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Abstract

Suppressing complex mixed noise in seismic data poses a significant challenge for
conventional methods, which often cause signal damage or leave residual noise. While
sparse basis learning is a promising approach for this task, traditional data-driven
learning methods are often insensitive to the physical properties of seismic signals,
leading to incomplete noise removal and compromised signal fidelity. To address
this limitation, we propose a physics-constrained sparse basis learning method for
mixed noise suppression. Our method integrates local dip attributes—estimated
and iteratively refined by a plane-wave destructor filter—as a physical constraint
within the dictionary learning framework. This constraint guides the learning
process to achieve high-fidelity signal reconstruction while effectively suppressing
multiple noise types. Tests on complex synthetic and real data demonstrate that
the proposed method outperforms conventional techniques and industry-standard
workflows in attenuating mixed noise, including strong anomalous amplitudes,
ground roll, and random and coherent components, thereby significantly enhancing
the signal-to-noise ratio and imaging quality.

Keywords: Multiple-type noise suppression; Dictionary learning; Physical constraint;
Plane-wave destructor filter

1. Introduction

The evolution of seismic data denoising techniques reflects a deepening understanding
of signal and noise characteristics and the continuous refinement of processing
methodologies.! Early methods primarily relied on fixed-basis transforms, such as the
Fourier transform (F-K filtering) and the wavelet transform. These approaches operate
on the assumption that effective signals and noise exhibit distinct characteristics in the
transformed domain, allowing for their separation through filtering or thresholding.?
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The underlying principle for many of these techniques
is sparse representation, which aims to find the most
compact signal representation within an overcomplete
dictionary, thereby enabling effective compression,
feature extraction, and denoising.** Transforms such
as the curvelet and shearlet were developed to better
represent the linear and curvilinear features common in
seismic wavefields, offering improved performance over
traditional wavelets in preserving edges and suppressing
coherent noise.”” However, the efficacy of these fixed-basis
methods is inherently limited; they may introduce artifacts
or damage signals when the characteristics of the signal
and noise overlap in the transform domain.*® To overcome
the rigidity of fixed bases, adaptive dictionary learning
methods such as K-singular value decomposition (K-SVD)
and the method of optimal directions were introduced.
These techniques learn the dictionary atoms directly
from the data, allowing the basis to adapt to the specific
morphological features of seismic signals.'®!!

In recent years, deep learning (DL) has been
widely applied to seismic data denoising due to its
powerful nonlinear modeling and feature learning
capabilities.”? Initial supervised models, such as the
denoising convolutional neural network, demonstrated
state-of-the-art performance by using residual learning to
focus on noise components.'* However, their reliance on
large volumes of paired clean and noisy data for training
significantly increases the preprocessing workload and
limits their application in scenarios where clean reference
data is unavailable.”® To address this, recent research
has shifted toward more flexible DL paradigms. Self-
supervised learning models, for instance, can be trained
effectively on noisy data alone, eliminating the need
for clean labels by leveraging the statistical properties
of the data and noise.'* Furthermore, physics-informed
neural networks (PINNs) have emerged as a promising
direction. By incorporating physical laws, such as the
acoustic wave equation, directly into the network’s loss
function, PINNs ensure that the denoising process
respects the underlying wave propagation physics, which
enhances generalization and produces more physically
plausible results.'

Despite these advancements, significant challenges
remain. Data-driven dictionary learning, if unconstrained,
is prone to learning non-physical features that mimic noise,
leading to incomplete noise suppression and signal damage.
DL models, while powerful, often lack interpretability, and
their performance can be unreliable when applied to data
with characteristics different from the training set.>'®'
To address these issues, this paper proposes a physics-
constrained sparse basis learning method for mixed noise

suppression. This method constructs a joint optimization
model that introduces a dip regularization term, penalizing
components in the reconstructed signal that do not
conform to local coherence. By simultaneously imposing a
smoothness constraint on the dictionary atoms, the learned
basis is guided to be more physically meaningful. A plane-
wave destructor (PWD) filter is used to iteratively estimate
and update the local dip field, ensuring that the physical
constraint adapts to the progressively refined signal. Tests
on synthetic and real data demonstrate that our method
outperforms conventional techniques in suppressing
complex mixed noise while preserving the integrity of the
effective signal.

2. Materials and methods

2.1. Dip-constrained and gradient-optimized
learning framework

The core idea of the novel prestack seismic data joint
denoising framework proposed in this study is to
combine the signal representation capability of sparse
transforms with the dip attributes of effective signals. This
integration aimed to achieve high-fidelity, effective signal
reconstruction while simultaneously performing multi-
type noise suppression.'®

Prestack seismic data Y e R""": (where N, represents
the number of time samples and N, represents the number
of traces) can be expressed as the sum of effective seismic
signals X € R™*"* and multiple types of noise N e R™*": :

Y=X+N @

The primary goal of denoising was to estimate the
effective signal X from the raw data Y. Within the
framework of basis learning, we assume that the effective
signal X can be approximately represented by a dictionary
(set of basis functions) D e R and its corresponding
sparse coefficient matrix A € RY:;

X=~DA (1)

Here, the column vectors of D = [d,,d,...,d\,)], denoted
as d,, are referred to as atoms or basis functions, and N,
is the number of atoms. Each column g, of the sparse
coefficient matrix A represents the sparse representation
of the corresponding trace x, under the dictionary D. The
core challenge is to learn a dictionary D that provides a
compact representation of the effective signal features and
to solve for the corresponding sparse coefficients A.

Conventional basis function learning is achieved by
solving the following optimization problem:

min

Y ~ DA + AR (A),

(110

D,A
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where "Y —DA"; = zi’j(Yi‘j —(DA),; )2 represents the

data fidelity term, which measures the error between
the reconstructed data DA and the Raw data Y. R (A) is the
regularization term for the sparse coefficients A, used to
introduce a sparsity prior. The L,-norm regularization, i.e.,

RW=[4] =3, 4]
sparse solutions, meaning that the information for each
seismic trace can be represented by a linear combination of
a few atoms from the dictionary.® A, > 0 represents the
weighting balance between the data fidelity term and the
sparse regularization term. The selection of an appropriate
value for the hyperparameter A, is critical to the success of
the denoising task, as it governs the trade-off between
fitting the data and enforcing sparsity. A very small A,
would cause the optimization to prioritize the data fidelity
term, leading the model to fit the noisy data Y too closely
and fail to remove noise. Conversely, a very large A, would
heavily penalize non-sparse solutions, forcing the
coeflicient matrix A to be extremely sparse, at the risk of
over-smoothing the data and removing important features
of the effective signal. Therefore, an optimal A, must be
chosen to ensure that the sparsity constraint is strong
enough to separate noise, while the data fidelity term
preserves the integrity of the underlying signal. The
optimal value is data-dependent, influenced by factors
such as the noise level, and is typically determined
empirically.

, is commonly used to induce

In prestack data, effective reflection signals typically
exhibit good spatial coherence and predictable dips within
local regions. For instance, in common midpoint gathers
or common offset gathers, reflection events possess specific
kinematic characteristics. This coherence is a key feature
that distinguishes signals from various interferences such
as random noise, linear noise, anomalous amplitudes,
and ground roll. To make the basis learning framework
more suitable for seismic data denoising and to enhance
denoising performance by incorporating physical
meaning, this study introduced local dip attributes as a
physical constraint within the learning framework.'®

This research presents a dip regularization term to
penalize components in the reconstructed signal DA that
does not conform to local coherence. This constraint was
built upon the local dip P = {p, } (the local dip at data point
(i,f)). First, we defined a linear operator L, which depends
on the local dip field P and is used to enhance signal
smoothness along the dip direction or to suppress different
components. Ideally, if the signal DA is perfectly aligned
along the dip P, then the value of L, (DA) will be close to
zero. This constraint term can be expressed as:

will be close to R,,, (DA, P)=||L, (DA)||; , 1v)

coh

where the local dip field P can be estimated, computed,
and updated during the iterative process based on the
current reconstructed signal DA, allowing this constraint
to adaptively match the local structural features of the data.

This paper posits that the basic building blocks of
effective signals (atoms in the dictionary D) inherently
possess certain physical properties. For example,
they should exhibit smoothness and band-limited
characteristics, rather than containing excessive high-
frequency noise or irregular oscillations. To ensure that the
learned atoms are more physically meaningful, this method
imposes a smoothness constraint on the dictionary D itself
by penalizing its gradient:

min
D,A,P

+A

atom

‘coh

J(D, A, P)=|[Y - DA} +2,

A+

2
Lioa)

vD|; V)

where A, A, and A, are regularization parameters
used to balance the weights of different constraints.
The local dip field P, as part of the regularization term,
reflects the model’s adaptability to data characteristics.
The objective function above, by jointly optimizing the
dictionary D, sparse coefficients A, and physical parameter
P, yields a solution that fits the effective signal while
satisfying both sparsity and physical priors.

Given that the objective function j (D, A, P) is non-
convex with respect to D, A, and P, we employed an
alternating iterative optimization strategy that decomposes
the problem into the following four sub-steps:

Sub-step one: Initialization

(i) Initialize dictionary D®: Randomly select data
patches from the raw data Y or use Ricker wavelets for
initialization

(ii) Initialize sparse coeflicients A®: Use a zero matrix or
small random values

(iii) Initialize local dip field P©: Estimate from the raw
data Y using the PWD method

(iv) Set current iteration ¢ = 0 and maximum iterations T,

Sub-step two: Updating sparse coeflicients
(i) Fix DY and P% and establish the objective function for
solving A:

A =y - DOAL 4 2,[|A]| + A L, DO A (VD

(ii) The function above is an L,-norm minimization
problem with a quadratic regularization term.
Assuming L, is a linear operator, let Q' =L, D®.
Then, this subproblem can be rewritten as:

(t+1) __argmin
A - A

Y _D<'>A||; +2,]A] +4

coh

Q(’)A”i (VID)
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This can be transformed into:

po ’
Al +2,

) @{Jﬂ Q"

This problem can be efficiently solved using methods
such as the fast iterative shrinkage-thresholding algorithm
or the alternating direction method of multipliers.

argmin

APY = (VII)

F

Sub-step three: Updating the dictionary
(i) Fix A"Dand PY and solve the subproblem for D:

(t)Z

argmin

D(t+1) —

Y -Da|[”, +

(DA(HU )" oy

2
[vD],
(IX)
(ii) Theequationaboveisaquadratic programmingproblem
with respect to D. If optimized column-by-column d,, it

can be simplified as:

coh p< Dl atom

min 2
Y I ® (A(t+1) )T
0 |—| A, M, o vec(D) (X)
O /Iatom N
D 2

where M and N are matrix forms of expressing
(t+1)

respect to vec(D); @ denotes the Kronecker product; and
vec(.) is the vectorization operator. This results in a large-
scale least squares problem that can be solved using
iterative methods such as gradient descent or the conjugate
gradient method.’

| and ||VD||; as quadratic forms with

Sub-step four: Local dip field update

Fix D1 and A*" to obtain the current effective signal
estimate X**V=D®1 A®D_Then, update the local dip field
X based on P:

P = PWD(XD) (XI)

2.2. Plane-wave deconstruction filtering dip angle
estimation

In the aforementioned constrained learning framework,
the core of the physical constraint lies in the quantification
and utilization of seismic signal local coherence. The PWD
filter, proposed and developed by Sergey Fomel, cannot
only be used to estimate the local dip field but also directly
serve as a coherence constraint operator, providing strong
support for this objective.”

The PWD theory assumes that, within a local time-
space window, seismic data can be approximately viewed
as a superposition of a series of plane waves. A 2D plane
wave can be expressed as:

d(t,x) = f(t-ox), (XII)

where o represents the local dip of the plane wave.
PWD is essentially a steerable prediction-error filter. The
prediction error at the filter’s output is minimized when the
correct local dip is applied. Any components that do not
conform to this local plane wave model (such as various
types of noise) cannot be effectively predicted and thus
manifest as larger energy at the filter output. Assuming a
2D seismic data d(t,x), the theory aims to predict the value
of d(t,x), based on information from neighboring traces.
According to the plane wave assumption, the following
differential relationship is derived:

od _ad

=0
ox

XIII
o (XIII)

The above equation indicates that the directional
derivative along the plane wave direction (t,x) domain is
zero. PWD is the discrete realization of this differential
operator. A first-order PWD operator can be used to predict
the value at a central point d;; Its predicted value d,,; i

calculated from two nelghborlng points d;; , and d,,, in
the x-direction. To introduce the dip o into the predlctlon,
a shift in the time direction needs to be considered:

1
Ei,j El: i—round(c),j—1 + di+round(a),j+l:| (XV)
To address the precision issue caused by the integer
shifts in the above equation, Fomel proposed more accurate
Taylor expansion and finite-difference methods:

e - !,'_[ l(a)dlj 1+C1(0)dij+1]’

where e, represents the prediction error of d. ¢, (0) and
¢, (0) are functions of the local dip o, used to perform data
interpolation or extrapolation along the dip direction. In
practical applications, a separable approximation is commonly
used, where a three-point PWD operator F, applied to a data

point d,; can be approximated as: can be approximated as

d . —d.
— " 5, D))
2Ax SR

(XV)

E(d,)~ (XVI)

where D, is a differential operator in the time direction,
and o;; is the local dip at point (i,f). The output energy reflects
the degree to which the data deviates from the local plane
wave assumption. Conversely, this can be used to find a dip
value ¢ that minimizes the output energy of the PWD filter.
For each local window in the data, the optimal local dip o is
estimated by solving the following minimization problem:

min

(XVTI)

v (d)||

where d represents the data within the local window,
and F, is the PWD operator parameterized by the dip o.
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The PWD theory aligns well with the joint denoising
framework proposed in this study, providing a concrete
implementation for crucial steps of the algorithm. In our
objective Equation (VI), the local coherence constraint
L, (DA)"; . We define the PWD operator as L,

so this constraint term becomes:

termis A

coh

R, (DA,P)=||E,, (DA)[; (XVIII)

where, P = o(t,x) represents the local dip field required
by the PWD, and F° is the PWD operator guided by this
dip field. It constrains all components in the reconstructed
signal DA that cannot be predicted by the local plane wave
model.

Furthermore, for sub-step four predicted by the local
plane (Equation VI)—this can be achieved by solving the
PWD-based dip estimation problem:

argmin

2
P(t+l) _ fl')(X(H-l))"F (XIX)

P

This process ensures that the dip field consistently
aligns with the continuously improving signal estimation
throughout the iterative process, thereby guiding the entire
optimization toward clearer physical meaning and a more
distinct signal structure.

2.3. Learning-based seismic data denoising
framework

Unlike the training phase, where D, A, and P are optimized
simultaneously, in the denoising phase, the dictionary
D, and the dip field P,, are treated as known optimal
parameters. The objective function for solving the sparse
coefficient matrix A, is:

m

2 2
0, A 4 A+, 0,8

A||1 +A

coh

in (XX)
A

where "Y—Dg prA”i is the data fidelity term, which
ensures that the sparse representation, after reconstruction
using the optimal dictionary D,,, has minimal error with
respect to the raw data Y, thus preserving the fidelity of the
denoising process. The term A ||A||1 is the sparse
regularization term, encouraging the solution to be
represented sparsely using only a few atoms from D,

A

coh

estimated dip field P,, to enforce structural constraints on

the denoised data, requiring that the final denoising result
conforms to the local coherence structure defined by P,,.

2
L, (D A)” is the dip constraint term, which uses the
F

opt opt

By solving the optimization problem in Equation I, we
obtain the sparse coefficient matrix A. Combining it with
D, yields the final denoising result:

X,=D,A, (XXI)

The proposed method achieves a relative balance
among data fidelity, sparse representation, and structural
constraint. The estimated noise N, = Y-X; includes
interference components that are neither -effectively
represented by the dictionary nor conform to the local
coherence constraint. The proposed method comprises
two distinct phases within a single workflow, as illustrated
in Figure 1: A learning phase and an application phase.
The “iterative optimization” block constitutes the learning
phase, during which the optimal dictionary (D,,) and dip
field (P,,) are learned from the raw data. The subsequent
steps form the application phase, in which these learned
parameters are used to process the raw data once to
obtain the final denoised result. Unlike the learning phase,
where D, A, and P need to be optimized simultaneously, in
the application phase, the dictionary D, and dip field P,
are treated as known, optimal parameters.

3. Results
3.1. Synthetic data example

To validate the proposed method, we conducted
comparative denoising experiments on three synthetic
datasets (Blocks A, B, and C), derived from a complex
physical model based on a block in Western China. The
performance of our method was benchmarked against
three techniques: shearlet transform, DL model (a classic
supervised learning framework based on the denoising
convolutional neural network), and traditional dictionary
learning. The first dataset, Block A, was contaminated with
strong anomalous amplitude interference, random noise,
and coherent noise, as shown in the raw shot gather in
Figure 2A. Figure 2 compares the denoising results, where
the proposed method (Figure 2E) effectively removes
vertical interference while preserving signal continuity,
outperforming the shearlet (Figure 2B), DL (Figure 2C),
and traditional dictionary learning (Figure 2D) methods,
which exhibit residual noise or signal loss. The removed
noise profiles are displayed in Figure 3. The results from
the comparative methods show significant signal leakage
(Figure 3A-C), whereas the noise removed by our
method consists primarily of interference, with almost
no effective signal components, demonstrating superior
signal preservation (Figure 3D). Figure 4 presents the
final constrained dip fields, where the result from our
method (Figure 4E) exhibits weaker residual noise and
better preservation of effective signal features compared
to the raw data and other results (Figure 4A-D). Finally,
the dictionary iteration process is shown in Figure 5.
Compared to the initial dictionary (Figure 5A) and the
traditional result (Figure 5B), the dictionary learned
by the proposed method (Figure 5C) more effectively
captures signal features while discarding noise elements.
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Raw seismic data ¥

Initialize
parameter
Initialize
dictionary D PWD

| !
Initialize local
inclination field

Initialize sparse
coefficients

Iterative
optimization

i

I

Fixed D(1) and P(1)

]

Update sparse
coefficient

|

Optimization
problems

l

End of iteration

Aptimal dictionary and
inclination field

Fixed A(t+1) and P(1)

Denoising stage

|

Fixed aptimal dictionary /
inclination field

Update dictionary
D(t+1)

|

Optimization
problems

|

|

Final sparse
coefficient 1

Final denoising
result

I

Fixed D(t+1) and A(t+1)

Removed noise

PWD update local
inclination P(r+1)

Figure 1. Flowchart of the proposed method
Abbreviation: PWD: Plane-wave destructor.

The second dataset, Block B, was characterized by strong
ground roll, as depicted in Figure 6A. The results in
Figure 6 demonstrate that while the benchmark methods
(Figure 6B-D) struggled to suppress the ground roll, our
proposed method (Figure 6E) achieved excellent multi-
type noise removal while preserving the underlying
signal. The removed noise sections in Figure 7 confirm
this: While the other methods showed significant signal
leakage (Figure 7A-C), our method successfully isolated
the ground roll (Figure 7D). The corresponding dip fields
and dictionary iterations are shown in Figures 8 and 9,
respectively. The conclusions are consistent with those of
the first experiment: In contrast to the dip fields of the raw
data (Figures 8A), the shearlet result (Figures 8B), the deep
learning result (Figures 8C), and the traditional dictionary
learning result (Figures 8D), our method produced a
much cleaner dip field (Figures 8E). Additionally, when

Effect quality control

compared with the initial dictionary (Figure 9A) and the
result from traditional dictionary learning (Figure 9B),
our method yielded a dictionary more representative of
the true signal structure (Figure 9C). The third dataset,
Block C, contained a complex mix of strong noise,
including intermixed vertical amplitudes and coherent
acquisition noise (Figure 10A). As illustrated in Figure 10,
the comparative methods (Figure 10B-D) had a minimal
effect on this complex noise, while the proposed method
(Figure 10E) effectively resolved the issue. Figure 11
further depicts that the other techniques showed a
mixture of noise and signal in the removed components
(Figure 11A-C), whereas our method cleanly separated the
complex noise structures (Figure 11D). These findings are
further validated in Figure 12 and Figure 13. In contrast
to the dip fields of the raw data (Figure 12A), the shearlet
result (Figure 12B), the deep learning result (Figure 12C),
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Figure 2. Raw data and denoised data of Block A. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional
dictionary learning. (E) Result using the proposed method.
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Figure 3. Removed noise using different methods for Block A. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed
noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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Figure 4. Dip fields of raw data and denoised data for Block A. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using
deep learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.
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Figure 5. Initial dictionary and final learned dictionary of Block A. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result using

the proposed method.

and the traditional dictionary learning result (Figure
12D), our method yields a cleaner final dip field (Figure
12E). Similarly, when compared with the initial dictionary
(Figure 13A) and the result from traditional dictionary
learning (Figure 13B),our method produces a more signal-
focused dictionary (Figure 13C). Finally, the stacked
sections for all three blocks are presented. For Block A
(Figure 14), Block B (Figure 15), and Block C (Figure 16),
the stacks processed by our method consistently
demonstrated significant improvements in signal-to-noise
ratio and continuity of geological events compared to the
raw data and the results from the benchmark methods.

In all cases, weak signals previously masked by strong
noise were effectively recovered, highlighting the practical
applicability of the proposed approach.

3.2. Real data example

To further validate the effectiveness and applicability of our
method, we processed real seismic data from a work area in
Western China. The performance was benchmarked against
a DL method and a conventional industrial workflow.

A raw shot gathered from the dataset is shown in
Figure 17A, which is heavily contaminated by severe ground
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Figure 6. Raw data and denoised data for Block B. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional

dictionary learning. (E) Result using the proposed method.
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Figure 7. Removed noise using different methods for Block B. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed
noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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Figure 8. Dip fields of raw and denoised data from Block B. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using deep
learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.
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Figure 9. Initial dictionary and final learned dictionary of Block B. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result using

the proposed method.

roll and random noise. This results in a low signal-to-noise
ratio, where effective signals are obscured. Figure 17 presents
the denoising results, displaying that all three methods
removed a substantial amount of noise (Figure 17B-D).
For a more detailed comparison of signal preservation, a
partial enlargement is provided in Figure 18. In contrast
to the raw data (Figure 18A), the DL method produced a
cleaner result but with subtle smearing along the reflections
(Figure 18B), and the conventional workflow left noticeable
residual noise and compromised the continuity of reflection
events (Figure 18C). The result from our proposed method
(Figure 18D), however, shows superior noise removal while

preserving signal integrity. The noise profiles for each
method are depicted in Figure 19A-C. The coherence plots'*
2 for the DL method (Figure 19D) and the conventional
workflow (Figure 19E) exhibit higher coherence values
along noise and main reflection events, indicating weaker
denoising and poorer signal preservation. The plot for our
method (Figure 19F) demonstrates significantly lower
correlation between the removed noise and the denoised
result, confirming higher-fidelity separation of signal from
noise. Finally, we evaluated the impact of denoising on
seismic imaging by comparing stacked sections for two
sub-regions. For region A, shown in Figure 20, the stacked
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Figure 10. Raw data and denoised data of Block C. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional
dictionary learning. (E) Result using the proposed method.
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Figure 11. Removed noise using different methods for Block C. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed

noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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Figure 12. Dip fields of raw data and denoised data from Block C. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using
deep learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.
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Figure 13. Initial dictionary and final learned dictionary for Block C. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result
using the proposed method.
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Figure 14. Stacked sections comparing raw data, traditional method results, and the proposed method for Block A. (A) Stack of raw data. (B) Stack of shearlet-
denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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Figure 15. Stacked sections comparing raw data, traditional method, and the proposed method for Block B. (A) Stack of raw data. (B) Stack of shearlet-

denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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Figure 16. Stacked sections comparing raw data, traditional method, and the proposed method for Block C. (A) Stack of raw data. (B) Stack of shearlet-
denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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Figure 17. Raw data and denoised results. (A) Raw data. (B) Result using deep learning. (C) Result using conventional industrial workflow. (D) Result

using the proposed method.
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Figure 18. Partial enlarged image of raw data and denoised data. (A) Raw data. (B) Result using deep learning. (C) Result using conventional industrial

workflow. (D) Result using the proposed method.
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Figure 19. Removed noise and local coherence analysis. (A) Removed noise using deep learning. (B) Removed noise using a conventional industrial
workflow. (C) Removed noise using the proposed method. (D) Local coherence between the removed noise and the denoised result using deep learning.
(E) Local coherence between the removed noise and the denoised result using a conventional industrial workflow. (F) Local coherence between the

removed noise and the denoised result using the proposed method and raw data.
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Figure 20. Stacked sections of raw data and denoised data in Region A. (A) Raw data. (B) Result using deep learning. (C) Result using conventional

industrial workflow. (D) Result using the proposed method.
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Figure 21. Stacked section of raw data and denoised data in Region B. (A) Raw data. (B) Result using deep learning. (C) Result using conventional

industrial workflow. (D) Result using the proposed method.

section from the raw data (Figure 20A) suffers from low
SNR and poor reflector continuity. While the results from
deep learning (Figure 20B) and the conventional industrial
workflow (Figure 20C) offer improvements, the result from
the proposed method (Figure 20D) demonstrates the most
significant enhancement, with clearer, more continuous
reflectors and more prominent structural features such as
faults and pinch-outs. A similar conclusion is drawn from
the stacked results for Region B, presented in Figure 21.
Compared to the raw data stack (Figure 21A) and the results
from both deep learning (Figure 21B) and the conventional
industrial workflow (Figure 21C), the proposed method’s
result (Figure 21D) again exhibits substantial improvement.
In both regions, our method effectively recovered weak
signals previously masked by strong noise, confirming its
superior capability and practical value.

4, Discussion

The physics-constrained sparse basis learning approach
for seismic data processing holds significant potential for

future research. Future research will focus on exploring
more advanced methods of incorporating physical
attributes, such as geological models, velocity fields, or
wavefield propagation theories. These additions could
further enhance the recognition and preservation of valid
seismic signals. Another promising direction involves
integrating the powerful feature extraction capabilities of
DL with the theoretical strengths of sparse representation.
Hybrid models that combine these elements could lead to
more efficient and higher-fidelity adaptive seismic data
processing while maintaining physical interpretability.

5. Conclusion

In this study, we proposed a physics-constrained sparse
basis learning method to address the critical challenge of
suppressing complex, mixed noise in seismic data without
damaging effective signals. The primary advantage of our
method lies in the integration of local dip information,
derived from a PWD filter, as a physical constraint within
the dictionary learning framework. This innovation
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effectively overcomes a key limitation of traditional data-
driven approaches by preventing the learned basis from
incorporating non-physical, noise-like features, thereby
ensuring high-fidelity signal preservation. Our extensive
experiments on both synthetic and real data demonstrated
that this approach provides superior suppression of mixed
noise—including anomalous amplitudes, ground roll,
random, and coherent noise—compared to conventional
techniques and other learning-based techniques.
Ultimately, the enhanced clarity and continuity of reflectors
in the final seismic images confirm the practical value of
our method for improving the delineation of geological
structures and recovering weak signals.
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