
Volume X Issue X (2025)	 1� doi: 10.36922/JSE025350063 

ARTICLE

GMLAN: Grouped-residual and multi-scale 
large-kernel attention network for seismic image 
super-resolution

Anxin Zhang1† , Zhenbo Guo2†* , Shiqi Dong1† , and Zhiqi Wei2

1Key Laboratory of Modern Power System Simulation and Control and Renewable Energy 
Technology (Ministry of Education), School of Electrical Engineering, Northeast Electric Power 
University, Jilin, China
2Bureau of Geophysical Prospecting, China National Petroleum Corporation, Zhuozhou, Hebei, China

(This article belongs to the Special Issue: Advanced Artificial Intelligence Theories and Methods for 
Seismic Exploration)

Journal of Seismic Exploration

Abstract
The resolution of seismic images significantly impacts the accuracy of subsequent 
seismic interpretation and reservoir location. However, the resolution of seismic 
images often degrades due to the influence of multiple factors, making super-
resolution of seismic images essential and critical. We propose a grouped-residual 
and multi-scale large-kernel attention network (GMLAN) framework, trained on 
synthetic seismic images to achieve excellent seismic image super-resolution on field 
seismic data. GMLAN is primarily composed of two modules: The feature extraction 
module (FEM) and the image reconstruction module (IRM). The FEM consists of two 
components: Shallow feature extraction (SFE) and deep feature extraction (DFE). 
The SFE component is designed to capture the basic information of seismic images, 
such as large-scale structures and morphological features of the strata. The DFE 
component serves as the cornerstone of the feature extraction process, leveraging 
residual groups and multi-scale large-kernel attention to distill detailed features from 
seismic images, such as stratigraphic interfaces, dip angles, and relative amplitudes. 
Finally, the IRM utilizes sub-pixel convolution, a learnable upsampling technique, 
to reconstruct super-resolution seismic images while preserving the continuity of 
seismic features. The framework demonstrates satisfactory performance on both 
synthetic and field data.

Keywords: Seismic images; Super-resolution; Deep learning; Grouped-residual 
structures; Malti-scale large-kernel self-attention

1. Introduction
Geological interpretation is highly dependent on the quality of seismic images. However, 
seismic images, which are obtained after data acquisition, processing, and imaging, are 
inevitably influenced by the acquisition environment and data processing methods, 
resulting in blurred events and noise. Low-resolution seismic images are detrimental 
to subsequent geological interpretation (e.g., fault detection and reservoir location) and 
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lead to the loss of valuable details (e.g., folds, faults, and 
thin layers). Consequently, enhancing the resolution of 
seismic images has become a critical step in the seismic 
exploration process.

Over the past few decades, researchers have conducted 
numerous studies to improve the resolution of seismic 
images. In general, methods for enhancing resolution 
can be divided into two categories: Data acquisition1-6 
and data processing.7 Data acquisition mainly includes 
broadband acquisition1-3 and high-density acquisition.4,5 
Broadband acquisition increases the longitudinal 
resolution of seismic data by recording data over a wider 
frequency range, while high-density acquisition increases 
the number of sources and receivers and reduces the 
processing unit area, effectively suppressing noise and 
improving the resolution of seismic profiles. However, 
both broadband acquisition and high-density acquisition 
require high costs during the data acquisition process. 
While the data processing methods include, but are not 
limited to, inversion, denoising, interpolation, attenuation 
compensation, and deconvolution,7,8 traditional resolution 
enhancement methods for seismic images typically involve 
multiple steps, each introducing corresponding errors.9 
The cumulative effect of these errors across multiple stages 
often prevents the full restoration of seismic image details 
in the final high-resolution output. In contrast, end-to-end 
deep learning approaches can perform super-resolution 
in a single step, thereby effectively removing the error 
accumulation inherent in traditional methods. Moreover, 
deep learning models can automatically learn and update 
their learnable parameters10,11 and generally require lower 
computational resources and costs compared to traditional 
data processing techniques.

In recent years, traditional resolution enhancement 
methods for seismic images have become insufficient 
to meet the demands for rapid and high-precision 
processing of large amounts of seismic data. With the 
rapid advancement of graphics processing units (GPUs) 
and deep learning algorithms, deep learning methods 
have been widely applied in direct end-to-end processing 
of seismic images, enabling resolution enhancement in a 
single step. Among existing approaches, the convolutional 
neural network (CNN) is a classical method used for 
image super-resolution reconstruction, extracting local 
features of seismic images through multiple convolution 
operations.12,13 During CNN training, the model learns 
the texture and edge information of seismic images, 
thereby restoring useful image content and improving 
resolution. Li et al.14 proposed using a U-Net to achieve 
seismic image super-resolution. The encoder of U-Net 
captures contextual information through convolutional 
layers, pooling layers, and down-sampling operations, 

while the decoder gradually restores image features and 
improves resolution through upsampling and convolution 
operations, aided by skip connections. Min et al.15 
introduced D2Unet, a dual-decoder network based on 
the U-Net architecture, which simultaneously addresses 
the restoration of high-resolution image reconstruction 
and edge detection, thereby enhancing resolution 
while preserving critical edge information. In recent 
years, transformer-based networks have also achieved 
great success in improving the resolution of seismic 
images.16,17 The self-attention mechanism, a cornerstone 
of the transformer architecture, dynamically attends to 
contextual information across relevant elements within a 
sequence, effectively capturing long-range dependencies 
and enhancing both model efficiency and expressiveness 
through parallel computation. The multi-head attention 
mechanism further enhances the model’s feature extraction 
capacity by enabling simultaneous learning of input 
characteristics from multiple perspectives. In addition, in 
the field of seismic image super-resolution, other notable 
techniques include generative adversarial networks18,19 and 
diffusion models.20

In this study, inspired by the CNN and the self-
attention mechanism in the transformer, the authors 
propose a grouped-residual and multi-scale large-kernel 
attention network (GMLAN) to achieve seismic image 
super-resolution, combining convolution and multi-scale 
attention mechanisms. GMLAN is mainly composed 
of a feature extraction module (FEM) and an image 
reconstruction module (IRM). The FEM includes shallow 
feature extraction (SFE) and deep feature extraction (DFE). 
SFE utilizes convolutional layers to extract prominent 
large-scale features in seismic images, such as geological 
structures and shapes. DFE integrates group residuals 
and multi-scale large-kernel self-attention mechanisms 
to efficiently extract multi-scale features, reducing 
computational parameters while capturing detailed 
information such as layer interfaces and dip angles. The 
features extracted by SFE and DFE significantly influence 
the accuracy of subsequent image reconstruction. In the 
IRM, the fused shallow and deep features are upsampled 
and reconstructed through sub-pixel convolution to 
generate the final high-resolution seismic image. The 
authors construct a synthetic dataset whose features 
resemble those of field seismic images using a convolutional 
model and conduct supervised training on the GMLAN 
network. Consequently, the proposed method serves as a 
super-resolution processing approach for seismic images 
that effectively integrates algorithmic design with data. 
GMLAN provides a structural foundation for multi-scale 
feature capture and high-frequency recovery, achieved 
through its grouped-residual structures and multi-scale 
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large-kernel attention (MLKA) mechanisms. Meanwhile, 
the synthetic dataset, which is consistent with field 
data in geological and seismic characteristics, provides 
sufficient supervised training samples.21 The effectiveness 
of the proposed model is validated through tests on both 
synthetic and field seismic images, demonstrating superior 
accuracy in recovering folds and faults in field seismic data.

In the comparative experiment section, the proposed 
approach is compared with U-Net, demonstrating that 
it not only achieves significant improvements in seismic 
image super-resolution but also exhibits faster convergence.

2. Methods
2.1. Network architecture

The architecture of the proposed GMLAN is shown 
in Figure  1. It combines convolution with multiple 
attention mechanisms and mainly consists of two parts: 
FEM and IRM. The FEM can be further subdivided into 
SFE and DFE.

The network first performed SFE on the input low-
resolution seismic images, transforming the image space 
into a higher-dimensional feature space. Subsequently, 
the DFE was employed to establish a non-linear mapping 
relationship between low-resolution and high-resolution 
images, thereby reconstructing higher-frequency texture 
details. After feature extraction, residual connections were 
introduced to integrate the extracted shallow features with 
the deep features. This approach not only facilitates the 
extraction of high-dimensional image information but 
also ensures amplitude preservation in super-resolution 
reconstruction and reduces artifacts. In the final IRM, 
the fused features were first integrated, and their channels 
were adjusted using convolutional layers. Subsequently, 
the integrated features were upsampled via sub-pixel 
convolution to enhance the edge and texture details of 
the seismic image, thereby improving the resolution and 
yielding the final super-resolution reconstructed images.

The proposed GMLAN was trained on synthetic data, 
and the well-trained GMLAN was applied to the super-
resolution prediction of field seismic images.

2.1.1. Feature extraction

The SFE was primarily implemented by a convolutional 
layer with a 3×3 convolution kernel. It can be expressed by 
the formula:

X L ISF in0 � � � � (I)

Where I Rin
H W Cin� � � and X RH W Cs

0 �
� �  refer to the low-

resolution input image of the network and the output 
feature map of SFE, respectively. H  and W represent the 

height and width of the input seismic images and feature 
maps, respectively, Cin and Cs denote the number of 
channels in the input image and the output feature maps of 
the shallow features, respectively. LSF refers to the main 
layer of SFE.

In the DFE part, multi-branch residuals and large-
kernel self-attention are the core components, which were 
executed in four stages. In DFE, four grouped residual and 
MLKA (GRMLKA) blocks were employed, corresponding 
to the four stages of DFE. In each stage of DFE, six 
layers of multi-residual groups were set. Furthermore, 
MLKA mechanisms were incorporated after the multi-
branch residuals in the second, fourth, and sixth layers to 
enhance the precision and accuracy of feature extraction. 
Therefore, each DFE stage can actually be divided into 
three subgroups. It is worth noting that the number of 
multi-branch residual groups in each DFE stage should 
be set to an even number because the MLKA module was 
only added to the even-numbered layers. The operation 
sequence of each stage is as follows: first, pass through 
the first multi-branch residual block; then, perform 
normalization and pass through the feed-forward network 
(FFN); finally, conduct another normalization operation 
to complete the first layer of operations. In the second 
layer, unlike the first layer, a MLKA operation was carried 
out after the first multi-branch residual group. After this 
operation, normalization and subsequent processes were 
performed. This set of operations can be expressed by the 
following formula:
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The entire process of extracting deep features is 
expressed as:

X L X
I L X X

i GRMLKA i

DF Conv N

� � �
� � � �

�1

0

� (III)

Where Xi, Xi-1 refer to the output of each GRMLKA, 
and the range of i is 1≤i≤N. Given that four stages were 
set in our model, we set N = 4. IDF denotes the final output 
feature image obtained from DFE. LGRMLKA represents the 
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Figure 1. The architecture and components of the grouped-residual and multi-scale large-kernel attention network
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four stages within the DFE process, and LConv represents 
the last convolutional layer within the DFE. Within each 
GRMLKA stage, the output feature map of each block is 
denoted as Xi,m. In Equation (II), the index m represents 
integers from 1 to 8. Given that each stage is divided into 
three subgroups, the range of m is 1 ≤ m ≤ 24. Specifically, 
when m = 24, Xi,24 is simply denoted as Xi, representing the 
output of the i-th GRMLKA. LRG refers to the residual group 
layer, LNorm denotes the layer normalization component, 
LFFN indicates the FFN layer, and LRSA-MLKAB represents the 
fusion layer integrating residual groups and large-kernel 
attention.

The self-attention mechanism is highly effective at 
capturing long-range spatial dependencies within seismic 
images.22 However, the process of generating the query 
(Q), key (K), and value (V) matrices and calculating their 
products often leads to computational redundancy.23 To 
harness the benefits of the self-attention mechanism while 
mitigating this redundancy, we incorporated a residual self-
attention block (RSAB) into the proposed GMLAN model, 
as depicted in Figure  1B. Specifically, we partitioned the 
input feature channels into two distinct groups and applied 
separate linear transformations and residual calculations 
to each group. The following equation illustrates the 
operation of grouping the input feature vectors:

A A S A1 2,�� �� � � � � (IV)

Where A refers to the input feature vector. The operation 
S pertains to the grouping of features by channels, which 
are divided into two distinct groups, denoted as A1 and A2, 
with each group encompassing half of the channels.

We then solved each component and incorporated 
residual connections, merging the outcomes from the two 
branches to derive the Q, K, and V matrices. To illustrate, 
the computation of the Q matrix is detailed in the following 
formula:

Q ST A Linear A A Linear A’ ,� � � � � � �� �1 1 2 2 � (V)

Where

Linear A A W bq
T

q1 1 1 1� � � � � � (VI)

Linear A A W bq
T

q2 2 2 2� � � � � � (VII)

ST refers to the operation of stacking along a specified 
dimension. The term Q R B N C’ � � � �2 2 represents the 
outcome after the merging operation. B signifies the batch 
size, N indicates the number of tokens obtained after 
flattening the input features, and C represents feature 
channels. Linear denotes the application of linear mapping 
operations to A1 and A2 individually. Wq

T
1  and Wq

T
2  are 

weight matrices, while bq1 and bq2 denote relative position 
bias terms. Following the computation of Q ’ , feature 
rearrangement and merging operations were conducted to 
obtain the final Q matrix. The K and V matrices were 
derived using an analogous approach and were 
subsequently normalized. The attention was then calculated 
using the formula provided below:

Attention Q K V Softmax Q K Scale B VT, ,� � � �� �� �� �� �
� (VIII)

Where Q, K, and V were normalized, Scale is a learnable 
scaling factor that dynamically adjusts the distribution of 
attention scores, enabling the model to adaptively learn the 
optimal similarity scale and enhance its focus on significant 
features. B  refers to the continuous relative position bias 
generated by a multi-layer perceptron, which can effectively 
accommodate the long-range structural continuity 
inherent in seismic data. When combined with a grouped 
residual design, it enabled independent optimization of 
long-range association computations within each feature 
group. The attention mechanism implemented in RSAB 
is similar to cosine attention but differs using a learnable 
scaling factor instead of a fixed value and by incorporating 
continuous relative position biases. The resulting attention 
scores were individually subjected to linear projections and 
then combined to produce the final output of this module. 
This not only minimizes cross-channel interference but 
also halves the computational load, thereby avoiding 
redundancy in long-range calculations.

The grouped learning and computation operation not 
only captures interdependencies among different channels 
but also reduces computational complexity.24 Specifically, 
before performing grouped calculations, each group has C 
channels, and the computational cost is C2. After grouping, 
both the number of channels and the computational cost 
are halved compared to their values before grouping.

In the DFE stage, in addition to the grouped residual 
attention, we introduced a MLKA mechanism, as 
depicted in Figure  1C. Convolution kernels of varying 
sizes enabled the capture of seismic image features at 
multiple scales, thereby enhancing the interconnections 
among different receptive fields. Within the MLKA 
module, the output from the preceding stage was initially 
subjected to convolution to augment the number of input 
feature channels, facilitating the subsequent division 
of feature channels. Assuming the input features have 
n channels, the output features after this operation will 
have 2n channels, thereby increasing the non-linearity of 
the seismic image features. This step can be formulated 
as follows:

X X C Xn n n RSABO1 1 2: :, ��� �� � � � � (IX)
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Where XRSABO represents the output features from the 
RSAB. The operation C denotes the process of augmenting 
the feature channels and partitioning them into two 
identical groups. The notations X1:n and Xn+1:2n refer to 
the two segments of the partitioned features, where 1:n 
indicates the range of the first half of the feature channels 
after dimensionality increase, and X1:n can alternatively be 
denoted as Xa. Similarly, Xn+1:2n signifies the range of the 
latter half of the feature channels, and thus is also referred 
to as Xb. Both Xa and Xb have the same number of feature 
channels as XRSABO.

Consequently, the input features, following the 
augmentation of feature channels, were split into 
two equivalent segments. Each segment underwent a 
convolutional layer to adjust the number of output feature 
channels, aligning them with the input requirements 
of subsequent operations. One segment was further 
subdivided into three parts along the feature channels for 
the upcoming large kernel attention (LKAi) operation. 
These steps can be mathematically formulated as follows:

F S L XGn C a� � �� �1 � (X)

Here, LC1 denotes the convolutional layer with a 
kernel size of 1 in Figure 1C, while FGn signifies different 
feature groups, with the subscript n indicating the 
group identifier, which can extend up to 3. Within the 
LKAi module, there were three analogous pathways 
that processed the corresponding feature groups 
independently, namely Group1 to Group3 as depicted 
in the figure. Each pathway’s LKA comprised three 
distinct convolutional layers. The initial layer consisted of 
standard convolutional layers with kernel sizes of 3 × 3, 
5 × 5, and 7 × 7, enabling the extraction of local image 
features at varying scales. The smaller the convolution 
kernel, the more detailed the geological structures 
captured in the extracted feature map, indicating a richer 
content of high-frequency information. The subsequent 
layer employed dilated convolution with different kernel 
sizes and dilation rates; this differs from the first layer by 
expanding the receptive field of the convolutional kernel, 
thereby allowing it to capture broader global features.25 
By integrating small-kernel convolutions with dilated 
convolutions, the model can effectively capture both low-
frequency information, such as large-scale geological 
structures in seismic data, and high-frequency features. 
This integration compensates for the insufficiencies in 
learning high-frequency components that can occur with 
large-kernel convolutions alone.26 The final convolutional 
layer was utilized to modulate the feature channels and 
enhance the non-linearity of the output features. The 
procedure of LKA can be mathematically represented as 
follows:

LKA F L L L Fi Gn C DC C Gn� � � � �� �� �1 � (XI)

Where LC refers to the initial standard convolutional 
layer within the LKAi module, and LDC signifies the 
dilated convolutional layer. However, convolution 
with large kernels may introduce artifacts. To address 
this issue, we incorporated spatial gating (Gi) into the 
network to enhance the image’s feature representation 
capabilities.27 The configuration of Gi mirrored that of 
the initial convolutional layer in the respective branches 
of LKAi. The convolutional layers with different kernel 
sizes in the spatial gating focused on the weak signal 
features of varying intensities in the seismic images. After 
passing through Gi, the grouped features were integrated 
with the output features from LKAi. The resulting three 
sets of integrated features were concatenated along the 
channel dimension to yield a feature map Xa′, which 
matches Xa in terms of channel count. The final output 
of the MLKA module can also be viewed as an attention 
computation, which is mathematically expressed as 
follows:

O L CAT LKA F G FMLKA C i Gn i Gn� � �� � �� �� �1 � (XII)

Where CAT denotes the operation of concatenating 
along the feature channels, and OMLKA refers to the overall 
output of the MLKA module.

The application of the MLKA module within the 
DFE not only facilitated the extraction of local features 
of seismic images at various scales but also leveraged 
dilated convolutions to expand the receptive field without 
additional computational overhead. This approach 
effectively addresses the issue of missing long-range 
feature mappings that can arise from focusing solely on 
local feature extraction.

2.1.2. Image reconstruction

In the IRM, we employed a 3 × 3 convolutional layer to 
adjust the channels of the fused deep and shallow features. 
Finally, through the upsampling layer, an image with 
dimensions twice those of the input image in each direction 
was generated, effectively reconstructing the image to a 
super-resolution version I RSR

H W Cout� � � .

ISR refers to the reconstructed seismic super-resolution 
image, which also serves as the final output of the entire 
network, while H, W, Cout denote the height, width, and 
number of channels of the output image, respectively.

The entire image reconstruction process can be 
represented by the following formula:

I L L I ISR upsample Conv DF SF� �� �� � � (XIII)
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Where ISR denotes the reconstructed super-resolution 
image, ISF refers to the extracted shallow features, and 
IDF represents the features extracted by the DFE module. 
Lupsample refers to the upsampling layer in the reconstruction 
part, where we employed sub-pixel convolution for 
upsampling. Traditional interpolation techniques, such as 
bilinear and nearest neighbor interpolation, can enlarge 
low-resolution images to high-resolution counterparts. 
However, these methods often introduce image artifacts 
and blurring. In contrast, sub-pixel convolution, 
which utilizes convolutional operations and channel 
recombination, can enlarge low-resolution images without 
distortion. Furthermore, it significantly enhances image 
clarity and detail, thereby preserving a greater amount of 
detailed information.

2.2. Modeling of the synthetic dataset

For the training of GMLAN, we used synthetic seismic 
images. The generation of the synthetic dataset follows the 
method proposed by Wu et al.28 A total of 2,000 pairs of 
synthetic data were generated, with 1,600 pairs allocated 
for training and the remaining 400 pairs reserved for 
validation and testing. Given that the GMLAN employed 
supervised training, it required a substantial amount of 
paired low-resolution and high-resolution image data. The 
high-resolution images served as the ground truth, while 
the low-resolution images were used as input. However, 
the availability of high-resolution field seismic images was 
limited, which restricted the amount of data that could 
serve as ground truth. In addition, the cost of obtaining 
high-resolution data was substantial. Therefore, in the 
proposed model training, a large number of synthetic 
seismic images were generated for training.

The synthetic images mainly simulated the distribution 
of geological structures based on the target data. First, a 
three-dimensional reflectivity model was established, and 
fold and fault structures were added to all horizontal layers. 
The frequency band of the high-resolution image was wider 
than that of the low-resolution image. Therefore, to obtain 
the corresponding high-resolution and low-resolution 
data, convolution operations were performed between 
the three-dimensional reflectivity models (with added 
folds and faults) and wavelets of different frequencies. 
Specifically, the three-dimensional reflectivity models 
were convolved with a high-frequency Ricker wavelet 
(35–55 Hz) to obtain the high-frequency seismic volumes, 
and then with a low-frequency Ricker wavelet (10–25 Hz) 
to obtain the corresponding low-frequency seismic 
volumes. Two-dimensional seismic slices were extracted 
from the high-frequency seismic volumes to serve as 
labels for actual training. Colored noise was added to the 
low-frequency seismic volumes to simulate real-world 

interference. Two-dimensional slices were then extracted 
from the low-frequency seismic volume using the same 
method and downsampled to obtain the low-resolution 
data required for training. The downsampled low-
resolution seismic data and the high-resolution labels 
were paired. Finally, using the above-described method, 
2,000 pairs of synthetic seismic data were generated and 
allocated for training, validation, and testing with an 
8:1:1 ratio.

2.3. Loss function

In this study, we used a combined loss function consisting 
of the L1 loss and the multi-scale structural similarity 
index measure (MS-SSIM):

L a L a LMix MS SSIM� � � �� ��� 1 1 � (XIV)

Where

L MS SSIM x yMS SSIM� � � �1 ( , ) � (XV)

LMix refers to the combined loss function, L1 denotes 
the L1 loss function, and LMS-SSIM signifies the MS-SSIM 
loss. The parameter a represents the weight of the 
LMS-SSIM component. As the sum of the weights for L1 and 
LMS-SSIM equals 1, the weight assigned to L1 was set to 1−a. 
MS-SSIM(x, y) denotes the MS-SSIM, which was used to 
assess the similarity between the target image x and the 
output image y produced by the GMLAN across multiple 
scales. The L1 loss function is less sensitive to outliers, 
thereby demonstrating greater robustness in image 
reconstruction tasks. Meanwhile, MS-SSIM focuses on the 
structural information and perceptual quality of seismic 
images, evaluating image similarity across multiple scales. 
This multi-scale evaluation enables the model to capture 
richer details and enhance performance across different 
scales.29

Multi-scale structural similarity is an improvement 
over the structural similarity index measure (SSIM), which 
evaluates the SSIM at different scales and aggregates these 
values to obtain MS-SSIM:

MS SSIM x y l x y c x y s x yM j j
j

M
M j j

� � � � � ��� �� � � ��� �� � � ��� ��
�

, , , ,
� � �

1
�� �

� (XVI)

SSIM x y
C C

C C
x y xy

x y x y

( , ) �
�� � �� �

� �� � � �� �
2 21 2

2 2
1

2 2
2

� � �

� � � �
� (XVII)

Where M represents the number of scales (set to 5 in 
this study). αM is the weight of the fifth scale, which equals 
0.1333; α, β, and γ are the weights vector for each part, 
set to α = β = γ [0.0448, 0.2856, 0.3001, 0.2363, 0.1333], 
x and y are the output image of GMLAN and the label 
image, respectively; μ, σ2, σxy represent the mean, variance, 
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and covariance of the corresponding images. C1 and C2 
are stabilizing terms used to prevent division by zero. 
Structural similarity takes into account the luminance 
l(x,y), contrast c(x,y), and structural s(x,y) information 
of the image, providing a more comprehensive evaluation 
that aligns more closely with the human visual system’s 
perception of image quality.

Among them, brightness, contrast, and structural 
similarity can be expressed as:

l x y
C

C
x y

x y

,� � �
�

� �

2 1
2 2

1

� �

� �
� (XVIII)

c x y
C

C
x

x y

,� � �
�

� �

2 2
2 2

2

� �

� �
y � (XIX)

s x y
C
C

xy

x y

,
/
/

� � �
�

�

�

� �
2

2

2
2

� (XX)

After pre-training tests, we set a = 0.6.

2.4. Evaluation metrics

The peak signal-to-noise ratio (PSNR) is an indicator used 
to measure the quality of image reconstruction. It calculates 
the pixel-level error between the ground truth and the 
network’s output based on the mean squared error (MSE). 
PSNR provides an intuitive numerical value describing the 
accuracy of the reconstructed image. Generally, the larger 
the PSNR value, the higher the quality of the reconstructed 
image. The PSNR can be expressed as follows:

PSNR MAX
MSE

� �
�

�
�

�

�
�10 10

2

log � (XXI)

Where

MSE y xi i
i

n

� �� �
�
�1 2

1n
� (XXII)

Where MAX denotes the maximum value of the image 
data (set to 1), MSE is the MSE, n denotes the sample size (i.e., 
the number of seismic images used for training). yi represents 
GMLAN’s prediction for the i-th seismic image, whereas xi 

denotes the true value of the i-th seismic image. However, 
PSNR only describes the pixel-level error between images 
and cannot fully reflect the perception of the human visual 
system, especially in terms of image details and textures.

Therefore, to address this limitation, the SSIM was 
introduced as another evaluation indicator during training.

The range of SSIM value is [−1, 1]; a value closer to 1 
indicates a higher similarity between the super-resolution 
reconstructed image and the labeled image.

2.5. Experimental setup

The experiment was conducted using PyCharm (PyCharm 
Community Edition, version  2024.3, JetBrains, Czech 
Republic) and the PyTorch (version 2.5.1, Meta Platforms, 
Inc., United States) GPU framework. A Compute Unified 
Device Architecture parallel computing framework was 
implemented (version 12.4, NVIDIA Corporation, United 
States), and training was performed on two NVIDIA RTX 
4090 GPUs, each with 24 GB of memory.

To enhance training efficiency, the data were normalized 
during training. The input data were normalized to the 
range of [−1, 1] using the following method:

x
x x

x x
* min

max min

�
�
�

� (XXIII)

Where x denotes the variable to be normalized, which, 
in the context of the experiment, corresponds to the input 
training data. xmax​ and xmin represent the maximum and 
minimum values of x, respectively, and x∗ indicates the 
normalized result.

To ensure the accuracy of the predicted images, the 
GMLAN outputs were denormalized before calculating 
the evaluation metrics:

x x x x x’ *
max min min� � �� � � � (XXIV)

Where x′ signifies the denormalized output.

The parameter configurations for the experiment are 
detailed in Table 1.

3. Numerical tests
3.1. Comparison method

In this section, we compare the super-resolution 
performance of the proposed method with that of the 
U-Net. U-Net is highly flexible and can be adapted 
to various super-resolution tasks and datasets by 

Table 1. Training parameters of different methods

Hyperparameter U‑Net GMLAN 
(the proposed model)

Optimizer Adam Adam

Batch size 8 8

Epoch 400 400

Learning rate [1arn−3, 1rni−4, 1rni−5] [11rn−3, 1rni−4, 1rni−5]

Epochs for learning 
rate decay

[200, 300] [200, 300]

Input channels 1 1

Parameters counts 17,409,537 3,377,140

Abbreviations: Adam: Adaptive moment estimation; 
GMLAN: Grouped‑residual and multi‑scale large‑kernel attention network.
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adjusting parameters such as network depth, width, and 
convolution kernel size. It has been widely applied in 
numerous image processing tasks, including image super-
resolution reconstruction, where it has demonstrated high 
effectiveness and adaptability.

To ensure the fairness of the comparison experiment 
and the persuasiveness of the results, we trained a U-Net 
on the same dataset and kept the hyperparameters (such 
as the number of epochs, learning rate, optimizer, etc.) 
consistent with those used in the proposed model. The 
specific parameter settings are shown in Table  1. After 
completing parameter and data preparation, we trained 
GMLAN and U-Net for the same number of epochs. The 
comparison of the training process is shown in Figure 2.

As depicted in Figure 2A, the loss curve of the U-Net 
model exhibits a rapid decline during the initial 50 epochs, 
after which the rate of decrease gradually slows. After 200 
epochs, the loss reached a stable state. In contrast, the 
proposed approach demonstrated a significantly faster 
reduction in loss at the start of training, and the loss value 
consistently remained lower than that of the U-Net model 
throughout the entire training process.

As illustrated in Figure 2B and C, the proposed method 
consistently outperforms U-Net in terms of both PSNR 
and SSIM, particularly in the later stages of training. 
The SSIM value of U-Net increased rapidly during the 
initial 50 epochs, then slowed, and ultimately stabilized 
at approximately 0.85. In contrast, the proposed model 
maintained a stable SSIM value of around 0.91. Regarding 
PSNR, the U-Net’s value eventually stabilized at 19  dB, 
whereas the proposed approach achieved a value exceeding 
21 dB. Therefore, considering the loss function and these 
two metrics comprehensively, the proposed method 
demonstrated significant superiority over U-Net in all 
training indicators.

3.2. Synthetic data testing

First, we evaluated the performance of GMLAN on the test 
dataset. As shown in Figure 3, at the positions indicated by 
the red arrows, the proposed model outperforms U-Net in 
fault recovery. The fault edges recovered by the proposed 
approach are clear and easily observable, while the fault 
edges within the solid red box recovered by U-Net appear 
smooth and blurred, resulting in the loss of edge features. 
In the area within the dashed yellow box, the interfaces 
between different layers are blurred in the prediction 
produced by the U-Net. We extracted the 40th trace from 
the data in Figure  3B-D to more effectively demonstrate 
the signal restoration performance. The amplitudes 
derived from both the proposed method and the U-Net 
closely resemble those of the ground truth. Nevertheless, 

the curve produced by the proposed model aligns more 
precisely with the ground truth, suggesting that the seismic 
images reconstructed by the proposed approach contain 
more detailed amplitude information. The coherence 
attribute serves as a highly effective and extensively utilized 
tool in the identification of structural and stratigraphic 
anomalies within seismic data.30,31 To effectively highlight 
the variations in strata and the fault prediction results 
obtained by different methods, we have incorporated 
a coherence analysis, as depicted in Figure  4. The red 
solid-line frame within the image distinctly illustrates 
that the proposed approach outperforms Unet in fault 
recovery. This visual representation serves to underscore 

Figure 2. Comparison plot of average loss (A), peak signal-to-noise ratio 
(PSNR; B), and structural similarity index measure (SSIM; C) achieved 

by different methods with identical hyperparameters
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the enhanced capability of the proposed approach in 
accurately delineating geological features, which is a 
critical aspect of seismic image analysis. Figure 5 presents 
the spectra corresponding to the seismic images shown 
in Figure  3. Across most frequency bands, the proposed 
method closely matches the spectral curves of the ground 
truth, particularly in the mid-to-high frequency range 
(50–150 Hz). This consistency indicates that the proposed 
model excels at recovering the frequency components of 
low-resolution seismic images. The U-Net also approximates 
the ground truth with reasonable accuracy across some 
frequencies; however, it shows discrepancies at specific 
frequency points, especially in the high-frequency band. 
These discrepancies suggest that the U-Net is less effective 
than the proposed approach in recovering high-frequency 
components. In addition, Table 2 provides the evaluation 
metrics for the super-resolution prediction results of the 
synthetic data using the U-Net and the proposed method. 
The results demonstrate that the proposed model achieves 
significantly superior performance compared to U-Net in 
terms of PSNR, SSIM, and root mean square error. These 
findings corroborate the results presented in Figures 3-5.

3.3. Field data testing

To further verify the performance of GMLAN on field 
data, we selected a seismic image from the Netherlands 
F3 seismic survey for testing. The data, consisting of 512 
traces contaminated by noise, were used as the input low-
resolution seismic images. There is no ground truth for the 
field data. As shown in Figure 6, Figure 6A presents the field 
data from the Netherlands F3 block, Figure 6B illustrates the 
prediction result of the U-Net, and Figure 6C displays the 
prediction result of the proposed approach. Figures 6D-F 
are the coherence maps corresponding to Figure  6A-C, 
respectively. From the seismic images, it is evident that 
the prediction result of U-Net (Figure  6B) exhibits 
excessive smoothness at the fault locations indicated by 
the red arrows within the blue dashed box, leading to the 
loss of critical details. In contrast, the proposed method 
(Figure 6C) effectively restores the minor faults within the 
stratigraphic layers with high clarity. Within the two red 
solid boxes, the regions indicated by the red arrows show 
the recovered fault edges. The fault edges reconstructed 
by U-Net are less distinct compared to those recovered by 

Figure 3. Comparison of super-resolution reconstruction results on synthetic data for different networks. (A) The low-resolution seismic image. (B) The 
ground truth of one synthetic dataset. (C) The super-resolution result predicted by the U-Net. (D) The super-resolution results predicted by the grouped-
residual and multi-scale large-kernel attention network. The yellow line represents the 40th trace. In panels B, C, and D, the red, green, and yellow curves 
denote the amplitude of the corresponding seismic images at the 40th trace, respectively.
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GMLAN. In Figure 6A, the position indicated by the blue 
arrow within the red solid boxes reveals a faintly discernible 
fault structure in the input low-resolution seismic image. 
However, as depicted in Figure  6B, the U-Net result 
fails to accurately restore this fault structure and instead 
incorrectly reconstructs it as a continuous stratigraphic 
layer, thereby introducing continuity artifacts into the 

super-resolution seismic image. In contrast, Figure  6C 
illustrates that GMLAN clearly restores the fault structure. 
This comparison with U-Net on field seismic images 
underscores the superior detail fidelity and structural 
accuracy of GMLAN. Similarly, the coherence maps in 
Figure  6 clearly demonstrate that, at the corresponding 
positions to the seismic images, the stratigraphic structure 
details reconstructed by the proposed model exhibit 
notably enhanced resolution and precision. The objective 
of super-resolution reconstruction for seismic images was 
to preserve low-frequency signals without degradation 
while simultaneously expanding the high-frequency 
bands. Figure  7 presents the average spectra of the low-
resolution field seismic images and the super-resolution 
results reconstructed using the two different methods. In 

Figure 5. Spectral comparison for a synthetic seismic image
Abbreviations: GMLAN: Grouped-residual and multi-scale large-kernel 
attention network; GT: Ground truth.

Table 2. Comparison of evaluation metrics for 
super‑resolution results

Method PSNR (dB) SSIM RMSE

U‑Net 13.68 0.68 0.25

GMLAN (the proposed model) 19.42 0.89 0.12

Abbreviations: GMLAN: Grouped‑residual and multi‑scale large‑kernel 
attention network; PSNR: Peak signal‑to‑noise ratio; RMSE: Root mean 
square error; SSIM: Structural similarity index measure.

Figure 4. Comparison of seismic coherence results on synthetic data. (A) Coherence map of the low-resolution synthetic data. (B) Coherence map of the 
ground truth of the synthetic image. (C) Coherence map of the super-resolution result predicted by U-Net. (D) Coherence map of the super-resolution 
result predicted by the grouped-residual and multi-scale large-kernel attention network.
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In this section, we conduct a comparative analysis 
between GMLAN and U-Net across various datasets. These 
comparisons consistently demonstrate the superiority 
of the proposed method in the context of seismic image 
super-resolution reconstruction. Furthermore, the 
proposed model also demonstrates robust performance on 
field data, highlighting its strong generalization capability 
and reliability when applied to diverse datasets.

4. Discussion
4.1. Ablation test

In this section, the indispensable contributions of the 
network components are verified through ablation 
experiments, including the configuration of the number of 
stages for the MLKA and the DFE.

First, we removed all MLKA modules from the 
network. This variant is referred to as the grouped residual 
attention network (GRAN), which was trained using the 
same parameter settings and training data. In addition, we 
conducted experiments to explore the impact of different 
numbers of DFE stages on network performance. The 
experiments in this section are summarized as follows: 

Figure 7. Comparison of average spectra of super-resolution results on 
field seismic images obtained by different methods

the low-frequency range, the proposed approach exhibits 
a higher degree of correlation with the low-frequency 
components of the low-resolution seismic images. In 
contrast, the proposed method not only effectively expands 
the high-frequency band but also maintains a significant 
superiority in preserving the consistency of low-frequency 
information.

Figure 6. Comparison of super-resolution results on field data. (A) The low-resolution field data. (B) The reconstruction result of the U-Net. (C) The super-
resolution reconstruction result of the proposed model. (D) Coherence map corresponding to the low-resolution field data in panel A. (E) Coherence map 
corresponding to the U-Net reconstruction result in panel B. (F) Coherence map corresponding to the reconstruction result of the proposed approach in 
panel C.
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(i)  GRAN, without MLKA, used to verify the impact 
of large-kernel attention on network performance; 
(ii) MLKA2, a network with two DFE stages; (iii) MLKA3, 
a network with three DFE stages; (iv) MLKA5, a network 
with five DFE stages. Given that the proposed network 
incorporated four DFE stages, it was designated as MLKA4.

After determining the number of experiments to be 
conducted, we set identical hyperparameters for all four 
networks and trained them using the same dataset. The 
evaluation metrics for the training results are presented in 
Table 3.

From the evaluation results, it can be observed 
that the network without MLKA exhibited the poorest 
performance. Although MLKA5 performed slightly 
better than MLKA4, the improvement in PSNR and 
SSIM was marginal. This minor enhancement came at 

the cost of an additional 3,528  seconds of training time, 
making it computationally inefficient. In contrast, MLKA4 
demonstrated a slight advantage over MLKA3, achieving a 
1.62db increase in PSNR. This enhancement is considered 
reasonable given the moderate increase in training time (an 
additional 3,528 s). Overall, the incorporation of MLKA 
and the implementation of the four DFE stages prove to be 
the optimal configuration.

To further illustrate the rationale and effectiveness 
of the proposed network design, we applied the four 
methods to the field seismic data for testing. Specifically, 
we selected a sample from the Netherlands F3 seismic 
survey as the low-resolution input for the network 
prediction. The prediction results of each network are 
shown in Figure 8.

The yellow dashed boxes in Figure  8 highlight each 
model’s capability to recover stratigraphic structures. In 
Figure  8B-D, the recovered strata appear overly smooth, 
leading to a loss of detailed information. In contrast, 
Figures  8E and F demonstrate the recovery of complex 
stratigraphic structures, preserving richer details. The 
regions indicated by the yellow arrows within the red solid 
boxes in Figure 8 show that these areas are reconstructed 
as discontinuous strata (Figure  8B-D). However, as 
shown in Figure  8A, these positions should represent 
continuous stratigraphic structures, accurately depicted 
in Figure 8E and F. Compared with Figure 8E, the super-
resolution result in Figure  8F demonstrates that the 
proposed approach achieves satisfactory outcomes even 
with fewer DFE stages.

To further compare the reconstruction performance 
of different networks, we used field data from the Kerry 

Table 3. Comparison of evaluation index results from 
different methods

Method PSNR (dB) SSIM Training time (s)

GRAN 19.20 0.8879 70,104

MLKA2 19.90 0.9080 80,160

MLKA3 20.32 0.9228 83,688

MLKA5 21.98 0.9324 90,744

The proposed model 
(GMLAN/MLKA4)

21.94 0.9321 87,216

Note: The subscript attached to “MLKA” denotes the number of deep 
feature extraction stages.
Abbreviations: GMLAN: Grouped‑residual and multi‑scale 
large‑kernel attention network; MLKA: Multi‑scale large‑kernel 
attention; PSNR: Peak signal‑to‑noise ratio; SSIM: Structural similarity 
index measure.

Figure  8. F3 field data prediction for networks with different structures. (A) Low-resolution field seismic image. (B) Super-resolution result by the 
grouped residual attention network. (C) Super-resolution result by MLKA2. (D) Super-resolution result by MLKA3. (E) Super-resolution result by MLKA5. 
(F) Super-resolution result by MLKA4.
Note: The subscript attached to “MLKA” denotes the number of deep feature extraction stages.
Abbreviation: MLKA: Multi-scale large-kernel attention.
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block in New Zealand and extracted 512 traces for testing. 
Figure  9 displays the super-resolution results of these 
networks.

The yellow dashed boxes in Figure  9 highlight the 
stratigraphic recovery results of the different networks. 
The positions indicated by the red arrows reveal that 
Figure 9B-D fail to clearly delineate the detailed information 
of the stratigraphic structures, resulting in overly smooth 
reconstructions. In contrast, Figures 9E and F successfully 
recover each stratigraphic layer with greater clarity. 

The red solid boxes indicate the fault recovery regions, 
with the yellow arrows pointing to small fault structures. 
Figure  9B-D fail to recover these minor fault structures, 
instead reconstructing them as continuous stratigraphic 
layers with folded structures. Conversely, Figure 9E and F 
exhibit the highest accuracy in fault recovery.

Overall, the test and comparative analyses based on 
field data demonstrate that MLKA is crucial for improving 
the resolution of seismic images and reducing artifacts. 
Furthermore, the combined performance across different 

Figure 9. Kerry field data prediction for networks with different structures. (A) Low-resolution field seismic image. (B) Super-resolution result by the 
grouped residual attention network. (C) Super-resolution result by MLKA2. (D) Super-resolution result by MLKA3. (E) Super-resolution result by MLKA5. 
(F) Super-resolution result by the proposed MLKA4.
 Note: The subscript attached to “MLKA” denotes the number of deep feature extraction stages.
Abbreviation: MLKA: Multi-scale large-kernel attention.

B C

D E F

A

Figure 10. Comparison of denoising results for noisy synthetic seismic data at different signal-to-noise ratio (SNR) levels. (A) Noisy seismic data with 
SNR = 1 dB. (B) Noisy seismic data with SNR = 5 dB. (C) Noisy seismic data with SNR =15 dB. (D) Denoised result corresponding to panel A. (E) Denoised 
result corresponding to panel B. (F) Denoised result corresponding to panel C.
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DFE stage configurations suggests that a four-stage setup 
in the DFE component offers the best balance between 
accuracy and efficiency. This ablation study validates the 
interpretability and robustness of the proposed method.

4.2. Testing on noise robustness

We performed noise robustness assessments using 
synthetic seismic data engineered to exhibit distinct 
signal-to-noise ratio (SNR) characteristics. Specifically, 
we subjected high-resolution synthetic seismic data 
to a process of simple downsampling, followed by the 
introduction of colored noise at different intensities, as 
illustrated in Figure 10. The data represent SNR levels of 
1 dB, 5 dB, and 15 dB, corresponding to strong, medium, 
and weak noise conditions, respectively.

On examination of the red solid-line boxes in 

Figure 10D-F, it is evident that the denoising performance 
at the strong noise level (1 dB) is less effective compared to 
the medium (5 dB) and weak (15 dB) noise levels. Notably, 
Figure  10D exhibits discontinuities in layer boundaries 
and the presence of artifacts, indicative of the challenges 
posed by high noise levels. Although the performance in 
low-SNR scenarios has not yet reached an optimal level, 
the majority of geological strata, including faults, have been 
successfully and clearly reconstructed. Figure  10E and F 
demonstrate a clearer restoration of the layer structure, 
highlighting the enhanced denoising capabilities of the 
proposed model under conditions of moderate and low 
noise, respectively. This comparative analysis underscores 
the adaptability and robustness of the proposed denoising 
technique in mitigating noise and preserving seismic data 
integrity across a spectrum of noise environments.

4.3. Testing on deep structures

In the preceding sections, we conducted super-resolution 
tests on field seismic data and denoising tests on synthetic 
seismic data. To showcase the adaptability of the proposed 
methodology, we applied it to the super-resolution of deep 
seismic data. In this segment, we selected deep seismic 
data from the North Sea Volve Field in Norway for the 
experiment, as depicted in Figure 11. The red dashed box 
in Figure  11A delineates the specific region of the deep 
seismic image that was extracted. This region is depicted 
in Figure 11B. The results illustrated in the figure indicate 
that the proposed model is effective in restoring layer 
boundaries. Within the red solid box, the minor fault 
indicated by the red arrow has also been clearly restored.

5. Conclusion
In this study, we propose GMLAN to achieve improved 
super-resolution for seismic images by integrating the 
benefits of group residual learning and large-kernel 
attention mechanisms. GMLAN comprises two primary 
components: feature extraction and image super-
resolution reconstruction. Following the feature extraction 
phase, residual connections were employed to integrate 
the geological morphology and ground inclination 
characteristics of the seismic images. Subsequently, the 
output was fed into the IRM to produce super-resolution 
seismic images. A  suite of comparative and ablation 
experiments demonstrated that the proposed network 
can significantly enhance and restore the high-frequency 
details of seismic images while preserving low-frequency 
information, indicating that the proposed approach 
is both highly effective and precise for seismic image 
super-resolution. Furthermore, the proposed method 
demonstrated superior noise robustness under different 
noise conditions. However, its efficacy in low SNR 

Figure 11. Test results of deep seismic data super-resolution. (A) Seismic 
data from the North Sea Volve Field in Norway. (B) Low-resolution deep 
seismic data. (C) Super-resolution result generated by the proposed 
approach.
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scenarios has yet to be optimized. In future work, the 
authors plan to address this issue through two approaches: 
(i) implementing a multi-scale framework for adaptive 
noise analysis and suppression tailored to seismic data 
across various SNR levels; and (ii) developing an adaptive 
SNR enhancement strategy that fine-tunes super-resolution 
reconstruction parameters based on the input seismic 
images’ SNR. By applying these strategies, the authors aim 
to substantially boost the proposed model’s performance 
in low SNR environments and further enhance the super-
resolution of seismic images.
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