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Abstract
Accurate prediction of reservoir porosity is fundamental for hydrocarbon resource 
evaluation and development planning, yet traditional methods struggle with spatial 
heterogeneity and complex geological structures. This study proposes a hybrid deep 
learning framework that integrates U-Net++ with an attention-guided graph neural 
network to simultaneously capture multiscale well logging data features and non-
Euclidean spatial dependencies. The model incorporates dense skip connections, deep 
supervision, and dual-channel attention mechanisms to enhance both local feature 
extraction and global topological modeling. Experiments on a real-world continental 
sedimentary basin dataset (26 wells, ~40 km2) demonstrated that the proposed method 
achieved a mean squared error (MSE) of 4.62, mean absolute error of 1.24, coefficient of 
determination (R2) of 0.912, and structural similarity index measure of 0.831, representing 
a 14.9–38.7% reduction in prediction errors relative to widely used deep learning and 
graph-based baselines. Statistical tests (p<0.05) confirmed the significance of the 
improvements. The model was particularly robust in extreme porosity ranges (>16% or 
<8%), reducing errors by 23.1–42.6% compared to U-Net++. Ablation studies highlighted 
the contribution of graph structure (19.0% MSE reduction), attention mechanism 
(15.0%), and deep supervision (12.5%). Beyond predictive accuracy, attention-weight 
analysis revealed strong alignment with geologically meaningful features, such as faults 
and sedimentary facies boundaries, thereby enhancing interpretability. The proposed 
framework offers a scalable and interpretable solution for reservoir characterization, 
with broad potential applications in heterogeneous and faulted reservoirs.
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1. Introduction
Reservoir porosity is a core parameter that characterizes 
the capacity of rock storage space and directly affects the 
reserve assessment, development potential analysis, and 
development plan optimization of oil and gas reservoirs.1 
In oil and gas exploration and development, accurately 
obtaining the porosity distribution of underground 
reservoirs is of great significance for reducing exploration 
risks and improving recovery rates.2

However, due to the complexity of geological structures 
and the indirectness of underground information, 
traditional porosity prediction methods, such as seismic 
inversion and well logging data interpretation, often 
have limitations in data accuracy, resolution, and 
modeling capabilities. In particular, it is difficult to 
accurately characterize the spatial variation of porosity in 
heterogeneous reservoirs and fault development areas.3 
This challenge is particularly prominent in the exploration 
of unconventional oil and gas resources, and there is an 
urgent need to develop more intelligent and precise 
prediction technologies.

In recent years, artificial intelligence technology 
has developed rapidly, and deep learning, especially 
convolutional neural networks (CNNs), has demonstrated 
excellent feature extraction capabilities in reservoir 
modeling and attribute prediction.4 The U-Net structure 
has been widely used in geological image segmentation 
and attribute prediction because it can effectively capture 
multiscale spatial information.5 However, such methods 
usually rely on regular grid data, and their ability to model 
unstructured and highly spatially heterogeneous geological 
data is still insufficiently studied. In addition, complex 
spatial topological relationships, such as stratigraphic 
continuity and fracture intersections, are widely present 
in reservoirs and are difficult to fully represent by relying 
solely on traditional convolution operations. Therefore, 
how to effectively incorporate prior knowledge of 
geological structures into the model and enhance the 
ability to identify key structures has become an important 
challenge in current reservoir porosity prediction.6

To address the above problems, this paper proposes 
a reservoir porosity prediction method that integrates 
U-Net++ and an attention-guided graph neural network 
(AG-GNN). This method utilizes the enhanced multiscale 
feature extraction and fusion capabilities of U-Net++ to 
process spatial hierarchical information in seismic and well 
logging data; at the same time, it introduces non-Euclidean 
relationships between graph neural network (GNN) 
modeling nodes and achieves adaptive enhancement of 
key geological areas through the attention mechanism, 
thereby improving the recognition and prediction 

performance of the model in complex structural areas. 
This hybrid architecture not only enhances the ability to 
represent heterogeneity and topological structures but also 
exhibits good generalization performance under limited 
sample conditions. It is also applicable to a variety of actual 
geological scenarios.

The main contributions of this study include:
(i)	 A hybrid modeling framework combining AG-GNN 

and deep convolutional structures is proposed, 
significantly improving the accuracy and robustness 
of porosity prediction under complex geological 
conditions.

(ii)	 The applicability and superiority of the model in 
different geological regions are verified through 
multiple sets of real data experiments.

(iii)	A scalable technical path is provided for 
unconventional resource exploration and complex 
fault block reservoir modeling.

(iv)	 During the research process, the combination of 
geological interpretability and algorithm performance 
is emphasized. Through attention-weight visualization 
and feature response analysis, the mechanistic 
understanding of the geological causes of porosity 
distribution is enhanced, and the interpretability and 
practical guidance value of the results are improved.

2. Overview of related work
As an important parameter reflecting the spatial structure 
of underground reservoirs, reservoir porosity has long 
been a key research object in the field of oil and gas 
exploration and development.7,8 Traditional porosity 
prediction methods mainly rely on geostatistical methods 
and seismic attribute inversion technology.9 Geostatistical 
methods, such as Kriging interpolation technology, 
estimate porosity spatially based on the spatial correlation 
of sample data, but their accuracy is often low when dealing 
with nonlinear relationships and complex geological 
environments.10 Seismic attribute inversion methods use 
seismic data to invert underground porosity. Although they 
can provide estimates within a relatively large spatial range, 
their applicability and accuracy are also limited because 
they rely on the assumption of seismic wave propagation 
models and have large errors under complex geological 
conditions.11 In general, traditional methods are difficult 
to provide sufficient accuracy and robustness when faced 
with complex spatial structures and high-dimensional 
features.

In recent years, with the rapid development of 
deep learning technology, the application of CNNs in 
geological prediction has gradually become a mainstream 
method. CNNs have made significant progress in porosity 
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prediction due to their powerful feature extraction 
capabilities.12 In particular, U-Net and its variants, 
through their unique encoder–decoder structure and skip 
connection mechanism, can extract multiscale spatial 
features while ensuring spatial resolution, thus achieving 
successful applications in fields such as medical image 
segmentation.13 However, the structure of the U-Net still 
has certain limitations in processing large-scale high-
dimensional spatial data. In particular, when geological 
data have a complex topological structure, traditional 
CNNs are difficult to effectively capture the global spatial 
dependencies between data.14

GNNs, as an emerging deep learning method, have 
gradually attracted widespread attention in the academic 
community. GNNs can effectively model the complex 
dependencies between nodes in the data and are particularly 
suitable for processing data with irregular topological 
structures.15 Variants such as graph convolutional networks 
(GCNs) and graph attention networks (GATs) have further 
improved the performance of the model in learning 
relationships between nodes through graph convolution 
operations and attention mechanisms.16-19 The application 
of GNN in geology is mainly reflected in underground 
structure modeling and prediction tasks. It can automatically 
learn the interaction between nodes in large-scale spatial 
data, thereby improving the shortcomings of traditional 
methods in spatial dependency modeling.20-22 However, 
although GNNs have advantages in processing complex 
spatial structures, how to effectively integrate them into 
porosity prediction tasks remains a challenge, especially 
how to deal with noise and sparsity in geological data.

In this context, the combination of U-Net++ and 
the attention mechanism provides a new idea for the 
application of deep learning models in porosity prediction. 
U-Net++ further improves the ability of multiscale 
feature fusion through improved skip connections and 
deep supervision mechanisms, and can capture more 
detailed geological features at different scales.23 At the 
same time, the introduction of the attention mechanism 
enables the model to automatically focus on key areas that 
have an important impact on porosity prediction during 
the prediction process, thereby effectively improving 
the prediction accuracy. Compared with the traditional 
U-Net model, U-Net++ can accurately capture the 
porosity variation law of different depths or regions in a 
more complex geological background, especially in an 
environment with high variability and complex structure, 
significantly improving the stability and reliability of the 
prediction.

Although the current deep learning models have made 
some progress in porosity prediction, there are still some 

shortcomings. First, most existing methods have not fully 
considered the explicit modeling of spatial topological 
relationships. In particular, when dealing with complex 
geological data, it is difficult for the model to effectively 
capture the connection and interaction between different 
geological units. Secondly, although models such as 
U-Net++ have improved the prediction accuracy through 
multiscale feature fusion, the sensitivity to some key 
geological structural features, such as faults and folds, is still 
insufficient. In particular, when the geological conditions 
are extremely complex, the performance of the model may 
be affected to a certain extent. Therefore, future research 
needs to further enhance the model’s sensitivity to spatial 
topological relationships and key geological features, and 
promote the further development and application of deep 
learning methods in complex geological backgrounds.

3. Methods
3.1. Overall architecture design of the model

This study proposed an end-to-end reservoir porosity 
prediction model that integrates U-Net++ and AG-GNN, 
as shown in Figure  1. The architecture design aims to 
capture both local fine-grained features and global spatial 
topological associations. Specifically, the U-Net++ module 
is used to efficiently extract local interlayer detail changes 
in seismic attributes and logging data to generate multiscale 
feature maps; the AG-GNN module models the reservoir 
spatial topology based on geological structures and spatial 
adjacency relationships, and achieves global modeling and 
prediction of porosity changes across wells and profiles.

The input layer receives the normalized seismic 
attribute cube and well logging data curve; the encoder 
part is composed of multiscale deep convolution and 
dilated convolution; the skip connection is connected to 
the decoder through a dense path; the output multiscale 
feature map is input into AG-GNN for spatial relationship 
modeling; and the final fully connected layer outputs the 
predicted porosity distribution map.

3.2. U-Net++ improvement details

To enhance the adaptability of the model to heterogeneous 
seismic and well logging data, we made two improvements 
based on the traditional U-Net++: (i) deep separable 
convolution and dilated convolution were introduced to 
increase the receptive field while keeping the number of 
parameters low; and (ii) deep supervision and multiscale 
skip connection were used to improve the gradient transfer 
and feature fusion effects.

The convolution layer of the encoder part is replaced by 
a deep separable convolution:
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Figure 1. Overall architecture of the U-Net++ and attention-guided graph neural network (GNN) fusion model
Abbreviation: Conv: Convolutional layer.

Y X K Kdw dw pw pw= ( * ) * � (I)

where dw is channel-by-channel convolution, pw is a 
1×1 convolution, and Kdv and Kpw are convolution kernels, 
respectively.

The decoder introduces dilated convolution:

Y p W d X p r d
d D

( ) ( ) ( )� � � �
�
� � (II)

where r is the dilation rate. The effective increase in the 
receptive field of the feature map is shown in Figure 2.

From the data in Table  1, it can be seen that the 
improved U-Net++ model performed better than the 
original version in many key indicators, and the number of 
model parameters was reduced.

The number of parameters of the improved model 
was reduced from 5.2 M to 4.8 M, a decrease of 
approximately 7.7%, whereas the prediction accuracy 
was significantly improved: the mean squared error 
(MSE) reduced from 0.022 to 0.017 (decrease of 
22.7%), the mean absolute error (MAE) reduced from 
0.103 to 0.085 (decrease of 17.5%), the coefficient 
of determination (R2) increased from 0.847 to 0.895 
(increase of 5.7%), and the structural similarity index 
measure (SSIM) increased from 0.789 to 0.832 (increase 
of 5.4%). In addition, the inference time was shortened 
from 0.84 s to 0.79 s, an improvement of approximately 
6.0%. These data show that the improved model not only 

reduces the computational complexity but also further 
improves the accuracy and efficiency of the prediction, 
achieving a balance between lightweight and high 
performance.

3.3. Design of attention-guided GNN

The AG-GNN design includes three parts: node feature 
encoding, adjacency relationship construction, and 
attention mechanism fusion:24

(i)	 Node feature encoding: geological attributes, such 
as well logging data porosity, seismic reflection 
coefficient, strike-slip fault index, and lithology mark, 
are spliced into node vectors:

F f f fi i i i N= [ , , , ], , ,1 2  � (III)

(ii)	 Adjacency relationship construction: Based on the 
spatial coordinates of the well location (xi, yi, zi) and 

Table 1. Comparison of the complexity and prediction 
performance of the U‑Net++model before and after 
improvement

Model Parameter 
quantity (M)

MSE MAE R2 Reasoning 
time (s)

SSIM

Original 
U‑Net++

5.2 0.022 0.103 0.847 0.84 0.789

Improved 
U‑Net++

4.8 0.017 0.085 0.895 0.79 0.832

Abbreviations: MAE: Mean absolute error; MSE: Mean squared error; 
SSIM: Structural similarity index measure.
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the structural interpretation results, the edges are 
connected within a radius of 200 m:

A
d r
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ij�
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�
�
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,
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� (IV)

where dij is the well distance.
(iii)	Attention mechanism: Combining channel attention 

and spatial attention. Channel attention calculates 
channel weight (wc):

w F Fc � �� ( ( ( )) ( ( )))MLP AvgPool MLP MaxPool 	 (V)

Spatial attention calculates the spatial weight (αij) 
between nodes:
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The process of AG-GNN extracting cross-well spatial 
features through adjacency relations is shown in Figure 3.

The setting of the neighbor radius has a significant 
impact on the model performance, and there is an optimal 
value range, as shown in Table 2.

When the neighbor radius was 200 m, the model reached 
the optimal balance, with an MSE of 0.017, R2 of 0.895, and 
SSIM of 0.832—all indicators were better than other radius 
settings. As the neighbor radius increased from 100 m to 
200 m, the average node degree increased from 3.2 to 5.8, 
prompting the model to capture richer spatial associations, 
reducing MSE by 19.0% and increasing R2 by 4.3%. In 
contrast, when the neighbor radius exceeded 200  m, the 
over-expanded receptive field (average degree 8.1 at 300 m 
and 11.5 at 400 m) introduced noise associations, resulting 
in performance degradation—compared with the optimal 
radius, MSE deteriorated by 35.3% and SSIM decreased by 
4.8% at a neighbor radius of 400 m. The calculation time 
showed a monotonically increasing trend, from 0.64 s at 
a neighbor radius of 100 m to 1.02 s at 400 m, an increase 
of 59.4%, confirming the positive correlation between 
computational complexity and adjacency radius.

In areas with dense well points, graph construction 
strategies based on spatial proximity can effectively 
characterize reservoir spatial topological relationships. 
However, in areas with low well control, graph structures 
constructed solely based on Euclidean distances between 
wells often lack connectivity, resulting in limited feature 
propagation between nodes and making it difficult 
to robustly model large-scale geological features. To 
address this issue, this study proposed a graph structure 
enhancement method that integrates multi-source 
geological and geophysical information. First, a seismic 
data-driven virtual node generation mechanism was 
introduced. Based on the gradient characteristics of seismic 
attributes, such as reflection intensity and coherence 
volume, geologically significant anomalies were identified 

Figure  2. Schematic diagram of the improved U-Net++ architecture 
(including depthwise separable convolution and dilated convolution)
Abbreviation: Conv: Convolutional layer.

Figure 3. Attention-guided graph neural network’s spatial topology 
modeling diagram

https://dx.doi.org/10.36922/JSE025300044


Journal of Seismic Exploration Attention-guided reservoir porosity prediction

Volume 34 Issue 4 (2025)	 75� doi: 10.36922/JSE025300044

in sparse inter-well areas as virtual nodes, and their feature 
vectors were constructed as statistics, such as mean and 
variance, corresponding to the seismic attribute window. 
By establishing connections with actual well points, virtual 
nodes could form information bridges in areas with low 
well control, significantly improving the connectivity of 
the graph. Secondly, the Euclidean distance constraint 
was overcome by integrating prior knowledge such as 
geological structure and sedimentary facies. Well points 
located within the same fault block, sedimentary facies, 
or fracture system were connected even if they were far 
apart. Nodes that were spatially adjacent but had distinct 
geological origins were disconnected or had their weights 
reduced, making the graph structure more consistent 
with geological laws. Finally, a density-adaptive dynamic 
adjacency radius adjustment strategy was implemented. 
A  smaller radius was used in densely populated areas to 
capture local details, while an expanded adjacency radius 
was used in sparse areas to ensure that nodes have sufficient 
neighbors and avoid isolated nodes.

3.4. Model training and loss function

The combined loss function was used in end-to-end model 
training:25

total y y y y� � � � � � �� � � �MSE SSIM L( , ) ( ( , )) ( )˘ ˘1 2 � (VII)

where α (0.7), β (0.3), 𝛾 (10−4) are weights, and θ is a 
model parameter. Regularization uses L2 regularization 
and dropout (p = 0.3) to prevent overfitting; the optimizer 
uses AdamW, the initial learning rate is 1 × 10−3, and the 
learning rate scheduler StepLR decays to 0.5  times every 
20 epochs.

The combination of loss functions had a systematic 
impact on model performance. The experimental results 
are shown in Table 3.

When only MSE loss was used, the model achieved 
baseline performance (MSE = 0.020, R2 = 0.861). After 
the introduction of SSIM loss, various indicators were 
significantly improved, among which MSE was reduced 

by 15.0%, R2 increased by 3.4%, and SSIM increased 
from 0.805 to 0.832, an increase of 3.4%. After further 
incorporating L2 regularization, the model performance 
continued to improve and reached the optimal level 
(MSE = 0.016, R2 = 0.902), which was 20.0% lower than 
the single MSE loss scheme, and R2 was increased by 
4.1%. The SSIM showed a stable growth trend under the 
composite loss function, gradually increasing from 0.805 
to 0.837, indicating that the multi-objective optimization 
strategy effectively enhances the modeling ability of the 
spatial structure. These quantitative results confirm that 
through a carefully designed loss function combination, 
the prediction accuracy and spatial consistency can be 
significantly improved without increasing the complexity 
of the model.

3.5. Model fusion and end-to-end prediction process

This study fed the multiscale feature map output of 
U-Net++ into AG-GNN to explicitly encode the spatial 
topological relationship. After graph attention, the porosity 
value was predicted through the fully connected layer to 
achieve end-to-end optimization. The prediction process 
is shown in Figure 4.

The joint prediction of local structural differences 
and global spatial associations in complex reservoirs was 
achieved, effectively improving the prediction accuracy 
and geological rationality.

4. Data and experimental design
4.1. Data source and description

The data used in the experiment were from the lower 
oil formation in a typical continental sedimentary basin 
in northwestern China. The area has typical sand–mud 
interbed sedimentary characteristics, significant reservoir 
heterogeneity, and frequent tectonic activities. The study 
area contains 26 wells, covering an area of approximately 
40 km2. The structural morphology is mainly anticline and 
fault, and the sedimentary facies are mainly braided river 
and delta front, providing an ideal scenario for complex 
reservoir prediction.

Table 2. Analysis of the impact of the neighbor radius on the 
performance of the AG‑GNN model

Adjacent 
radius, r (m)

MSE R2 Average SSIM Number 
of nodes

Computation 
time (s)

100 0.021 0.858 3.2 0.801 125 0.64

200 0.017 0.895 5.8 0.832 125 0.72

300 0.019 0.884 8.1 0.817 125 0.89

400 0.023 0.841 11.5 0.792 125 1.02

Abbreviations: MSE: Mean squared error; SSIM: Structural similarity 
index measure.

Table 3. Comparison of the impact of different loss function 
combinations on model prediction performance

Loss combination MSE MAE R2 SSIM

MSE only 0.020 0.092 0.861 0.805

MSE+SSIM 0.017 0.085 0.895 0.832

MSE+SSIM+L2 0.016 0.083 0.902 0.837

Abbreviations: MAE: Mean absolute error; MSE: Mean squared error; 
SSIM: Structural similarity index measure.
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This study used three types of data:
(i)	 Well logging data: Encompassing five types of curves, 

including acoustic time difference, natural gamma, 
resistivity, neutron porosity, and bulk density. The 
sampling interval was 0.1  m, and the data coverage 
depth range was 1,000–2,500  m. Some wells had 
significant intervals of missing log data.

(ii)	 Seismic attribute data: Extracted based on three-
dimensional seismic data, including 12 types of 
structural and stratigraphic attributes, such as 
reflection coefficient, instantaneous amplitude, 
frequency, and phase. The sampling resolution is 25 m 
× 25 m, and the vertical resolution corresponds to the 
well depth.

(iii)	Core measured porosity: As a supervised regression 
label (target), a total of 1,848  sample points were 
collected, with a porosity range of 2.1–21.4% and 
an average of 12.7%, which was used as the training 
target of this study.

Figure  5 shows the spatial distribution of 26 wells in 
the study area. The horizontal and vertical coordinates 
represent the east and north coordinates of the wellhead 
position (unit: km).

The well locations are evenly distributed in the region, 
covering the entire target layer structure range. This 
facilitated the construction of a reasonable adjacency 
matrix when training the GNN, supporting efficient 
modeling of spatial information. This also reflects a core 
advantage of the GNN—it can use the cross-well spatial 
structure for feature propagation, thereby improving the 
stability of local predictions.

4.2. Data preprocessing

4.2.1. Spatial alignment and interpolation

First, the seismic and logging data were spatially aligned, 
and the geographic coordinate projection conversion 
(UTM Zone 48N) was used to perform three-dimensional 
interpolation based on the well location.26 The interpolation 
used the spline-based local weighting method to ensure 
that each well point has a corresponding multiscale seismic 
attribute sample.

4.2.2. Feature normalization and missing value 
processing

Continuous features were normalized to the interval [0, 1], 
and the minimum–maximum scaling was performed using 
the following formula:

x x min x
max x min x

’ �
�

�
( )

( ) ( )
� (VIII)

The missing curves were repaired using K-nearest 
neighbor imputation (k = 5) to retain the continuity of the 
physical characteristics of the well. Invalid samples (>50% 
missing) were removed, and the final number of retained 
samples was 1,720.

4.2.3. Feature selection

Through the Pearson correlation coefficient and variance 
analysis (ANOVA), the top eight seismic attribute features 
highly correlated with porosity were retained, as shown in 
Table 4.

Figure  4. End-to-end process from seismic and well logging data to 
porosity prediction
Abbreviation: AG-GNN: Attention-guided graph neural network.

Figure 5. Well location and sample spatial distribution map
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Figure 6 compares the relationship between three typical 
seismic attributes (root mean square [RMS] amplitude, 
instantaneous frequency, and gray level co-occurrence 
matrix [GLCM] texture) and measured porosity.

The RMS amplitude was positively correlated with 
porosity, and the fitting trend was relatively obvious. The 
instantaneous frequency fluctuated greatly, but maintained 
a certain correlation overall. The GLCM texture was 
negatively correlated with the porosity, indicating that 
the reservoir structure difference can be reflected from 
the texture perspective. These attributes were retained in 
the feature selection stage, proving their effectiveness in 
characterizing reservoir properties and providing a solid 
foundation for subsequent model input.

4.3. Experimental settings

4.3.1. Dataset division

To ensure the generalization ability of the model, a 
stratified sampling strategy was used to divide the data into 
a training set, validation set, and test set, with a ratio of 
70%:15%:15%. The division results are shown in Table 5.

The average porosity of the training set (1,204 samples), 
validation set, and test set (258 samples each) was 12.73%, 
12.68%, and 12.71%, respectively, with a difference of no 
more than 0.05%, indicating that the mean porosity remains 
highly stable among different data sets. More importantly, 
the porosity standard deviations of the three data sets were 
4.22, 4.31, and 4.19, respectively, with a range of only 0.12, 
and a coefficient of variation difference of no more than 
2.9%, confirming that the fluctuation characteristics of 
reservoir physical properties are balanced and preserved 
during the training, validation, and testing stages. When 
the validation set and the test set had the same sample size 
(258 samples each), the difference in statistical parameters 

was negligible: the average porosity difference was 0.03%, 
and the standard deviation difference was 0.12. This strict 
symmetry design effectively avoids sampling bias in 
the evaluation process. Although the sample size of the 
training set was 4.67 times that of the validation and test 
sets, its standard deviation (4.22) was only 0.03 different 
from that of the test set (4.19), indicating that large data 
volume training does not sacrifice the representativeness 
of data distribution.

4.3.2. Hardware and software environment

All experiments were run on Ubuntu 20.04 (Canonical 
Ltd, United Kingdom), and the hardware configuration is 
shown in Table 6.

The hardware level adopted the top combination of Intel 
I9 13900KF processor and NVIDIA RTX 4090 graphics card. 
The RTX 4090 graphics card has 24 GB GDDR6X video 
memory and 16,384 CUDA cores, thereby providing hardware 
acceleration guarantee for large-scale matrix operations of 
GNNs; the configuration of 256 GB DDR4 memory effectively 
supports the efficient access of graph structure data of complex 
geological models in memory, avoiding the common memory 
bottleneck problem in traditional geological modeling. In 
terms of software ecology, the combination of PyTorch 2.1 
and DGL 1.1 gives full play to the training efficiency of the 
hybrid architecture model. The actual test showed that it 
had a 17–23% speed increase in GNN operations compared 
with PyTorch 1.13. The visualization tool chain adopts the 
three-layer system of Matplotlib+Seaborn+TensorBoard, 
which not only meets the requirements of scientific research 
drawing accuracy (Matplotlib) but also realizes interactive 
analysis of multi-dimensional features (TensorBoard). Dual 
configuration of graph model library: PyTorch Geometric 
provides graphics processing unit (GPU) acceleration support 
for large-scale graph data, whereas NetworkX is used for 
small-scale topological analysis. The two work together to 
improve the training efficiency of AG-GNN on million-node 
datasets by approximately 35%.

4.4. Comparison of baseline models

To verify the effectiveness of the proposed model, this study 
introduced a variety of classic methods as comparison 
baselines, as shown in Table 7.

Table 4. Pearson correlation analysis of seismic attributes 
and porosity

Serial 
number

Attribute name Correlation 
coefficient (r)

Retain

1 Reflection coefficient 0.81 Yes

2 RMS amplitude 0.76 Yes

3 Instantaneous frequency 0.68 Yes

4 Absorption attenuation coefficient −0.63 Yes

5 Amplitude envelope 0.59 Yes

6 Multiscale GLCM texture 0.53 Yes

7 Main reflection direction 0.49 Yes

8 Inter‑layer reflection difference −0.45 Yes

Abbreviations: GLCM: Gray level co‑occurrence matrix; RMS: Root 
mean square.

Table 5. Sample division results

Dataset Number of 
samples

Average 
porosity (%)

Standard deviation 
of porosity

Training set 1,204 12.73 4.22

Validation set 258 12.68 4.31

Test set 258 12.71 4.19
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Figure 6. Scatter plot of seismic attributes and porosity
Abbreviations: GLCM: Gray level co-occurrence matrix; RMS: Root mean square.

Table 6. Experimental platform configuration

Hardware/software Description

Central processing unit Intel I9 13900KF

Graphics processing unit NVIDIA RTX 4090

RAM 256 GB DDR4

Deep learning Library PyTorch 2.1, DGL 1.1

Visualization tools Matplotlib, Seaborn, TensorBoard

Graph model library PyTorch Geometric (PyG), NetworkX

Table 7. Overview of the baseline models and comparison of structural parameters

Model Type Feature extraction 
structure

Whether to model 
spatial structure

Number of 
parameters (M)

Training 
time (min)

CNN Convolutional neural 
network (CNN)

3‑layer standard Conv No 1.2 5.6

U‑Net Encoder–decoder UNet‑5 level No 7.8 11.3

U‑Net++ Improved U‑Net Dense skip+nested No 12.5 14.1

GCN Graph neural network 2‑layer GCN Yes 0.9 6.2

GAT Attention graph network 2‑layer GAT, 8‑head Yes 1.1 8.4

AG‑GNN (ours) Fusion model U‑Net++ + GNN+attention 
mechanism

Yes 14.9 15.6

Abbreviations: AG‑GNN: Attention‑guided graph neural network; GAT: Graph attention networks; GCN: Graph convolutional network; GNN: Graph 
neural network.

The basic CNN had only 1.2 M parameters, the 
standard U-Net increased to 7.8 M, and U-Net++ 
further expanded to 12.5 M through dense connections; 
the AG-GNN model proposed in this paper had 14.9 M 
parameters—15.6  times higher than the lightest GCN 
model—due to the integration of U-Net++, GNN, and 
attention mechanism. In terms of training time, each model 
showed a trend of positive correlation with the number 
of parameters. Among them, CNN only took 5.6  min to 
complete training, the U-Net series took 11.3–14.1  min, 
and AG-GNN took 15.6 min to train due to its complex 

hybrid architecture—178% more than the fastest CNN. 
Although GCN and GAT are both GNNs with similar 
parameters (0.9 M vs. 1.1 M), GAT increases the training 
time by 35.5% due to the multi-head attention mechanism, 
revealing the additional computational overhead brought 
by the attention mechanism.

4.5. Validation indicators

To comprehensively evaluate the performance of the model, 
the following indicators were set from multiple dimensions, 
such as prediction accuracy, spatial consistency, and model 
efficiency:27-29
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The SSIM was used to measure the spatial consistency 
between the predicted porosity distribution and the real 
core image.
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Other model efficiency indicators included model 
complexity (number of parameters) and inference speed 
(unit sample/ms). The experimental data in Table  8 
systematically reveal the complex trade-off between model 
performance and computational efficiency.

The proposed AG-GNN model led in all four core 
indicators: its MSE (4.62) was 14.9% lower than the 
second-best U-Net++, MAE (1.24) was 19.0% lower than 
GAT, R2  (0.912) and SSIM (0.831) were 2.6% and 3.7% 
higher than U-Net++, respectively. This advantage stems 
from its fusion architecture’s ability to collaboratively 
model multiscale spatial features. Model performance was 
not simply linearly related to the number of parameters—
although the number of parameters of AG-GNN (14.9 M) 
was 16.6 times that of GCN (0.9 M), its MSE decreased by 
25.2%; whereas U-Net++ had only improved its MSE by 
9.8% when the number of parameters increased by 60.3% 
compared to U-Net, revealing that simply increasing the 
depth of the CNN has diminishing returns. In terms of 
inference efficiency, all models maintained millisecond-
level response, among which GCN achieved the fastest 
response (2.0 ms) with its simple graph structure operation. 
Although AG-GNN (3.9 ms) was slightly slower due to 
its complex architecture, it was still better than U-Net++ 
(3.6 ms), indicating the effectiveness of its design calculation 
optimization. GAT’s SSIM (0.777) was significantly better 

than GCN (0.744) with similar parameter volume (1.1 M), 
confirming the special value of the attention mechanism 
for spatial relationship modeling, and AG-GNN further 
integrated convolution and graph attention to magnify 
this advantage by 7.1%. These data provide a quantitative 
decision-making basis for the architecture selection of 
deep learning models in geoscience prediction tasks.

Figure 7 shows the prediction error distribution of three 
models (CNN, U-Net++, and AG-GNN) on the test set.

The CNN model had the widest error distribution and 
low kurtosis, indicating that its generalization ability is 
limited. U-Net++ was significantly improved, with higher 
error concentration. Meanwhile, AG-GNN presented 
the narrowest error distribution, with errors mainly 
concentrated in the range of ±1.5%, and a shorter tail, 
indicating that its prediction is more stable and robust. 
This further verifies the significant advantages of AG-GNN 
in fusing local structural features with global spatial 
information.

5. Experimental results and analysis
This chapter systematically evaluates the performance of 
the proposed U-Net++ and AG-GNN, from quantitative 
comparison, spatial visualization, module ablation, 
parameter sensitivity, and error statistics, aiming to fully 
reveal its effectiveness and advantages in reservoir porosity 
prediction.

5.1. Quantitative evaluation

Table 9 presents the accuracy indicators of the six models 
on the test set, including MSE, MAE, R2, and SSIM.

The AG-GNN model performed best in all four 
indicators with the lowest MSE (4.62) and the highest 
R2  (0.912), indicating that its prediction accuracy and 

Table 8. Evaluation indicators of each model in the test set

Model MSE MAE R2 SSIM Parameter 
quantity (M)

Inference 
speed (ms)

CNN 7.54 1.92 0.832 0.712 1.2 2.1

U‑Net 6.02 1.67 0.864 0.759 7.8 3.2

U‑Net++ 5.43 1.48 0.889 0.801 12.5 3.6

GCN 6.18 1.69 0.857 0.744 0.9 2.0

GAT 5.71 1.53 0.873 0.777 1.1 2.5

AG‑GNN 4.62 1.24 0.912 0.831 14.9 3.9

Abbreviations: AG‑GNN: Attention‑guided graph neural network; 
CNN: Convolutional neural network; GAT: Graph attention networks; 
GCN: Graph convolutional network; MAE: Mean absolute error; 
MSE: Mean squared error; SSIM: Structural similarity index measure.

Figure 7. Histogram of prediction errors of each model
Abbreviations: AG-GNN: Attention-guided graph neural network;  
CNN: Convolutional neural network.

https://dx.doi.org/10.36922/JSE025300044


Journal of Seismic Exploration Attention-guided reservoir porosity prediction

Volume 34 Issue 4 (2025)	 80� doi: 10.36922/JSE025300044

Table 9. Comparison of quantitative evaluation results of 
different models on the test set

Model MSE MAE R2 SSIM

CNN 7.54 1.92 0.832 0.712

U‑Net 6.02 1.67 0.864 0.759

U‑Net++ 5.43 1.48 0.889 0.801

GCN 6.18 1.69 0.857 0.744

GAT 5.71 1.53 0.873 0.777

AG‑GNN 4.62 1.24 0.912 0.831

Abbreviations: AG‑GNN: Attention‑guided graph neural network; 
CNN: Convolutional neural network; GAT: Graph attention networks; 
GCN: Graph convolutional network; MAE: Mean absolute error; 
MSE: Mean squared error; SSIM: Structural similarity index measure.

spatial consistency are significantly better than the other 
models.

5.2. Spatial distribution visualization

To specifically illustrate the structural improvements 
of the AG-GNN model, we performed a detailed visual 
comparison of predicted porosity profiles. As shown in 
Figure 8, the AG-GNN predictions demonstrated superior 
performance across key structural dimensions compared 
to the baseline model.

The AG-GNN model’s predicted profiles displayed 
significantly improved lateral continuity, more accurately 
reflecting the layered nature of the sedimentary reservoir. 
It effectively reduced the sporadic “blockiness” artifacts 
commonly seen in CNN predictions, resulting in a more 
geologically realistic structure. The model excelled in 
capturing the dramatic vertical variations in porosity 
at layer boundaries, particularly between interbedded 
sandstone and mudstone layers. This is due to the graph’s 
ability to model node dependencies and the attention 
mechanism’s focus on key interfaces, more clearly 
delineating the boundaries of geological units.

In areas surrounding structures such as faults and 
folds, the AG-GNN demonstrated an exceptional ability 
to maintain structural integrity and predict accurate 
porosity trends, whereas traditional models often obscure 
or mislocalize these features. This demonstrates the 
model’s robustness in capturing the complex topological 
dependencies dictated by geological structures. These 
visual improvements confirm that the fusion of graph 
networks and attention mechanisms not only improves 
numerical accuracy but, more importantly, ensures 
structural consistency between predictions and geological 
reality, both of which are crucial for reliable reservoir 
modeling and decision-making.

5.3. Ablation experiment analysis

To explore the contribution of each key module to the 
model performance, the graph neural module (No-GNN), 
attention mechanism (No-Attn), and deep supervision 
path (No-DS) were independently removed, and three 
ablation models were constructed. The comparison results 
are shown in Table 10.

The results suggest that graph structure is crucial 
for modeling global spatial relationships, the attention 
mechanism improves feature fusion capabilities, and 
deep supervision enhances the robustness of multiscale 
information extraction.

5.4. Parameter sensitivity analysis

This section analyzes the impact of two key hyperparameters 
on model performance: (i) graph adjacency radius (r) and 
(ii) learning rate (η). Figure 9 shows the MSE changes of 
the model under different r values, and Figure 10 shows the 
convergence trend of different η.

Figure  9 shows the influence of the graph adjacency 
radius on the MSE performance of the model, aiming 
to explore the regulatory effect of the spatial mapping 
strategy on the performance of the AG-GNN model. As 
the adjacency radius gradually increased from 0.2  km 
to 1.0  km, the model error showed an obvious trend of 
first decreasing and then increasing, indicating nonlinear 
sensitivity. The optimal performance occurred at a radius of 
0.6 km, where the MSE was the lowest at 4.62. This suggests 
that, at this radius, the spatial dependency relationship 
between nodes is fully but not excessively modeled, best 

Figure 8. Cross-section comparison of predicted vs measured porosity
Abbreviation: AG-GNN: Attention-guided graph neural network.
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Table 10. Quantitative comparison of ablation experiments 
of each module of AG‑GNN

Model Module removal MSE MAE R2

AG‑GNN None 4.62 1.24 0.912

No‑Attn Attention mechanism 5.28 1.42 0.883

No‑GNN Graph neural network architecture 5.94 1.61 0.861

No‑DS Deep supervision path 5.37 1.49 0.874

Abbreviations: AG‑GNN: Attention‑guided graph neural network; 
MAE: Mean absolute error; MSE: Mean squared error.

reflecting the expression advantage of the graph structure. 
When r < 0.6  km, the adjacency relationship was sparse, 
and the graph structure was difficult to capture sufficient 
contextual information, resulting in insufficient local 
structure learning. When r > 0.6 km, excessive connections 
introduced redundant or even interfering information, 

reducing the generalization ability and expression accuracy 
of the model.

Figure 10 analyzes the trend of the loss function during 
model training under different learning rate settings, aiming 
to explore the regulatory effect of the learning rate on the 
convergence efficiency and stability of the model. When 
the learning rate was at 0.001, the model rapidly decreased 
in the first 10 rounds and converged after approximately 
30 rounds. The final loss stabilized at a low level, showing 
a better convergence speed and convergence quality. In 
contrast, although the training process was smoother with 
a smaller learning rate (η = 0.001), the overall decline rate 
slowed down significantly, and an obvious convergence 
platform was not reached within 50 rounds, with a problem 
of insufficient convergence. The moderate to small learning 
rate (η = 0.0005) showed medium speed and stability, and 
the final loss was slightly higher than when η was 0.001. 
Comprehensively comparing the final loss values and the 
number of convergence rounds under different learning 
rates, an η of 0.001 achieved a good balance between 
accuracy and efficiency—its final training error was less 
than 0.12 and was basically stable at approximately 35 
rounds. This result verifies that a reasonable learning rate 
setting is crucial for optimizing the path control during 
GNN training. Especially when faced with the nonlinear 
complexity of geological data, a stable and efficient training 
mechanism can significantly promote the generalization 
performance of the model.

5.5. Statistical tests

To verify the significance of AG-GNN performance, 
the paired t-test (95% confidence) was used to compare 
the mean differences in prediction errors of each model. 
Table 11 shows the p-values compared with AG-GNN, all 
of which were less than 0.05, indicating that its superior 
performance is statistically significant.

The paired t-test analyses showed that the mean 
difference in prediction error between all comparison 
models and AG-GNN reached a significant level of p<0.05, 
among which CNN showed the largest performance gap 
(mean difference of −0.68), with an extremely low p-value 
(0.00012) that statistically rejects the null hypothesis with 
99.988% confidence. Although the gap between U-Net++ 
and AG-GNN was relatively small (−0.24), the p-value 
(0.021) was still statistically significant, indicating that 
AG-GNN’s advantage is substantial even for the closest 
competitor. The mean differences of GCN and U-Net were 
−0.45 and −0.43, respectively, with a statistical confidence 
of more than 99.7% (p=0.0036 and 0.0028, respectively). 
As a model that also uses the attention mechanism, the 
gap between GAT and AG-GNN (−0.29) was significant 

Figure 10. Training loss under different learning rates
Abbreviation: lr: Learning rate.

Figure 9. Effect of graph adjacency radius on mean squared error
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(p=0.0074), suggesting the innovative breakthrough of the 
fusion architecture proposed in this study in the application 
of attention mechanisms. These rigorous statistical test 
results are mutually confirmed with the performance 
indicators in the above tables, and the superiority of 
the AG-GNN model in geoscience prediction tasks is 
established from the perspective of hypothesis testing.

5.6. Error analysis

Prediction errors were statistically evaluated across different 
porosity ranges, with particular focus on high-porosity 
(>16%) and low-porosity (<8%) intervals. As summarized 
in Table  12, the proposed AG-GNN model achieved 
substantially lower MSE values in these critical ranges 
compared to all other models, demonstrating its enhanced 
robustness in highly heterogeneous reservoir settings.

The proposed AG-GNN model achieved an MSE of 
5.41 in the high-porosity range, representing reductions 
of 42.6% and 23.1% compared to CNN and U-Net++, 
respectively. In the low-porosity range, its MSE of 5.21 
corresponded to error reductions of 40.7% and 24.9% 
relative to the same benchmarks. The model also excelled 
in medium-porosity predictions, with an MSE of 3.92—
18.7% lower than that of U-Net++ (4.82), the second-best 
performer.

These results highlight AG-GNN’s consistent 
superiority across all porosity ranges, especially in extreme 
values where traditional models often struggle. Notably, 
the error inflation observed in CNN models—56.9% 
for high porosity and 46.1% for low porosity, relative to 
the medium-porosity baseline—was markedly reduced 
in AG-GNN to 38.0% and 32.9%, respectively. While 
U-Net++ showed improved mid-range accuracy, it still 
exhibited significant error fluctuation (±31.5%) in extreme 
ranges. In contrast, AG-GNN narrowed this fluctuation to 
±24.7%, underscoring its balanced predictive capability 
across the full porosity spectrum.

Figure  11 shows the comparison of the prediction 
residual distribution between the AG-GNN model 

and the benchmark model. Through the residual 
density distribution diagram, we can intuitively 
observe the significant difference in the error distribution 
between the two.

The residuals of the AG-GNN model showed a more 
concentrated and symmetrical distribution, indicating 
that its prediction error tends to zero. Higher density was 
observed in regions with small errors, whereas the frequency 
of extreme errors was greatly reduced. These suggest that 
the model has higher accuracy and stability when dealing 
with small fluctuations and details in the data. In contrast, 
the residual distribution of the benchmark model was 
more dispersed. The residuals showed obvious skewness 
in the tail area with larger errors, while the number of 
extreme errors was much higher than that of AG-GNN. 
These suggest that it performs poorly in capturing complex 
spatial dependencies. Further quantification, the MAE of 
the AG-GNN model was 0.016, and the standard deviation 
was 0.034, indicating that its error control is more precise. 
The MAE of the benchmark model was 0.045, and the 
standard deviation was 0.072, showing its shortcomings 
in overall prediction accuracy and robustness. Overall, 
Figure  11 fully demonstrates the ability of AG-GNN in 
capturing spatial structural relationships and reducing 

Table 11. Statistical test results of AG‑GNN with other models

Model Mean difference p‑value

CNN −0.68 0.0001*

U‑Net −0.43 0.0036*

U‑Net++ −0.24 0.0210*

GCN −0.45 0.0028*

GAT −0.29 0.0074*

Note: *p<0.05. Abbreviations: AG‑GNN: Attention‑guided graph 
neural network; CNN: Convolutional neural network; GAT: Graph 
attention networks; GCN: Graph convolutional network.

Figure 11. Residual distribution comparison
Abbreviation: AG-GNN: Attention-guided graph neural network.

Table 12. Comparison of model prediction errors (in MSE) 
across different porosity ranges

Model High porosity 
section

Medium 
porosity section

Low porosity 
section

CNN 9.42 6.01 8.78

U‑Net++ 7.03 4.82 6.94

AG‑GNN 5.41 3.92 5.21

Abbreviations: AG‑GNN: Attention‑guided graph neural network; 
CNN: Convolutional neural network.
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prediction errors through the comparison of residual 
distributions, and verifies the advantages and reliability of 
the model in the prediction of complex geological data.

5.7. Geological significance analysis based on 
attention weights

To quantitatively evaluate the geological patterns captured 
by the attention mechanism, this study statistically 
analyzed the channel attention weights and the spatial 
coupling relationship between regions with high attention 
weights (>90th percentile) and key geological features. The 
results are shown in Tables 13 and 14.

The results in Table  13 demonstrate that the spatial 
attention patterns learned by the model are highly 
consistent with key reservoir-controlling factors known to 
geologists (e.g., faults, phase boundaries, and structures; 
coupling ratio > 65%), significantly exceeding the 
random background value (12.3%). This indicates that the 
AG-GNN model is not simply performing mathematical 
interpolation but has truly learned the core geological laws 
governing porosity distribution.

The results in Table  14 show that the reflection 
coefficient was assigned the highest importance by the 
model, which is consistent with geophysical principles, as 
it most directly reflects lithology and porosity information. 
Attributes related to fluid effects, such as RMS amplitude 
and instantaneous frequency, rank highly, suggesting that 
the model may indirectly capture signals related to oil and 

gas distribution in the study area when predicting porosity. 
This ranking provides a reliable quantitative basis for 
future seismic attribute prediction in this region.

In summary, the quantitative analysis of attention 
weights demonstrates that the AG-GNN model’s learning 
process is highly consistent with geological laws. Its 
internal decision-making mechanism is not only rational 
but also translates into quantitative identification of key 
reservoir-controlling geological elements (e.g., faults 
and phase boundaries) and effective seismic attributes. 
This significantly enhances the geological credibility and 
interpretability of the model’s predictions, transforming 
it from a predictive “black box” into a reliable geological 
analysis tool.

6. Discussion
In this study, a reservoir porosity prediction method based 
on U-Net++ and an AG-GNN demonstrated significant 
advantages and innovations. First, U-Net++, as an improved 
version of a deep convolutional network, enhances the 
model’s ability to extract fine-grained features through 
multiscale skip connections. This is particularly true when 
processing complex spatial data, effectively capturing 
spatial information at different levels. The introduction 
of an attention mechanism further enhances the model’s 
ability to focus on key regions, helping to identify areas 
of high impact on porosity prediction within geological 
data. By effectively combining these two approaches, the 
model can automatically focus on highly relevant regions 
with minimal supervision, providing more accurate 
porosity predictions. Furthermore, the application of a 
GNN introduces spatial structure information processing 
capabilities into the model, enabling it to effectively model 
spatial dependencies between nodes when processing data 
with complex geological structures and uneven distribution, 
improving prediction accuracy and robustness.

Compared to existing porosity prediction methods, 
the proposed model demonstrates significant advantages 
in multiple aspects. Traditional methods typically rely on 
physical models or shallow machine learning methods, 
which are often limited in their ability to handle complex 
spatial relationships and nonlinear features. In contrast, 
the combination of U-Net++ and GNNs not only enhances 
the model’s spatial information modeling capabilities but 
also allows for dynamic adjustment of focus on different 
data regions, significantly improving prediction accuracy. 
Comparisons with baseline models demonstrate that the 
proposed model achieves superior performance across 
multiple evaluation metrics, such as MSE, R2, and the 
centrality of the residual distribution. This improvement 
not only demonstrates the algorithm’s advanced nature but 

Table 13. Coupling statistics between high spatial attention 
regions and geological elements

Geological elements Coupling ratio of high 
attention areas (%)

Both sides of the fault zone (200 m buffer) 85.4

Boundary of the main channel sand body 78.2

Axis of the anticline structure 65.1

Random distribution throughout the area 12.3

Table 14. Ranking of seismic attributes based on channel 
attention weights

Ranking Seismic attributes Channel attention weight

1 Reflection coefficient 0.251

2 RMS amplitude 0.198

3 Instantaneous frequency 0.163

4 Absorption coefficient 0.142

5 Amplitude envelope 0.112

6 GLCM texture 0.086

7 Main reflection direction 0.048
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also provides new insights and methodologies for solving 
similar geological problems in the future.

Compared with the methods used in recent studies that 
combine deterministic seismic inversion with attribute 
interpretation,30 or rely on technical approaches such 
as 3D seismic attribute enhancement and geological 
illumination,31 as well as 3D automatic interpretation 
strategies based on relative geological models and 
stratigraphic slices,32 the AG-GNN model in this study has 
achieved a fundamental breakthrough. Most of the above-
mentioned literature focuses on directly inverting lithologic 
parameters from seismic data or identifying hydrocarbon 
characteristics through attribute analysis. Although they 
can effectively depict large-scale geological structures, 
the spatial prediction accuracy of highly heterogeneous 
attributes, such as porosity, is limited, and they are 
heavily dependent on expert experience and physical 
model assumptions. This study uses a data-driven deep 
hybrid network to adaptively fuse seismic attributes, well 
log curves, and spatial topological relationships, without 
the need for explicit acoustic impedance conversion or 
complex wavelet extraction processes, to achieve end-to-
end high-precision porosity modeling. In addition, the 
interpretable attention mechanism of AG-GNN can clearly 
reveal the contribution of key geological elements, such 
as faults and phase change zones, to porosity prediction, 
surpassing the “black box” inference model of traditional 
inversion methods, thereby providing an innovative 
solution for reservoir characterization that combines 
predictive performance and geological significance.

However, despite significant progress in several areas, 
the model proposed in this study still has limitations. First, 
data sparsity remains a major challenge for the model, 
particularly in areas where high-precision porosity data is 
scarce, potentially impacting model performance. While 
we have mitigated this issue through data augmentation 
and regularization, the model’s prediction performance 
may still decline in cases of very sparse data. Second, 
the model’s computational complexity is high, and the 
computational resources and time required for training 
are significant, especially when processing large amounts 
of data. Specifically, on a workstation equipped with an 
NVIDIA RTX 4090 graphics card, the AG-GNN model 
achieved an inference time of approximately 3.9 ms for a 
single well and completed porosity prediction for all 26 
wells in the entire region in approximately 0.1 s. Model 
training took approximately 15.6 min, which is expected 
to be reduced to less than 10  min using professional-
grade  GPUs, such as V100 or A100. While current 
performance meets the requirements of practical 
exploration cycles, further optimization of computational 

efficiency is needed for larger areas or higher-resolution 
data scenarios.

Furthermore, geological data are inherently uncertain, 
and robust decision-making requires quantifying the 
uncertainty of predictions. The deterministic prediction 
framework currently employed in this study does not 
provide uncertainty bands, confidence intervals, or 
Bayesian inference results, thereby limiting the model’s 
application in risk-sensitive scenarios. Understanding the 
reliability and range of variation of predictions is crucial 
for practical oil and gas exploration decisions. Future 
improvements will consider incorporating methods such 
as Monte Carlo dropout or Bayesian neural networks to 
generate probability distributions and confidence intervals 
for each prediction point, thereby enabling a quantitative 
assessment of prediction uncertainty and providing 
decision makers with a more comprehensive basis for risk 
analysis.

Although the model performs well in local areas, its 
generalization capabilities still need to be improved. The 
current model is primarily trained and validated based on 
data from specific oil and gas blocks. When applied to other 
regions with significantly different geological backgrounds, 
predictive performance may decline. This indicates that the 
model is sensitive to differences in data distribution when 
transferred across regions, making it difficult to maintain 
stable prediction accuracy in situations with significant 
differences in lithology, reservoir formation conditions, 
and sedimentary environments. Furthermore, because the 
training data are primarily derived from a limited sample, 
the model still has shortcomings in capturing universal 
geological characteristics and is prone to overfitting 
to local features. Future research should consider 
incorporating methods such as transfer learning, multi-
source data fusion, and domain adaptation to enhance the 
model’s generalization capabilities across different regions 
and complex geological conditions, thereby expanding its 
application value in a wider range of oil and gas exploration 
scenarios.

In terms of potential engineering applications, the 
reservoir porosity prediction method based on U-Net++ 
and AG-GNN offers valuable insights for oil and gas 
exploration and development. Accurately predicting 
reservoir porosity distribution provides crucial geological 
evidence for reservoir evaluation and development 
decisions. This is particularly true in the early stages 
of oil and gas field exploration, helping to determine 
optimal drilling locations and development strategies, 
thereby optimizing resource utilization. Furthermore, 
the model offers significant flexibility, allowing for 
adjustment and optimization based on diverse geological 
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conditions and data characteristics, providing a viable 
technical approach for reservoir prediction in complex 
geological settings.

Future research will focus on expanding and optimizing 
several key areas. First, multimodal data fusion is a key 
research direction. By combining multiple sources of 
information, such as core images, well logging data, and 
seismic data, we can more comprehensively characterize 
reservoir porosity and enhance the model’s predictive 
capabilities. Second, we will focus on developing a 
probabilistic prediction framework. Using ensemble 
learning or Bayesian methods, we can quantify uncertainty 
in prediction results, output confidence intervals, and 
generate probability distribution plots, thereby enhancing 
the model’s practicality and reliability in exploration 
decision-making. Reservoir porosity not only exhibits 
spatial distribution characteristics but also displays 
temporal evolution patterns. Predicting porosity evolution 
trends using time-series data will provide more accurate 
long-term forecasts for oil and gas field development. 
Finally, in terms of model expansion, improving the model’s 
generalization capabilities to adapt to porosity prediction 
needs in diverse geological environments will be a core 
topic for future research. Further research in these areas 
will further promote the application and development of 
porosity prediction technology based on deep learning and 
GNNs in oil and gas exploration.

7. Conclusion
This study addressed the challenge of fine-scale reservoir 
porosity prediction in geologically heterogeneous settings 
and proposed a hybrid framework integrating U-Net++ 
with an AG-GNN. By combining multiscale convolutional 
feature extraction, explicit graph-based spatial topology 
modeling, and dual-channel attention mechanisms, 
the model achieves significant improvements in both 
predictive accuracy and geological interpretability.

Quantitative experiments on a continental sedimentary 
basin dataset (26 wells, ~40 km2) demonstrated the 
effectiveness of the proposed method. The AG-GNN 
achieved an MSE of 4.62, MAE of 1.24, R2 of 0.912, and 
SSIM of 0.831, representing improvements of 14.9–38.7% 
in error reduction compared with widely adopted 
deep learning models, such as U-Net++ and graph-
based methods. Particularly, the model showed robust 
performance in extreme porosity intervals (>16% and 
<8%), where prediction errors were reduced by 23.1–
42.6%, addressing a long-standing weakness of traditional 
methods. Ablation studies further confirmed the 
contribution of each module: the graph structure reduced 
MSE by 19.0%, the attention mechanism by 15.0%, and 

deep supervision by 12.5%, underscoring the synergistic 
effect of the hybrid architecture.

Beyond numerical superiority, the interpretability 
analysis based on attention weights revealed strong 
alignment between high-weight regions and geologically 
meaningful structures, such as faults, channel 
boundaries, and anticline axes. This not only validates 
the physical plausibility of the model’s decision-making 
process but also provides an advantage over previous 
“black-box” approaches, which often lack geological 
transparency. Compared with prior studies that rely 
heavily on deterministic seismic inversion or geostatistical 
interpolation, our method demonstrates superior 
adaptability to complex, nonlinear, and sparse datasets, 
offering a scalable and data-driven alternative.

Looking forward, challenges remain in improving 
cross-regional generalization under heterogeneous 
geological backgrounds and in incorporating uncertainty 
quantification for risk-sensitive decision-making. Future 
work will focus on multi-source data fusion, temporal 
modeling of porosity evolution, and transfer learning 
strategies to extend applicability across diverse reservoirs. 
With the continued growth of computational resources and 
geoscience datasets, the proposed AG-GNN framework 
holds strong potential to become a practical and reliable 
tool for hydrocarbon exploration, unconventional reservoir 
evaluation, and data-driven reservoir management.
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