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Advances in theoretical and technical
approaches for seismic prediction of reservoir
permeability

Lele Wei”, Lideng Gan*{*, Hao Yang'*, Xinyu Li‘®, Gang Hao'”, and Xiaoyu Jiang

Research Institute of Petroleum Exploration and Development, PetroChina Company Limited,
Beijing, China

Abstract

Reservoir permeability serves as a critical parameter for unconventional reservoir
characterization and hydrocarbon recovery optimization. However, complex
petrophysical mechanisms and multifactorial coupling make its seismic prediction
face significant challenges. This review comprehensively synthesized advances
and limitations across three dominant methodologies: (i) dispersion/attenuation-
based methods, limited by petrophysical assumptions, scaling issues, and non-
uniqueness; (ii) pore structure-constrained methods, enhancing prediction accuracy
but hindered by oversimplification and high-dimensional inversion instability; and
(iii) artificial intelligence frameworks, offering data efficiency yet challenged by error
propagation, overfitting vulnerability, and geologically implausible extrapolation.
Comparative analysis revealed core bottlenecks in inadequate multiscale coupling
between petrophysical mechanisms and data-driven approaches. These challenges
are compounded by the absence of cross-disciplinary validation frameworks. To
address these challenges, this review integrated interdisciplinary perspectives
from seismic exploration, petrophysics, and machine learning. It proposed a
tripartite permeability prediction paradigm unifying physical mechanisms, data-
driven techniques, and engineering validation. This framework encompasses: first,
advancing multi-porosity fluid-solid coupling theory and pore structure-constrained
rock physics models; second, constructing physics-guided multimodal learning
architectures that deeply embed differentiable physical laws (e.g., Darcy-Biot theory)
within cross-scale physics-informed neural networks, coupling microscopic pore
network simulations with macroscopic seismic responses; third, establishing a closed-
loop workflow covering digital rock core simulations, blind well testing validation,
production history matching, and dynamic data-driven evolution, thereby forming a
quantifiable and iteratively upgradable technological system.This paradigm provides
a multiscale approach for accurately characterizing permeability in unconventional
reservoirs, and it establishes foundational theoretical principles and delineates
practical implementation pathways for economically viable unconventional resource
development.

Keywords: Geophysical exploration; Reservoir permeability; Dispersion and attenuation;
Pore structure; Artificial intelligence
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1. Introduction

Reservoir permeability is a critical parameter for
unconventional reservoir classification. It directly governs
reservoir simulation outcomes and serves as an essential
element in reservoir engineering, with significant
implications for field development.'* Seismic data provide
a cost-effective characterization of lateral formation
distribution and inter-well reservoir properties due to their
extensive spatial coverage and relatively low acquisition
costs. Therefore, to enhance predictionaccuracy, developing
effective seismic prediction methodologies for reservoir
permeability holds substantial theoretical and practical
value for optimizing the exploration and development of
low-porosity and low-permeability reservoirs.*

Research on geophysical permeability prediction has
primarily evolved along three trajectories over recent
decades:® (i) numerical simulations grounded in classical
rock physics models or laboratory core measurements,
(ii) well-log-based permeability interpretation, and
(iii) seismic inversion of permeability parameters. While
coremeasurements deliver high accuracy, theyare expensive,
time-intensive, and spatially limited to discrete sample
points. Well-log-based permeability offers continuous
vertical profiles with moderate accuracy but remains
costly and inherently localized (“single-well” perspective),
lacking lateral continuity for areal development guidance.
In contrast, seismic methods provide economically
viable and laterally extensive formation characterization.
Nevertheless, the complex and non-explicit relationship
between permeability and seismic responses, compounded
by multifactorial controls, renders seismic permeability
prediction a persistently challenging frontier.

A pivotal 2001 United States Department of Energy
workshop engaged 15 experts from industry, national labs,
and academia to evaluate the detectability and invertibility
of permeability within seismic data. Pride’s synthesis
confirmed that permeability information resides within
seismic-frequency observations and outlined potential
inversion frameworks, catalyzing significant research
momentum.® Current seismic permeability prediction
methodologies converge on three dominant approaches:
dispersion/attenuation-based methods, pore structure-
based techniques, and artificial intelligence (AI)-driven
solutions.

Seismic permeability prediction currently resides in a
phase of methodological exploration, challenged by the
strongly nonlinear and implicitly coupled mechanisms
between permeability and seismic responses. Permeability
is governed by multifaceted controls, notably pore-throat
architecture. These controls fundamentally impede
the establishment of robust porosity and permeability

mapping models based solely on core or well-log data.
Consequently, effective permeability prediction in complex
reservoirs remains elusive. Despite inherent obstacles,
including theoretical model misfit and solution non-
uniqueness, seismic permeability prediction persists as a
frontier research focus. It lies at the interface of geophysics
and reservoir engineering. This persistence is driven by its
critical value in dynamic reservoir characterization. Recent
advances in deep learning have accelerated data-driven
methodologies. However, three persistent bottlenecks
endure: (i) traditional rock physics models, such as the Biot-
Squirt (BISQ) framework, exhibit limited generalizability
in highly heterogeneous formations, failing to accurately
quantify the coupling of pore-throat architecture with
seismic wavefields; (i) machine learning approaches
establish nonlinear mappings, but they suffer from
interpretability deficits and physical decoupling, producing
predictions unconstrained by geological plausibility; and
(iii) multiscale data integration across core-log-seismic
domains lacks standardized protocols, with information
degradation during upscaling constraining prediction
accuracy.

This review systematically synthesized technological
advancements in seismic permeability prediction through
a structured analysis of three dominant methodologies:
dispersion/attenuation-based  techniques  leveraging
frequency-dependent  velocity  characteristics, pore
structure-oriented approaches, and Al-driven solutions
employing deep learning architectures. By evaluating
the theoretical foundations, technical advantages,
and limitations of these paradigms, we proposed a
transformative “dual-engine” predictive framework that
embedded rock physics constraints within deep learning
infrastructures. This mechanism and data co-driven model
integrates theoretical rigor with data-adaptive capability,
particularly through physics-informed neural networks.
As a result, the model overcomes applicability barriers in
complex reservoirs where traditional methods falter.

The subsequent sections of this paper are organized as
follows: Section 2 elaborates on the theoretical foundations
and representative techniques of dispersion/attenuation-
based methods. Section 3 focuses on the key technologies
and applications of pore structure-based methods. Section
4 analyzes the progress and challenges of Al-driven
solutions. Section 5 explores potential future research
directions. Finally, Section 6 concludes the review.

2. Permeability prediction methods based
on dispersion and attenuation

These approaches comprise three primary categories:
(i) theoretical model-based inversion, (ii) velocity
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dispersion/quality factor prediction, and (iii) fluid mobility
attribute prediction.

2.1. Model-based inversion

Theoretical forward modeling investigates how
reservoir parameters (e.g., porosity, permeability, and
fluid saturation) influence seismic wave propagation
characteristics (e.g., dispersion, attenuation, and reflection
coefficients), providing foundations for geophysical
parameter inversion. Typically, this inversion seeks an
optimal permeability value within predefined bounds,
minimizing misfit between model-predicted and observed
P-wave velocity dispersion or quality factor, effectively
transforming permeability estimation into an optimization
problem. Some typical model-based inversion methods are
summarized in Table 1.

The BISQ model, incorporating both Biot flow and squirt
flow mechanisms, effectively explains high dispersion/
attenuation in seismic frequencies. Nie et al.” implemented
BISQ-based inversion using niche genetic algorithms,
while Zhang et al® derived 3D anisotropic dispersion
equations and analyzed azimuthal dispersion effects on
permeability inversion. To address inherent limitations
of genetic algorithms (e.g., premature convergence and
poor local search), Fang and Yang’ developed a hybrid
genetic-simulated annealing algorithm demonstrating
superior accuracy and convergence. In addition, a series
of advancements in reservoir parameter inversion was
achieved based on the BISQ model.'*!"" White!? and
White et al.”* complemented the macroscopic-scale Biot
theory and microscopic-scale squirt flow mechanisms
and introduced a mesoscopic dissipation mechanism,
finally deriving frequency-dependent attenuation and
dispersion functions for partially saturated porous media
parameterized using permeability, porosity, and pore-
fluid properties. Johnson'* subsequently extended White’s
model to accommodate arbitrarily sized fluid patches
by incorporating geometric characteristic parameters
S/V. and T. Later, Sun" integrated these tri-scale
(macro-meso-micro) dispersion-attenuation mechanisms
to develop the Biot-patchy-squirt (BIPS) model, which

characterized wave dispersion and attenuation in
immiscible fluid-saturated fractured poroelastic media. In
the aforementioned models, permeability characterization
requires inversion through attenuation response without
establishingan explicittheoreticalrelationship. Forexample,
in the mesoscopic White’s layered patchy saturation model,
White'? derived the expression for the complex modulus
of P-waves (E[w]), which implicitly encoded permeability
information. Relying on this discovery and applying plane
wave theory, one can compute the phase velocity (VP) and
inverse quality factor (Q).
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where L denotes the thickness of the porous layer,
K,., represents Hill's approximate expression of the
Gassmann modulus at high frequencies, N signifies the
shear modulus of the dry rock frame, y indicates the ratio
of fast P-wave fluid tension to total stress, 5 refers to the
viscosity coeflicient, x designates the permeability, w is

the angular frequency, K, denotes the effective modulus of

Table 1. Theoretical and application characteristics of typical model-based inversion methods

Model name Core mechanism

Target reservoir type

Permeability representation

BISQ Coupling of Biot flow and squirt flow

White/Johnson Mesoscopic fluid patch dissipation
BIPS Macro-meso-micro coupling

Geometric network Parametrization of elliptical
model pore/fracture geometry

Partially saturated porous media
Fracture-pore dual media

Fracture-pore/fracture reservoirs

Medium-high porosity/permeability Implicit (inverted via attenuation response)
sandstones

Implicit (inverted via attenuation response)
Implicit (inverted via attenuation response)

Explicit equation

Abbreviations: BIPS: Biot-patchy-squirt; BISQ: Biot-Squirt.

Volume X Issue X (2025)

doi: 10.36922/JSE025310050


https://dx.doi.org/10.36922/JSE025310050

Journal of Seismic Exploration

Advances in seismic permeability prediction

compressional wave, S represents the fluid saturation, and
pg and p; are the densities of the grain mineral and pore
fluid, respectively.

The following equations provide a methodology
for establishing explicit permeability representation
relationships. For example, Xiong et al.'* and Wei et al.””
established a 3D network model with elliptical cross-
sections for fractures and soft pores. They incorporated
permeability relationships with porosity, confining
pressure, and pore aspect ratio, deriving a computational
methodology for permeability estimation.

K(a)):ﬂ.(l'PUJré'PD)
A PP

(IV)
;{=2E o j_mRZ(cos(a)L/c) (ZII(KR)

- v
1+a’ ) psc Lsin(a)L/c) KRJ,(KR) 1} )

5 2( @ JmRZ( 1 {211(KR) ) 1] W

1+a’ psc ksin(a)L/c) KR]O(KR)

where # denotes the fluid viscosity, L represents the
length of the microtube, A indicates the cross-sectional
area (azR?), R is the semi-major axis radius of the elliptical
cross-section, a refers to the aspect ratio of the fracture
cross-section, P, and P, denote the pressure at both ends
of the microtube, respectively, p signifies the density of the
fluid within the microtube, ] designates the zeroth-order

i
Bessel function of the first kind, K represents K = / 0P )

n
and C is the acoustic wave velocity in the fluid.

Tan et al.'® integrated the coupled effects of solid
particle detachment, fluid-solid coupling, multiphase
flow, and stress sensitivity into a fluid and structure-
coupled stress-sensitive permeability model grounded in
material mechanics and fractal theory. They thus provided
theoretical guidance for accurate prediction of flow
behavior and development optimization in stress-sensitive
reservoirs.

It is evident that most existing pore media and fracture-
pore media models implicitly incorporate permeability
information. However, they fail to establish explicit
theoretical permeability relationships. Alternatively,
the developed permeability models contain numerous
physical parameters of the rock matrix. These parameters
hinder direct permeability prediction using exploration
data. Furthermore, the inversion process reveals that

the effectiveness of rock physics inversion critically
depends on the accuracy of elastic parameters derived
from prestack seismic data and the congruence between
rock physics models and actual formation properties.
Key limitations of model-based permeability inversion
include: (i) solution non-uniqueness and low noise
tolerance, (ii) significant result divergence across different
dispersion-attenuation models despite generally consistent
permeability response patterns in forward modeling, and
(iii) frequent mismatches between theoretical predictions
and field observations.

2.2. Velocity dispersion/quality factor-based
methods

In field applications, acquiring comprehensive
velocity dispersion data at every sampling point remains
challenging. Theoretical forward modeling generally
indicates an inverse relationship between permeability
and dispersion: low permeability correlates with high
dispersion, while high permeability corresponds to low
dispersion.

Following this principle, Liu' applied frequency-
dependent amplitude variation with offset (AVO) theory
to quantify P-wave velocity dispersion as a fluid mobility
proxy for permeability prediction. Yuan et al.’ established
permeability and dispersion relationships through core-
derived rock physics analysis and determined the first-
order relative variation of Young’s modulus with seismic
frequency and the second-order relative variation of
permeability with pressure. Then, subsequent frequency-
dependent amplitude variation with incident angle (AVA)
inversion of well logs yielded the reservoir’s P-wave
dispersion, enabling permeability prediction through
the derived relationships. Wu et al*® developed a quality
factor-based method, which involved correlation between
averaged core permeability and well quality factors, and
then they estimated permeability at unlogged locations
through seismic waveform similarity analysis to reference
wells.

The intrinsic limitations of dispersion attribute methods
originate from fundamental physical and operational
constraints:*»**  conventional  seismic  bandwidth
(10-100 Hz) fails to excite significant dispersion effects
in high-permeability reservoirs (v >10 mD). This
failure occurs due to fluid pressure diffusion thresholds
below 10 Hz, which critically attenuate permeability
sensitivity. This bandwidth confinement triggers a
cascading degradation: high-fidelity Q-factor inversion
demands ultrabroadband data (>3 octaves), yet narrow
field-acquisition bandwidths (<2 octaves) propagate
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Q-estimation errors into permeability predictions. Further
compounded by anisotropic scattering, fracture azimuthal
variability induces phase velocity dispersion anomalies
that mask permeability signatures. Collectively, these
interdependencies form an error amplification chain. The
chain restricts dispersion-based methods to homogeneous
siliciclastic reservoirs with moderate permeability, while
faltering in fractured or stress-sensitive formations.
Collectively, these constraints necessitate addressing
two persistent bottlenecks: (i) non-unique solutions in
frequency-dependent AVO/AVA dispersion attribute
inversion and (ii) significant relative errors in current
Q-factorextraction techniques,compromising permeability
estimation accuracy.

2.3. Fluid mobility-based methods

Fluid mobility (M), defined as the ratio of reservoir
permeability (x) to fluid viscosity (#), characterizes
the coupled effects of pore structure’s conductivity and
pore fluid viscosity. At present, fluid mobility-based
methods constitute the predominant approach for
permeability prediction within dispersion-attenuation
frameworks.

In 2004, Silin et al® derived the low-frequency
asymptotic reflection coeflicient for fluid-saturated porous

media:
Z -7 j

R=Z=Ze g LK, ) s (VII)
Z+Z, \/E n

where Z denotes impedance, p_is fluid density, and o is
angular frequency. This equation establishes a positive
correlation between the reflection coefficient and the
square root of the product term. Goloshubin et al** and
Goloshubin et al®* subsequently proposed a novel
frequency-dependent imaging attribute when analyzing
dual-porosity media attenuation. Proportional to M,
this attribute was applied to reservoir permeability
estimation. On this basis, Chen et al.** developed a
computational expression for fluid mobility attributes and
established a method to identify the dominant frequency
within the low-frequency band of seismic signals. This
approach enabled the direct calculation of reservoir fluid
mobility using the instantaneous spectrum of the low-
frequency dominant frequency. The computational
expression is given as follows:

M zL{M} ® (VIIT)
C’l do

where C is a proportionality coefficient, @ is the
dominant low frequency, and A(w) is the amplitude

spectrum of the low-frequency band derived from time-
frequency analysis.

This framework facilitates subsequent methodological
advances. For example, Zhao et al¥ investigated the
effects of fluid mobility on dispersion and attenuation
using dual-porosity and dual-permeability models.
Lu*® developed a Bayesian framework for direct
mobility inversion. Zhang et al® enhanced reservoir
prediction accuracy by integrating the synchro-
squeezed generalized S-transform with Lucy-Richardson
deconvolution into mobility computation.

The model-based inversion approach in Section 2.1 and
the permeability prediction technique using dispersion/
attenuation attributes in Section 2.2 were compared.
The comparison revealed that the core advantage of the
latter method lies in circumventing Q-factor extraction
errors and directly establishing a quantitative correlation
between seismic amplitude and fluid mobility. Application
to actual marine seismic data from the JZ area of the Bohai
Sea demonstrated that the fluid mobility attribute exhibits
significant imaging advantages for hydrocarbon reservoirs.
Itenables precise spatial delineation of reservoir distribution
while substantially reducing the non-uniqueness and
uncertainty in fluid identification. A representative case
study from Chen et al* illustrated these capabilities
(Figure 1). The fluid mobility measurement profile
displays a high-amplitude “bright spot” anomaly at the gas
reservoir location, while the fluid mobility slice extracted
along the gas-bearing interval clearly delineates the spatial
boundaries of high-permeability zones (outlined by black
dashed contours).

Most current methods approximate mobility attributes
through time-frequency decomposition for qualitative
permeability assessment. However, reservoir thickness
below A/8 induces significant low-frequency amplitude
distortion, which requires integrated compensation
through high-frequency tuning effects, combined with
subjectivity in dominant frequency selection and the
petrophysical-property  dependency of  calibration
coefficient C. Consequently, these thin-bed resolution
constraints collectively result in fundamental limitations of
such methods: Uncertainties artificially introduced by the
subjective determination of w, potentially misrepresenting
true reservoir mobility; and the inherently limited
resolution of mobility attributes derived from time-
frequency decomposition methods.

2.4. Challenges of dispersion/attenuation-based
methods

The model categories, theoretical bases, applicable
conditions, advantages, and limitations of various
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dispersion/attenuation-based  permeability  prediction
approaches are systematically compared in Table 2.
This comparison reveals that despite the clear physical
mechanisms underpinning this category of methods, four
fundamental challenges persist: (i) controversies regarding
the universality of petrophysical assumptions, such as
deviations between assumed pore-scale homogeneity
and actual reservoir heterogeneity, (ii) scale adaptability
conflicts due to mismatched micro-mechanisms and
macro-scale seismic observations, (iii) bandwidth
limitations of seismic data, where the absent of low-
frequency components induce significant fluid mobility

S SR AT T e

estimation bias, and (iv) amplified solution non-uniqueness
due to coupled controls of pore geometry, fluid viscosity,
and fracture density on dispersion/attenuation responses.

3. Permeability prediction based on pore
structure characteristics

Traditional seismic permeability prediction methods
primarily rely on well-log or laboratory rock physics
data. These methods establish optimal porosity and
permeability relationships and then extrapolate these
petrophysical correlations to seismic data for areal

Figure 1. Fluid mobility analysis of reservoirs in the lower Ed2 formation from the JZ area. (A) Seismic section. (B) Fluid mobility reservoir
section. (C) Seismic slice. (D) Fluid mobility reservoir slice. The colors red, green, and blue in the well log in the zoomed image indicate gas, oil, and brine,
respectively. Reprinted with permission from Chen et al.** Copyright 2012 Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg.

Abbreviation: CDP: Common depth point.

Table 2. Theoretical and application characteristics of dispersion/attenuation-based methods

Model category Theoretical basis Applicable conditions Advantages Limitations
Model-based inversion BISQ/BIPS theoretical Moderate-to-high porosity/ Clear physical Mismatch in strongly
models permeability sandstones interpretation heterogeneous reservoirs
Velocity dispersion/quality Velocity-frequency Broadband seismic data High computational Sensitive to Q-factor
factor-based methods response efficiency extraction errors

Fluid mobility-based
methods

Low-frequency
reflectivity theory media

Fluid-saturated porous

Resolution constraints in
time-frequency analysis

Direct indicator of
flow capacity

Abbreviations: BIPS: Biot-patchy-squirt; BISQ: Biot-Squirt.
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permeability prediction.”® However, due to depositional
and diagenetic controls, carbonate reservoirs, particularly
reef-shoal facies, exhibit significantly more complex
pore architecture than clastic reservoirs. These reservoirs
demonstrate substantial permeability heterogeneity even at
comparable porosity levels. In lithofacies-varying formations
with intricate pore systems, conventional methods yield
compromised accuracy due to nonlinear porosity and
permeability relationships. Consequently, pore structure
integration becomes essential for reducing inversion non-
uniqueness and enhancing prediction reliability.

There are currently three pore structure-based
approaches: (i) Sun model-based inversion, (ii) lithofacies-
constrained prediction using pore-structure parameters,
and (iii) dual-porosity structure parameter integration.

3.1. Sun model-based methods

Sun’*? derived two pore structure parameters through
fundamental rock physics analysis: the bulk compliance
factor (y), which characterizes volumetric rock
deformation, and the shear compliance factor (y#), which
describes shape variations. Both y and y, satisfy the rock
physics relationship:

K=K, (1-g) (IX)

My =, (1—¢)"™ (X)

where K, and u, denote the bulk modulus and shear
modulus of dry rock, respectively; K and u  represent
the bulk modulus and shear modulus of the grain mineral
phase, respectively; and ¢ signifies porosity. Furthermore,
7, can be expressed as:

, - 1g(V/p)-lgu,
b 1gt-¢)

where V, p, and ¢ denote the S-wave velocity, density,
and porosity, respectively.

(XD)

Applied to Texas carbonate reservoirs by Dou et al.,”
these parameters effectively characterized the relationship
between porosity impedance and permeability. They
facilitated the identification of pore types and high-
permeability zones, thereby enhancing prediction
accuracy. Zhang et al** subsequently implemented
these parameters in the Puguang Gas Field, with a pore
structure-constrained porosity and permeability binary
model developed for permeability-type classification at
seismic scales. Similarly, Jin et al.*® established pore-type
discrimination criteria and type-specific porosity and
permeability models using y . These achievements enabled
refined well-log permeability interpretation. By analyzing

elastic parameter-pore structure relationships across pore
types, rock physics templates for the permeability prediction
of complex reservoirs were constructed (Figure 2). In the
case study of Puguang Gas Field (Figure 3), an intraparticle
pore-dominated reservoir within the 5369-5440 m
interval was developed in Well PG302-1. Although this
section exhibited relatively high predicted porosity, the
pore structure parameter was significantly low, indicating
low permeability consistent with core analysis results. This
case validates that permeability prediction based on pore
structure parameters effectively discriminates reservoir
flow capacity heterogeneity, thereby delineating the spatial
distribution of high-permeability zones. Compared to
conventional approaches, this method substantially
enhances permeability prediction accuracy in complex
reservoirs. Conventional methods rely on statistically
derived empirical formulas for porosity and permeability,
with prediction errors often exceeding one order of
magnitude. Critically, these findings substantiate that
pore structure exerts dominant control over permeability,
whereas porosity serves merely as a contributory factor.

The Sun model demonstrates porosity-independent
permeability prediction capabilities in both carbonate
and clastic reservoirs. It achieves this through its
characterization of rock deformation mechanisms through
y and 7, However, the model suffers from fundamental
flaws in its physical foundation. First, the model exclusively
captures elastic deformation responses while neglecting the
topological control mechanisms governing fluid pathways
(e.g., pore-throat connectivity). Second, its classification
regression framework contains inherent structural
deficiencies: oversimplified permeability zoning based
solely on y or y, results in ambiguous partition boundaries,
and the enforcement of linear porosity and permeability
regressions contradicts the intrinsic nonlinearity of
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Figure 2. Permeability interpretation chart of Puguang Gas Field.
Reprinted with permission from Jin et al.** Copyright 2016 Journal of
Palaeogeography.
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Figure 3. Inversion profiles of (A) predicted porosity, (B) pore structure parameter, and (C) permeability through Well PG302-1. Reprinted with permission

from Jin et al.** Copyright 2016 Journal of Palaeogeography.

carbonate systems, particularly the exponential porosity—
permeability relationships observed in vugular pore
networks.

3.2. Lithofacies-controlled methods with pore
structure parameters

Advancing  quantitative  reservoir  characterization
recognizes depositional microfacies as primary controls
on petrophysical properties. Sedimentary attributes,
including composition and grain size, fundamentally
govern porosity and permeability distributions. Therefore,
establishing microfacies-constrained property models is
essential.

Zhao* derived facies-control factors from Archie’s
equation, integrating them with permeability through
Kozeny’s hydrodynamic formula to develop a facies-
constrained permeability calculation method for seismic
inversion. This approach demonstrably enhances
lateral prediction accuracy by incorporating geological
priors. Given the primary control of pore structure on
permeability as introduced in Section 3.1, Gan et al.”
developed a comprehensive workflow for reservoir
permeability prediction integrating pore structure and
lithofacies controls: First, lithofacies classification was
conducted using the reservoir zones porosity, elastic
parameters, and y . Then, facies-specific multivariate
regression was used for permeability prediction. Relying
on this workflow, they selected the Fudong Slope area in
the eastern central depression belt of the Junggar Basin
as the study area for method application. The primary
reservoir type in this region is lithologic-stratigraphic

hydrocarbon accumulation. The study designated Well
FUD? as the training well and Well FUD6 as the prediction
well. Regression relationships were separately established
for different lithofacies in the training well. Subsequently,
the trained lithofacies-specific regression models were
applied to the prediction well to obtain permeability
prediction results. Comparative analysis with non-facies-
based multivariate regression in Table 3 reveals that both
wells exhibited reduced prediction errors and enhanced
coefficient of determination (R?) values after facies-
control implementation. The maximum error reduction
and greatest R’ improvement occurred when y, was
included in the regression parameters. Field applications
demonstrate that this method can confine permeability
prediction errors within one order of magnitude, and
multivariate regression proves to be a viable solution for
reservoir permeability prediction as it incorporates elastic
parameters and y, under lithofacies constraints.

While lithofacies-controlled = methods enhance
prediction accuracy through depositional microfacies
constraints, precise lithofacies classification remains
a prerequisite for permeability prediction, as it serves
as a geological prior. Furthermore, 7, exhibits extreme
sensitivity to velocity and density errors in seismic
inversion. Acting as a key input for lithofacies classification,
it forms a positive error feedback loop propagating through
the workflow. Strong multicollinearity also exists among
porosity, 7, and impedance in multivariate regression.
This multicollinearity distorts the physical significance of
the regression coeflicients, and these factors collectively
cause abrupt lateral prediction jumps exceeding one order
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Table 3. Statistics of mean square error (MSE) and coefficient
of determination (R?) for multivariate regressions

Key input Facies- Fud7 well Fudé6 well
parameters based MSE R MSE R
¢ No 0.9599  0.4392 1.5056  0.3269
Yes 0.9387  0.5067 1.2961  0.5250
¢+Vp No 0.9569  0.4409 1.4026 0.3508
¢+Vp/Vs No 0.9239 0.4602 1.4014 0.3921
¢+VM No 0.7765 0.5463  1.3564 0.4961
¢+Vp+Vp/Vs No 0.8975 0.4757 1.0756  0.4989
Yes 0.8924  0.5408 0.9542  0.5925
¢>+Vp+Vp/V$+V# No 0.7421 0.5664 0.9356 0.6016
Yes 0.6721  0.7948  0.8943  0.7924

¥, indicates shear compliance factor; ¢ indicates porosity; V, indicates
P-wave velocity; V. indicates S-wave velocity.

of magnitude. In summary, the limitations of this method
include: High sensitivity to seismic lithofacies and pore
structure parameters that are intrinsically challenging
to quantify accurately; prevalent multicollinearity in
multivariate regression; and multiple pore structure factors
must be incorporated, given the multivariate nature of
permeability controls.

3.3. Dual-pore-structure parameters methods

Wei and Innanen®® discovered the combined effects of pore
morphology and scale on permeability, establishing a dual-
parameter model:

K = Ag® [%) o (XID)

where

Y, =Wy, +1-W)(1-7,) (XIII)

where x represents permeability; y and y_denote scale
and roundness parameters, respectively; W is a weighting
coefficient determined from the core and log data; and A,
B, and C are undetermined coefficients. Inspired by the
Sun model in Section 3.1, and guided by the lithofacies-
control rationale established in Section 3.2, Ding et al.**
derived a shear-Lee factor (cﬂ) from the Lee model. This
factor exhibited a strong linear correlation with principal
pore dimensions. By incorporating this factor, they
effectively integrated both pore-scale and morphological
effects. In addition, they integrated the factor with
elastic parameters, porosity, and pore aspect ratios (a)
as inputs for a feedforward neural network to predict

lithofacies, and then subsequently predicted permeability,
ultimately constraining prediction errors within half an
order of magnitude. Field application (Figure 4) in the
tight gas reservoirs of the Shaximiao Formation, Jinqiu
Gas Field, Sichuan Basin, demonstrated that predictions
incorporating  dual-pore-structure ~parameters (c +a)
achieved superior outcomes compared to single-factor
(v,) approaches. These predictions quantitatively matched
well-logs with higher fidelity and generated sand bodies
with enhanced spatial continuity.

The  dual-pore-structure  parameter  approach
demonstrates progress in characterizing the combined
effects of pore morphology and scale on permeability.
However, it suffers from inherent limitations in its physical
mechanisms. The model oversimplifies complex flow
processes into a power law combination of morphology
and scale, neglecting the fundamental control of pore
topology connectivity (e.g., tortuosity of pore throats).
More critically, the parameterization exhibits irresolvable
ambiguity: the model fails to distinguish the opposite
effects on permeability between the real-scale expansion
of pore throats and the morphological distortion caused by
the flattening of sheet-like pores. In industrial applications,
high-dimensional inversion spaces introduce significant
uncertainties: the Wei model requires simultaneous
resolution of multiple interacting parameters. Its high-
dimensional solution space causes pronounced oscillation
in inversion results. Meanwhile, Ding’s neural network
framework faces triple error propagation: inherent errors
in elastic parameters derived from seismic inversion
directly propagate into the calculation of the shear-Lee
factor. This propagation induces intermediate parameter
bias. Subsequent coupling of multi-source inputs in hidden
layers of the feedforward network further iteratively
amplifies upstream errors through weight matrices,
ultimately generating substantial errors in the output
layer’s permeability predictions.

3.4. Challenges of pore structure characteristics-
based methods

Although existing mainstream porosity and permeability
prediction models (e.g., Sun, Wei, and Ding models)
demonstrate progress in specific scenarios or mathematical
formulations, they still suffer from fundamental limitations,
as summarized in Table 4 regarding their methodologies,
advantages, and constraints. These limitations include their
core physical mechanisms, such as the neglect of pore-
throat connectivity control and the ill-defined physical
interpretations of parameters; model architecture, such
as arbitrarily imposed linearization and error-amplifying
designs; and application feasibility, such as dependence

Volume X Issue X (2025)

doi: 10.36922/JSE025310050


https://dx.doi.org/10.36922/JSE025310050

Journal of Seismic Exploration

Advances in seismic permeability prediction

1150

Time (ms)
g

: ! Permeability profile predicted by single-factor

Well-3

-
oy
@
=1

Time (ms)

1200

-1.00

Well-2

Figure 4. Predicted permeability profiles, where dual-pore-structure parameters refer to ¢ +a and single-factor denotes y,. Reprinted with permission from

Ding et al.* Copyright 2023 Society of Exploration Geophysicists.

Table 4. Theoretical and application characteristics of pore structure characteristics-based methods

Dimension Sun model

Lithofacies-controlled model Dual-parameter model

Principle Rock physics

Key input parameters Bulk compliance factor and

shear compliance factor

Parameter acquisition Seismic/log elastic parameter

inversion

Lithofacies dependent No

Advantages Porosity-independent
heterogeneity characterization

Limitations Oversimplified classification

ignores multi-factor coupling

Reservoir applicability Carbonate/clastic reservoirs

Prediction accuracy Error<1 order of magnitude

Reference Jin et al.®

Sedimentology Morphology+scale

Lithofacies type, pore structure
parameters

Scale parameter, roundness
parameter

Core calibration-+seismic Core calibration+seismic/log

lithofacies division

Yes

elastic parameter inversion
Optional

Geological prior integration
reduces non-uniqueness

Morphology+scale

Subjectivity in lithofacies High-dimensional parameter

delineation instability, dependent on
upstream parameter accuracy
Highly heterogeneous Fracture-porosity systems

carbonates/clastic reservoirs
Error<1 order of magnitude Error<0.5 order of magnitude

Gan et al.”? Ding et al.¥

on difficult-to-acquire/high-error parameters and high-
dimensional inversion instability with non-unique solutions.

4, Permeability prediction based on Al

In recent years, Al algorithms have emerged as powerful
computational tools for solving complex non-linear
mapping and high-dimensional data fitting problems.
They trigger transformative advances across scientific and
engineering domains. Within petroleum exploration, the
inherent subsurface complexity and uncertainty present
significant challenges. These challenges, combined with
substantial human capital demands for analyzing massive
exploration datasets, have accelerated the industry-wide
integration of Al technologies.**

4.1. Data-driven Al approaches

The earliest Chinese research on seismic-driven
permeability prediction traces back to a groundbreaking
study published in Oil Geophysical Prospecting by Chen
and Guo.” Grounded in the elastic wave theory of dual-
phase media, the authors established the theoretical
basis for permeability prediction from seismic data. They
demonstrated that conventional approaches relying solely
on porosity and permeability functional relationships could
only delineate qualitative permeability trends. To enable
quantitative prediction, they pioneered the integration
of mathematical approximation techniques with
seismic attributes. As seismic attribute and permeability
relationships defy explicit mathematical formulation,
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Al serves as an advanced regression tool that correlates
well-log permeability with adjacent seismic traces. This
calibrated relationship can then be extrapolated across 3D
seismic volumes for reservoir permeability prediction.

Based on Chens work, He et al*® implemented the
rough set theory for optimal attribute selection, followed
by genetic algorithm-optimized backpropagation neural
networks to establish attribute and permeability mappings.
Anifowose et al** conducted a comparative analysis of
multiple algorithms for permeability estimation in Middle
Eastern carbonates. The study used integrated seismic
attributes and wireline logs. The algorithms evaluated
include artificial neural networks, fast Newman algorithm,
support vector machines, and extreme learning machines.
Meanwhile, Zhen et al.** integrated a convolutional block
attention module into a convolutional neural network to
characterize sand-body development patterns and identify
concealed channels.

Riyadi et al* proposed a permeability estimation
method utilizing elastic attributes derived from
simultaneous seismic inversion and evaluated the
predictive performance of several ensemble-based models,
including extreme gradient boosting (XGBoost), light
gradient boosting (LightGBM), categorical gradient
boosting, bagging regressor, random forest, and stacking.
A multilayer perceptron neural network algorithm was
also assessed. They focused on the X Field in the Malay
Basin, characterized by complex pore systems (coexisting
intergranular pores, dissolution vugs, and fractures) and
pronounced heterogeneity. The statistical evaluation of
permeability prediction models was based on wireline
logging data using the R* and root mean squared log error

(RMSE). The results revealed that integrating porosity
with elastic properties as combined input features yielded
R*>0.95 and root mean squared log error (RMSLE) <0.174.
Among the tested algorithms, LightGBM and stacking
ensemble models delivered optimal performance (R*=0.97,
RMSLE = 0.112 for both), while random forest exhibited
relatively inferior results (R* = 0.92, RMSLE = 0.174).
In contrast, predictions using elastic properties alone
demonstrated significantly reduced accuracy, with R’
ranging from 0.82 to 0.87, and RMSLE from 0.195 to 0.278.
Within this feature configuration, XGBoost achieved the
highest precision (R* = 0.87, RMSLE = 0.195), closely
followed by a multilayer perceptron with 16 hidden layers
(R* = 0.87, RMSLE = 0.207). Figure 5 compares predicted
and measured permeability from the best-performing
models under both input scenarios. The contrast between
the bottom panels in Figure 5 visually confirms substantial
prediction challenges in low-permeability intervals
(<0.001 mD) when exclusively using elastic properties.
Collectively, these results demonstrate that feature
selection and combination exert decisive influence on
predictive efficacy even with high-performance models.
This limitation arises because pore-throat dimensions,
morphology, and connectivity—all critical controls on
flow behavior—exert more dominant control in tight
formations. In contrast, elastic properties have been
proven insufficient to characterize such microstructural
determinants of fluid transport.

Although purely data-driven AI models (black-
box models) in the aforementioned studies enhanced
the prediction accuracy of reservoir permeability,
their fundamental flaw lies in intrinsic decoupling
from the physical mechanisms governing fluid flow.
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Figure 5. Measured and predicted permeability comparison. (A) Permeability prediction employing elastic properties and porosity as input features
via the LightGBM modeling. (B) Elastic property-exclusive permeability prediction using the XGBoost framework. Top panels indicate depth-domain
permeability profiles, while bottom panels illustrate cross-plots of predicted and core-calibrated permeability values. Reprinted from Riyadi et al.*®
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These methods simplify the prediction process to
mathematical approximations, failing to construct
genuine geologically process-driven models. The so-called
“optimal feature combination” essentially represents over-
adaptation to known geological conditions in training well
areas. It is a feature mapping established through statistical
correlations. When extrapolated to undrilled regions or
complex diagenetic reservoirs, the geological plausibility
of predictions becomes significantly questionable due
to the absence of quantitative constraints on pore-throat
network parameters. Furthermore, the inherent small-
sample dilemma in reservoir parameter prediction
inevitably subjects single-task learning to dual challenges
of insufficient sample size and overfitting.

4.2, Data- and model-driven approaches

In 2019, Bergen et als.* seminal review in Science,
“Machine learning for data-driven discovery in solid
earth geosciences,” systematically evaluated applications
of data-driven AI in solid earth sciences. The study
emphasized that AI implementation must advance
beyond simplistic applications to address complex
geoscientific challenges. It highlighted that critical factors,
such as training test set partitioning and validation
methodology, significantly influence prediction outcomes.
Traditional geophysical approaches typically formulate
mathematical approximations between characterization
parameters based on theoretical assumptions, resulting
in deterministic physical models. Data-driven methods
bypass theoretical presuppositions by directly extracting
implicit patterns from data, making them well-suited
for complex geological studies. However, they often lack
physical interpretability. On the other hand, physical
models offer stronger explanatory power, but they face
limitations in accounting for geological complexity due
to inherent assumptions and difficulties in defining inter-
parameter relationships, ultimately constraining predictive
accuracy. Recently, interdisciplinary collaboration has
integrated data-driven methods with physical models.
This integration has emerged as a promising avenue. It is
deemed capable of yielding more universally applicable
solutions to geophysical problems.**°

The capillary bundle model provides the fundamental
basis for studying fluid flow in porous media, representing
the most essential physical model for permeability
characterization. Its extension, the Kozeny-Carman
equation, establishes the foundational relationship between
porosity, pore-scale geometry, and permeability:*!

¢3 d2

k=B
1-9¢)

(XIV)

where k represents permeability, ¢ represents porosity, d
denotes pore scale (characteristic pore/grain size), and B is
a geometric factor. On this basis, Bourbie et al.** proposed
a practical formulation for application to natural materials,
suggesting an empirical geometric factor # is 4 or 5, which
may better represent common geological media:

(XV)

Shi et al.> incorporated pore-scale effects by calibrating
n with well-log data, replacing Bourbie’s proportionality
with an explicit equality:

(XVI)

Where d, represents the equivalent pore scale. To
implement this permeability model, the authors first
predicted porosity through sensitive parameter analysis.
They used bulk modulus, shear modulus, and density
with kernel Bayesian discrimination. Subsequently, they
estimated the equivalent pore scale from compressional
wave velocity, shear wave velocity, and the derived porosity
using the same statistical method. Finally, permeability
was calculated through the porosity-equivalent pore scale-
permeability relationship using seismic elastic parameters.
While this method introduces valuable physical constraints
to data-driven prediction, there are two key limitations: on
the one hand, the permeability model accounts for pore
scale and porosity effects but neglects pore morphology
influences. On the other hand, cumulative errors may
significantly compromise prediction accuracy. These errors
arise from the stepwise porosity-pore scale-permeability
calculation.

Indeed, issues such as small sample sizes and overfitting
are frequently encountered in the context of distributed
computational cumulative errors and reservoir parameter
prediction. At present, multi-task learning addresses these
challenges by establishing end-to-end learning mechanisms
and sharing feature information across different tasks.
This approach effectively mitigates the overfitting often
associated with single-task learning, thereby enhancing the
generalization capability of the network model. However,
since multi-task learning relies on cross-task feature
transfer to enable information interaction, the correlation
between tasks plays a decisive role in model performance.

A large amount of statistical data demonstrated a close
correlation between porosity and permeability. Based on
this, Wei et al>* proposed a seismic prediction method
for reservoir permeability using multi-task learning. The
method employed post-stack seismic data and P-wave
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impedance as network inputs, with well-log porosity
and permeability serving as labeled data of the network.
Through network training, an optimal network model
was established by integrating near-well seismic and
well-log data. Finally, reservoir porosity and permeability
parameters between wells were simultaneously predicted.
Application results from the tight gas reservoir in the
Shaximiao Formation of Jinqiu Gas Field, Sichuan Basin,
demonstrated high consistency between predicted
permeability parameters of Sand Body No. 8 and actual
drilling data, along with superior vertical and horizontal
resolution.

4.3. Challenges of Al-based methods

While data-driven AI models demonstrate empirical
efficacy in permeability prediction, their core limitation
stems from divorcing mathematical approximations from
underlying petrophysical mechanisms. This physics-
agnostic approach manifests as an inability to construct
genuine geological process-driven models, vulnerability
to local overfitting through statistically derived feature
mappings, and geologically implausible extrapolation in
undrilled/complex diagenetic settings due to unconstrained
pore-throat parameterization.

5. Discussion

This review synthesizes the fundamental limitations
inherent in the three dominant methodologies within the
reservoir permeability prediction domain (Table 5).

Based on these findings, the above limitations
unequivocally indicate the necessary direction for next-
generation models. These models must transcend empirical
curve fitting through deep integration of multiscale physical
mechanisms, quantitative pore structure characterization,
and physics-embedded Al architectures. Ultimately, this
integration will dismantle the barriers between data-driven
and physical models to achieve a paradigm shift.

Future development must focus on establishing a
new permeability prediction paradigm centered on the
synergistic optimization of “physical mechanism, data-
driven approach, and engineering validation” (Figure 6):

(i) Theoretical mechanism innovation

a. Develop coupled models integrating pore, fluid,
and fracture system interactions with dispersion/
attenuation signatures, deepening the coupled
flow and elasticity theory for multi-porosity
media (e.g., pores, vugs, and fractures).

b. Advance pore-throat topology-constrained rock
physics models to quantify the control weights of
tortuosity and connectivity on permeability.

(ii) Data-driven architecture enhancement

a. Construct multimodal physics-guided learning
networks by fusing multi-source data (e.g.,
seismic attributes, electrical imaging, and nuclear
magnetic resonance).

b. Employ deep generative adversarial models to
synthesize geologically realistic virtual samples
(e.g., generating low-frequency signals to extend
bandwidth and compensate for flow capacity
calculations), thereby overcoming the bottleneck
of scarce training data.

(iii) Deep embedding of physical mechanisms
a. Deeply embed differentiable forms of fundamental
physical laws (e.g., Darcy’s law and Biot’s theory)
within neural networks.
b. Develop cross-scale physics-informed neural
networks to couple microscopic pore network
simulations with macroscopic seismic responses.

(iv) Engineering validation framework

a. Digital rock core simulation validation: Compare
seismically inverted permeability against direct
flow simulation results on the pore network to
utilize computerized tomography scans/process-
based modeling to create digital rock cores and
validate the microscale mechanistic soundness
and scale-transition capability of models.

b.  Blind well testing validation: Withhold data from
key geological unit representative wells (blind
wells) during model training and optimization,
and assess spatial generalization capability and
geological scenario adaptability by analyzing
prediction errors (e.g., RMSE and relative error
distribution) against core analysis/well test
permeability data.

c. Dynamic  production  history = matching
validation: Embed the seismically predicted 3D
permeability field into reservoir simulators, use
actual production dynamics (pressure, rates,
water cut, etc.) as the benchmark, and quantify
improvements, such as the reduction in history
matching error and the enhancement of recovery
factor prediction accuracy, thereby demonstrating
the practical utility for development decision
support.

d. Dynamic data-driven model evolution: Trigger
incremental learning and model re-optimization
on acquiring new dynamic data (e.g., new drilling/
core data, production tests, and 4D seismic data)
and iteratively validate the performance of the
updated model on new blind wells and subsequent
production  periods, ensuring continuous
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Table 5. Summary of three methodological categories for seismic permeability prediction

Methodology Limitation

Dispersion and  Theoretical model
attenuation inversion

(a) Non-unique solutions and inherent uncertainty
(b) Significant result discrepancies across methods

(c) Frequent mismatch between theoretical predictions and field data

Velocity dispersion/
quality factor

Fluid mobility attributes

(a) Non-uniqueness in dispersion attributes from frequency-dependent AVO/AVA inversion
(b) High relative error in quality factor extraction

(a) Uncertainty in optimal frequency selection

(b) Low resolution of mobility attributes derived from time-frequency decomposition

Pore structure  Sun model

integration required

(a) Oversimplified pore-permeability classification using compliance factors alone; velocity data

(b) Overly simplistic linear porosity and permeability regression post-classification

Facies-constrained pore

structure parameters quantify accurately

(a) High sensitivity to seismic facies and pore structure parameters, both of which are challenging to

(b) Multicollinearity in multivariate linear regression
(c) Necessity of multi-parameter pore structure factors for permeability classification

Dual-pore-structure
parameters

Artificial
intelligence

Data-driven approach

Data- and model-driven
approaches

(a) Uncertainty in quantitative permeability expressions due to numerous undetermined coefficients
(b) Error propagation from elastic parameters in seismic inversion

(a) Lack of physical models and theoretical constraints
(b) “Small-sample” and overfitting issues in single-task neural networks for reservoir parameter prediction

(a) Neglect of pore morphology effects in constraining physical models
(b) Significant error accumulation from stepwise calculations degrades permeability prediction accuracy

Abbreviations: AVA: Amplitude variation with incident angle; AVO: Amplitude variation with offset.

Physics-based theory

Provides foundation

/ Feedback for

Data-driven Al 4\ improvement

Feedback for
improvement

\

Engineering validation

Generates model

Figure 6. A proposed permeability prediction paradigm
Abbreviation: Al Artificial intelligence.

predictive capability evolution throughout the
field lifecycle.

This paradigm deeply embeds rock physics principles
into neural networkarchitectures. Itachieves the unification
of physical interpretability and prediction accuracy. For
strongly heterogeneous reservoirs, such as fracture-
vuggy carbonates and bioturbated sandstones, it enables
reliable predictions at both exploration and development
grades. Its closed-loop engineering validation mechanism
provides quantifiable and iteratively improvable core
technological support for intelligent oilfield development.

This mechanism spans from digital rock core and blind
well testing to history matching and dynamic evolution.

6. Conclusion

Reservoir permeability is critical for characterizing
unconventional reservoirs and optimizing hydrocarbon
recovery. However, its seismic prediction remains
challenging due to the complex, non-explicit relationship
between seismic responses and permeability, which
is governed by multifaceted controlling factors. These
challenges are specifically manifested in three dominant
methodologies:

i.  Dispersion/attenuation-based models, while grounded
in explicit physical mechanisms, are constrained by
the coupled interactions of pore, fluid, and fracture
systems. This coupling leads to non-unique solutions,
scale adaptability conflicts, and biases in fluid mobility
characterization due to seismic bandwidth limitations.

ii. Pore structure methods (e.g., Sun’s compliance factor)
suffer from quantification uncertainties, primarily due
to oversimplified morphological characterization and
parameters with ambiguous physical interpretations.

iii. Al-based methods often decouple mathematical
approximations from rock physics principles, resulting
in a vulnerability to overfitting and geologically
implausible extrapolation. ~Although integrating
physics with AI has improved accuracy, critical
deficiencies remain, including inadequate pore-throat
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topology differentiation, underutilization of seismic
dispersion, and limited efficacy in enforcing physical
constraints.

Consequently, overcoming these fundamental
limitations necessitates a new paradigm centered on the
synergistic integration of multi-scale physical mechanisms,
quantitative pore-structure characterization, and physics-
embedded AI architectures. This integrated approach is
essential to achieve a paradigm shift from empirical curve-
fitting to theoretically guided forecasting in permeability
prediction.
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