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Abstract
Reservoir permeability serves as a critical parameter for unconventional reservoir 
characterization and hydrocarbon recovery optimization. However, complex 
petrophysical mechanisms and multifactorial coupling make its seismic prediction 
face significant challenges. This review comprehensively synthesized advances 
and limitations across three dominant methodologies: (i) dispersion/attenuation-
based methods, limited by petrophysical assumptions, scaling issues, and non-
uniqueness; (ii) pore structure-constrained methods, enhancing prediction accuracy 
but hindered by oversimplification and high-dimensional inversion instability; and 
(iii) artificial intelligence frameworks, offering data efficiency yet challenged by error 
propagation, overfitting vulnerability, and geologically implausible extrapolation. 
Comparative analysis revealed core bottlenecks in inadequate multiscale coupling 
between petrophysical mechanisms and data-driven approaches. These challenges 
are compounded by the absence of cross-disciplinary validation frameworks. To 
address these challenges, this review integrated interdisciplinary perspectives 
from seismic exploration, petrophysics, and machine learning. It proposed a 
tripartite permeability prediction paradigm unifying physical mechanisms, data-
driven techniques, and engineering validation. This framework encompasses: first, 
advancing multi-porosity fluid-solid coupling theory and pore structure-constrained 
rock physics models; second, constructing physics-guided multimodal learning 
architectures that deeply embed differentiable physical laws (e.g., Darcy-Biot theory) 
within cross-scale physics-informed neural networks, coupling microscopic pore 
network simulations with macroscopic seismic responses; third, establishing a closed-
loop workflow covering digital rock core simulations, blind well testing validation, 
production history matching, and dynamic data-driven evolution, thereby forming a 
quantifiable and iteratively upgradable technological system. This paradigm provides 
a multiscale approach for accurately characterizing permeability in unconventional 
reservoirs, and it establishes foundational theoretical principles and delineates 
practical implementation pathways for economically viable unconventional resource 
development.
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1. Introduction
Reservoir permeability is a critical parameter for 
unconventional reservoir classification. It directly governs 
reservoir simulation outcomes and serves as an essential 
element in reservoir engineering, with significant 
implications for field development.1-3 Seismic data provide 
a cost-effective characterization of lateral formation 
distribution and inter-well reservoir properties due to their 
extensive spatial coverage and relatively low acquisition 
costs. Therefore, to enhance prediction accuracy, developing 
effective seismic prediction methodologies for reservoir 
permeability holds substantial theoretical and practical 
value for optimizing the exploration and development of 
low-porosity and low-permeability reservoirs.4

Research on geophysical permeability prediction has 
primarily evolved along three trajectories over recent 
decades:5 (i) numerical simulations grounded in classical 
rock physics models or laboratory core measurements, 
(ii) well-log-based permeability interpretation, and 
(iii) seismic inversion of permeability parameters. While 
core measurements deliver high accuracy, they are expensive, 
time-intensive, and spatially limited to discrete sample 
points. Well-log-based permeability offers continuous 
vertical profiles with moderate accuracy but remains 
costly and inherently localized (“single-well” perspective), 
lacking lateral continuity for areal development guidance. 
In contrast, seismic methods provide economically 
viable and laterally extensive formation characterization. 
Nevertheless, the complex and non-explicit relationship 
between permeability and seismic responses, compounded 
by multifactorial controls, renders seismic permeability 
prediction a persistently challenging frontier.

A pivotal 2001 United States Department of Energy 
workshop engaged 15 experts from industry, national labs, 
and academia to evaluate the detectability and invertibility 
of permeability within seismic data. Pride’s synthesis 
confirmed that permeability information resides within 
seismic-frequency observations and outlined potential 
inversion frameworks, catalyzing significant research 
momentum.6 Current seismic permeability prediction 
methodologies converge on three dominant approaches: 
dispersion/attenuation-based methods, pore structure-
based techniques, and artificial intelligence (AI)-driven 
solutions.

Seismic permeability prediction currently resides in a 
phase of methodological exploration, challenged by the 
strongly nonlinear and implicitly coupled mechanisms 
between permeability and seismic responses. Permeability 
is governed by multifaceted controls, notably pore-throat 
architecture. These controls fundamentally impede 
the establishment of robust porosity and permeability 

mapping models based solely on core or well-log data. 
Consequently, effective permeability prediction in complex 
reservoirs remains elusive. Despite inherent obstacles, 
including theoretical model misfit and solution non-
uniqueness, seismic permeability prediction persists as a 
frontier research focus. It lies at the interface of geophysics 
and reservoir engineering. This persistence is driven by its 
critical value in dynamic reservoir characterization. Recent 
advances in deep learning have accelerated data-driven 
methodologies. However, three persistent bottlenecks 
endure: (i) traditional rock physics models, such as the Biot-
Squirt (BISQ) framework, exhibit limited generalizability 
in highly heterogeneous formations, failing to accurately 
quantify the coupling of pore-throat architecture with 
seismic wavefields; (ii) machine learning approaches 
establish nonlinear mappings, but they suffer from 
interpretability deficits and physical decoupling, producing 
predictions unconstrained by geological plausibility; and 
(iii) multiscale data integration across core-log-seismic 
domains lacks standardized protocols, with information 
degradation during upscaling constraining prediction 
accuracy.

This review systematically synthesized technological 
advancements in seismic permeability prediction through 
a structured analysis of three dominant methodologies: 
dispersion/attenuation-based techniques leveraging 
frequency-dependent velocity characteristics, pore 
structure-oriented approaches, and AI-driven solutions 
employing deep learning architectures. By evaluating 
the theoretical foundations, technical advantages, 
and limitations of these paradigms, we proposed a 
transformative “dual-engine” predictive framework that 
embedded rock physics constraints within deep learning 
infrastructures. This mechanism and data co-driven model 
integrates theoretical rigor with data-adaptive capability, 
particularly through physics-informed neural networks. 
As a result, the model overcomes applicability barriers in 
complex reservoirs where traditional methods falter.

The subsequent sections of this paper are organized as 
follows: Section 2 elaborates on the theoretical foundations 
and representative techniques of dispersion/attenuation-
based methods. Section 3 focuses on the key technologies 
and applications of pore structure-based methods. Section 
4 analyzes the progress and challenges of AI-driven 
solutions. Section 5 explores potential future research 
directions. Finally, Section 6 concludes the review.

2. Permeability prediction methods based 
on dispersion and attenuation
These approaches comprise three primary categories: 
(i) theoretical model-based inversion, (ii) velocity 
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dispersion/quality factor prediction, and (iii) fluid mobility 
attribute prediction.

2.1. Model-based inversion

Theoretical forward modeling investigates how 
reservoir parameters (e.g., porosity, permeability, and 
fluid saturation) influence seismic wave propagation 
characteristics (e.g., dispersion, attenuation, and reflection 
coefficients), providing foundations for geophysical 
parameter inversion. Typically, this inversion seeks an 
optimal permeability value within predefined bounds, 
minimizing misfit between model-predicted and observed 
P-wave velocity dispersion or quality factor, effectively 
transforming permeability estimation into an optimization 
problem. Some typical model-based inversion methods are 
summarized in Table 1.

The BISQ model, incorporating both Biot flow and squirt 
flow mechanisms, effectively explains high dispersion/
attenuation in seismic frequencies. Nie et al.7 implemented 
BISQ-based inversion using niche genetic algorithms, 
while Zhang et al.8 derived 3D anisotropic dispersion 
equations and analyzed azimuthal dispersion effects on 
permeability inversion. To address inherent limitations 
of genetic algorithms (e.g., premature convergence and 
poor local search), Fang and Yang9 developed a hybrid 
genetic-simulated annealing algorithm demonstrating 
superior accuracy and convergence. In addition, a series 
of advancements in reservoir parameter inversion was 
achieved based on the BISQ model.10,11 White12 and 
White et al.13 complemented the macroscopic-scale Biot 
theory and microscopic-scale squirt flow mechanisms 
and introduced a mesoscopic dissipation mechanism, 
finally deriving frequency-dependent attenuation and 
dispersion functions for partially saturated porous media 
parameterized using permeability, porosity, and pore-
fluid properties. Johnson14 subsequently extended White’s 
model to accommodate arbitrarily sized fluid patches 
by incorporating geometric characteristic parameters 
S/V and T. Later, Sun15 integrated these tri-scale 
(macro-meso-micro) dispersion-attenuation mechanisms 
to develop the Biot-patchy-squirt (BIPS) model, which 

characterized wave dispersion and attenuation in 
immiscible fluid-saturated fractured poroelastic media. In 
the aforementioned models, permeability characterization 
requires inversion through attenuation response without 
establishing an explicit theoretical relationship. For example, 
in the mesoscopic White’s layered patchy saturation model, 
White12 derived the expression for the complex modulus 
of P-waves (E[ω]), which implicitly encoded permeability 
information. Relying on this discovery and applying plane 
wave theory, one can compute the phase velocity (Vp) and 
inverse quality factor (Q−1).
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where L denotes the thickness of the porous layer, 
KBGH represents Hill’s approximate expression of the 
Gassmann modulus at high frequencies, N signifies the 
shear modulus of the dry rock frame, γ indicates the ratio 
of fast P-wave fluid tension to total stress, ƞ refers to the 
viscosity coefficient, κ designates the permeability, ω is 
the angular frequency, KE denotes the effective modulus of 

Table 1. Theoretical and application characteristics of typical model‑based inversion methods

Model name Core mechanism Target reservoir type Permeability representation

BISQ Coupling of Biot flow and squirt flow Medium‑high porosity/permeability 
sandstones

Implicit (inverted via attenuation response)

White/Johnson Mesoscopic fluid patch dissipation Partially saturated porous media Implicit (inverted via attenuation response)

BIPS Macro‑meso‑micro coupling Fracture‑pore dual media Implicit (inverted via attenuation response)

Geometric network 
model

Parametrization of elliptical 
pore/fracture geometry

Fracture‑pore/fracture reservoirs Explicit equation

Abbreviations: BIPS: Biot‑patchy‑squirt; BISQ: Biot‑Squirt.
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compressional wave, S represents the fluid saturation, and 
ρS and ρf are the densities of the grain mineral and pore 
fluid, respectively.

The following equations provide a methodology 
for establishing explicit permeability representation 
relationships. For example, Xiong et al.16 and Wei et al.17 
established a 3D network model with elliptical cross-
sections for fractures and soft pores. They incorporated 
permeability relationships with porosity, confining 
pressure, and pore aspect ratio, deriving a computational 
methodology for permeability estimation.
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where ƞ denotes the fluid viscosity, L represents the 
length of the microtube, A indicates the cross-sectional 
area (απR2), R is the semi-major axis radius of the elliptical 
cross-section, α refers to the aspect ratio of the fracture 
cross-section, PU and PD denote the pressure at both ends 
of the microtube, respectively, ρf signifies the density of the 
fluid within the microtube, J designates the zeroth-order 

Bessel function of the first kind, K represents K �
i f��
�

, 
and C is the acoustic wave velocity in the fluid.

Tan et al.18 integrated the coupled effects of solid 
particle detachment, fluid-solid coupling, multiphase 
flow, and stress sensitivity into a fluid and structure-
coupled stress-sensitive permeability model grounded in 
material mechanics and fractal theory. They thus provided 
theoretical guidance for accurate prediction of flow 
behavior and development optimization in stress-sensitive 
reservoirs.

It is evident that most existing pore media and fracture-
pore media models implicitly incorporate permeability 
information. However, they fail to establish explicit 
theoretical permeability relationships. Alternatively, 
the developed permeability models contain numerous 
physical parameters of the rock matrix. These parameters 
hinder direct permeability prediction using exploration 
data. Furthermore, the inversion process reveals that 

the effectiveness of rock physics inversion critically 
depends on the accuracy of elastic parameters derived 
from prestack seismic data and the congruence between 
rock physics models and actual formation properties. 
Key limitations of model-based permeability inversion 
include: (i) solution non-uniqueness and low noise 
tolerance, (ii) significant result divergence across different 
dispersion-attenuation models despite generally consistent 
permeability response patterns in forward modeling, and 
(iii) frequent mismatches between theoretical predictions 
and field observations.

2.2. Velocity dispersion/quality factor-based 
methods

In field applications, acquiring comprehensive 
velocity dispersion data at every sampling point remains 
challenging. Theoretical forward modeling generally 
indicates an inverse relationship between permeability 
and dispersion: low permeability correlates with high 
dispersion, while high permeability corresponds to low 
dispersion.

Following this principle, Liu19 applied frequency-
dependent amplitude variation with offset (AVO) theory 
to quantify P-wave velocity dispersion as a fluid mobility 
proxy for permeability prediction. Yuan et al.5 established 
permeability and dispersion relationships through core-
derived rock physics analysis and determined the first-
order relative variation of Young’s modulus with seismic 
frequency and the second-order relative variation of 
permeability with pressure. Then, subsequent frequency-
dependent amplitude variation with incident angle (AVA) 
inversion of well logs yielded the reservoir’s P-wave 
dispersion, enabling permeability prediction through 
the derived relationships. Wu et al.20 developed a quality 
factor-based method, which involved correlation between 
averaged core permeability and well quality factors, and 
then they estimated permeability at unlogged locations 
through seismic waveform similarity analysis to reference 
wells.

The intrinsic limitations of dispersion attribute methods 
originate from fundamental physical and operational 
constraints:21,22 conventional seismic bandwidth 
(10–100  Hz) fails to excite significant dispersion effects 
in high-permeability reservoirs (κ >10 mD). This 
failure occurs due to fluid pressure diffusion thresholds 
below 10  Hz, which critically attenuate permeability 
sensitivity. This bandwidth confinement triggers a 
cascading degradation: high-fidelity Q-factor inversion 
demands ultrabroadband data (>3 octaves), yet narrow 
field-acquisition bandwidths (<2 octaves) propagate 
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Q-estimation errors into permeability predictions. Further 
compounded by anisotropic scattering, fracture azimuthal 
variability induces phase velocity dispersion anomalies 
that mask permeability signatures. Collectively, these 
interdependencies form an error amplification chain. The 
chain restricts dispersion-based methods to homogeneous 
siliciclastic reservoirs with moderate permeability, while 
faltering in fractured or stress-sensitive formations. 
Collectively, these constraints necessitate addressing 
two persistent bottlenecks: (i) non-unique solutions in 
frequency-dependent AVO/AVA dispersion attribute 
inversion and (ii) significant relative errors in current 
Q-factor extraction techniques, compromising permeability 
estimation accuracy.

2.3. Fluid mobility-based methods

Fluid mobility (M), defined as the ratio of reservoir 
permeability (κ) to fluid viscosity (ƞ), characterizes 
the coupled effects of pore structure’s conductivity and 
pore fluid viscosity. At present, fluid mobility-based 
methods constitute the predominant approach for 
permeability prediction within dispersion-attenuation 
frameworks.

In 2004, Silin et al.23 derived the low-frequency 
asymptotic reflection coefficient for fluid-saturated porous 
media:
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where Z denotes impedance, ρf is fluid density, and ω is 
angular frequency. This equation establishes a positive 
correlation between the reflection coefficient and the 
square root of the product term. Goloshubin et al.24 and 
Goloshubin et al.25 subsequently proposed a novel 
frequency-dependent imaging attribute when analyzing 
dual-porosity media attenuation. Proportional to M , 
this attribute was applied to reservoir permeability 
estimation. On this basis, Chen et al.26 developed a 
computational expression for fluid mobility attributes and 
established a method to identify the dominant frequency 
within the low-frequency band of seismic signals. This 
approach enabled the direct calculation of reservoir fluid 
mobility using the instantaneous spectrum of the low-
frequency dominant frequency. The computational 
expression is given as follows:
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where C is a proportionality coefficient, ω is the 
dominant low frequency, and A(ω) is the amplitude 

spectrum of the low-frequency band derived from time-
frequency analysis.

This framework facilitates subsequent methodological 
advances. For example, Zhao et al.27 investigated the 
effects of fluid mobility on dispersion and attenuation 
using dual-porosity and dual-permeability models. 
Lu28 developed a Bayesian framework for direct 
mobility inversion. Zhang et al.29 enhanced reservoir 
prediction accuracy by integrating the synchro-
squeezed generalized S-transform with Lucy-Richardson 
deconvolution into mobility computation.

The model-based inversion approach in Section 2.1 and 
the permeability prediction technique using dispersion/
attenuation attributes in Section 2.2 were compared. 
The comparison revealed that the core advantage of the 
latter method lies in circumventing Q-factor extraction 
errors and directly establishing a quantitative correlation 
between seismic amplitude and fluid mobility. Application 
to actual marine seismic data from the JZ area of the Bohai 
Sea demonstrated that the fluid mobility attribute exhibits 
significant imaging advantages for hydrocarbon reservoirs. 
It enables precise spatial delineation of reservoir distribution 
while substantially reducing the non-uniqueness and 
uncertainty in fluid identification. A  representative case 
study from Chen et al.26 illustrated these capabilities 
(Figure  1). The fluid mobility measurement profile 
displays a high-amplitude “bright spot” anomaly at the gas 
reservoir location, while the fluid mobility slice extracted 
along the gas-bearing interval clearly delineates the spatial 
boundaries of high-permeability zones (outlined by black 
dashed contours).

Most current methods approximate mobility attributes 
through time-frequency decomposition for qualitative 
permeability assessment. However, reservoir thickness 
below λ/8 induces significant low-frequency amplitude 
distortion, which requires integrated compensation 
through high-frequency tuning effects, combined with 
subjectivity in dominant frequency selection and the 
petrophysical-property dependency of calibration 
coefficient C. Consequently, these thin-bed resolution 
constraints collectively result in fundamental limitations of 
such methods: Uncertainties artificially introduced by the 
subjective determination of ω, potentially misrepresenting 
true reservoir mobility; and the inherently limited 
resolution of mobility attributes derived from time-
frequency decomposition methods.

2.4. Challenges of dispersion/attenuation-based 
methods

The model categories, theoretical bases, applicable 
conditions, advantages, and limitations of various 
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dispersion/attenuation-based permeability prediction 
approaches are systematically compared in Table  2. 
This comparison reveals that despite the clear physical 
mechanisms underpinning this category of methods, four 
fundamental challenges persist: (i) controversies regarding 
the universality of petrophysical assumptions, such as 
deviations between assumed pore-scale homogeneity 
and actual reservoir heterogeneity, (ii) scale adaptability 
conflicts due to mismatched micro-mechanisms and 
macro-scale seismic observations, (iii) bandwidth 
limitations of seismic data, where the absent of low-
frequency components induce significant fluid mobility 

estimation bias, and (iv) amplified solution non-uniqueness 
due to coupled controls of pore geometry, fluid viscosity, 
and fracture density on dispersion/attenuation responses.

3. Permeability prediction based on pore 
structure characteristics
Traditional seismic permeability prediction methods 
primarily rely on well-log or laboratory rock physics 
data. These methods establish optimal porosity and 
permeability relationships and then extrapolate these 
petrophysical correlations to seismic data for areal 

Figure  1. Fluid mobility analysis of reservoirs in the lower Ed2 formation from the JZ area. (A) Seismic section. (B) Fluid mobility reservoir 
section. (C) Seismic slice. (D) Fluid mobility reservoir slice. The colors red, green, and blue in the well log in the zoomed image indicate gas, oil, and brine, 
respectively. Reprinted with permission from Chen et al.26 Copyright 2012 Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg.
Abbreviation: CDP: Common depth point.

DC

BA

Table 2. Theoretical and application characteristics of dispersion/attenuation‑based methods

Model category Theoretical basis Applicable conditions Advantages Limitations

Model‑based inversion BISQ/BIPS theoretical 
models

Moderate‑to‑high porosity/
permeability sandstones

Clear physical 
interpretation

Mismatch in strongly 
heterogeneous reservoirs

Velocity dispersion/quality 
factor‑based methods

Velocity‑frequency 
response

Broadband seismic data High computational 
efficiency

Sensitive to Q‑factor 
extraction errors

Fluid mobility‑based 
methods

Low‑frequency 
reflectivity theory

Fluid‑saturated porous 
media

Direct indicator of 
flow capacity

Resolution constraints in 
time‑frequency analysis

Abbreviations: BIPS: Biot‑patchy‑squirt; BISQ: Biot‑Squirt.
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permeability prediction.30 However, due to depositional 
and diagenetic controls, carbonate reservoirs, particularly 
reef-shoal facies, exhibit significantly more complex 
pore architecture than clastic reservoirs. These reservoirs 
demonstrate substantial permeability heterogeneity even at 
comparable porosity levels. In lithofacies-varying formations 
with intricate pore systems, conventional methods yield 
compromised accuracy due to nonlinear porosity and 
permeability relationships. Consequently, pore structure 
integration becomes essential for reducing inversion non-
uniqueness and enhancing prediction reliability.

There are currently three pore structure-based 
approaches: (i) Sun model-based inversion, (ii) lithofacies-
constrained prediction using pore-structure parameters, 
and (iii) dual-porosity structure parameter integration.

3.1. Sun model-based methods

Sun31,32 derived two pore structure parameters through 
fundamental rock physics analysis: the bulk compliance 
factor (γ), which characterizes volumetric rock 
deformation, and the shear compliance factor (γµ), which 
describes shape variations. Both γ and γµ satisfy the rock 
physics relationship:

Kd = Km (1-ϕ)γ� (IX)

� � � ��
d m� �( )1 � (X)

where Kd and µd denote the bulk modulus and shear 
modulus of dry rock, respectively; Km and µm represent 
the bulk modulus and shear modulus of the grain mineral 
phase, respectively; and ϕ signifies porosity. Furthermore, 
γµ can be expressed as:

�
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2
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where Vs, ρ, and ϕ denote the S-wave velocity, density, 
and porosity, respectively.

Applied to Texas carbonate reservoirs by Dou et al.,33 
these parameters effectively characterized the relationship 
between porosity impedance and permeability. They 
facilitated the identification of pore types and high-
permeability zones, thereby enhancing prediction 
accuracy. Zhang et al.34 subsequently implemented 
these parameters in the Puguang Gas Field, with a pore 
structure-constrained porosity and permeability binary 
model developed for permeability-type classification at 
seismic scales. Similarly, Jin et al.35 established pore-type 
discrimination criteria and type-specific porosity and 
permeability models using γµ. These achievements enabled 
refined well-log permeability interpretation. By analyzing 

elastic parameter-pore structure relationships across pore 
types, rock physics templates for the permeability prediction 
of complex reservoirs were constructed (Figure 2). In the 
case study of Puguang Gas Field (Figure 3), an intraparticle 
pore-dominated reservoir within the 5369–5440  m 
interval was developed in Well PG302-1. Although this 
section exhibited relatively high predicted porosity, the 
pore structure parameter was significantly low, indicating 
low permeability consistent with core analysis results. This 
case validates that permeability prediction based on pore 
structure parameters effectively discriminates reservoir 
flow capacity heterogeneity, thereby delineating the spatial 
distribution of high-permeability zones. Compared to 
conventional approaches, this method substantially 
enhances permeability prediction accuracy in complex 
reservoirs. Conventional methods rely on statistically 
derived empirical formulas for porosity and permeability, 
with prediction errors often exceeding one order of 
magnitude. Critically, these findings substantiate that 
pore structure exerts dominant control over permeability, 
whereas porosity serves merely as a contributory factor.

The Sun model demonstrates porosity-independent 
permeability prediction capabilities in both carbonate 
and clastic reservoirs. It achieves this through its 
characterization of rock deformation mechanisms through 
γ and γμ. However, the model suffers from fundamental 
flaws in its physical foundation. First, the model exclusively 
captures elastic deformation responses while neglecting the 
topological control mechanisms governing fluid pathways 
(e.g., pore-throat connectivity). Second, its classification 
regression framework contains inherent structural 
deficiencies: oversimplified permeability zoning based 
solely on γ or γμ results in ambiguous partition boundaries, 
and the enforcement of linear porosity and permeability 
regressions contradicts the intrinsic nonlinearity of 

Figure  2. Permeability interpretation chart of Puguang Gas Field. 
Reprinted with permission from Jin et al.35 Copyright 2016 Journal of 
Palaeogeography.
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carbonate systems, particularly the exponential porosity−
permeability relationships observed in vugular pore
networks.

3.2. Lithofacies-controlled methods with pore
structure parameters

Advancing quantitative reservoir characterization
recognizes depositional microfacies as primary controls
on petrophysical properties. Sedimentary attributes,
including composition and grain size, fundamentally
govern porosity and permeability distributions. Therefore,
establishing microfacies-constrained property models is
essential.

Zhao36 derived facies-control factors from Archie’s
equation, integrating them with permeability through
Kozeny’s hydrodynamic formula to develop a facies-
constrained permeability calculation method for seismic
inversion. This approach demonstrably enhances
lateral prediction accuracy by incorporating geological
priors. Given the primary control of pore structure on
permeability as introduced in Section 3.1, Gan et al.37 
developed a comprehensive workflow for reservoir
permeability prediction integrating pore structure and
lithofacies controls: First, lithofacies classification was
conducted using the reservoir zone’s porosity, elastic
parameters, and γµ. Then, facies-specific multivariate
regression was used for permeability prediction. Relying
on this workflow, they selected the Fudong Slope area in
the eastern central depression belt of the Junggar Basin
as the study area for method application. The primary
reservoir type in this region is lithologic-stratigraphic

hydrocarbon accumulation. The study designated Well
FUD7 as the training well and Well FUD6 as the prediction
well. Regression relationships were separately established
for different lithofacies in the training well. Subsequently,
the trained lithofacies-specific regression models were
applied to the prediction well to obtain permeability
prediction results. Comparative analysis with non-facies-
based multivariate regression in Table 3 reveals that both
wells exhibited reduced prediction errors and enhanced
coefficient of determination (R2) values after facies-
control implementation. The maximum error reduction
and greatest R2 improvement occurred when γµ was
included in the regression parameters. Field applications
demonstrate that this method can confine permeability
prediction errors within one order of magnitude, and
multivariate regression proves to be a viable solution for
reservoir permeability prediction as it incorporates elastic
parameters and γµ under lithofacies constraints.

While lithofacies-controlled methods enhance
prediction accuracy through depositional microfacies
constraints, precise lithofacies classification remains
a prerequisite for permeability prediction, as it serves
as a geological prior. Furthermore, γµ exhibits extreme
sensitivity to velocity and density errors in seismic
inversion. Acting as a key input for lithofacies classification,
it forms a positive error feedback loop propagating through
the workflow. Strong multicollinearity also exists among
porosity, γµ, and impedance in multivariate regression.
This multicollinearity distorts the physical significance of
the regression coefficients, and these factors collectively
cause abrupt lateral prediction jumps exceeding one order

Figure 3. Inversion profiles of (A) predicted porosity, (B) pore structure parameter, and (C) permeability through Well PG302-1. Reprinted with permission
from Jin et al.35 Copyright 2016 Journal of Palaeogeography.
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of magnitude. In summary, the limitations of this method 
include: High sensitivity to seismic lithofacies and pore 
structure parameters that are intrinsically challenging 
to quantify accurately; prevalent multicollinearity in 
multivariate regression; and multiple pore structure factors 
must be incorporated, given the multivariate nature of 
permeability controls.

3.3. Dual-pore-structure parameters methods

Wei and Innanen38 discovered the combined effects of pore 
morphology and scale on permeability, establishing a dual-
parameter model:

� �
�

�

� �

�
�

�

�
�

�

A
C

B
p0 5.
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where κ represents permeability; γs and γc denote scale 
and roundness parameters, respectively; Wp is a weighting 
coefficient determined from the core and log data; and A, 
B, and C are undetermined coefficients. Inspired by the 
Sun model in Section 3.1, and guided by the lithofacies-
control rationale established in Section 3.2, Ding et al.39 
derived a shear-Lee factor (cµ) from the Lee model. This 
factor exhibited a strong linear correlation with principal 
pore dimensions. By incorporating this factor, they 
effectively integrated both pore-scale and morphological 
effects. In addition, they integrated the factor with 
elastic parameters, porosity, and pore aspect ratios (α) 
as inputs for a feedforward neural network to predict 

lithofacies, and then subsequently predicted permeability, 
ultimately constraining prediction errors within half an 
order of magnitude. Field application (Figure  4) in the 
tight gas reservoirs of the Shaximiao Formation, Jinqiu 
Gas Field, Sichuan Basin, demonstrated that predictions 
incorporating dual-pore-structure parameters (cµ+α) 
achieved superior outcomes compared to single-factor 
(γµ) approaches. These predictions quantitatively matched 
well-logs with higher fidelity and generated sand bodies 
with enhanced spatial continuity.

The dual-pore-structure parameter approach 
demonstrates progress in characterizing the combined 
effects of pore morphology and scale on permeability. 
However, it suffers from inherent limitations in its physical 
mechanisms. The model oversimplifies complex flow 
processes into a power law combination of morphology 
and scale, neglecting the fundamental control of pore 
topology connectivity (e.g., tortuosity of pore throats). 
More critically, the parameterization exhibits irresolvable 
ambiguity: the model fails to distinguish the opposite 
effects on permeability between the real-scale expansion 
of pore throats and the morphological distortion caused by 
the flattening of sheet-like pores. In industrial applications, 
high-dimensional inversion spaces introduce significant 
uncertainties: the Wei model requires simultaneous 
resolution of multiple interacting parameters. Its high-
dimensional solution space causes pronounced oscillation 
in inversion results. Meanwhile, Ding’s neural network 
framework faces triple error propagation: inherent errors 
in elastic parameters derived from seismic inversion 
directly propagate into the calculation of the shear-Lee 
factor. This propagation induces intermediate parameter 
bias. Subsequent coupling of multi-source inputs in hidden 
layers of the feedforward network further iteratively 
amplifies upstream errors through weight matrices, 
ultimately generating substantial errors in the output 
layer’s permeability predictions.

3.4. Challenges of pore structure characteristics-
based methods

Although existing mainstream porosity and permeability 
prediction models (e.g., Sun, Wei, and Ding models) 
demonstrate progress in specific scenarios or mathematical 
formulations, they still suffer from fundamental limitations, 
as summarized in Table  4 regarding their methodologies, 
advantages, and constraints. These limitations include their 
core physical mechanisms, such as the neglect of pore-
throat connectivity control and the ill-defined physical 
interpretations of parameters; model architecture, such 
as arbitrarily imposed linearization and error-amplifying 
designs; and application feasibility, such as dependence 

Table 3. Statistics of mean square error (MSE) and coefficient 
of determination (R2) for multivariate regressions

Key input 
parameters

Facies‑ 
based

Fud7 well Fud6 well

MSE R2 MSE R2

ϕ No 0.9599 0.4392 1.5056 0.3269

Yes 0.9387 0.5067 1.2961 0.5250

ϕ+Vp No 0.9569 0.4409 1.4026 0.3508

ϕ+Vp/Vs No 0.9239 0.4602 1.4014 0.3921

ϕ+γμ No 0.7765 0.5463 1.3564 0.4961

ϕ+Vp+Vp/Vs No 0.8975 0.4757 1.0756 0.4989

Yes 0.8924 0.5408 0.9542 0.5925

ϕ+Vp+Vp/Vs+γμ No 0.7421 0.5664 0.9356 0.6016

Yes 0.6721 0.7948 0.8943 0.7924

γμ indicates shear compliance factor; ϕ indicates porosity; Vp indicates 
P‑wave velocity; Vs indicates S‑wave velocity.
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on difficult-to-acquire/high-error parameters and high-
dimensional inversion instability with non-unique solutions.

4. Permeability prediction based on AI
In recent years, AI algorithms have emerged as powerful
computational tools for solving complex non-linear
mapping and high-dimensional data fitting problems.
They trigger transformative advances across scientific and
engineering domains. Within petroleum exploration, the
inherent subsurface complexity and uncertainty present
significant challenges. These challenges, combined with
substantial human capital demands for analyzing massive
exploration datasets, have accelerated the industry-wide
integration of AI technologies.40-43

4.1. Data-driven AI approaches

The earliest Chinese research on seismic-driven
permeability prediction traces back to a groundbreaking
study published in Oil Geophysical Prospecting by Chen
and Guo.30 Grounded in the elastic wave theory of dual-
phase media, the authors established the theoretical
basis for permeability prediction from seismic data. They
demonstrated that conventional approaches relying solely
on porosity and permeability functional relationships could
only delineate qualitative permeability trends. To enable
quantitative prediction, they pioneered the integration
of mathematical approximation techniques with
seismic attributes. As seismic attribute and permeability
relationships defy explicit mathematical formulation,

Table 4. Theoretical and application characteristics of pore structure characteristics‑based methods

Dimension Sun model Lithofacies‑controlled model Dual‑parameter model

Principle Rock physics Sedimentology Morphology+scale

Key input parameters Bulk compliance factor and
shear compliance factor

Lithofacies type, pore structure
parameters

Scale parameter, roundness
parameter

Parameter acquisition Seismic/log elastic parameter
inversion

Core calibration+seismic
lithofacies division

Core calibration+seismic/log
elastic parameter inversion

Lithofacies dependent No Yes Optional

Advantages Porosity‑independent
heterogeneity characterization

Geological prior integration
reduces non‑uniqueness

Morphology+scale

Limitations Oversimplified classification
ignores multi‑factor coupling

Subjectivity in lithofacies
delineation

High‑dimensional parameter
instability, dependent on
upstream parameter accuracy

Reservoir applicability Carbonate/clastic reservoirs Highly heterogeneous
carbonates/clastic reservoirs

Fracture‑porosity systems

Prediction accuracy Error≤1 order of magnitude Error≤1 order of magnitude Error≤0.5 order of magnitude

Reference Jin et al.35 Gan et al.37 Ding et al.39

Figure 4. Predicted permeability profiles, where dual-pore-structure parameters refer to cµ+α and single-factor denotes γµ. Reprinted with permission from
Ding et al.39 Copyright 2023 Society of Exploration Geophysicists.
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AI serves as an advanced regression tool that correlates 
well-log permeability with adjacent seismic traces. This 
calibrated relationship can then be extrapolated across 3D 
seismic volumes for reservoir permeability prediction.

Based on Chen’s work, He et al.43 implemented the 
rough set theory for optimal attribute selection, followed 
by genetic algorithm-optimized backpropagation neural 
networks to establish attribute and permeability mappings. 
Anifowose et al.44 conducted a comparative analysis of 
multiple algorithms for permeability estimation in Middle 
Eastern carbonates. The study used integrated seismic 
attributes and wireline logs. The algorithms evaluated 
include artificial neural networks, fast Newman algorithm, 
support vector machines, and extreme learning machines. 
Meanwhile, Zhen et al.45 integrated a convolutional block 
attention module into a convolutional neural network to 
characterize sand-body development patterns and identify 
concealed channels.

Riyadi et al.46 proposed a permeability estimation 
method utilizing elastic attributes derived from 
simultaneous seismic inversion and evaluated the 
predictive performance of several ensemble-based models, 
including extreme gradient boosting (XGBoost), light 
gradient boosting (LightGBM), categorical gradient 
boosting, bagging regressor, random forest, and stacking. 
A  multilayer perceptron neural network algorithm was 
also assessed. They focused on the X Field in the Malay 
Basin, characterized by complex pore systems (coexisting 
intergranular pores, dissolution vugs, and fractures) and 
pronounced heterogeneity. The statistical evaluation of 
permeability prediction models was based on wireline 
logging data using the R2 and root mean squared log error 

(RMSE). The results revealed that integrating porosity 
with elastic properties as combined input features yielded 
R2 > 0.95 and root mean squared log error (RMSLE) < 0.174. 
Among the tested algorithms, LightGBM and stacking 
ensemble models delivered optimal performance (R2 = 0.97, 
RMSLE = 0.112 for both), while random forest exhibited 
relatively inferior results (R2 = 0.92, RMSLE = 0.174). 
In contrast, predictions using elastic properties alone 
demonstrated significantly reduced accuracy, with R2 
ranging from 0.82 to 0.87, and RMSLE from 0.195 to 0.278. 
Within this feature configuration, XGBoost achieved the 
highest precision (R2 = 0.87, RMSLE = 0.195), closely 
followed by a multilayer perceptron with 16 hidden layers 
(R2 = 0.87, RMSLE = 0.207). Figure 5 compares predicted 
and measured permeability from the best-performing 
models under both input scenarios. The contrast between 
the bottom panels in Figure 5 visually confirms substantial 
prediction challenges in low-permeability intervals 
(<0.001 mD) when exclusively using elastic properties. 
Collectively, these results demonstrate that feature 
selection and combination exert decisive influence on 
predictive efficacy even with high-performance models. 
This limitation arises because pore-throat dimensions, 
morphology, and connectivity—all critical controls on 
flow behavior—exert more dominant control in tight 
formations. In contrast, elastic properties have been 
proven insufficient to characterize such microstructural 
determinants of fluid transport.

Although purely data-driven AI models (black-
box models) in the aforementioned studies enhanced 
the prediction accuracy of reservoir permeability, 
their fundamental flaw lies in intrinsic decoupling 
from the physical mechanisms governing fluid flow. 

Figure  5. Measured and predicted permeability comparison. (A) Permeability prediction employing elastic properties and porosity as input features 
via the LightGBM modeling. (B) Elastic property-exclusive permeability prediction using the XGBoost framework. Top panels indicate depth-domain 
permeability profiles, while bottom panels illustrate cross-plots of predicted and core-calibrated permeability values. Reprinted from Riyadi et al.46
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These methods simplify the prediction process to 
mathematical approximations, failing to construct 
genuine geologically process-driven models. The so-called 
“optimal feature combination” essentially represents over-
adaptation to known geological conditions in training well 
areas. It is a feature mapping established through statistical 
correlations. When extrapolated to undrilled regions or 
complex diagenetic reservoirs, the geological plausibility 
of predictions becomes significantly questionable due 
to the absence of quantitative constraints on pore-throat 
network parameters. Furthermore, the inherent small-
sample dilemma in reservoir parameter prediction 
inevitably subjects single-task learning to dual challenges 
of insufficient sample size and overfitting.

4.2. Data- and model-driven approaches

In 2019, Bergen et al’s.47 seminal review in Science, 
“Machine learning for data-driven discovery in solid 
earth geosciences,” systematically evaluated applications 
of data-driven AI in solid earth sciences. The study 
emphasized that AI implementation must advance 
beyond simplistic applications to address complex 
geoscientific challenges. It highlighted that critical factors, 
such as training test set partitioning and validation 
methodology, significantly influence prediction outcomes. 
Traditional geophysical approaches typically formulate 
mathematical approximations between characterization 
parameters based on theoretical assumptions, resulting 
in deterministic physical models. Data-driven methods 
bypass theoretical presuppositions by directly extracting 
implicit patterns from data, making them well-suited 
for complex geological studies. However, they often lack 
physical interpretability. On the other hand, physical 
models offer stronger explanatory power, but they face 
limitations in accounting for geological complexity due 
to inherent assumptions and difficulties in defining inter-
parameter relationships, ultimately constraining predictive 
accuracy. Recently, interdisciplinary collaboration has 
integrated data-driven methods with physical models. 
This integration has emerged as a promising avenue. It is 
deemed capable of yielding more universally applicable 
solutions to geophysical problems.48-50

The capillary bundle model provides the fundamental 
basis for studying fluid flow in porous media, representing 
the most essential physical model for permeability 
characterization. Its extension, the Kozeny-Carman 
equation, establishes the foundational relationship between 
porosity, pore-scale geometry, and permeability:51
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where κ represents permeability, ϕ represents porosity, d 
denotes pore scale (characteristic pore/grain size), and B is 
a geometric factor. On this basis, Bourbie et al.52 proposed 
a practical formulation for application to natural materials, 
suggesting an empirical geometric factor n is 4 or 5, which 
may better represent common geological media:
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Shi et al.53 incorporated pore-scale effects by calibrating 
n with well-log data, replacing Bourbie’s proportionality 
with an explicit equality:

�
�
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n
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Where de represents the equivalent pore scale. To 
implement this permeability model, the authors first 
predicted porosity through sensitive parameter analysis. 
They used bulk modulus, shear modulus, and density 
with kernel Bayesian discrimination. Subsequently, they 
estimated the equivalent pore scale from compressional 
wave velocity, shear wave velocity, and the derived porosity 
using the same statistical method. Finally, permeability 
was calculated through the porosity-equivalent pore scale-
permeability relationship using seismic elastic parameters. 
While this method introduces valuable physical constraints 
to data-driven prediction, there are two key limitations: on 
the one hand, the permeability model accounts for pore 
scale and porosity effects but neglects pore morphology 
influences. On the other hand, cumulative errors may 
significantly compromise prediction accuracy. These errors 
arise from the stepwise porosity-pore scale-permeability 
calculation.

Indeed, issues such as small sample sizes and overfitting 
are frequently encountered in the context of distributed 
computational cumulative errors and reservoir parameter 
prediction. At present, multi-task learning addresses these 
challenges by establishing end-to-end learning mechanisms 
and sharing feature information across different tasks. 
This approach effectively mitigates the overfitting often 
associated with single-task learning, thereby enhancing the 
generalization capability of the network model. However, 
since multi-task learning relies on cross-task feature 
transfer to enable information interaction, the correlation 
between tasks plays a decisive role in model performance.

A large amount of statistical data demonstrated a close 
correlation between porosity and permeability. Based on 
this, Wei et al.54 proposed a seismic prediction method 
for reservoir permeability using multi-task learning. The 
method employed post-stack seismic data and P-wave 
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impedance as network inputs, with well-log porosity 
and permeability serving as labeled data of the network. 
Through network training, an optimal network model 
was established by integrating near-well seismic and 
well-log data. Finally, reservoir porosity and permeability 
parameters between wells were simultaneously predicted. 
Application results from the tight gas reservoir in the 
Shaximiao Formation of Jinqiu Gas Field, Sichuan Basin, 
demonstrated high consistency between predicted 
permeability parameters of Sand Body No.  8 and actual 
drilling data, along with superior vertical and horizontal 
resolution. 

4.3. Challenges of AI-based methods

While data-driven AI models demonstrate empirical 
efficacy in permeability prediction, their core limitation 
stems from divorcing mathematical approximations from 
underlying petrophysical mechanisms. This physics-
agnostic approach manifests as an inability to construct 
genuine geological process-driven models, vulnerability 
to local overfitting through statistically derived feature 
mappings, and geologically implausible extrapolation in 
undrilled/complex diagenetic settings due to unconstrained 
pore-throat parameterization.

5. Discussion
This review synthesizes the fundamental limitations 
inherent in the three dominant methodologies within the 
reservoir permeability prediction domain (Table 5).

Based on these findings, the above limitations 
unequivocally indicate the necessary direction for next-
generation models. These models must transcend empirical 
curve fitting through deep integration of multiscale physical 
mechanisms, quantitative pore structure characterization, 
and physics-embedded AI architectures. Ultimately, this 
integration will dismantle the barriers between data-driven 
and physical models to achieve a paradigm shift.

Future development must focus on establishing a 
new permeability prediction paradigm centered on the 
synergistic optimization of “physical mechanism, data-
driven approach, and engineering validation” (Figure 6):

(i)	 Theoretical mechanism innovation
a.	 Develop coupled models integrating pore, fluid, 

and fracture system interactions with dispersion/
attenuation signatures, deepening the coupled 
flow and elasticity theory for multi-porosity 
media (e.g., pores, vugs, and fractures).

b.	 Advance pore-throat topology-constrained rock 
physics models to quantify the control weights of 
tortuosity and connectivity on permeability.

(ii)	 Data-driven architecture enhancement
a.	 Construct multimodal physics-guided learning 

networks by fusing multi-source data (e.g., 
seismic attributes, electrical imaging, and nuclear 
magnetic resonance).

b.	 Employ deep generative adversarial models to 
synthesize geologically realistic virtual samples 
(e.g., generating low-frequency signals to extend 
bandwidth and compensate for flow capacity 
calculations), thereby overcoming the bottleneck 
of scarce training data.

(iii)	Deep embedding of physical mechanisms
a.	 Deeply embed differentiable forms of fundamental 

physical laws (e.g., Darcy’s law and Biot’s theory) 
within neural networks.

b.	 Develop cross-scale physics-informed neural 
networks to couple microscopic pore network 
simulations with macroscopic seismic responses.

(iv)	 Engineering validation framework
a.	 Digital rock core simulation validation: Compare 

seismically inverted permeability against direct 
flow simulation results on the pore network to 
utilize computerized tomography scans/process-
based modeling to create digital rock cores and 
validate the microscale mechanistic soundness 
and scale-transition capability of models.

b.	 Blind well testing validation: Withhold data from 
key geological unit representative wells (blind 
wells) during model training and optimization, 
and assess spatial generalization capability and 
geological scenario adaptability by analyzing 
prediction errors (e.g., RMSE and relative error 
distribution) against core analysis/well test 
permeability data.

c.	 Dynamic production history matching 
validation: Embed the seismically predicted 3D 
permeability field into reservoir simulators, use 
actual production dynamics (pressure, rates, 
water cut, etc.) as the benchmark, and quantify 
improvements, such as the reduction in history 
matching error and the enhancement of recovery 
factor prediction accuracy, thereby demonstrating 
the practical utility for development decision 
support.

d.	 Dynamic data-driven model evolution: Trigger 
incremental learning and model re-optimization 
on acquiring new dynamic data (e.g., new drilling/
core data, production tests, and 4D seismic data) 
and iteratively validate the performance of the 
updated model on new blind wells and subsequent 
production periods, ensuring continuous 
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predictive capability evolution throughout the 
field lifecycle.

This paradigm deeply embeds rock physics principles 
into neural network architectures. It achieves the unification 
of physical interpretability and prediction accuracy. For 
strongly heterogeneous reservoirs, such as fracture-
vuggy carbonates and bioturbated sandstones, it enables 
reliable predictions at both exploration and development 
grades. Its closed-loop engineering validation mechanism 
provides quantifiable and iteratively improvable core 
technological support for intelligent oilfield development. 

This mechanism spans from digital rock core and blind 
well testing to history matching and dynamic evolution.

6. Conclusion
Reservoir permeability is critical for characterizing 
unconventional reservoirs and optimizing hydrocarbon 
recovery. However, its seismic prediction remains 
challenging due to the complex, non-explicit relationship 
between seismic responses and permeability, which 
is governed by multifaceted controlling factors. These 
challenges are specifically manifested in three dominant 
methodologies:
i.	 Dispersion/attenuation-based models, while grounded 

in explicit physical mechanisms, are constrained by 
the coupled interactions of pore, fluid, and fracture 
systems. This coupling leads to non-unique solutions, 
scale adaptability conflicts, and biases in fluid mobility 
characterization due to seismic bandwidth limitations.

ii.	 Pore structure methods (e.g., Sun’s compliance factor) 
suffer from quantification uncertainties, primarily due 
to oversimplified morphological characterization and 
parameters with ambiguous physical interpretations.

iii.	 AI-based methods often decouple mathematical 
approximations from rock physics principles, resulting 
in a vulnerability to overfitting and geologically 
implausible extrapolation. Although integrating 
physics with AI has improved accuracy, critical 
deficiencies remain, including inadequate pore-throat 

Table 5. Summary of three methodological categories for seismic permeability prediction

Methodology Limitation

Dispersion and 
attenuation

Theoretical model 
inversion

(a) Non‑unique solutions and inherent uncertainty
(b) Significant result discrepancies across methods
(c) Frequent mismatch between theoretical predictions and field data

Velocity dispersion/
quality factor

(a) Non‑uniqueness in dispersion attributes from frequency‑dependent AVO/AVA inversion
(b) High relative error in quality factor extraction

Fluid mobility attributes (a) Uncertainty in optimal frequency selection
(b) Low resolution of mobility attributes derived from time‑frequency decomposition

Pore structure Sun model (a) �Oversimplified pore‑permeability classification using compliance factors alone; velocity data 
integration required

(b) Overly simplistic linear porosity and permeability regression post‑classification

Facies‑constrained pore 
structure parameters

(a) �High sensitivity to seismic facies and pore structure parameters, both of which are challenging to 
quantify accurately

(b) Multicollinearity in multivariate linear regression
(c) Necessity of multi‑parameter pore structure factors for permeability classification

Dual‑pore‑structure 
parameters

(a) Uncertainty in quantitative permeability expressions due to numerous undetermined coefficients
(b) Error propagation from elastic parameters in seismic inversion

Artificial 
intelligence

Data‑driven approach (a) Lack of physical models and theoretical constraints
(b) “Small‑sample” and overfitting issues in single‑task neural networks for reservoir parameter prediction

Data‑ and model‑driven 
approaches

(a) Neglect of pore morphology effects in constraining physical models
(b) Significant error accumulation from stepwise calculations degrades permeability prediction accuracy

Abbreviations: AVA: Amplitude variation with incident angle; AVO: Amplitude variation with offset.

Figure 6. A proposed permeability prediction paradigm
Abbreviation: AI: Artificial intelligence.
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topology differentiation, underutilization of seismic 
dispersion, and limited efficacy in enforcing physical 
constraints.

Consequently, overcoming these fundamental 
limitations necessitates a new paradigm centered on the 
synergistic integration of multi-scale physical mechanisms, 
quantitative pore-structure characterization, and physics-
embedded AI architectures. This integrated approach is 
essential to achieve a paradigm shift from empirical curve-
fitting to theoretically guided forecasting in permeability 
prediction.
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