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Abstract
Suppressing complex mixed noise in seismic data poses a significant challenge for 
conventional methods, which often cause signal damage or leave residual noise. While 
sparse basis learning is a promising approach for this task, traditional data-driven 
learning methods are often insensitive to the physical properties of seismic signals, 
leading to incomplete noise removal and compromised signal fidelity. To address 
this limitation, we propose a physics-constrained sparse basis learning method for 
mixed noise suppression. Our method integrates local dip attributes—estimated 
and iteratively refined by a plane-wave destructor filter—as a physical constraint 
within the dictionary learning framework. This constraint guides the learning 
process to achieve high-fidelity signal reconstruction while effectively suppressing 
multiple noise types. Tests on complex synthetic and real data demonstrate that 
the proposed method outperforms conventional techniques and industry-standard 
workflows in attenuating mixed noise, including strong anomalous amplitudes, 
ground roll, and random and coherent components, thereby significantly enhancing 
the signal-to-noise ratio and imaging quality.

Keywords: Multiple-type noise suppression; Dictionary learning; Physical constraint; 
Plane-wave destructor filter

1. Introduction
The evolution of seismic data denoising techniques reflects a deepening understanding 
of signal and noise characteristics and the continuous refinement of processing 
methodologies.1 Early methods primarily relied on fixed-basis transforms, such as the 
Fourier transform (F-K filtering) and the wavelet transform. These approaches operate 
on the assumption that effective signals and noise exhibit distinct characteristics in the 
transformed domain, allowing for their separation through filtering or thresholding.2
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The underlying principle for many of these techniques 
is sparse representation, which aims to find the most 
compact signal representation within an overcomplete 
dictionary, thereby enabling effective compression, 
feature extraction, and denoising.3,4 Transforms such 
as the curvelet and shearlet were developed to better 
represent the linear and curvilinear features common in 
seismic wavefields, offering improved performance over 
traditional wavelets in preserving edges and suppressing 
coherent noise.5-7 However, the efficacy of these fixed-basis 
methods is inherently limited; they may introduce artifacts 
or damage signals when the characteristics of the signal 
and noise overlap in the transform domain.8,9 To overcome 
the rigidity of fixed bases, adaptive dictionary learning 
methods such as K-singular value decomposition (K-SVD) 
and the method of optimal directions were introduced. 
These techniques learn the dictionary atoms directly 
from the data, allowing the basis to adapt to the specific 
morphological features of seismic signals.10,11

In recent years, deep learning (DL) has been 
widely applied to seismic data denoising due to its 
powerful nonlinear modeling and feature learning 
capabilities.12 Initial supervised models, such as the 
denoising convolutional neural network, demonstrated 
state-of-the-art performance by using residual learning to 
focus on noise components.13 However, their reliance on 
large volumes of paired clean and noisy data for training 
significantly increases the preprocessing workload and 
limits their application in scenarios where clean reference 
data is unavailable.13 To address this, recent research 
has shifted toward more flexible DL paradigms. Self-
supervised learning models, for instance, can be trained 
effectively on noisy data alone, eliminating the need 
for clean labels by leveraging the statistical properties 
of the data and noise.14 Furthermore, physics-informed 
neural networks (PINNs) have emerged as a promising 
direction. By incorporating physical laws, such as the 
acoustic wave equation, directly into the network’s loss 
function, PINNs ensure that the denoising process 
respects the underlying wave propagation physics, which 
enhances generalization and produces more physically 
plausible results.15

Despite these advancements, significant challenges 
remain. Data-driven dictionary learning, if unconstrained, 
is prone to learning non-physical features that mimic noise, 
leading to incomplete noise suppression and signal damage. 
DL models, while powerful, often lack interpretability, and 
their performance can be unreliable when applied to data 
with characteristics different from the training set.9,16,17 
To address these issues, this paper proposes a physics-
constrained sparse basis learning method for mixed noise 

suppression. This method constructs a joint optimization 
model that introduces a dip regularization term, penalizing 
components in the reconstructed signal that do not 
conform to local coherence. By simultaneously imposing a 
smoothness constraint on the dictionary atoms, the learned 
basis is guided to be more physically meaningful. A plane-
wave destructor (PWD) filter is used to iteratively estimate 
and update the local dip field, ensuring that the physical 
constraint adapts to the progressively refined signal. Tests 
on synthetic and real data demonstrate that our method 
outperforms conventional techniques in suppressing 
complex mixed noise while preserving the integrity of the 
effective signal.

2. Materials and methods
2.1. Dip-constrained and gradient-optimized 
learning framework

The core idea of the novel prestack seismic data joint 
denoising framework proposed in this study is to 
combine the signal representation capability of sparse 
transforms with the dip attributes of effective signals. This 
integration aimed to achieve high-fidelity, effective signal 
reconstruction while simultaneously performing multi-
type noise suppression.18

Prestack seismic data Y N Nt z� �  (where Nt represents 
the number of time samples and Nz represents the number 
of traces) can be expressed as the sum of effective seismic 
signals X N Nt z� � and multiple types of noise N N Nt z� � :

Y=X+N� (I)

The primary goal of denoising was to estimate the 
effective signal X from the raw data Y. Within the 
framework of basis learning, we assume that the effective 
signal X can be approximately represented by a dictionary 
(set of basis functions) D N Nt z� �  and its corresponding 
sparse coefficient matrix A N Nt z� � :

X=≈DA� (II)

Here, the column vectors of D = [d1,d2...,dNk)], denoted 
as dj, are referred to as atoms or basis functions, and Nk 
is the number of atoms. Each column ai of the sparse 
coefficient matrix A represents the sparse representation 
of the corresponding trace xi under the dictionary D. The 
core challenge is to learn a dictionary D that provides a 
compact representation of the effective signal features and 
to solve for the corresponding sparse coefficients A.

Conventional basis function learning is achieved by 
solving the following optimization problem:

D A

min

F s sY DA R A
,

( ),� �
2

� � (III)
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where Y DA Y DA
F i j i ji j

� � �� ��2 2

, ,,
( )  represents the 

data fidelity term, which measures the error between 
the reconstructed data DA and the Raw data Y. Rs (A) is the 
regularization term for the sparse coefficients A, used to 
introduce a sparsity prior. The L1-norm regularization, i.e., 
s i ji j

A A A( ) ,,
� ��1

, is commonly used to induce 
sparse solutions, meaning that the information for each 
seismic trace can be represented by a linear combination of 
a few atoms from the dictionary.6 λs > 0 represents the 
weighting balance between the data fidelity term and the 
sparse regularization term. The selection of an appropriate 
value for the hyperparameter λs is critical to the success of 
the denoising task, as it governs the trade-off between 
fitting the data and enforcing sparsity. A  very small λs 
would cause the optimization to prioritize the data fidelity 
term, leading the model to fit the noisy data Y too closely 
and fail to remove noise. Conversely, a very large λs would 
heavily penalize non-sparse solutions, forcing the 
coefficient matrix A to be extremely sparse, at the risk of 
over-smoothing the data and removing important features 
of the effective signal. Therefore, an optimal λs must be 
chosen to ensure that the sparsity constraint is strong 
enough to separate noise, while the data fidelity term 
preserves the integrity of the underlying signal. The 
optimal value is data-dependent, influenced by factors 
such as the noise level, and is typically determined 
empirically.

In prestack data, effective reflection signals typically 
exhibit good spatial coherence and predictable dips within 
local regions. For instance, in common midpoint gathers 
or common offset gathers, reflection events possess specific 
kinematic characteristics. This coherence is a key feature 
that distinguishes signals from various interferences such 
as random noise, linear noise, anomalous amplitudes, 
and ground roll. To make the basis learning framework 
more suitable for seismic data denoising and to enhance 
denoising performance by incorporating physical 
meaning, this study introduced local dip attributes as a 
physical constraint within the learning framework.16

This research presents a dip regularization term to 
penalize components in the reconstructed signal DA that 
does not conform to local coherence. This constraint was 
built upon the local dip P = {pi,j} (the local dip at data point 
(i,j)). First, we defined a linear operator Lp, which depends 
on the local dip field P and is used to enhance signal 
smoothness along the dip direction or to suppress different 
components. Ideally, if the signal DA is perfectly aligned 
along the dip P, then the value of Lp (DA) will be close to 
zero. This constraint term can be expressed as:

will be close to R DA P L DAcoh p F
( , ) ( ) ,=

2
� (IV)

where the local dip field P can be estimated, computed, 
and updated during the iterative process based on the 
current reconstructed signal DA, allowing this constraint 
to adaptively match the local structural features of the data.

This paper posits that the basic building blocks of 
effective signals (atoms in the dictionary D) inherently 
possess certain physical properties. For example, 
they should exhibit smoothness and band-limited 
characteristics, rather than containing excessive high-
frequency noise or irregular oscillations. To ensure that the 
learned atoms are more physically meaningful, this method 
imposes a smoothness constraint on the dictionary D itself 
by penalizing its gradient:

D A P
min

F s coh p F

atom F

j D A P Y DA A L DA

D

, , ( , , ) ( )� � � �

� �

2

1

2

2

� �

� � (V)

where λs, λcoh, and λatom are regularization parameters 
used to balance the weights of different constraints. 
The local dip field P, as part of the regularization term, 
reflects the model’s adaptability to data characteristics. 
The objective function above, by jointly optimizing the 
dictionary D, sparse coefficients A, and physical parameter 
P, yields a solution that fits the effective signal while 
satisfying both sparsity and physical priors.

Given that the objective function j (D, A, P) is non-
convex with respect to D, A, and P, we employed an 
alternating iterative optimization strategy that decomposes 
the problem into the following four sub-steps:

Sub-step one: Initialization
(i)	 Initialize dictionary D(0): Randomly select data 

patches from the raw data Y or use Ricker wavelets for 
initialization

(ii)	 Initialize sparse coefficients A(0): Use a zero matrix or 
small random values

(iii)	Initialize local dip field P(0): Estimate from the raw 
data Y using the PWD method

(iv)	 Set current iteration t = 0 and maximum iterations Tmax.

Sub-step two: Updating sparse coefficients
(i)	 Fix D(t) and P(t) and establish the objective function for 

solving A:

A Y D A A L D At
A

argmin t

F s coh P
t

F
t

( ) ( ) ( )
( ) ( )� � � � �1 2

1

2
� � �(VI)

(ii)	 The function above is an L1-norm minimization 
problem with a quadratic regularization term. 
Assuming LP(t) is a linear operator, let Q Dt

P
t

t
( ) ( )

( )= . 
Then, this subproblem can be rewritten as:

A Y D A A Q At
A

argmin t

F s coh
t

F

( ) ( ) ( )� � � � �1 2

1

2
� � � (VII)
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This can be transformed into:

A
Y D

Q
At

A

argmin
t

coh
t

F

s
( )

( )

( )
� �

�

�
��

�

�
�� �

�

�
�
�

�

�
�
�

�1

2

0 �
� � (VIII)

This problem can be efficiently solved using methods 
such as the fast iterative shrinkage-thresholding algorithm 
or the alternating direction method of multipliers.

Sub-step three: Updating the dictionary
(i)	 Fix A(t+1) and P(t) and solve the subproblem for D:

D Y DA DA Dt
D

argmin t

F coh P
t

F atom Ft
( ) ( ) ( )

( ) ( )� �� � � � �1 2 1 2 2
� � �

� (IX)
(ii)	 The equation above is a quadratic programming problem 

with respect to D. If optimized column-by-column dk, it 
can be simplified as:

D

min
t T

coh P A

atom

Y I A

M t t0
0

1

1

�

�

�
�
�

�

�

�
�
�
�

��

�

�
�
�
�

��

�

( )( )

,( ) ( )�

� � ��

�
�
�
�

vec D( )

2

2

� (X)

where M and N are matrix forms of expressing 


P
t

F
t DA( ) ( )( )+1 2

and ∇D
F

2
 as quadratic forms with 

respect to vec(D); ⨂ denotes the Kronecker product; and 
vec(.) is the vectorization operator. This results in a large-
scale least squares problem that can be solved using 
iterative methods such as gradient descent or the conjugate 
gradient method.9

Sub-step four: Local dip field update

Fix D(t+1) and A(t+1) to obtain the current effective signal 
estimate X(t+1)=D(t+1) A(t+1). Then, update the local dip field 
X(t+1) based on P:

P(t+1) = PWD(X(t+1))� (XI)

2.2. Plane-wave deconstruction filtering dip angle 
estimation

In the aforementioned constrained learning framework, 
the core of the physical constraint lies in the quantification 
and utilization of seismic signal local coherence. The PWD 
filter, proposed and developed by Sergey Fomel, cannot 
only be used to estimate the local dip field but also directly 
serve as a coherence constraint operator, providing strong 
support for this objective.17

The PWD theory assumes that, within a local time-
space window, seismic data can be approximately viewed 
as a superposition of a series of plane waves. A 2D plane 
wave can be expressed as:

d(t,x) = f(t-σx),� (XII)

where σ represents the local dip of the plane wave. 
PWD is essentially a steerable prediction-error filter. The 
prediction error at the filter’s output is minimized when the 
correct local dip is applied. Any components that do not 
conform to this local plane wave model (such as various 
types of noise) cannot be effectively predicted and thus 
manifest as larger energy at the filter output. Assuming a 
2D seismic data d(t,x), the theory aims to predict the value 
of d(t,x), based on information from neighboring traces. 
According to the plane wave assumption, the following 
differential relationship is derived:

�
�

�
�
�

�
d
x

d
t

� 0 � (XIII)

The above equation indicates that the directional 
derivative along the plane wave direction (t,x) domain is 
zero. PWD is the discrete realization of this differential 
operator. A first-order PWD operator can be used to predict 
the value at a central point di,j. Its predicted value dEi,j is 
calculated from two neighboring points di,j−1 and di,j+1 in 
the x-direction. To introduce the dip σ into the prediction, 
a shift in the time direction needs to be considered:

d d dEi j i round j i round j, ( ), ( ),� ��� ��� � � �

1
2 1 1� � � (XV)

To address the precision issue caused by the integer 
shifts in the above equation, Fomel proposed more accurate 
Taylor expansion and finite-difference methods:

ei,j = di,j−[c−1(σ)di,j−1+c1(σ)di,j+1],� (XV)

where ei,j represents the prediction error of di,j. c−1 (σ) and 
c1 (σ) are functions of the local dip σ, used to perform data 
interpolation or extrapolation along the dip direction. In 
practical applications, a separable approximation is commonly 
used, where a three-point PWD operator Fσ applied to a data 
point di,j can be approximated as: can be approximated as

F d
d d

x
D di j

i j i j
i j t i j� �( ) ( ),

, ,
, ,�

�
�� �1 1

2�
� (XVI)

where Dt is a differential operator in the time direction, 
and σi,j is the local dip at point (i,j). The output energy reflects 
the degree to which the data deviates from the local plane 
wave assumption. Conversely, this can be used to find a dip 
value σ that minimizes the output energy of the PWD filter. 
For each local window in the data, the optimal local dip σ is 
estimated by solving the following minimization problem:

σ σ

min

F
d ( ) ,

2
� (XVII)

where d represents the data within the local window, 
and Fσ is the PWD operator parameterized by the dip σ.
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The PWD theory aligns well with the joint denoising 
framework proposed in this study, providing a concrete 
implementation for crucial steps of the algorithm. In our 
objective Equation (VI), the local coherence constraint 
term is λcoh P F

DA ( )
2

. We define the PWD operator as LP, 
so this constraint term becomes:

R DA P F DAcoh P F
( , ) ( )� �

2
� (XVIII)

where, P ≡ σ(t,x) represents the local dip field required 
by the PWD, and Fσ is the PWD operator guided by this 
dip field. It constrains all components in the reconstructed 
signal DA that cannot be predicted by the local plane wave 
model.

Furthermore, for sub-step four predicted by the local 
plane (Equation VI)—this can be achieved by solving the 
PWD-based dip estimation problem:

P Xt

P

argmin

P
t

F

( ) ( )( )� ��1 1 2
 � (XIX)

This process ensures that the dip field consistently 
aligns with the continuously improving signal estimation 
throughout the iterative process, thereby guiding the entire 
optimization toward clearer physical meaning and a more 
distinct signal structure.

2.3. Learning-based seismic data denoising 
framework

Unlike the training phase, where D, A, and P are optimized 
simultaneously, in the denoising phase, the dictionary 
Dopt and the dip field Popt are treated as known optimal 
parameters. The objective function for solving the sparse 
coefficient matrix Af is:

A

min

opt F s coh P opt
F

Y D A A L D A
opt

� � �
2

1

2
� � ( ) , � (XX)

where Y D Ao pt F
−

2
 is the data fidelity term, which 

ensures that the sparse representation, after reconstruction 
using the optimal dictionary Dopt, has minimal error with 
respect to the raw data Y, thus preserving the fidelity of the 
denoising process. The term λs A

1
 is the sparse 

regularization term, encouraging the solution to be 
represented sparsely using only a few atoms from Dopt.
λcoh P opt

Fopt
D A ( )

2
 is the dip constraint term, which uses the 

estimated dip field Popt to enforce structural constraints on 
the denoised data, requiring that the final denoising result 
conforms to the local coherence structure defined by Popt.

By solving the optimization problem in Equation I, we 
obtain the sparse coefficient matrix Af. Combining it with 
Dopt yields the final denoising result:

Xf = DoptAf� (XXI)

The proposed method achieves a relative balance 
among data fidelity, sparse representation, and structural 
constraint. The estimated noise Ne = Y−Xf includes 
interference components that are neither effectively 
represented by the dictionary nor conform to the local 
coherence constraint. The proposed method comprises 
two distinct phases within a single workflow, as illustrated 
in Figure  1: A  learning phase and an application phase. 
The “iterative optimization” block constitutes the learning 
phase, during which the optimal dictionary (Dopt) and dip 
field (Popt) are learned from the raw data. The subsequent 
steps form the application phase, in which these learned 
parameters are used to process the raw data once to 
obtain the final denoised result. Unlike the learning phase, 
where D, A, and P need to be optimized simultaneously, in 
the application phase, the dictionary Dopt and dip field Popt 
are treated as known, optimal parameters.

3. Results
3.1. Synthetic data example

To validate the proposed method, we conducted 
comparative denoising experiments on three synthetic 
datasets (Blocks A, B, and C), derived from a complex 
physical model based on a block in Western China. The 
performance of our method was benchmarked against 
three techniques: shearlet transform, DL model (a classic 
supervised learning framework based on the denoising 
convolutional neural network), and traditional dictionary 
learning. The first dataset, Block A, was contaminated with 
strong anomalous amplitude interference, random noise, 
and coherent noise, as shown in the raw shot gather in 
Figure 2A. Figure 2 compares the denoising results, where 
the proposed method (Figure  2E) effectively removes 
vertical interference while preserving signal continuity, 
outperforming the shearlet (Figure  2B), DL (Figure  2C), 
and traditional dictionary learning (Figure 2D) methods, 
which exhibit residual noise or signal loss. The removed 
noise profiles are displayed in Figure 3. The results from 
the comparative methods show significant signal leakage 
(Figure  3A-C), whereas the noise removed by our 
method consists primarily of interference, with almost 
no effective signal components, demonstrating superior 
signal preservation (Figure  3D). Figure  4 presents the 
final constrained dip fields, where the result from our 
method (Figure  4E) exhibits weaker residual noise and 
better preservation of effective signal features compared 
to the raw data and other results (Figure  4A-D). Finally, 
the dictionary iteration process is shown in Figure  5. 
Compared to the initial dictionary (Figure  5A) and the 
traditional result (Figure  5B), the dictionary learned 
by the proposed method (Figure  5C) more effectively 
captures signal features while discarding noise elements. 

https://dx.doi.org/10.36922/JSE025280034
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The second dataset, Block B, was characterized by strong 
ground roll, as depicted in Figure  6A. The results in 
Figure 6 demonstrate that while the benchmark methods 
(Figure 6B-D) struggled to suppress the ground roll, our 
proposed method (Figure  6E) achieved excellent multi-
type noise removal while preserving the underlying 
signal. The removed noise sections in Figure  7 confirm 
this: While the other methods showed significant signal 
leakage (Figure 7A-C), our method successfully isolated 
the ground roll (Figure 7D). The corresponding dip fields 
and dictionary iterations are shown in Figures  8 and 9, 
respectively. The conclusions are consistent with those of 
the first experiment: In contrast to the dip fields of the raw 
data (Figures 8A), the shearlet result (Figures 8B), the deep 
learning result (Figures 8C), and the traditional dictionary 
learning result (Figures  8D), our method produced a 
much cleaner dip field (Figures  8E). Additionally, when 

compared with the initial dictionary (Figure 9A) and the 
result from traditional dictionary learning (Figure  9B), 
our method yielded a dictionary more representative of 
the true signal structure (Figure  9C). The third dataset, 
Block C, contained a complex mix of strong noise, 
including intermixed vertical amplitudes and coherent 
acquisition noise (Figure 10A). As illustrated in Figure 10, 
the comparative methods (Figure 10B-D) had a minimal 
effect on this complex noise, while the proposed method 
(Figure  10E) effectively resolved the issue. Figure 11 
further depicts that the other techniques showed a 
mixture of noise and signal in the removed components 
(Figure 11A-C), whereas our method cleanly separated the 
complex noise structures (Figure 11D). These findings are 
further validated in Figure 12 and Figure 13. In contrast 
to the dip fields of the raw data (Figure 12A), the shearlet 
result (Figure 12B), the deep learning result (Figure 12C), 

Figure 1. Flowchart of the proposed method
Abbreviation: PWD: Plane-wave destructor.

https://dx.doi.org/10.36922/JSE025280034
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Figure 2. Raw data and denoised data of Block A. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional 
dictionary learning. (E) Result using the proposed method.

D E

B CA

Figure 3. Removed noise using different methods for Block A. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed 
noise using traditional dictionary learning. (D) Removed noise using the proposed method.

D

B

C

A
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and the traditional dictionary learning result (Figure 
12D), our method yields a cleaner final dip field (Figure 
12E). Similarly, when compared with the initial dictionary 
(Figure 13A) and the result from traditional dictionary 
learning (Figure 13B),our method produces a more signal-
focused dictionary (Figure 13C). Finally, the stacked 
sections for all three blocks are presented. For Block A 
(Figure 14), Block B (Figure 15), and Block C (Figure 16), 
the stacks processed by our method consistently 
demonstrated significant improvements in signal-to-noise 
ratio and continuity of geological events compared to the 
raw data and the results from the benchmark methods. 

In all cases, weak signals previously masked by strong 
noise were effectively recovered, highlighting the practical 
applicability of the proposed approach.

3.2. Real data example

To further validate the effectiveness and applicability of our 
method, we processed real seismic data from a work area in 
Western China. The performance was benchmarked against 
a DL method and a conventional industrial workflow.

A raw shot gathered from the dataset is shown in 
Figure 17A, which is heavily contaminated by severe ground 

Figure 4. Dip fields of raw data and denoised data for Block A. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using 
deep learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.

D E

B CA

Figure 5. Initial dictionary and final learned dictionary of Block A. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result using 
the proposed method.
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Figure 6. Raw data and denoised data for Block B. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional 
dictionary learning. (E) Result using the proposed method.
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Figure 7. Removed noise using different methods for Block B. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed 
noise using traditional dictionary learning. (D) Removed noise using the proposed method.
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roll and random noise. This results in a low signal-to-noise 
ratio, where effective signals are obscured. Figure 17 presents 
the denoising results, displaying that all three methods 
removed a substantial amount of noise (Figure  17B-D). 
For a more detailed comparison of signal preservation, a 
partial enlargement is provided in Figure  18. In contrast 
to the raw data (Figure 18A), the DL method produced a 
cleaner result but with subtle smearing along the reflections 
(Figure 18B), and the conventional workflow left noticeable 
residual noise and compromised the continuity of reflection 
events (Figure 18C). The result from our proposed method 
(Figure 18D), however, shows superior noise removal while 

preserving signal integrity. The noise profiles for each 
method are depicted in Figure 19A-C. The coherence plots19-

21 for the DL method (Figure  19D) and the conventional 
workflow (Figure  19E) exhibit higher coherence values 
along noise and main reflection events, indicating weaker 
denoising and poorer signal preservation. The plot for our 
method (Figure  19F) demonstrates significantly lower 
correlation between the removed noise and the denoised 
result, confirming higher-fidelity separation of signal from 
noise. Finally, we evaluated the impact of denoising on 
seismic imaging by comparing stacked sections for two 
sub-regions. For region A, shown in Figure 20, the stacked 

Figure 8. Dip fields of raw and denoised data from Block B. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using deep 
learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.

D E

B CA

Figure 9. Initial dictionary and final learned dictionary of Block B. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result using 
the proposed method.

B CA
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Figure 10. Raw data and denoised data of Block C. (A) Raw data. (B) Result using shearlet. (C) Result using deep learning. (D) Result using traditional 
dictionary learning. (E) Result using the proposed method.

D E

B CA

Figure 11. Removed noise using different methods for Block C. (A) Removed noise using shearlet. (B) Removed noise using deep learning. (C) Removed 
noise using traditional dictionary learning. (D) Removed noise using the proposed method.

D

B

C

A

https://dx.doi.org/10.36922/JSE025280034


Journal of Seismic Exploration
 

Physical constraint denoising

Volume 34 Issue 4 (2025)	 53� doi: 10.36922/JSE025280034 

Figure 14. Stacked sections comparing raw data, traditional method results, and the proposed method for Block A. (A) Stack of raw data. (B) Stack of shearlet-
denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.

D E

B CA

Figure 13. Initial dictionary and final learned dictionary for Block C. (A) Initial dictionary. (B) Result using traditional dictionary learning. (C) Result 
using the proposed method.

B CA

Figure 12. Dip fields of raw data and denoised data from Block C. (A) Dip field of raw data. (B) Dip field of result using shearlet. (C) Dip field of result using 
deep learning. (D) Dip field of result using traditional dictionary learning. (E) Dip field of result using the proposed method.
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Figure 16. Stacked sections comparing raw data, traditional method, and the proposed method for Block C. (A) Stack of raw data. (B) Stack of shearlet-
denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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Figure 15. Stacked sections comparing raw data, traditional method, and the proposed method for Block B. (A) Stack of raw data. (B) Stack of shearlet-
denoised data. (C) Stack of deep learning-denoised data. (D) Stack of dictionary learning-denoised data. (E) Stack of proposed method-denoised data.
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Figure 18. Partial enlarged image of raw data and denoised data. (A) Raw data. (B) Result using deep learning. (C) Result using conventional industrial 
workflow. (D) Result using the proposed method.
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Figure 17. Raw data and denoised results. (A) Raw data. (B) Result using deep learning. (C) Result using conventional industrial workflow. (D) Result 
using the proposed method.
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Figure 20. Stacked sections of raw data and denoised data in Region A. (A) Raw data. (B) Result using deep learning. (C) Result using conventional 
industrial workflow. (D) Result using the proposed method.
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Figure 19. Removed noise and local coherence analysis. (A) Removed noise using deep learning. (B) Removed noise using a conventional industrial 
workflow. (C) Removed noise using the proposed method. (D) Local coherence between the removed noise and the denoised result using deep learning. 
(E) Local coherence between the removed noise and the denoised result using a conventional industrial workflow. (F) Local coherence between the 
removed noise and the denoised result using the proposed method and raw data.
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section from the raw data (Figure 20A) suffers from low 
SNR and poor reflector continuity. While the results from 
deep learning (Figure 20B) and the conventional industrial 
workflow (Figure 20C) offer improvements, the result from 
the proposed method (Figure 20D) demonstrates the most 
significant enhancement, with clearer, more continuous 
reflectors and more prominent structural features such as 
faults and pinch-outs. A similar conclusion is drawn from 
the stacked results for Region B, presented in Figure 21. 
Compared to the raw data stack (Figure 21A) and the results 
from both deep learning (Figure 21B) and the conventional 
industrial workflow (Figure 21C), the proposed method’s 
result (Figure 21D) again exhibits substantial improvement. 
In both regions, our method effectively recovered weak 
signals previously masked by strong noise, confirming its 
superior capability and practical value.

4. Discussion
The physics-constrained sparse basis learning approach 
for seismic data processing holds significant potential for 

future research. Future research will focus on exploring 
more advanced methods of incorporating physical 
attributes, such as geological models, velocity fields, or 
wavefield propagation theories. These additions could 
further enhance the recognition and preservation of valid 
seismic signals. Another promising direction involves 
integrating the powerful feature extraction capabilities of 
DL with the theoretical strengths of sparse representation. 
Hybrid models that combine these elements could lead to 
more efficient and higher-fidelity adaptive seismic data 
processing while maintaining physical interpretability.

5. Conclusion
In this study, we proposed a physics-constrained sparse 
basis learning method to address the critical challenge of 
suppressing complex, mixed noise in seismic data without 
damaging effective signals. The primary advantage of our 
method lies in the integration of local dip information, 
derived from a PWD filter, as a physical constraint within 
the dictionary learning framework. This innovation 

Figure  21. Stacked section of raw data and denoised data in Region B. (A) Raw data. (B) Result using deep learning. (C) Result using conventional 
industrial workflow. (D) Result using the proposed method.
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effectively overcomes a key limitation of traditional data-
driven approaches by preventing the learned basis from 
incorporating non-physical, noise-like features, thereby 
ensuring high-fidelity signal preservation. Our extensive 
experiments on both synthetic and real data demonstrated 
that this approach provides superior suppression of mixed 
noise—including anomalous amplitudes, ground roll, 
random, and coherent noise—compared to conventional 
techniques and other learning-based techniques. 
Ultimately, the enhanced clarity and continuity of reflectors 
in the final seismic images confirm the practical value of 
our method for improving the delineation of geological 
structures and recovering weak signals.
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