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Abstract

Accurate prediction of reservoir porosity is fundamental for hydrocarbon resource
evaluation and development planning, yet traditional methods struggle with spatial
heterogeneity and complex geological structures. This study proposes a hybrid deep
learning framework that integrates U-Net++ with an attention-guided graph neural
network to simultaneously capture multiscale well logging data features and non-
Euclidean spatial dependencies. The model incorporates dense skip connections, deep
supervision, and dual-channel attention mechanisms to enhance both local feature
extraction and global topological modeling. Experiments on a real-world continental
sedimentary basin dataset (26 wells, ~40 km?) demonstrated that the proposed method
achieved a mean squared error (MSE) of 4.62, mean absolute error of 1.24, coefficient of
determination (R?) of 0.912, and structural similarity index measure of 0.831, representing
a 14.9-38.7% reduction in prediction errors relative to widely used deep learning and
graph-based baselines. Statistical tests (p<0.05) confirmed the significance of the
improvements. The model was particularly robust in extreme porosity ranges (>16% or
<8%), reducing errors by 23.1-42.6% compared to U-Net++. Ablation studies highlighted
the contribution of graph structure (19.0% MSE reduction), attention mechanism
(15.0%), and deep supervision (12.5%). Beyond predictive accuracy, attention-weight
analysis revealed strong alignment with geologically meaningful features, such as faults
and sedimentary facies boundaries, thereby enhancing interpretability. The proposed
framework offers a scalable and interpretable solution for reservoir characterization,
with broad potential applications in heterogeneous and faulted reservoirs.

Keywords: Reservoir porosity prediction; Graph neural network; U-Net++; Attention
mechanism; Spatial heterogeneity
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1. Introduction

Reservoir porosity is a core parameter that characterizes
the capacity of rock storage space and directly affects the
reserve assessment, development potential analysis, and
development plan optimization of oil and gas reservoirs.
In oil and gas exploration and development, accurately
obtaining the porosity distribution of underground
reservoirs is of great significance for reducing exploration
risks and improving recovery rates.

However, due to the complexity of geological structures
and the indirectness of underground information,
traditional porosity prediction methods, such as seismic
inversion and well logging data interpretation, often
have limitations in data accuracy, resolution, and
modeling capabilities. In particular, it is difficult to
accurately characterize the spatial variation of porosity in
heterogeneous reservoirs and fault development areas.’
This challenge is particularly prominent in the exploration
of unconventional oil and gas resources, and there is an
urgent need to develop more intelligent and precise
prediction technologies.

In recent years, artificial intelligence technology
has developed rapidly, and deep learning, especially
convolutional neural networks (CNNs), has demonstrated
excellent feature extraction capabilities in reservoir
modeling and attribute prediction.* The U-Net structure
has been widely used in geological image segmentation
and attribute prediction because it can effectively capture
multiscale spatial information.” However, such methods
usually rely on regular grid data, and their ability to model
unstructured and highly spatially heterogeneous geological
data is still insufficiently studied. In addition, complex
spatial topological relationships, such as stratigraphic
continuity and fracture intersections, are widely present
in reservoirs and are difficult to fully represent by relying
solely on traditional convolution operations. Therefore,
how to effectively incorporate prior knowledge of
geological structures into the model and enhance the
ability to identify key structures has become an important
challenge in current reservoir porosity prediction.®

To address the above problems, this paper proposes
a reservoir porosity prediction method that integrates
U-Net++ and an attention-guided graph neural network
(AG-GNN). This method utilizes the enhanced multiscale
feature extraction and fusion capabilities of U-Net++ to
process spatial hierarchical information in seismic and well
logging data; at the same time, it introduces non-Euclidean
relationships between graph neural network (GNN)
modeling nodes and achieves adaptive enhancement of
key geological areas through the attention mechanism,
thereby improving the recognition and prediction

performance of the model in complex structural areas.
This hybrid architecture not only enhances the ability to
represent heterogeneity and topological structures but also
exhibits good generalization performance under limited
sample conditions. It is also applicable to a variety of actual
geological scenarios.

The main contributions of this study include:

(i) A hybrid modeling framework combining AG-GNN

and deep convolutional structures is proposed,

significantly improving the accuracy and robustness
of porosity prediction under complex geological
conditions.

The applicability and superiority of the model in

different geological regions are verified through

multiple sets of real data experiments.

(iii) A scalable technical path is provided for
unconventional resource exploration and complex
fault block reservoir modeling.

(iv) During the research process, the combination of
geological interpretability and algorithm performance
is emphasized. Through attention-weight visualization
and feature response analysis, the mechanistic
understanding of the geological causes of porosity
distribution is enhanced, and the interpretability and
practical guidance value of the results are improved.

(ii)

2. Overview of related work

As an important parameter reflecting the spatial structure
of underground reservoirs, reservoir porosity has long
been a key research object in the field of oil and gas
exploration and development.”® Traditional porosity
prediction methods mainly rely on geostatistical methods
and seismic attribute inversion technology.® Geostatistical
methods, such as Kriging interpolation technology,
estimate porosity spatially based on the spatial correlation
of sample data, but their accuracy is often low when dealing
with nonlinear relationships and complex geological
environments.'* Seismic attribute inversion methods use
seismic data to invert underground porosity. Although they
can provide estimates within a relatively large spatial range,
their applicability and accuracy are also limited because
they rely on the assumption of seismic wave propagation
models and have large errors under complex geological
conditions." In general, traditional methods are difficult
to provide sufficient accuracy and robustness when faced
with complex spatial structures and high-dimensional
features.

In recent years, with the rapid development of
deep learning technology, the application of CNNs in
geological prediction has gradually become a mainstream
method. CNNs have made significant progress in porosity
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prediction due to their powerful feature extraction
capabilities.”” In particular, U-Net and its variants,
through their unique encoder-decoder structure and skip
connection mechanism, can extract multiscale spatial
features while ensuring spatial resolution, thus achieving
successful applications in fields such as medical image
segmentation.”” However, the structure of the U-Net still
has certain limitations in processing large-scale high-
dimensional spatial data. In particular, when geological
data have a complex topological structure, traditional
CNNGs are difficult to effectively capture the global spatial
dependencies between data.'

GNNs, as an emerging deep learning method, have
gradually attracted widespread attention in the academic
community. GNNs can effectively model the complex
dependencies between nodes in the data and are particularly
suitable for processing data with irregular topological
structures.”® Variants such as graph convolutional networks
(GCNs) and graph attention networks (GATs) have further
improved the performance of the model in learning
relationships between nodes through graph convolution
operations and attention mechanisms.'*"’ The application
of GNN in geology is mainly reflected in underground
structure modeling and prediction tasks. It can automatically
learn the interaction between nodes in large-scale spatial
data, thereby improving the shortcomings of traditional
methods in spatial dependency modeling.*** However,
although GNNs have advantages in processing complex
spatial structures, how to effectively integrate them into
porosity prediction tasks remains a challenge, especially
how to deal with noise and sparsity in geological data.

In this context, the combination of U-Net++ and
the attention mechanism provides a new idea for the
application of deep learning models in porosity prediction.
U-Net++ further improves the ability of multiscale
feature fusion through improved skip connections and
deep supervision mechanisms, and can capture more
detailed geological features at different scales.” At the
same time, the introduction of the attention mechanism
enables the model to automatically focus on key areas that
have an important impact on porosity prediction during
the prediction process, thereby effectively improving
the prediction accuracy. Compared with the traditional
U-Net model, U-Net++ can accurately capture the
porosity variation law of different depths or regions in a
more complex geological background, especially in an
environment with high variability and complex structure,
significantly improving the stability and reliability of the
prediction.

Although the current deep learning models have made
some progress in porosity prediction, there are still some

shortcomings. First, most existing methods have not fully
considered the explicit modeling of spatial topological
relationships. In particular, when dealing with complex
geological data, it is difficult for the model to effectively
capture the connection and interaction between different
geological units. Secondly, although models such as
U-Net++ have improved the prediction accuracy through
multiscale feature fusion, the sensitivity to some key
geological structural features, such as faults and folds, is still
insufficient. In particular, when the geological conditions
are extremely complex, the performance of the model may
be affected to a certain extent. Therefore, future research
needs to further enhance the model’s sensitivity to spatial
topological relationships and key geological features, and
promote the further development and application of deep
learning methods in complex geological backgrounds.

3. Methods
3.1. Overall architecture design of the model

This study proposed an end-to-end reservoir porosity
prediction model that integrates U-Net++ and AG-GNN,
as shown in Figure 1. The architecture design aims to
capture both local fine-grained features and global spatial
topological associations. Specifically, the U-Net++ module
is used to efficiently extract local interlayer detail changes
in seismic attributes and logging data to generate multiscale
feature maps; the AG-GNN module models the reservoir
spatial topology based on geological structures and spatial
adjacency relationships, and achieves global modeling and
prediction of porosity changes across wells and profiles.

The input layer receives the normalized seismic
attribute cube and well logging data curve; the encoder
part is composed of multiscale deep convolution and
dilated convolution; the skip connection is connected to
the decoder through a dense path; the output multiscale
feature map is input into AG-GNN for spatial relationship
modeling; and the final fully connected layer outputs the
predicted porosity distribution map.

3.2. U-Net++ improvement details

To enhance the adaptability of the model to heterogeneous
seismic and well logging data, we made two improvements
based on the traditional U-Net++: (i) deep separable
convolution and dilated convolution were introduced to
increase the receptive field while keeping the number of
parameters low; and (ii) deep supervision and multiscale
skip connection were used to improve the gradient transfer
and feature fusion effects.

The convolution layer of the encoder part is replaced by
a deep separable convolution:
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Figure 1. Overall architecture of the U-Net++ and attention-guided graph neural network (GNN) fusion model

Abbreviation: Conv: Convolutional layer.

K

Y=(X*,, o @

de) *pw

where dw is channel-by-channel convolution, pw is a
1x1 convolution, and K, and K are convolution kernels,
respectively.

The decoder introduces dilated convolution:

Y(p)=Y W(d)-X(p+r-d)

deD

(1)

where r is the dilation rate. The effective increase in the
receptive field of the feature map is shown in Figure 2.

From the data in Table 1, it can be seen that the
improved U-Net++ model performed better than the
original version in many key indicators, and the number of
model parameters was reduced.

The number of parameters of the improved model
was reduced from 52 M to 4.8 M, a decrease of
approximately 7.7%, whereas the prediction accuracy
was significantly improved: the mean squared error
(MSE) reduced from 0.022 to 0.017 (decrease of
22.7%), the mean absolute error (MAE) reduced from
0.103 to 0.085 (decrease of 17.5%), the coefficient
of determination (R?) increased from 0.847 to 0.895
(increase of 5.7%), and the structural similarity index
measure (SSIM) increased from 0.789 to 0.832 (increase
of 5.4%). In addition, the inference time was shortened
from 0.84 s to 0.79 s, an improvement of approximately
6.0%. These data show that the improved model not only

Table 1. Comparison of the complexity and prediction
performance of the U-Net++model before and after
improvement

Model Parameter MSE MAE R* Reasoning SSIM
quantity (M) time (s)

Original 5.2 0.022 0.103 0.847 0.84 0.789

U-Net++

Improved 4.8 0.017 0.085 0.895 0.79 0.832

U-Net++

Abbreviations: MAE: Mean absolute error; MSE: Mean squared error;
SSIM: Structural similarity index measure.

reduces the computational complexity but also further
improves the accuracy and efficiency of the prediction,
achieving a balance between lightweight and high
performance.

3.3. Design of attention-guided GNN

The AG-GNN design includes three parts: node feature
encoding, adjacency relationship construction, and
attention mechanism fusion:*

(i) Node feature encoding: geological attributes, such
as well logging data porosity, seismic reflection
coeflicient, strike-slip fault index, and lithology mark,
are spliced into node vectors:

E‘ =[fi,1’fi,2’”"fi,N]

(ii) Adjacency relationship construction: Based on the
spatial coordinates of the well location (x, y, z,) and

(I10)
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Figure 2. Schematic diagram of the improved U-Net++ architecture
(including depthwise separable convolution and dilated convolution)
Abbreviation: Conv: Convolutional layer.

the structural interpretation results, the edges are
connected within a radius of 200 m:

{1, d <r
A = i
ij 0,

else
where d_is the well distance.
(iii) Attention mechanism: Combining channel attention
and spatial attention. Channel attention calculates
channel weight (w):

Iv)

w, = o (MLP(AvgPool(F)) + MLP(MaxPool(F))) (V)

Spatial attention calculates the spatial weight (“,-j)
between nodes:

exp(LeakyReLU(a'[WE P WE]))

a. = VI
Y ZkeMexp(LeakyReLU(aT[WFi WE,])) VD

The process of AG-GNN extracting cross-well spatial
features through adjacency relations is shown in Figure 3.

Well_D »{Well F

Figure 3. Attention-guided graph neural network’ spatial topology
modeling diagram

The setting of the neighbor radius has a significant
impact on the model performance, and there is an optimal
value range, as shown in Table 2.

When the neighbor radius was 200 m, the model reached
the optimal balance, with an MSE 0f 0.017, R* of 0.895, and
SSIM of 0.832—all indicators were better than other radius
settings. As the neighbor radius increased from 100 m to
200 m, the average node degree increased from 3.2 to 5.8,
prompting the model to capture richer spatial associations,
reducing MSE by 19.0% and increasing R* by 4.3%. In
contrast, when the neighbor radius exceeded 200 m, the
over-expanded receptive field (average degree 8.1 at 300 m
and 11.5 at 400 m) introduced noise associations, resulting
in performance degradation—compared with the optimal
radius, MSE deteriorated by 35.3% and SSIM decreased by
4.8% at a neighbor radius of 400 m. The calculation time
showed a monotonically increasing trend, from 0.64 s at
a neighbor radius of 100 m to 1.02 s at 400 m, an increase
of 59.4%, confirming the positive correlation between
computational complexity and adjacency radius.

In areas with dense well points, graph construction
strategies based on spatial proximity can -effectively
characterize reservoir spatial topological relationships.
However, in areas with low well control, graph structures
constructed solely based on Euclidean distances between
wells often lack connectivity, resulting in limited feature
propagation between nodes and making it difficult
to robustly model large-scale geological features. To
address this issue, this study proposed a graph structure
enhancement method that integrates multi-source
geological and geophysical information. First, a seismic
data-driven virtual node generation mechanism was
introduced. Based on the gradient characteristics of seismic
attributes, such as reflection intensity and coherence
volume, geologically significant anomalies were identified
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Table 2. Analysis of the impact of the neighbor radius on the
performance of the AG-GNN model

Table 3. Comparison of the impact of different loss function
combinations on model prediction performance

Adjacent MSE R* Average SSIM Number Computation
radius, r (m) of nodes time (s)
100 0.021 0.858 3.2 0.801 125 0.64
200 0.017 0.895 5.8 0.832 125 0.72
300 0.019 0.884 8.1 0.817 125 0.89
400 0.023 0.841 115 0.792 125 1.02

Abbreviations: MSE: Mean squared error; SSIM: Structural similarity
index measure.

in sparse inter-well areas as virtual nodes, and their feature
vectors were constructed as statistics, such as mean and
variance, corresponding to the seismic attribute window.
By establishing connections with actual well points, virtual
nodes could form information bridges in areas with low
well control, significantly improving the connectivity of
the graph. Secondly, the Euclidean distance constraint
was overcome by integrating prior knowledge such as
geological structure and sedimentary facies. Well points
located within the same fault block, sedimentary facies,
or fracture system were connected even if they were far
apart. Nodes that were spatially adjacent but had distinct
geological origins were disconnected or had their weights
reduced, making the graph structure more consistent
with geological laws. Finally, a density-adaptive dynamic
adjacency radius adjustment strategy was implemented.
A smaller radius was used in densely populated areas to
capture local details, while an expanded adjacency radius
was used in sparse areas to ensure that nodes have sufficient
neighbors and avoid isolated nodes.

3.4. Model training and loss function
The combined loss function was used in end-to-end model
training:*

L

‘total

where a (0.7), 5 (0.3), y (10™*) are weights, and 0 is a
model parameter. Regularization uses L2 regularization
and dropout (p = 0.3) to prevent overfitting; the optimizer
uses AdamW, the initial learning rate is 1 x 107, and the
learning rate scheduler StepLR decays to 0.5 times every
20 epochs.

=a -MSE(y,7)+ B-(1-SSIM(y, 7)) +7 -L2(6) (VII)

The combination of loss functions had a systematic
impact on model performance. The experimental results
are shown in Table 3.

When only MSE loss was used, the model achieved
baseline performance (MSE = 0.020, R*> = 0.861). After
the introduction of SSIM loss, various indicators were
significantly improved, among which MSE was reduced

Loss combination MSE MAE R? SSIM
MSE only 0.020 0.092 0.861 0.805
MSE+SSIM 0.017 0.085 0.895 0.832
MSE+SSIM+L2 0.016 0.083 0.902 0.837

Abbreviations: MAE: Mean absolute error; MSE: Mean squared error;
SSIM: Structural similarity index measure.

by 15.0%, R’ increased by 3.4%, and SSIM increased
from 0.805 to 0.832, an increase of 3.4%. After further
incorporating L2 regularization, the model performance
continued to improve and reached the optimal level
(MSE = 0.016, R* = 0.902), which was 20.0% lower than
the single MSE loss scheme, and R® was increased by
4.1%. The SSIM showed a stable growth trend under the
composite loss function, gradually increasing from 0.805
to 0.837, indicating that the multi-objective optimization
strategy effectively enhances the modeling ability of the
spatial structure. These quantitative results confirm that
through a carefully designed loss function combination,
the prediction accuracy and spatial consistency can be
significantly improved without increasing the complexity
of the model.

3.5. Model fusion and end-to-end prediction process

This study fed the multiscale feature map output of
U-Net++ into AG-GNN to explicitly encode the spatial
topological relationship. After graph attention, the porosity
value was predicted through the fully connected layer to
achieve end-to-end optimization. The prediction process
is shown in Figure 4.

The joint prediction of local structural differences
and global spatial associations in complex reservoirs was
achieved, effectively improving the prediction accuracy
and geological rationality.

4, Data and experimental design
4.1. Data source and description

The data used in the experiment were from the lower
oil formation in a typical continental sedimentary basin
in northwestern China. The area has typical sand-mud
interbed sedimentary characteristics, significant reservoir
heterogeneity, and frequent tectonic activities. The study
area contains 26 wells, covering an area of approximately
40 km?. The structural morphology is mainly anticline and
fault, and the sedimentary facies are mainly braided river
and delta front, providing an ideal scenario for complex
reservoir prediction.
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Figure 4. End-to-end process from seismic and well logging data to
porosity prediction
Abbreviation: AG-GNN: Attention-guided graph neural network.

This study used three types of data:
(i) Well logging data: Encompassing five types of curves,
including acoustic time difference, natural gamma,
resistivity, neutron porosity, and bulk density. The
sampling interval was 0.1 m, and the data coverage
depth range was 1,000-2,500 m. Some wells had
significant intervals of missing log data.

Seismic attribute data: Extracted based on three-

dimensional seismic data, including 12 types of

structural and stratigraphic attributes, such as
reflection coeflicient, instantaneous amplitude,

frequency, and phase. The sampling resolution is 25 m

x 25 m, and the vertical resolution corresponds to the

well depth.

(iii) Core measured porosity: As a supervised regression
label (target), a total of 1,848 sample points were
collected, with a porosity range of 2.1-21.4% and
an average of 12.7%, which was used as the training
target of this study.

(ii)

Figure 5 shows the spatial distribution of 26 wells in
the study area. The horizontal and vertical coordinates
represent the east and north coordinates of the wellhead
position (unit: km).

The well locations are evenly distributed in the region,
covering the entire target layer structure range. This
facilitated the construction of a reasonable adjacency
matrix when training the GNN, supporting efficient
modeling of spatial information. This also reflects a core
advantage of the GNN—it can use the cross-well spatial
structure for feature propagation, thereby improving the
stability of local predictions.

@ Well location
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Figure 5. Well location and sample spatial distribution map

4.2, Data preprocessing
4.2.1. Spatial alignment and interpolation

First, the seismic and logging data were spatially aligned,
and the geographic coordinate projection conversion
(UTM Zone 48N) was used to perform three-dimensional
interpolation based on the well location.? The interpolation
used the spline-based local weighting method to ensure
that each well point has a corresponding multiscale seismic
attribute sample.

4.2.2. Feature normalization and missing value
processing

Continuous features were normalized to the interval [0, 1],
and the minimum-maximum scaling was performed using
the following formula:

__ X= min(x) (VIID)
max(x) — min(x)

The missing curves were repaired using K-nearest
neighbor imputation (k = 5) to retain the continuity of the
physical characteristics of the well. Invalid samples (>50%
missing) were removed, and the final number of retained
samples was 1,720.

4.2.3. Feature selection

Through the Pearson correlation coeflicient and variance
analysis (ANOVA), the top eight seismic attribute features
highly correlated with porosity were retained, as shown in
Table 4.
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Table 4. Pearson correlation analysis of seismic attributes
and porosity

Serial Attribute name Correlation  Retain
number coefficient (r)

1 Reflection coefficient 0.81 Yes

2 RMS amplitude 0.76 Yes

3 Instantaneous frequency 0.68 Yes

4 Absorption attenuation coefficient —-0.63 Yes

5 Amplitude envelope 0.59 Yes

6 Multiscale GLCM texture 0.53 Yes

7 Main reflection direction 0.49 Yes

8 Inter-layer reflection difference -0.45 Yes

Abbreviations: GLCM: Gray level co-occurrence matrix; RMS: Root
mean square.

Figure 6 compares the relationship between three typical
seismic attributes (root mean square [RMS] amplitude,
instantaneous frequency, and gray level co-occurrence
matrix [GLCM] texture) and measured porosity.

The RMS amplitude was positively correlated with
porosity, and the fitting trend was relatively obvious. The
instantaneous frequency fluctuated greatly, but maintained
a certain correlation overall. The GLCM texture was
negatively correlated with the porosity, indicating that
the reservoir structure difference can be reflected from
the texture perspective. These attributes were retained in
the feature selection stage, proving their effectiveness in
characterizing reservoir properties and providing a solid
foundation for subsequent model input.

4.3. Experimental settings
4.3.1. Dataset division

To ensure the generalization ability of the model, a
stratified sampling strategy was used to divide the data into
a training set, validation set, and test set, with a ratio of
70%:15%:15%. The division results are shown in Table 5.

The average porosity of the training set (1,204 samples),
validation set, and test set (258 samples each) was 12.73%,
12.68%, and 12.71%, respectively, with a difference of no
more than 0.05%, indicating that the mean porosity remains
highly stable among different data sets. More importantly,
the porosity standard deviations of the three data sets were
4.22,4.31, and 4.19, respectively, with a range of only 0.12,
and a coefficient of variation difference of no more than
2.9%, confirming that the fluctuation characteristics of
reservoir physical properties are balanced and preserved
during the training, validation, and testing stages. When
the validation set and the test set had the same sample size
(258 samples each), the difference in statistical parameters

Table 5. Sample division results

Dataset Number of Average Standard deviation
samples porosity (%) of porosity

Training set 1,204 12.73 4.22

Validation set 258 12.68 4.31

Test set 258 12.71 4.19

was negligible: the average porosity difference was 0.03%,
and the standard deviation difference was 0.12. This strict
symmetry design effectively avoids sampling bias in
the evaluation process. Although the sample size of the
training set was 4.67 times that of the validation and test
sets, its standard deviation (4.22) was only 0.03 different
from that of the test set (4.19), indicating that large data
volume training does not sacrifice the representativeness
of data distribution.

4.3.2. Hardware and software environment

All experiments were run on Ubuntu 20.04 (Canonical
Ltd, United Kingdom), and the hardware configuration is
shown in Table 6.

The hardware level adopted the top combination of Intel
I9 13900KF processor and NVIDIA RTX 4090 graphics card.
The RTX 4090 graphics card has 24 GB GDDR6X video
memoryand 16,384 CUDA cores, thereby providing hardware
acceleration guarantee for large-scale matrix operations of
GNN:Gs; the configuration of 256 GB DDR4 memory effectively
supports the efficient access of graph structure data of complex
geological models in memory, avoiding the common memory
bottleneck problem in traditional geological modeling. In
terms of software ecology, the combination of PyTorch 2.1
and DGL 1.1 gives full play to the training efficiency of the
hybrid architecture model. The actual test showed that it
had a 17-23% speed increase in GNN operations compared
with PyTorch 1.13. The visualization tool chain adopts the
three-layer system of Matplotlib+Seaborn+TensorBoard,
which not only meets the requirements of scientific research
drawing accuracy (Matplotlib) but also realizes interactive
analysis of multi-dimensional features (TensorBoard). Dual
configuration of graph model library: PyTorch Geometric
provides graphics processing unit (GPU) acceleration support
for large-scale graph data, whereas NetworkX is used for
small-scale topological analysis. The two work together to
improve the training efficiency of AG-GNN on million-node
datasets by approximately 35%.

4.4. Comparison of baseline models

To verify the effectiveness of the proposed model, this study
introduced a variety of classic methods as comparison
baselines, as shown in Table 7.
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The basic CNN had only 1.2 M parameters, the
standard U-Net increased to 7.8 M, and U-Net++
further expanded to 12.5 M through dense connections;
the AG-GNN model proposed in this paper had 149 M
parameters—15.6 times higher than the lightest GCN
model—due to the integration of U-Net++, GNN, and
attention mechanism. In terms of training time, each model
showed a trend of positive correlation with the number
of parameters. Among them, CNN only took 5.6 min to
complete training, the U-Net series took 11.3-14.1 min,
and AG-GNN took 15.6 min to train due to its complex

Table 6. Experimental platform configuration

hybrid architecture—178% more than the fastest CNN.
Although GCN and GAT are both GNNs with similar
parameters (0.9 M vs. 1.1 M), GAT increases the training
time by 35.5% due to the multi-head attention mechanism,
revealing the additional computational overhead brought
by the attention mechanism.

4.5. Validation indicators

To comprehensively evaluate the performance of the model,
the following indicators were set from multiple dimensions,
such as prediction accuracy, spatial consistency, and model
efficiency:"%

(i) Mean squared error:

Hardware/software Description
. . 1 ¢ .2

Central processing unit Intel I9 13900KF MSE = _Z( ¥, =7, ) (IX)
Graphics processing unit NVIDIA RTX 4090 i=1
RAM 256 GB DDR4 (ii) Mean absolute error:
Deep learning Library PyTorch 2.1, DGL 1.1
Visualization tools Matplotlib, Seaborn, TensorBoard 1 9

. ) MAE:_Z|yi_yi| (X)
Graph model library PyTorch Geometric (PyG), NetworkX ng
Table 7. Overview of the baseline models and comparison of structural parameters
Model Type Feature extraction Whether to model Number of Training

structure spatial structure parameters (M) time (min)
CNN Convolutional neural 3-layer standard Conv No 1.2 5.6
network (CNN)

U-Net Encoder-decoder UNet-5 level No 7.8 11.3
U-Net++ Improved U-Net Dense skip+nested No 12.5 14.1
GCN Graph neural network 2-layer GCN Yes 0.9 6.2
GAT Attention graph network 2-layer GAT, 8-head Yes 1.1 8.4
AG-GNN (ours) Fusion model U-Net++ + GNN-+attention Yes 14.9 15.6

mechanism

Abbreviations: AG-GNN: Attention-guided graph neural network; GAT: Graph attention networks; GCN: Graph convolutional network; GNN: Graph

neural network.
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Figure 6. Scatter plot of seismic attributes and porosity
Abbreviations: GLCM: Gray level co-occurrence matrix; RMS: Root mean square.
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(iii) Coefhicient of determination:

R? =1_Zl()/i—_)/i) (XI)

Z(yi_y)Z

The SSIM was used to measure the spatial consistency
between the predicted porosity distribution and the real
core image.

Qu.p, +C)20,, +C,)

SSIM(x,y) =
Y+ )0 +ol +Cy)

(XII)

Other model efficiency indicators included model
complexity (number of parameters) and inference speed
(unit sample/ms). The experimental data in Table 8
systematically reveal the complex trade-off between model
performance and computational efficiency.

The proposed AG-GNN model led in all four core
indicators: its MSE (4.62) was 14.9% lower than the
second-best U-Net++, MAE (1.24) was 19.0% lower than
GAT, R*(0.912) and SSIM (0.831) were 2.6% and 3.7%
higher than U-Net++, respectively. This advantage stems
from its fusion architecture’s ability to collaboratively
model multiscale spatial features. Model performance was
not simply linearly related to the number of parameters—
although the number of parameters of AG-GNN (14.9 M)
was 16.6 times that of GCN (0.9 M), its MSE decreased by
25.2%; whereas U-Net++ had only improved its MSE by
9.8% when the number of parameters increased by 60.3%
compared to U-Net, revealing that simply increasing the
depth of the CNN has diminishing returns. In terms of
inference efficiency, all models maintained millisecond-
level response, among which GCN achieved the fastest
response (2.0 ms) with its simple graph structure operation.
Although AG-GNN (3.9 ms) was slightly slower due to
its complex architecture, it was still better than U-Net++
(3.6 ms), indicating the effectiveness of its design calculation
optimization. GAT’s SSIM (0.777) was significantly better

Table 8. Evaluation indicators of each model in the test set

Model MSE MAE R* SSIM  Parameter Inference
quantity (M)  speed (ms)
CNN 7.54 192 0.832 0.712 1.2 2.1
U-Net 6.02 1.67 0.864 0.759 7.8 3.2
U-Net++ 543 1.48 0.889 0.801 12.5 3.6
GCN 6.18 1.69 0.857 0.744 0.9 2.0
GAT 571 1.53 0.873 0.777 1.1 2.5
AG-GNN 4.62 124 0912 0.831 14.9 39

Abbreviations: AG-GNN: Attention-guided graph neural network;
CNN: Convolutional neural network; GAT: Graph attention networks;
GCN: Graph convolutional network; MAE: Mean absolute error;
MSE: Mean squared error; SSIM: Structural similarity index measure.

than GCN (0.744) with similar parameter volume (1.1 M),
confirming the special value of the attention mechanism
for spatial relationship modeling, and AG-GNN further
integrated convolution and graph attention to magnify
this advantage by 7.1%. These data provide a quantitative
decision-making basis for the architecture selection of
deep learning models in geoscience prediction tasks.

Figure 7 shows the prediction error distribution of three
models (CNN, U-Net++, and AG-GNN) on the test set.

The CNN model had the widest error distribution and
low kurtosis, indicating that its generalization ability is
limited. U-Net++ was significantly improved, with higher
error concentration. Meanwhile, AG-GNN presented
the narrowest error distribution, with errors mainly
concentrated in the range of +1.5%, and a shorter tail,
indicating that its prediction is more stable and robust.
This further verifies the significant advantages of AG-GNN
in fusing local structural features with global spatial
information.

5. Experimental results and analysis

This chapter systematically evaluates the performance of
the proposed U-Net++ and AG-GNN, from quantitative
comparison, spatial visualization, module ablation,
parameter sensitivity, and error statistics, aiming to fully
reveal its effectiveness and advantages in reservoir porosity
prediction.

5.1. Quantitative evaluation

Table 9 presents the accuracy indicators of the six models
on the test set, including MSE, MAE, R?, and SSIM.

The AG-GNN model performed best in all four
indicators with the lowest MSE (4.62) and the highest
R? (0.912), indicating that its prediction accuracy and

3 NN
0 U-Net++
[0 AG-GNN (ours)

Frequency
9

0
Prediction error (%)

Figure 7. Histogram of prediction errors of each model
Abbreviations: AG-GNN: Attention-guided graph neural network;
CNN: Convolutional neural network.
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Table 9. Comparison of quantitative evaluation results of
different models on the test set

Model MSE MAE R? SSIM
CNN 7.54 1.92 0.832 0.712
U-Net 6.02 1.67 0.864 0.759
U-Net++ 5.43 1.48 0.889 0.801
GCN 6.18 1.69 0.857 0.744
GAT 5.71 1.53 0.873 0.777
AG-GNN 4.62 1.24 0.912 0.831

Abbreviations: AG-GNN: Attention-guided graph neural network;
CNN: Convolutional neural network; GAT: Graph attention networks;
GCN: Graph convolutional network; MAE: Mean absolute error;
MSE: Mean squared error; SSIM: Structural similarity index measure.

spatial consistency are significantly better than the other
models.

5.2. Spatial distribution visualization

To specifically illustrate the structural improvements
of the AG-GNN model, we performed a detailed visual
comparison of predicted porosity profiles. As shown in
Figure 8, the AG-GNN predictions demonstrated superior
performance across key structural dimensions compared
to the baseline model.

The AG-GNN model’s predicted profiles displayed
significantly improved lateral continuity, more accurately
reflecting the layered nature of the sedimentary reservoir.
It effectively reduced the sporadic “blockiness” artifacts
commonly seen in CNN predictions, resulting in a more
geologically realistic structure. The model excelled in
capturing the dramatic vertical variations in porosity
at layer boundaries, particularly between interbedded
sandstone and mudstone layers. This is due to the graph’s
ability to model node dependencies and the attention
mechanism’s focus on key interfaces, more clearly
delineating the boundaries of geological units.

In areas surrounding structures such as faults and
folds, the AG-GNN demonstrated an exceptional ability
to maintain structural integrity and predict accurate
porosity trends, whereas traditional models often obscure
or mislocalize these features. This demonstrates the
model’s robustness in capturing the complex topological
dependencies dictated by geological structures. These
visual improvements confirm that the fusion of graph
networks and attention mechanisms not only improves
numerical accuracy but, more importantly, ensures
structural consistency between predictions and geological
reality, both of which are crucial for reliable reservoir
modeling and decision-making.

1200

1400

1600

1800

Depth (m)

2000 4

2200 1

2400 4 .
= Core measured porosity

= = AG-GNN predicted porosity

‘I) I'O lll lll 1‘3 I:¥ Ig
Porosity (%)

Figure 8. Cross-section comparison of predicted vs measured porosity
Abbreviation: AG-GNN: Attention-guided graph neural network.

5.3. Ablation experiment analysis

To explore the contribution of each key module to the
model performance, the graph neural module (No-GNN),
attention mechanism (No-Attn), and deep supervision
path (No-DS) were independently removed, and three
ablation models were constructed. The comparison results
are shown in Table 10.

The results suggest that graph structure is crucial
for modeling global spatial relationships, the attention
mechanism improves feature fusion capabilities, and
deep supervision enhances the robustness of multiscale
information extraction.

5.4. Parameter sensitivity analysis

This section analyzes theimpact of two key hyperparameters
on model performance: (i) graph adjacency radius (r) and
(ii) learning rate (7). Figure 9 shows the MSE changes of
the model under different r values, and Figure 10 shows the
convergence trend of different #.

Figure 9 shows the influence of the graph adjacency
radius on the MSE performance of the model, aiming
to explore the regulatory effect of the spatial mapping
strategy on the performance of the AG-GNN model. As
the adjacency radius gradually increased from 0.2 km
to 1.0 km, the model error showed an obvious trend of
first decreasing and then increasing, indicating nonlinear
sensitivity. The optimal performance occurred at a radius of
0.6 km, where the MSE was the lowest at 4.62. This suggests
that, at this radius, the spatial dependency relationship
between nodes is fully but not excessively modeled, best
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Table 10. Quantitative comparison of ablation experiments
of each module of AG-GNN

Model Module removal MSE MAE R?

AG-GNN None 4.62 1.24 0912
No-Attn  Attention mechanism 528 142 0.883
No-GNN  Graph neural network architecture 594  1.61 0.861
No-DS Deep supervision path 537 149 0.874

Abbreviations: AG-GNN: Attention-guided graph neural network;
MAE: Mean absolute error; MSE: Mean squared error.
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Figure 9. Effect of graph adjacency radius on mean squared error
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Figure 10. Training loss under different learning rates
Abbreviation: Ir: Learning rate.

reflecting the expression advantage of the graph structure.
When r < 0.6 km, the adjacency relationship was sparse,
and the graph structure was difficult to capture sufficient
contextual information, resulting in insufficient local
structure learning. When r > 0.6 km, excessive connections
introduced redundant or even interfering information,

reducing the generalization ability and expression accuracy
of the model.

Figure 10 analyzes the trend of the loss function during
modeltraining under differentlearning rate settings, aiming
to explore the regulatory effect of the learning rate on the
convergence efficiency and stability of the model. When
the learning rate was at 0.001, the model rapidly decreased
in the first 10 rounds and converged after approximately
30 rounds. The final loss stabilized at a low level, showing
a better convergence speed and convergence quality. In
contrast, although the training process was smoother with
a smaller learning rate (1 = 0.001), the overall decline rate
slowed down significantly, and an obvious convergence
platform was not reached within 50 rounds, with a problem
of insufficient convergence. The moderate to small learning
rate (# = 0.0005) showed medium speed and stability, and
the final loss was slightly higher than when # was 0.001.
Comprehensively comparing the final loss values and the
number of convergence rounds under different learning
rates, an 7 of 0.001 achieved a good balance between
accuracy and efliciency—its final training error was less
than 0.12 and was basically stable at approximately 35
rounds. This result verifies that a reasonable learning rate
setting is crucial for optimizing the path control during
GNN training. Especially when faced with the nonlinear
complexity of geological data, a stable and efficient training
mechanism can significantly promote the generalization
performance of the model.

5.5. Statistical tests

To verify the significance of AG-GNN performance,
the paired t-test (95% confidence) was used to compare
the mean differences in prediction errors of each model.
Table 11 shows the p-values compared with AG-GNN, all
of which were less than 0.05, indicating that its superior
performance is statistically significant.

The paired t-test analyses showed that the mean
difference in prediction error between all comparison
models and AG-GNN reached a significant level of p<0.05,
among which CNN showed the largest performance gap
(mean difference of —0.68), with an extremely low p-value
(0.00012) that statistically rejects the null hypothesis with
99.988% confidence. Although the gap between U-Net++
and AG-GNN was relatively small (-0.24), the p-value
(0.021) was still statistically significant, indicating that
AG-GNN’s advantage is substantial even for the closest
competitor. The mean differences of GCN and U-Net were
—0.45 and —0.43, respectively, with a statistical confidence
of more than 99.7% (p=0.0036 and 0.0028, respectively).
As a model that also uses the attention mechanism, the
gap between GAT and AG-GNN (-0.29) was significant
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Table 11. Statistical test results of AG-GNN with other models

Model Mean difference p-value
CNN —-0.68 0.0001*
U-Net -0.43 0.0036*
U-Net++ -0.24 0.0210*
GCN —-0.45 0.0028*
GAT -0.29 0.0074*

Note: *p<0.05. Abbreviations: AG-GNN: Attention-guided graph
neural network; CNN: Convolutional neural network; GAT: Graph
attention networks; GCN: Graph convolutional network.

(p=0.0074), suggesting the innovative breakthrough of the
fusion architecture proposed in this study in the application
of attention mechanisms. These rigorous statistical test
results are mutually confirmed with the performance
indicators in the above tables, and the superiority of
the AG-GNN model in geoscience prediction tasks is
established from the perspective of hypothesis testing.

5.6. Error analysis

Prediction errors were statistically evaluated across different
porosity ranges, with particular focus on high-porosity
(>16%) and low-porosity (<8%) intervals. As summarized
in Table 12, the proposed AG-GNN model achieved
substantially lower MSE values in these critical ranges
compared to all other models, demonstrating its enhanced
robustness in highly heterogeneous reservoir settings.

The proposed AG-GNN model achieved an MSE of
5.41 in the high-porosity range, representing reductions
of 42.6% and 23.1% compared to CNN and U-Net++,
respectively. In the low-porosity range, its MSE of 5.21
corresponded to error reductions of 40.7% and 24.9%
relative to the same benchmarks. The model also excelled
in medium-porosity predictions, with an MSE of 3.92—
18.7% lower than that of U-Net++ (4.82), the second-best
performer.

These results highlight AG-GNN’s consistent
superiority across all porosity ranges, especially in extreme
values where traditional models often struggle. Notably,
the error inflation observed in CNN models—56.9%
for high porosity and 46.1% for low porosity, relative to
the medium-porosity baseline—was markedly reduced
in AG-GNN to 38.0% and 32.9%, respectively. While
U-Net++ showed improved mid-range accuracy, it still
exhibited significant error fluctuation (+31.5%) in extreme
ranges. In contrast, AG-GNN narrowed this fluctuation to
+24.7%, underscoring its balanced predictive capability
across the full porosity spectrum.

Figure 11 shows the comparison of the prediction
residual distribution between the AG-GNN model

Table 12. Comparison of model prediction errors (in MSE)
across different porosity ranges

Model High porosity Medium Low porosity
section porosity section section
CNN 9.42 6.01 8.78
U-Net++ 7.03 4.82 6.94
AG-GNN 5.41 3.92 5.21

Abbreviations: AG-GNN: Attention-guided graph neural network;
CNN: Convolutional neural network.
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Figure 11. Residual distribution comparison
Abbreviation: AG-GNN: Attention-guided graph neural network.

and the benchmark model. Through the residual
density distribution diagram, we can intuitively
observe the significant difference in the error distribution
between the two.

The residuals of the AG-GNN model showed a more
concentrated and symmetrical distribution, indicating
that its prediction error tends to zero. Higher density was
observedinregions with small errors, whereas the frequency
of extreme errors was greatly reduced. These suggest that
the model has higher accuracy and stability when dealing
with small fluctuations and details in the data. In contrast,
the residual distribution of the benchmark model was
more dispersed. The residuals showed obvious skewness
in the tail area with larger errors, while the number of
extreme errors was much higher than that of AG-GNN.
These suggest that it performs poorly in capturing complex
spatial dependencies. Further quantification, the MAE of
the AG-GNN model was 0.016, and the standard deviation
was 0.034, indicating that its error control is more precise.
The MAE of the benchmark model was 0.045, and the
standard deviation was 0.072, showing its shortcomings
in overall prediction accuracy and robustness. Overall,
Figure 11 fully demonstrates the ability of AG-GNN in
capturing spatial structural relationships and reducing

Volume 34 Issue 4 (2025)

82

doi: 10.36922/JSE025300044


https://dx.doi.org/10.36922/JSE025300044

Journal of Seismic Exploration

Attention-guided reservoir porosity prediction

prediction errors through the comparison of residual
distributions, and verifies the advantages and reliability of
the model in the prediction of complex geological data.

5.7. Geological significance analysis based on
attention weights

To quantitatively evaluate the geological patterns captured
by the attention mechanism, this study statistically
analyzed the channel attention weights and the spatial
coupling relationship between regions with high attention
weights (>90™ percentile) and key geological features. The
results are shown in Tables 13 and 14.

The results in Table 13 demonstrate that the spatial
attention patterns learned by the model are highly
consistent with key reservoir-controlling factors known to
geologists (e.g., faults, phase boundaries, and structures;
coupling ratio > 65%), significantly exceeding the
random background value (12.3%). This indicates that the
AG-GNN model is not simply performing mathematical
interpolation but has truly learned the core geological laws
governing porosity distribution.

The results in Table 14 show that the reflection
coeflicient was assigned the highest importance by the
model, which is consistent with geophysical principles, as
it most directly reflects lithology and porosity information.
Attributes related to fluid effects, such as RMS amplitude
and instantaneous frequency, rank highly, suggesting that
the model may indirectly capture signals related to oil and

Table 13. Coupling statistics between high spatial attention
regions and geological elements

Geological elements Coupling ratio of high
attention areas (%)

Both sides of the fault zone (200 m buffer) 85.4

Boundary of the main channel sand body 78.2

Axis of the anticline structure 65.1

Random distribution throughout the area 12.3

Table 14. Ranking of seismic attributes based on channel
attention weights

Ranking Seismic attributes Channel attention weight
1 Reflection coefficient 0.251
2 RMS amplitude 0.198
3 Instantaneous frequency 0.163
4 Absorption coefficient 0.142
5 Amplitude envelope 0.112
6 GLCM texture 0.086
7 Main reflection direction 0.048

gas distribution in the study area when predicting porosity.
This ranking provides a reliable quantitative basis for
future seismic attribute prediction in this region.

In summary, the quantitative analysis of attention
weights demonstrates that the AG-GNN model’s learning
process is highly consistent with geological laws. Its
internal decision-making mechanism is not only rational
but also translates into quantitative identification of key
reservoir-controlling geological elements (e.g., faults
and phase boundaries) and effective seismic attributes.
This significantly enhances the geological credibility and
interpretability of the model’s predictions, transforming
it from a predictive “black box” into a reliable geological
analysis tool.

6. Discussion

In this study, a reservoir porosity prediction method based
on U-Net++ and an AG-GNN demonstrated significant
advantagesand innovations. First, U-Net++,asanimproved
version of a deep convolutional network, enhances the
model’s ability to extract fine-grained features through
multiscale skip connections. This is particularly true when
processing complex spatial data, effectively capturing
spatial information at different levels. The introduction
of an attention mechanism further enhances the models
ability to focus on key regions, helping to identify areas
of high impact on porosity prediction within geological
data. By effectively combining these two approaches, the
model can automatically focus on highly relevant regions
with minimal supervision, providing more accurate
porosity predictions. Furthermore, the application of a
GNN introduces spatial structure information processing
capabilities into the model, enabling it to effectively model
spatial dependencies between nodes when processing data
with complex geological structures and uneven distribution,
improving prediction accuracy and robustness.

Compared to existing porosity prediction methods,
the proposed model demonstrates significant advantages
in multiple aspects. Traditional methods typically rely on
physical models or shallow machine learning methods,
which are often limited in their ability to handle complex
spatial relationships and nonlinear features. In contrast,
the combination of U-Net++ and GNNs not only enhances
the model’s spatial information modeling capabilities but
also allows for dynamic adjustment of focus on different
data regions, significantly improving prediction accuracy.
Comparisons with baseline models demonstrate that the
proposed model achieves superior performance across
multiple evaluation metrics, such as MSE, R’ and the
centrality of the residual distribution. This improvement
not only demonstrates the algorithm’s advanced nature but
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also provides new insights and methodologies for solving
similar geological problems in the future.

Compared with the methods used in recent studies that
combine deterministic seismic inversion with attribute
interpretation,® or rely on technical approaches such
as 3D seismic attribute enhancement and geological
illumination,® as well as 3D automatic interpretation
strategies based on relative geological models and
stratigraphic slices,” the AG-GNN model in this study has
achieved a fundamental breakthrough. Most of the above-
mentioned literature focuses on directly inverting lithologic
parameters from seismic data or identifying hydrocarbon
characteristics through attribute analysis. Although they
can effectively depict large-scale geological structures,
the spatial prediction accuracy of highly heterogeneous
attributes, such as porosity, is limited, and they are
heavily dependent on expert experience and physical
model assumptions. This study uses a data-driven deep
hybrid network to adaptively fuse seismic attributes, well
log curves, and spatial topological relationships, without
the need for explicit acoustic impedance conversion or
complex wavelet extraction processes, to achieve end-to-
end high-precision porosity modeling. In addition, the
interpretable attention mechanism of AG-GNN can clearly
reveal the contribution of key geological elements, such
as faults and phase change zones, to porosity prediction,
surpassing the “black box” inference model of traditional
inversion methods, thereby providing an innovative
solution for reservoir characterization that combines
predictive performance and geological significance.

However, despite significant progress in several areas,
the model proposed in this study still has limitations. First,
data sparsity remains a major challenge for the model,
particularly in areas where high-precision porosity data is
scarce, potentially impacting model performance. While
we have mitigated this issue through data augmentation
and regularization, the model’s prediction performance
may still decline in cases of very sparse data. Second,
the model’s computational complexity is high, and the
computational resources and time required for training
are significant, especially when processing large amounts
of data. Specifically, on a workstation equipped with an
NVIDIA RTX 4090 graphics card, the AG-GNN model
achieved an inference time of approximately 3.9 ms for a
single well and completed porosity prediction for all 26
wells in the entire region in approximately 0.1 s. Model
training took approximately 15.6 min, which is expected
to be reduced to less than 10 min using professional-
grade GPUs, such as V100 or A100. While current
performance meets the requirements of practical
exploration cycles, further optimization of computational

efficiency is needed for larger areas or higher-resolution
data scenarios.

Furthermore, geological data are inherently uncertain,
and robust decision-making requires quantifying the
uncertainty of predictions. The deterministic prediction
framework currently employed in this study does not
provide uncertainty bands, confidence intervals, or
Bayesian inference results, thereby limiting the models
application in risk-sensitive scenarios. Understanding the
reliability and range of variation of predictions is crucial
for practical oil and gas exploration decisions. Future
improvements will consider incorporating methods such
as Monte Carlo dropout or Bayesian neural networks to
generate probability distributions and confidence intervals
for each prediction point, thereby enabling a quantitative
assessment of prediction uncertainty and providing
decision makers with a more comprehensive basis for risk
analysis.

Although the model performs well in local areas, its
generalization capabilities still need to be improved. The
current model is primarily trained and validated based on
data from specific oil and gas blocks. When applied to other
regions with significantly different geological backgrounds,
predictive performance may decline. This indicates that the
model is sensitive to differences in data distribution when
transferred across regions, making it difficult to maintain
stable prediction accuracy in situations with significant
differences in lithology, reservoir formation conditions,
and sedimentary environments. Furthermore, because the
training data are primarily derived from a limited sample,
the model still has shortcomings in capturing universal
geological characteristics and is prone to overfitting
to local features. Future research should consider
incorporating methods such as transfer learning, multi-
source data fusion, and domain adaptation to enhance the
model’s generalization capabilities across different regions
and complex geological conditions, thereby expanding its
application value in a wider range of oil and gas exploration
scenarios.

In terms of potential engineering applications, the
reservoir porosity prediction method based on U-Net++
and AG-GNN offers valuable insights for oil and gas
exploration and development. Accurately predicting
reservoir porosity distribution provides crucial geological
evidence for reservoir evaluation and development
decisions. This is particularly true in the early stages
of oil and gas field exploration, helping to determine
optimal drilling locations and development strategies,
thereby optimizing resource utilization. Furthermore,
the model offers significant flexibility, allowing for
adjustment and optimization based on diverse geological
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conditions and data characteristics, providing a viable
technical approach for reservoir prediction in complex
geological settings.

Future research will focus on expanding and optimizing
several key areas. First, multimodal data fusion is a key
research direction. By combining multiple sources of
information, such as core images, well logging data, and
seismic data, we can more comprehensively characterize
reservoir porosity and enhance the model’s predictive
capabilities. Second, we will focus on developing a
probabilistic prediction framework. Using ensemble
learning or Bayesian methods, we can quantify uncertainty
in prediction results, output confidence intervals, and
generate probability distribution plots, thereby enhancing
the model’s practicality and reliability in exploration
decision-making. Reservoir porosity not only exhibits
spatial distribution characteristics but also displays
temporal evolution patterns. Predicting porosity evolution
trends using time-series data will provide more accurate
long-term forecasts for oil and gas field development.
Finally, in terms of model expansion, improving the model’s
generalization capabilities to adapt to porosity prediction
needs in diverse geological environments will be a core
topic for future research. Further research in these areas
will further promote the application and development of
porosity prediction technology based on deep learning and
GNNes in oil and gas exploration.

7. Conclusion

This study addressed the challenge of fine-scale reservoir
porosity prediction in geologically heterogeneous settings
and proposed a hybrid framework integrating U-Net++
with an AG-GNN. By combining multiscale convolutional
feature extraction, explicit graph-based spatial topology
modeling, and dual-channel attention mechanisms,
the model achieves significant improvements in both
predictive accuracy and geological interpretability.

Quantitative experiments on a continental sedimentary
basin dataset (26 wells, ~40 km?) demonstrated the
effectiveness of the proposed method. The AG-GNN
achieved an MSE of 4.62, MAE of 1.24, R? of 0.912, and
SSIM of 0.831, representing improvements of 14.9-38.7%
in error reduction compared with widely adopted
deep learning models, such as U-Net++ and graph-
based methods. Particularly, the model showed robust
performance in extreme porosity intervals (>16% and
<8%), where prediction errors were reduced by 23.1-
42.6%, addressing a long-standing weakness of traditional
methods. Ablation studies further confirmed the
contribution of each module: the graph structure reduced
MSE by 19.0%, the attention mechanism by 15.0%, and

deep supervision by 12.5%, underscoring the synergistic
effect of the hybrid architecture.

Beyond numerical superiority, the interpretability
analysis based on attention weights revealed strong
alignment between high-weight regions and geologically
meaningful  structures, such as faults, channel
boundaries, and anticline axes. This not only validates
the physical plausibility of the model’s decision-making
process but also provides an advantage over previous
“black-box” approaches, which often lack geological
transparency. Compared with prior studies that rely
heavily on deterministic seismic inversion or geostatistical
interpolation, our method demonstrates superior
adaptability to complex, nonlinear, and sparse datasets,
offering a scalable and data-driven alternative.

Looking forward, challenges remain in improving
cross-regional  generalization under heterogeneous
geological backgrounds and in incorporating uncertainty
quantification for risk-sensitive decision-making. Future
work will focus on multi-source data fusion, temporal
modeling of porosity evolution, and transfer learning
strategies to extend applicability across diverse reservoirs.
With the continued growth of computational resources and
geoscience datasets, the proposed AG-GNN framework
holds strong potential to become a practical and reliable
tool for hydrocarbon exploration, unconventional reservoir
evaluation, and data-driven reservoir management.
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