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Abstract

The Hessian matrix, though computationally expensive, plays a critical role
in ensuring inversion accuracy and mitigating cross-talk in multi-parameter
inversion. The well-known wavefield reconstruction inversion (WRI) or extended
space full-waveform inversion can reduce nonlinearity and mitigate cycle skipping
in traditional FWI. However, most implementations omit the Hessian. In this study,
the Hessian—formulated as a function of measurement and theoretical covariance
matrices—is incorporated into WRI within a Bayesian inference framework.
Furthermore, the connections between the data- and model-domain Hessian
equationsarediscussed, leading to a simplified calculation method for the extended
source. Based on this approach, a new definition for the theoretical covariance
matrix is proposed and validated through numerical tests, demonstrating its
accuracy.

Keywords: Inversion; Bayesian inference; Theory covariance matrix

1. Introduction

Full-waveform inversion (FWI),"* a tool commonly used to invert subsurface structures,
has been widely used in geophysics exploration.** However, as a data-fitting algorithm in
the least squares sense, FWT suffers from cycle skipping and nonlinearity, primarily due
to the difficulty of predicting the data resulting from the inexpressive wave equation and
the limited acquisition aperture.®

There are methods specifically designed to address cycle skipping, which generally
involves a complex operation for each trace®” or shot® to achieve accurate matching.
An advanced method for measuring distance using optimal transport distances has
garnered the attention of a wide range of researchers and has been well-developed.”!?
As for nonlinearity, the multi-scale strategy,'>”® changing the inversion domain," or
modifying the objective function form'® can help alleviate this limitation.
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In addition to the above methods, two other directions
have been proposed and developed into relatively mature
methods. One is an extended space FWI (ES-FWTI), which
introduces another search space in the inversion.

There are two ways to build the ES-FWI method. The
first approach is to add non-physical degrees of freedom
to the model, thereby pushing the synthetic data to better
fit the observed data.’® However, new space introduces
additional computational costs through either increased
calculation time for the new forward operator or more
storage requirements for new variables. Various methods
have been proposed to reduce computational cost,'”'
in which the extended source FWI" is a more efficient
method, as it only inverts the extended source and the
model parameters. A study by Symes® provided a detailed
analysis of why the extended source FWTI is effective.

The other method is the wavefield reconstruction
inversion (WRI), which starts by incorporating the wave
equation into the objective function to reduce nonlinearity
and computational cost.”’ Leeuwen and Herrmann?®
conducted a more mathematical analysis of the proposed
method and carefully analyzed the selection strategy of the
penalty scalar.? However, it was initially proposed in the
frequency domain, requiring an augmented wave equation
that is challenging to solve in the time domain. In addition,
the physical meaning of certain variables (reconstructed
wavefield, penalty scalar) and the tuning method for the
penalty scalar when solving WRI require clarification.

Several studies have been conducted to address the
above challenge, including rough approximations that
enable WRI in the time domain,”* resulting in more
precise solutions proposed. Rizzuti et al.*® proposed
a data-dual formulation of WRI, where the Lagrange
formula is used to reformulate the WRI, making it easier
to apply to large three-dimensional models in the time
domain.”»?*¢ Moreover, the iterative refining-WRI method
was proposed, in which an enhanced Lagrange method
equipped with operator splitting is used instead of the
penalty method, with its regularization and corresponding
expansion in other media investigated accordingly.”’-*
For the adjustment of the penalty scalar, a rough local
optimization method was used.*® Gholami et al.*' treated
the penalty scalar as a variable that needs to be inverted. In
addition, Gholami et al.** discussed the physical meaning
of the reconstructed wavefield, while Lin et al.”* elucidated
the mechanism of low-wavenumber update in WRI.

In general, although both extended FWI and WRI are
essentially ES-FWI, there are apparent differences between
them. Extended FWI expands space by introducing

seismic-related variables (e.g., offset, wavelet) into model
space, while WRI uses model space in the sense of the
wavefield. Extended FWT utilizes the introduced space
or variables to achieve an accurate data fit, while WRI
reduces the impact of non-linearity and non-physical
data through wavefield matching. However, both methods
require delicate settings of the inversion parameters.
Operto et al.** reviewed the above ES-FWI methods within
the framework of inverse scattering theory, in which
the Lippmann-Schwinger equation was used to govern
modeling.** In addition to ES-FWI, the Hessian is typically
used to ensure inversion accuracy in traditional FWI.
However, computing the Hessian remains challenging due
to its large scale. Furthermore, the Hessian is commonly
not included in WRI or ES-FWI.

In this paper, we analyze these inversion methods
using the Bayesian inference theory. Notably, all inversion
methods can be formulated uniformly using Bayesian
inference theory, which can bring substantial advantages.>*
First, deriving inversion methods from Bayesian inference
can provide a more accurate representation of the problem.
Figueiredo et al.** and Huang et al.”’ used the Bayesian
theory to develop a more precise inversion method for
an anisotropic medium.*** Furthermore, a reduced non-
linear inversion can be obtained. Moreover, Leeuwen?®
and Lin et al.** re-derived WRI from Bayesian inference
and accelerated the inversion by redefining the theoretical
covariance matrix.”*

The main contribution of this paper is a simplified
theoretical definition of the covariance matrix to alleviate
the computational problem of WRI. This paper is organized
as follows: first, the WRI is re-derived from Bayesian
inference to illustrate how the statistical variables included
in the model or data domain Hessian affect or improve the
inversion methods. Next, by comparing the data and model
domain methods, we provide a simplified extended source
calculation method. Finally, corresponding numerical tests
are shown to demonstrate the effectiveness of different
theoretical covariance matrix definitions.

2.Theory

2.1. Seismic inversion based on Bayesian inference

Various ES-FWI methods have been developed for different
concerns. In this section, we derive the original WRI from
Bayesian inference, in which the Hessian is naturally
introduced. First, the wavefield term u is introduced into
the Bayesian inference (Equation I):*

ppost (u’ m|d) C Piike (d|m’u) pprior (u’m) (I)
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Where the likelihood of probability density function is:

/%ke(dW,M): exp——(a’ Pu)z (d—-Pu)+

obs

exp—— (q Au) £, (q— Au)

(D)

in which m denotes the interested model parameters,
d represents the observed data, P is the sampling operator,
u denotes the seismic source, A is the forward operator, and
X0 L, are the measurement and theoretical covariance
matrices, respectively (EquationII). p . denotes the prior
knowledge of the wavefield and model parameters, which
will be excluded in this paper to simplify the calculation.
Maximizing the posterior leads to the following
minimization problem:

d(m,u)=(d - Pu) Zobs (d - Pu)+

* -1
(g = AGmw)' 55, = AGme

There are two ways to solve Equation III, which will be
discussed in the following section.

2.2. WRI based on the data-domain Hessian

We assumed the measurement uncertainty is random and
the measurement covariance matrix is Z,h = Ay
Then, by keeping the model m fixed and setting the
derivative of Equation III with respect to the wavefield to
zero, we obtain Equation IV:

Aii=q + 2, AP S5d Iv)

obs syn

Where 6d=d—Pu and u denotes the reconstructed
wavefield. The reconstructed wavefield on both sides
makes the above equation challenging to solve, and
moving the reconstructed wavefield to one side is difficult
to perform due to the complex combination of the forward
operators. Approximate or alternative measurements have
been proposed by Lin et al.** to address these challenges."
Essentially, the above equation involves the data-domain
Hessian, where dd can be solved by Equation V:

H,5d=5d° V)

where dd” = d-Pu, u is the background or current
wavefield, and

H; =2 (PA™Y +1 (V1)

obs

(PA™Hz

syn

as in Gholami et al.** (Equation VI).

With the reconstructed wavefield, ;; we can obtain
an update for the model parameters by calculating the
derivative of the objective function with respect to

the model, and replacing the latter term according to
Equation IV, we have Equation VII:
g =~y (i) =~ () 4 P64
(VII)
The gradient is a zero-lag correlation between the
reconstructed wavefield and the back-propagated residual
blurred by the data-domain Hessian with the theoretical
covariance matrix. The calculation of the data-domain
Hessian is computationally infeasible due to its large
scale. Lin et al.*® proposed a point spread function-based
method to alleviate this challenge. Furthermore, a proper
theoretical covariance matrix definition has been proven
to be another way to mitigate the computational problem.*

2.3. WRI based on the model-domain Hessian

Clearly, the data-domain Hessian is challenging to compute;
however, it remains essential for achieving accurate WRI.
An alternative is to reformulate the problem in a different
domain. By starting with the data-domain Hessian and
the weighted residual in WRI and FWRI, and multiplying
(PA™)* on both sides of Equation V, we transform it into
the model-domain equation (Equation VIII):

[Aops (PAT) (PATHZ,, +115=s5, (VIII)
where §= (PAfl)*(?d,so— s (PA ) *5d°, similar
to the adjoint state definitions.” In this case, instead
of inverting the data-domain Hessian, we consider the
inversion of the model-domain Hessian (Equation IX):

(PAYY (PA™HE (IX)

obs syn
In this case, the wavefield reconstruction process
becomes Equation X:

Aﬁ =q + ﬂ’obs syn (X)
The transformation significantly alleviates the
computation memory problem, and the model gradient can

be simplified into a straightforward form (Equation XI):
OA % o a¥n
=(=—) u(q,$) s
g=( ) ulg.5) (XT)

Next, we can divide the gradient into two terms by
separating the wavefields excited by different sources g
(d §). The first term (Equation XII):

(a—AYﬁo(q)

(XII)

Which is also the traditional FWI gradient, except for
the blurred residual. The second term is (Equation XIII):
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2= Ay a6y s (XIID)
om

The above two terms are identical to the FWRI gradients
developed in Lin et al.,”* and its original Equation XI is
directly derived from WRI, similar to the source extended
FWTI except for the source or data differences.

By comparison, we can see that the only difference
between the data-domain and model-domain solutions
is the extended source calculation, and the gradient
calculation can be made through Equations XII and XIII.

2.4.The comparison between the two Hessian
matrices

Here we write the two Hessian-based equations as follows
(Equations XIV & XV):

[Aops (PATZ,, (PAT) +115d=5d° (XIV)
[Ay (PATY (PAE,, +1]5=5" (XV)

Both equations are challenging to solve: Equation XIV
involves a largeale matrix inverse calculation for the data
residual, and Equation IV needs to operaten each wavefield
or the extended source at each time step or frequency slice.
A source-based definition of the theoretical covariance
matrix has been proposed to alleviate the data-domain
computation problem. Similarly, a proper definition of the
theoretical covariance matrix should simplify the model-
domain calculation problem.

Assuming the determinant of the first part of the
model domain Hessian is significantly larger than the
identity matrix, and all variables can be inverted, we
have an approximated extended source expression
(Equation XVI):

§2 A Xy AP PT A" (XVv1)

Substituting the s° definition into Equation XVI, we
have Equation XVII:

§= A S AP P A AT P 8d =53 AP 5d°

syn obs
(XVII)

Notably, the derivation of the above equations relies on
rough approximations and extreme assumptions. For the
first part, the value of the first term of the Hessian, which is
larger than the identity matrix, can be easily satisfied since
it is a diagonal domain matrix and can be scaled by the
theoretical matrix. We selected an exponential function,
which can ensure this assumption. As for the second
assumption, it essentially used the inverse of two operators.

One is the forward operator A, which is commonly used
in inversion and imaging methods and applicable in the
frequency codes. The other is the sampling operator B
which is mathematically incorrect to approximate the
inverse of the adjoint P! = P*.

However, the sampling operator is a dimensionality
reduction operator that reduces the whole model
space data to the receiver points, which is inevitable in
seismic exploration. Therefore, one can only hope that
the reduced data can recover the wavefield in the whole
model space through the forward operator. In other
words, the approximation of the sampling operator
is mathematically incorrect but physically applicable.
Although Equation XVII is similar to the extended source
Equation XI in Huang et al.,'® the specific calculation is
different: The SE-FWI method is a more accurate solution
that requires additional calculation and storage of the Green
function, while the proposed method in this paper is based
on an approximation that only requires one additional
partial differential equation (PDE) solver. In general, the
extended source can be considered an operator on the
receiver residual, where the operator is a function of the
theoretical covariance matrix and the forward operator.
The overall operator may help us to define the theoretical
covariance matrix (Equation XVIII):

- o2
zv n = E;]nA = 2;1n m—-—L (XVIID)
Sy sy ) 6t2

Where L is the Laplacian operator, the above
equation reduces to a function in the receiver size due
to the invertible assumption of the sampling operator P,
Furthermore, the model-domain Hessian operates on each
wavefield, while the original data comes from the source or
receiver locations.

In general, through a series of approximations,
assumptions, and derivations, we provide a straightforward
method to define the theoretical covariance matrix,
which ensures an accurate inversion with an affordable
computational cost (Equation XIX):

~ 2
Ygn =Zom (xrsxr)[m(xr)(j?—L(xr )} (XIX)

where x_denotes the receiver locations.

Next, various theoretical covariance matrix definitions
were given according to the inversion problem. Notably,
through the above derivation, the calculation of the
extended source was made simpler and more cost-effective
(Equation XX), which is a simple operation for the original
data residual at the receiver location.
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- - &’
s(xr,t)=/10bls2Syln(x,,x,)l:m(x,)y—L(xr)} 50
XX
5d° (x,,1)

Various theoretical covariance matrix definitions are
given and discussed in the following numerical test section.
This part is only used for the wavefield reconstruction; the
model gradient is calculated using Equation VII.

3. Numerical tests
3.1.Inversion test with smoothed initial model

In this section, we applied the proposed method to the
classical Marmousi model. The size of the Marmousi model
in Figure 1 is 250 x 767 with a 10 m space interval in each
direction. A Ricker wavelet with 8 Hz central frequency
with 2 Hz cutoff was used to simulate data in Figure 2. The
recorded time was 3 s with a sampling of 1 ms. A total of
30 shots with 200 m intervals were set at a depth of 10 m
beginningat 340 m, and the receivers were evenly distributed
at a depth of 10 m at every grid point. The smoothed initial
model is shown in Figure 3, which can be obtained by
tomography or velocity analysis.

First, we presented the extended source used in WRI
in Figure 4, where Figure 4A is the classical data residual
used in the traditional WRI, and Figure 4B is the extended
source calculated by Equation XX. We can see that the
derived extended source exhibited a wider wavelength,
making the misfit easier.

The final inversion results are shown in Figure 5, where
Figure 5A is the traditional FWI result, Figure 5B plots the
traditional WRI result, and Figure 5C is the WRI result
based on the extended source (WRI-I). Due to the severely
smoothed initial model, the traditional FWTI failed to recover
part of the key structures, especially in the deep parts. By
comparison, the classical WRI provided a relatively accurate
inversion result, where all structures were accurately located
and inverted with limited artifacts. The WRI-I provided
an accurate inversion result, where all the structures are
recovered (especially the middle complex part) with fewer
artifacts. Moreover, the computational cost of the new WRI
is cheaper than that of the classical WRIL. Both WRI results
provided a more accurate inversion result at the deep part.
For a clearer comparison, we extracted two traces from the
true velocity and inversion results (Figure 6).

3.2. Inversion test with linear initial model

The basic parameters for the modeling and inversion were
the same, except for the initial model, which is linear in
Figure 7, causing more nonlinearity for the inversion.
Furthermore, unlike other inversion tests, the initial

5000

~ 500 2
= 1000 4000 £
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2.1500 e — 3000 2

2000 — e =
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2500 P > =
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Figure 1. The Marmousi model
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Figure 2. (A and B) Wavelet used for modeling and inversion
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Figure 3. The smoothed Marmousi model
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Distance (m)

Figure 4. Extended source comparison between (A) the data resource
calculated based on the identity matrix definition, and (B) the extended
source calculated by Equation XX
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Figure 5. Inversion results. (A) Traditional full-waveform inversion result, (B) traditional wavefield reconstruction inversion (WRI) result, and (C) WRI

result based on extended source.

A : B o .
—True velocity —True velocity
——FWI result ——FWI result
WRI result 'WRI result
500 — WRI-I result 500 - — WRI-I result |

E 1000 E 1000

< £

& &

/1500 21500

2000 2000 -

2500
2000 3000 4000 5000 6000
Velocity (m/s)

2500
1000 2000 3000 4000 5000
Velocity (m/s)

Figure 6. Comparison of vertical velocity profiles at different depths.
(A) x =3,800 m and (B) x = 6,500 m.

Abbreviations: FWI: Full-waveform inversion; WRI: Wavefield
reconstruction inversion.

model was significantly different from the true velocity,
particularly in the deeper region. Therefore, we provided
a new theoretical covariance matrix definition to aid the
inversion (Equation XXI):

S = exp S0 (XXT)

Where gis a manually picked function, and r denotes the
distance between an arbitrary point and the source location:
g(r) = 1/r. This equation is essentially an exponential
function to emphasize the source distance, which is a
known and relatively clear variable that can be used as an
additional quantity for assistance in extended FWI or WRL

Naturally, the extended sources used in WRI are shown
in Figure 8, where Figure 8A is the classical data residual
used in the traditional WRI, Figure 8B is the extended
source calculated by Equation XX, and Figure 8C is
the extended source calculated by Equation XXI. We
can see that the data residual calculated by the newly
defined theoretical covariance matrix is more structured

Velocity (m/s)

1000 2000 3000 4000 5000 6000 700
Distance (m)

Figure 7. Linear initial model

3
2000 6000 2000 6000

2000 6000

Distance (m) Distance (m) Distance (m)

Figure 8. Extended source comparison. (A) Identity matrix definition,
(B) calculated by Equation XX, and (C) calculated by Equation XXI.

at the waveform edges, and the deep reflections are more
significant.

Due to the strong non-linearity caused by the initial
model, the traditional FWI failed to perform an effective
inversion and still showed no sign of convergence at
the 50" iteration. The result (Figure 9A) contained
many artifacts and was different from the true model.
However, the traditional WRI (Figure 9B) produced an
accurate inversion result, but with stronger artifacts that
contaminated the shallow layers. Figure 9C plots the WRI-I,
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Figure 9. Inversion results. (A) Traditional FWT result, (B) traditional WRI result, (C) WRI result based on the extended source, and (D) WRI result based

on the defined extended source.

Abbreviations: FWT: Full-waveform inversion; WRI: Wavefield reconstruction inversion.

and Figure 9D is the WRI-I calculated by Equation XXI.
Both WRI methods based on the extended source yielded
accurate inversion results. Meanwhile, the traditional
one, that is, WRI-I, was still unable to obtain an accurate
model in the middle. Furthermore, with a carefully defined
theoretical covariance matrix, the WRI-I calculated by
Equation XXI provided a very accurate inversion result
that is very close to the true model without any evident
artifacts. A curve comparison (Figure 10) is also provided
to support the above claims.

Furthermore, a noisy test was conducted to highlight
the robustness of the proposed method with respect to
noise and to clarify the determination of the measurement
constant. Figure 11 is the extended source used in WRL
An identity measurement covariance matrix can be used
to describe random noise. Considering the role of the
measurement constant / , in the extended source equation
and gradient formula, a subjectively determined constant
that preserves modeling stability is sufficient, as was done
in the previous tests. In the noise test, the constant was the
same as the signal-to-noise ratio, which is estimated using
the amplitude spectrum method.

As for the final inversion results (Figure 12), we
observed that the noise in the extended source was entirely
random and therefore did not form coherent wavefields
capable of generating artifacts. However, the final results
based on different theoretical covariance matrices showed
slight deviations compared to the noise-free tests.

4, Discussion

The assumptions and approximations used in this study
are generally applied in seismic inversion or imaging.
For example, in most WRI methods, in which the penalty
scalar is subjectively defined, the constant is commonly
very large,”? which is consistent with our assumption that
the main body of the model domain Hessian is larger than
the identity matrix. Moreover, the sampling operator is also

A o B o :
— True velocity —True velocity
——FWI result ——FWI result
——WRI result —WRI result
500 - WRI-I result - 500 WRI-I result
— WRI-II result
gwoo r 51000
£ £
= 2
3 3
21500 21500
2000 - 2000
Y-
2500 : - '
1000 2000 3000 4000 5000 2000 3000 4000 5000 6000

Velocity (m/s) Velocity (m/s)

Figure 10. Trace comparison. (A) Located at x = 3,800 m, and (B) located
at x = 6,500 m.
Abbreviations: FWTI:
reconstruction inversion.

Full-waveform inversion; WRI: Wavefield

defined subjectively, which can be the size of N, . xN =
or N . x N .. Furthermore, Equation XX provided
the final calculation method for the extended source used
in this paper, ensuring the accuracy of the reconstructed
wavefield. However, this series of approximations mainly
focused on the computational time by transforming the
space calculation to the receiver calculation, which weakens
the potential of WRI in the model space, making it more
applicable in complex cases with accurately calculated
extended sources. Notably, the theoretical covariance
matrix was defined before performing inversion, while
most Bayesian-based inversion methods use the covariance
matrix to evaluate the accuracy or resolution of the final
results. The main difference between the two methods is the
different definitions of the covariance matrix. In our method,
the covariance matrix is separated into measurement and
theoretical covariance matrices, representing different error
distributions, respectively, while the other Bayesian-based
method combines the two covariance matrices into one.
However, according to the covariance matrix definition
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Figure 11. Extended source comparison. (A) Identity matrix definition,
(B) calculated by Equation XX, and (C) calculated by Equation (XXI).
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Figure 12. Inversion results. (A) Wavefield reconstruction inversion
(WRI) result based on the extended source, and (B) WRI result based on
the defined extended source.

in the Bayesian-based methods, the proposed method can
be further evaluated based on the combined covariance
matrix. Regarding the computational cost, the traditional
WRI requires three PDE solvers, while the proposed
method only requires two, similar to the traditional FWI. In
addition, the source-extended FWT also needed three PDE
solvers, the same as the fast WRI proposed by Lin et al.*

5. Conclusion

This study introduced the Hessian, a function of the
measurement and theoretical covariance matrices, into
WRI based on Bayesian inference. Furthermore, the
connections between the data and model domain equations
were discussed, which led to a simplified extended source
calculation method for the extended source. A theoretical
covariance matrix definition based on the new calculation

method was proposed and validated through numerical
tests. Further research may focus on more theoretical
covariance matrix definitions and their effect on inversion.
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