function, while the proposed method in this paper is based 
on an approximation that only requires one additional 
partial differential equation (PDE) solver. In general, the 
extended source can be considered an operator on the 
receiver residual, where the operator is a function of the 
theoretical covariance matrix and the forward operator. 
The overall operator may help us to define the theoretical 
covariance matrix (Equation XVIII):

2
1 1

2
ˆ

syn syn synA m L
t

− −  ∂
∑ = Σ = Σ −  ∂ 

� (XVIII)

Where L is the Laplacian operator, the above 
equation reduces to a function in the receiver size due 
to the invertible assumption of the sampling operator P. 
Furthermore, the model-domain Hessian operates on each 
wavefield, while the original data comes from the source or 
receiver locations.

In general, through a series of approximations, 
assumptions, and derivations, we provide a straightforward 
method to define the theoretical covariance matrix, 
which ensures an accurate inversion with an affordable 
computational cost (Equation XIX):

( ) ( ) ( )
2

1
 2

ˆ  ,syn syn r r r rx x m x L x
t

−  ∂
∑ =Σ − 

∂  
� (XIX)

where xr denotes the receiver locations.

Next, various theoretical covariance matrix definitions 
were given according to the inversion problem. Notably, 
through the above derivation, the calculation of the 
extended source was made simpler and more cost-effective 
(Equation XX), which is a simple operation for the original 
data residual at the receiver location.
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Various theoretical covariance matrix definitions are 
given and discussed in the following numerical test section. 
This part is only used for the wavefield reconstruction; the 
model gradient is calculated using Equation VII.

3. Numerical tests
3.1. Inversion test with smoothed initial model

In this section, we applied the proposed method to the 
classical Marmousi model. The size of the Marmousi model 
in Figure 1 is 250 × 767 with a 10 m space interval in each 
direction. A  Ricker wavelet with 8  Hz central frequency 
with 2 Hz cutoff was used to simulate data in Figure 2. The 
recorded time was 3 s with a sampling of 1 ms. A total of 
30 shots with 200 m intervals were set at a depth of 10 m 
beginning at 340 m, and the receivers were evenly distributed 
at a depth of 10 m at every grid point. The smoothed initial 
model is shown in Figure  3, which can be obtained by 
tomography or velocity analysis.

First, we presented the extended source used in WRI 
in Figure 4, where Figure 4A is the classical data residual 
used in the traditional WRI, and Figure 4B is the extended 
source calculated by Equation XX. We can see that the 
derived extended source exhibited a wider wavelength, 
making the misfit easier.

The final inversion results are shown in Figure 5, where 
Figure 5A is the traditional FWI result, Figure 5B plots the 
traditional WRI result, and Figure  5C is the WRI result 
based on the extended source (WRI-I). Due to the severely 
smoothed initial model, the traditional FWI failed to recover 
part of the key structures, especially in the deep parts. By 
comparison, the classical WRI provided a relatively accurate 
inversion result, where all structures were accurately located 
and inverted with limited artifacts. The WRI-I provided 
an accurate inversion result, where all the structures are 
recovered (especially the middle complex part) with fewer 
artifacts. Moreover, the computational cost of the new WRI 
is cheaper than that of the classical WRI. Both WRI results 
provided a more accurate inversion result at the deep part. 
For a clearer comparison, we extracted two traces from the 
true velocity and inversion results (Figure 6).

3.2. Inversion test with linear initial model

The basic parameters for the modeling and inversion were 
the same, except for the initial model, which is linear in 
Figure  7, causing more nonlinearity for the inversion. 
Furthermore, unlike other inversion tests, the initial 

Figure 3. The smoothed Marmousi model

Figure 1. The Marmousi model

Figure 4. Extended source comparison between (A) the data resource 
calculated based on the identity matrix definition, and (B) the extended 

source calculated by Equation XX

BA

Figure 2. (A and B) Wavelet used for modeling and inversion

B

A
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model was significantly different from the true velocity, 
particularly in the deeper region. Therefore, we provided 
a new theoretical covariance matrix definition to aid the 
inversion (Equation XXI):

� � � � �
syn

g rexp


� (XXI)

Where g is a manually picked function, and r denotes the 
distance between an arbitrary point and the source location: 
g(r) = 1/r. This equation is essentially an exponential 
function to emphasize the source distance, which is a 
known and relatively clear variable that can be used as an 
additional quantity for assistance in extended FWI or WRI.

Naturally, the extended sources used in WRI are shown 
in Figure 8, where Figure 8A is the classical data residual 
used in the traditional WRI, Figure  8B is the extended 
source calculated by Equation ⅩⅩ, and Figure  8C is 
the extended source calculated by Equation ⅩⅩⅠ. We 
can see that the data residual calculated by the newly 
defined theoretical covariance matrix is more structured 

at the waveform edges, and the deep reflections are more 
significant.

Due to the strong non-linearity caused by the initial 
model, the traditional FWI failed to perform an effective 
inversion and still showed no sign of convergence at 
the 50th  iteration. The result (Figure  9A) contained 
many artifacts and was different from the true model. 
However, the traditional WRI (Figure  9B) produced an 
accurate inversion result, but with stronger artifacts that 
contaminated the shallow layers. Figure 9C plots the WRI-I, 

Figure 7. Linear initial model

Figure  8. Extended source comparison. (A) Identity matrix definition, 
(B) calculated by Equation ⅩⅩ, and (C) calculated by Equation ⅩⅩⅠ.

CBA

Figure  6. Comparison of vertical velocity profiles at different depths. 
(A) x = 3,800 m and (B) x = 6,500 m.
Abbreviations: FWI: Full-waveform inversion; WRI: Wavefield 
reconstruction inversion.

BA

Figure 5. Inversion results. (A) Traditional full-waveform inversion result, (B) traditional wavefield reconstruction inversion (WRI) result, and (C) WRI 
result based on extended source.

CB

A
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and Figure 9D is the WRI-I calculated by Equation ⅩⅩⅠ. 
Both WRI methods based on the extended source yielded 
accurate inversion results. Meanwhile, the traditional 
one, that is, WRI-I, was still unable to obtain an accurate 
model in the middle. Furthermore, with a carefully defined 
theoretical covariance matrix, the WRI-I calculated by 
Equation ⅩⅩⅠ provided a very accurate inversion result 
that is very close to the true model without any evident 
artifacts. A curve comparison (Figure 10) is also provided 
to support the above claims.

Furthermore, a noisy test was conducted to highlight 
the robustness of the proposed method with respect to 
noise and to clarify the determination of the measurement 
constant. Figure 11 is the extended source used in WRI. 
An identity measurement covariance matrix can be used 
to describe random noise. Considering the role of the 
measurement constant λobs in the extended source equation 
and gradient formula, a subjectively determined constant 
that preserves modeling stability is sufficient, as was done 
in the previous tests. In the noise test, the constant was the 
same as the signal-to-noise ratio, which is estimated using 
the amplitude spectrum method.

As for the final inversion results (Figure  12), we 
observed that the noise in the extended source was entirely 
random and therefore did not form coherent wavefields 
capable of generating artifacts. However, the final results 
based on different theoretical covariance matrices showed 
slight deviations compared to the noise-free tests.

4. Discussion
The assumptions and approximations used in this study 
are generally applied in seismic inversion or imaging. 
For example, in most WRI methods, in which the penalty 
scalar is subjectively defined, the constant is commonly 
very large,22 which is consistent with our assumption that 
the main body of the model domain Hessian is larger than 
the identity matrix. Moreover, the sampling operator is also 

defined subjectively, which can be the size of Nmodel × Nreceiver 
or Nmodel × Nmodel. Furthermore, Equation ⅩⅩ provided 
the final calculation method for the extended source used 
in this paper, ensuring the accuracy of the reconstructed 
wavefield. However, this series of approximations mainly 
focused on the computational time by transforming the 
space calculation to the receiver calculation, which weakens 
the potential of WRI in the model space, making it more 
applicable in complex cases with accurately calculated 
extended sources. Notably, the theoretical covariance 
matrix was defined before performing inversion, while 
most Bayesian-based inversion methods use the covariance 
matrix to evaluate the accuracy or resolution of the final 
results. The main difference between the two methods is the 
different definitions of the covariance matrix. In our method, 
the covariance matrix is separated into measurement and 
theoretical covariance matrices, representing different error 
distributions, respectively, while the other Bayesian-based 
method combines the two covariance matrices into one. 
However, according to the covariance matrix definition 

Figure 10. Trace comparison. (A) Located at x = 3,800 m, and (B) located 
at x = 6,500 m.
Abbreviations: FWI: Full-waveform inversion; WRI: Wavefield 
reconstruction inversion.

BA

Figure 9. Inversion results. (A) Traditional FWI result, (B) traditional WRI result, (C) WRI result based on the extended source, and (D) WRI result based 
on the defined extended source.
Abbreviations: FWI: Full-waveform inversion; WRI: Wavefield reconstruction inversion.

BA

DC
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in the Bayesian-based methods, the proposed method can 
be further evaluated based on the combined covariance 
matrix. Regarding the computational cost, the traditional 
WRI requires three PDE solvers, while the proposed 
method only requires two, similar to the traditional FWI. In 
addition, the source-extended FWI also needed three PDE 
solvers, the same as the fast WRI proposed by Lin et al.33

5. Conclusion
This study introduced the Hessian, a function of the 
measurement and theoretical covariance matrices, into 
WRI based on Bayesian inference. Furthermore, the 
connections between the data and model domain equations 
were discussed, which led to a simplified extended source 
calculation method for the extended source. A theoretical 
covariance matrix definition based on the new calculation 

method was proposed and validated through numerical 
tests. Further research may focus on more theoretical 
covariance matrix definitions and their effect on inversion.
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