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Abstract

The resolution of seismic images significantly impacts the accuracy of subsequent
seismic interpretation and reservoir location. However, the resolution of seismic
images often degrades due to the influence of multiple factors, making super-
resolution of seismic images essential and critical. We propose a grouped-residual
and multi-scale large-kernel attention network (GMLAN) framework, trained on
synthetic seismic images to achieve excellent seismic image super-resolution on field
seismic data. GMLAN is primarily composed of two modules: The feature extraction
module (FEM) and the image reconstruction module (IRM). The FEM consists of two
components: Shallow feature extraction (SFE) and deep feature extraction (DFE).
The SFE component is designed to capture the basic information of seismic images,
such as large-scale structures and morphological features of the strata. The DFE
component serves as the cornerstone of the feature extraction process, leveraging
residual groups and multi-scale large-kernel attention to distill detailed features from
seismic images, such as stratigraphic interfaces, dip angles, and relative amplitudes.
Finally, the IRM utilizes sub-pixel convolution, a learnable upsampling technique,
to reconstruct super-resolution seismic images while preserving the continuity of
seismic features. The framework demonstrates satisfactory performance on both
synthetic and field data.

Keywords: Seismic images; Super-resolution; Deep learning; Grouped-residual
structures; Malti-scale large-kernel self-attention

1. Introduction

Geological interpretation is highly dependent on the quality of seismic images. However,
seismic images, which are obtained after data acquisition, processing, and imaging, are
inevitably influenced by the acquisition environment and data processing methods,
resulting in blurred events and noise. Low-resolution seismic images are detrimental
to subsequent geological interpretation (e.g., fault detection and reservoir location) and
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lead to the loss of valuable details (e.g., folds, faults, and
thin layers). Consequently, enhancing the resolution of
seismic images has become a critical step in the seismic
exploration process.

Over the past few decades, researchers have conducted
numerous studies to improve the resolution of seismic
images. In general, methods for enhancing resolution
can be divided into two categories: Data acquisition'®
and data processing.” Data acquisition mainly includes
broadband acquisition'?® and high-density acquisition.*®
Broadband acquisition increases the longitudinal
resolution of seismic data by recording data over a wider
frequency range, while high-density acquisition increases
the number of sources and receivers and reduces the
processing unit area, effectively suppressing noise and
improving the resolution of seismic profiles. However,
both broadband acquisition and high-density acquisition
require high costs during the data acquisition process.
While the data processing methods include, but are not
limited to, inversion, denoising, interpolation, attenuation
compensation, and deconvolution,”® traditional resolution
enhancement methods for seismic images typically involve
multiple steps, each introducing corresponding errors.’
The cumulative effect of these errors across multiple stages
often prevents the full restoration of seismic image details
in the final high-resolution output. In contrast, end-to-end
deep learning approaches can perform super-resolution
in a single step, thereby effectively removing the error
accumulation inherent in traditional methods. Moreover,
deep learning models can automatically learn and update
their learnable parameters'®!! and generally require lower
computational resources and costs compared to traditional
data processing techniques.

In recent years, traditional resolution enhancement
methods for seismic images have become insufficient
to meet the demands for rapid and high-precision
processing of large amounts of seismic data. With the
rapid advancement of graphics processing units (GPUs)
and deep learning algorithms, deep learning methods
have been widely applied in direct end-to-end processing
of seismic images, enabling resolution enhancement in a
single step. Among existing approaches, the convolutional
neural network (CNN) is a classical method used for
image super-resolution reconstruction, extracting local
features of seismic images through multiple convolution
operations.'*"* During CNN training, the model learns
the texture and edge information of seismic images,
thereby restoring useful image content and improving
resolution. Li et al."* proposed using a U-Net to achieve
seismic image super-resolution. The encoder of U-Net
captures contextual information through convolutional
layers, pooling layers, and down-sampling operations,

while the decoder gradually restores image features and
improves resolution through upsampling and convolution
operations, aided by skip connections. Min et al.®
introduced D2Unet, a dual-decoder network based on
the U-Net architecture, which simultaneously addresses
the restoration of high-resolution image reconstruction
and edge detection, thereby enhancing resolution
while preserving critical edge information. In recent
years, transformer-based networks have also achieved
great success in improving the resolution of seismic
images.'*"” The self-attention mechanism, a cornerstone
of the transformer architecture, dynamically attends to
contextual information across relevant elements within a
sequence, effectively capturing long-range dependencies
and enhancing both model efficiency and expressiveness
through parallel computation. The multi-head attention
mechanism further enhances the model’s feature extraction
capacity by enabling simultaneous learning of input
characteristics from multiple perspectives. In addition, in
the field of seismic image super-resolution, other notable
techniques include generative adversarial networks'®'” and
diffusion models.”

In this study, inspired by the CNN and the self-
attention mechanism in the transformer, the authors
propose a grouped-residual and multi-scale large-kernel
attention network (GMLAN) to achieve seismic image
super-resolution, combining convolution and multi-scale
attention mechanisms. GMLAN is mainly composed
of a feature extraction module (FEM) and an image
reconstruction module (IRM). The FEM includes shallow
feature extraction (SFE) and deep feature extraction (DFE).
SFE utilizes convolutional layers to extract prominent
large-scale features in seismic images, such as geological
structures and shapes. DFE integrates group residuals
and multi-scale large-kernel self-attention mechanisms
to efficiently extract multi-scale features, reducing
computational parameters while capturing detailed
information such as layer interfaces and dip angles. The
features extracted by SFE and DFE significantly influence
the accuracy of subsequent image reconstruction. In the
IRM, the fused shallow and deep features are upsampled
and reconstructed through sub-pixel convolution to
generate the final high-resolution seismic image. The
authors construct a synthetic dataset whose features
resemble those of field seismic images using a convolutional
model and conduct supervised training on the GMLAN
network. Consequently, the proposed method serves as a
super-resolution processing approach for seismic images
that effectively integrates algorithmic design with data.
GMLAN provides a structural foundation for multi-scale
feature capture and high-frequency recovery, achieved
through its grouped-residual structures and multi-scale
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large-kernel attention (MLKA) mechanisms. Meanwhile,
the synthetic dataset, which is consistent with field
data in geological and seismic characteristics, provides
sufficient supervised training samples.” The effectiveness
of the proposed model is validated through tests on both
synthetic and field seismic images, demonstrating superior
accuracy in recovering folds and faults in field seismic data.

In the comparative experiment section, the proposed
approach is compared with U-Net, demonstrating that
it not only achieves significant improvements in seismic
image super-resolution but also exhibits faster convergence.

2. Methods

2.1. Network architecture

The architecture of the proposed GMLAN is shown
in Figure 1. It combines convolution with multiple
attention mechanisms and mainly consists of two parts:
FEM and IRM. The FEM can be further subdivided into
SFE and DFE.

The network first performed SFE on the input low-
resolution seismic images, transforming the image space
into a higher-dimensional feature space. Subsequently,
the DFE was employed to establish a non-linear mapping
relationship between low-resolution and high-resolution
images, thereby reconstructing higher-frequency texture
details. After feature extraction, residual connections were
introduced to integrate the extracted shallow features with
the deep features. This approach not only facilitates the
extraction of high-dimensional image information but
also ensures amplitude preservation in super-resolution
reconstruction and reduces artifacts. In the final IRM,
the fused features were first integrated, and their channels
were adjusted using convolutional layers. Subsequently,
the integrated features were upsampled via sub-pixel
convolution to enhance the edge and texture details of
the seismic image, thereby improving the resolution and
yielding the final super-resolution reconstructed images.

The proposed GMLAN was trained on synthetic data,
and the well-trained GMLAN was applied to the super-
resolution prediction of field seismic images.

2.1.1. Feature extraction

The SFE was primarily implemented by a convolutional
layer with a 3x3 convolution kernel. It can be expressed by
the formula:

Xo = LSF (Iin) ¢9)

Where I, € R and X, € R refer to the low-
resolution input image of the network and the output
feature map of SFE, respectively. H and W represent the

height and width of the input seismic images and feature
maps, respectively, C, and C, denote the number of
channels in the input image and the output feature maps of
the shallow features, respectively. Ly, refers to the main
layer of SFE.

In the DFE part, multi-branch residuals and large-
kernel self-attention are the core components, which were
executed in four stages. In DFE, four grouped residual and
MLKA (GRMLKA) blocks were employed, corresponding
to the four stages of DFE. In each stage of DFE, six
layers of multi-residual groups were set. Furthermore,
MLKA mechanisms were incorporated after the multi-
branch residuals in the second, fourth, and sixth layers to
enhance the precision and accuracy of feature extraction.
Therefore, each DFE stage can actually be divided into
three subgroups. It is worth noting that the number of
multi-branch residual groups in each DFE stage should
be set to an even number because the MLKA module was
only added to the even-numbered layers. The operation
sequence of each stage is as follows: first, pass through
the first multi-branch residual block; then, perform
normalization and pass through the feed-forward network
(FFN); finally, conduct another normalization operation
to complete the first layer of operations. In the second
layer, unlike the first layer, a MLKA operation was carried
out after the first multi-branch residual group. After this
operation, normalization and subsequent processes were
performed. This set of operations can be expressed by the
following formula:

Xy =Ly (XH )
X, =Ly, (X,)+X
X,y =Ly (X,,)
X,y =Ly (X,5)+ X,
X, s = Loy yixas (XM)
X, o =Ly (X,.’S ) +X,,
X, = Lypy (Xt.,ﬁ)
X, =L (Xl.)7)+X

i1 i-1

(1)

i,8 — ~Norm i,6

The entire process of extracting deep features is
expressed as:

X, = Loppixa (XH )
IDF = LCDV!V (XN ) + Xo

Where X, X, refer to the output of each GRMLKA,
and the range of i is 1<i<N. Given that four stages were
set in our model, we set N = 4. I, denotes the final output
feature image obtained from DFE. L, 4 represents the
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Figure 1. The architecture and components of the grouped-residual and multi-scale large-kernel attention network
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four stages within the DFE process, and L, represents
the last convolutional layer within the DFE. Within each
GRMLKA stage, the output feature map of each block is
denoted as X,,,. In Equation (II), the index m represents
integers from 1 to 8. Given that each stage is divided into
three subgroups, the range of m is 1 < m < 24. Specifically,
when m =24, X, ,, is simply denoted as X, representing the
output of the i-th GRMLKA. L, refers to the residual group
layer, Ly, denotes the layer normalization component,
L,y indicates the FFN layer, and Ly, ;45 represents the
fusion layer integrating residual groups and large-kernel
attention.

The self-attention mechanism is highly effective at
capturing long-range spatial dependencies within seismic
images.”? However, the process of generating the query
(Q), key (K), and value (V) matrices and calculating their
products often leads to computational redundancy.® To
harness the benefits of the self-attention mechanism while
mitigating this redundancy, we incorporated a residual self-
attention block (RSAB) into the proposed GMLAN model,
as depicted in Figure 1B. Specifically, we partitioned the
input feature channels into two distinct groups and applied
separate linear transformations and residual calculations
to each group. The following equation illustrates the
operation of grouping the input feature vectors:

[AnA,]=5(4) (IV)

Where A refers to the input feature vector. The operation
S pertains to the grouping of features by channels, which
are divided into two distinct groups, denoted as A, and A,,
with each group encompassing half of the channels.

We then solved each component and incorporated
residual connections, merging the outcomes from the two
branches to derive the Q, K, and V matrices. To illustrate,
the computation of the Q matrix is detailed in the following
formula:

Q= ST(A1 + Linem’(A1 ),A2 + Linear(A2 )) (V)
Where

Linear(A1 ) =A x quT +b, (VD)

Linear(A,)=A,xW,," +b,, (VID)

ST refers to the operation of stacking along a specified

. . ’ 2xBxNxC/2
dimension. The term Q eR*® % represents the

outcome after the merging operation. B signifies the batch
size, N indicates the number of tokens obtained after
flattening the input features, and C represents feature
channels. Linear denotes the application of linear mapping
operations to A, and A, individually. W,," and W,," are

weight matrices, while b,, and b,, denote relative position
bias terms. Following the computation of Q, feature
rearrangement and merging operations were conducted to
obtain the final Q matrix. The K and V matrices were
derived using an analogous approach and were
subsequently normalized. The attention was then calculated
using the formula provided below:

Attention(Q,K,V) = Softmax((Q X KT)X Scale + B)x \%4
(VIID)

Where Q, K, and V were normalized, Scale is a learnable
scaling factor that dynamically adjusts the distribution of
attention scores, enabling the model to adaptively learn the
optimal similarity scale and enhance its focus on significant
features. B refers to the continuous relative position bias
generated by a multi-layer perceptron, which can effectively
accommodate the long-range structural continuity
inherent in seismic data. When combined with a grouped
residual design, it enabled independent optimization of
long-range association computations within each feature
group. The attention mechanism implemented in RSAB
is similar to cosine attention but differs using a learnable
scaling factor instead of a fixed value and by incorporating
continuous relative position biases. The resulting attention
scores were individually subjected to linear projections and
then combined to produce the final output of this module.
This not only minimizes cross-channel interference but
also halves the computational load, thereby avoiding
redundancy in long-range calculations.

The grouped learning and computation operation not
only captures interdependencies among different channels
but also reduces computational complexity.?* Specifically,
before performing grouped calculations, each group has C
channels, and the computational cost is C*. After grouping,
both the number of channels and the computational cost
are halved compared to their values before grouping.

In the DFE stage, in addition to the grouped residual
attention, we introduced a MLKA mechanism, as
depicted in Figure 1C. Convolution kernels of varying
sizes enabled the capture of seismic image features at
multiple scales, thereby enhancing the interconnections
among different receptive fields. Within the MLKA
module, the output from the preceding stage was initially
subjected to convolution to augment the number of input
feature channels, facilitating the subsequent division
of feature channels. Assuming the input features have
n channels, the output features after this operation will
have 2n channels, thereby increasing the non-linearity of
the seismic image features. This step can be formulated
as follows:

|:X1:n s X piran :I = C(XRSABO ) (IX)
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Where X,z represents the output features from the
RSAB. The operation C denotes the process of augmenting
the feature channels and partitioning them into two
identical groups. The notations X,, and X,,,,, refer to
the two segments of the partitioned features, where 1:n
indicates the range of the first half of the feature channels
after dimensionality increase, and X, , can alternatively be
denoted as X,. Similarly, X, . signifies the range of the
latter half of the feature channels, and thus is also referred
to as X,. Both X, and X, have the same number of feature

channels as Xy, ;.

Consequently, the input features, following the
augmentation of feature channels, were split into
two equivalent segments. Each segment underwent a
convolutional layer to adjust the number of output feature
channels, aligning them with the input requirements
of subsequent operations. One segment was further
subdivided into three parts along the feature channels for
the upcoming large kernel attention (LKA,;) operation.
These steps can be mathematically formulated as follows:

s, :S(La (Xu )) X)

Here, L., denotes the convolutional layer with a
kernel size of 1 in Figure 1C, while F,,, signifies different
feature groups, with the subscript »n indicating the
group identifier, which can extend up to 3. Within the
LKA, module, there were three analogous pathways
that processed the corresponding feature groups
independently, namely Groupl to Group3 as depicted
in the figure. Each pathway’s LKA comprised three
distinct convolutional layers. The initial layer consisted of
standard convolutional layers with kernel sizes of 3 x 3,
5 x 5, and 7 x 7, enabling the extraction of local image
features at varying scales. The smaller the convolution
kernel, the more detailed the geological structures
captured in the extracted feature map, indicating a richer
content of high-frequency information. The subsequent
layer employed dilated convolution with different kernel
sizes and dilation rates; this differs from the first layer by
expanding the receptive field of the convolutional kernel,
thereby allowing it to capture broader global features.”
By integrating small-kernel convolutions with dilated
convolutions, the model can effectively capture both low-
frequency information, such as large-scale geological
structures in seismic data, and high-frequency features.
This integration compensates for the insufficiencies in
learning high-frequency components that can occur with
large-kernel convolutions alone.?® The final convolutional
layer was utilized to modulate the feature channels and
enhance the non-linearity of the output features. The
procedure of LKA can be mathematically represented as
follows:

LKA, (;, ) = Lo, (Loc (Le (B, ) (XT)

Where L refers to the initial standard convolutional
layer within the LKA, module, and L, signifies the
dilated convolutional layer. However, convolution
with large kernels may introduce artifacts. To address
this issue, we incorporated spatial gating (G,) into the
network to enhance the image’s feature representation
capabilities.”” The configuration of G, mirrored that of
the initial convolutional layer in the respective branches
of LKA,. The convolutional layers with different kernel
sizes in the spatial gating focused on the weak signal
features of varying intensities in the seismic images. After
passing through G, the grouped features were integrated
with the output features from LKA, The resulting three
sets of integrated features were concatenated along the
channel dimension to yield a feature map X', which
matches X, in terms of channel count. The final output
of the MLKA module can also be viewed as an attention
computation, which is mathematically expressed as
follows:

Oy = Ler (CAT (LKA, (E,, )% G, () (XII)
Where CAT denotes the operation of concatenating

along the feature channels, and O, refers to the overall
output of the MLKA module.

The application of the MLKA module within the
DFE not only facilitated the extraction of local features
of seismic images at various scales but also leveraged
dilated convolutions to expand the receptive field without
additional computational overhead. This approach
effectively addresses the issue of missing long-range
feature mappings that can arise from focusing solely on
local feature extraction.

2.1.2. Image reconstruction

In the IRM, we employed a 3 x 3 convolutional layer to
adjust the channels of the fused deep and shallow features.
Finally, through the upsampling layer, an image with
dimensions twice those of the input image in each direction
was generated, effectively reconstructing the image to a
super-resolution version I, € R .

I, refers to the reconstructed seismic super-resolution
image, which also serves as the final output of the entire
network, while H, W, C_, denote the height, width, and

number of channels of the output image, respectively.

The entire image reconstruction process can be
represented by the following formula:

ISR = Lupsample (LCunv (IDF + ISF )) (XIII)
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Where I, denotes the reconstructed super-resolution
image, Iy refers to the extracted shallow features, and
I,z represents the features extracted by the DFE module.
L psampic refers to the upsampling layer in the reconstruction
part, where we employed sub-pixel convolution for
upsampling. Traditional interpolation techniques, such as
bilinear and nearest neighbor interpolation, can enlarge
low-resolution images to high-resolution counterparts.
However, these methods often introduce image artifacts
and Dblurring. In contrast, sub-pixel convolution,
which utilizes convolutional operations and channel
recombination, can enlarge low-resolution images without
distortion. Furthermore, it significantly enhances image
clarity and detail, thereby preserving a greater amount of
detailed information.

2.2, Modeling of the synthetic dataset

For the training of GMLAN, we used synthetic seismic
images. The generation of the synthetic dataset follows the
method proposed by Wu et al*® A total of 2,000 pairs of
synthetic data were generated, with 1,600 pairs allocated
for training and the remaining 400 pairs reserved for
validation and testing. Given that the GMLAN employed
supervised training, it required a substantial amount of
paired low-resolution and high-resolution image data. The
high-resolution images served as the ground truth, while
the low-resolution images were used as input. However,
the availability of high-resolution field seismic images was
limited, which restricted the amount of data that could
serve as ground truth. In addition, the cost of obtaining
high-resolution data was substantial. Therefore, in the
proposed model training, a large number of synthetic
seismic images were generated for training.

The synthetic images mainly simulated the distribution
of geological structures based on the target data. First, a
three-dimensional reflectivity model was established, and
fold and fault structures were added to all horizontal layers.
The frequency band of the high-resolution image was wider
than that of the low-resolution image. Therefore, to obtain
the corresponding high-resolution and low-resolution
data, convolution operations were performed between
the three-dimensional reflectivity models (with added
folds and faults) and wavelets of different frequencies.
Specifically, the three-dimensional reflectivity models
were convolved with a high-frequency Ricker wavelet
(35-55 Hz) to obtain the high-frequency seismic volumes,
and then with a low-frequency Ricker wavelet (10-25 Hz)
to obtain the corresponding low-frequency seismic
volumes. Two-dimensional seismic slices were extracted
from the high-frequency seismic volumes to serve as
labels for actual training. Colored noise was added to the
low-frequency seismic volumes to simulate real-world

interference. Two-dimensional slices were then extracted
from the low-frequency seismic volume using the same
method and downsampled to obtain the low-resolution
data required for training. The downsampled low-
resolution seismic data and the high-resolution labels
were paired. Finally, using the above-described method,
2,000 pairs of synthetic seismic data were generated and
allocated for training, validation, and testing with an
8:1:1 ratio.

2.3. Loss function

In this study, we used a combined loss function consisting
of the L1 loss and the multi-scale structural similarity
index measure (MS-SSIM):

Ly =axLyg g t+ (1 - a) xL, (XIV)
Where
Ly s =1—MS—SSIM(x, y) (XV)

L, refers to the combined loss function, L, denotes
the L1 loss function, and L, g, signifies the MS-SSIM
loss. The parameter a represents the weight of the
L5 ssns component. As the sum of the weights for L, and
L, ssny €quals 1, the weight assigned to L, was set to 1-a.
MS-SSIM(x, y) denotes the MS-SSIM, which was used to
assess the similarity between the target image x and the
output image y produced by the GMLAN across multiple
scales. The L1 loss function is less sensitive to outliers,
thereby demonstrating greater robustness in image
reconstruction tasks. Meanwhile, MS-SSIM focuses on the
structural information and perceptual quality of seismic
images, evaluating image similarity across multiple scales.
This multi-scale evaluation enables the model to capture
richer details and enhance performance across different
scales.”

Multi-scale structural similarity is an improvement
over the structural similarity index measure (SSIM), which
evaluates the SSIM at different scales and aggregates these
values to obtain MS-SSIM:

MS=SSIM (%) =[ 1, (x.)]" * T I[ ¢, (%.2)]" %[ 5,(x)]"

" (XVI)

(2/,tx,uy +C1)(26xy +C2)
(,uﬁ +,u; +C1)(Gi +G§ +C2)

Where M represents the number of scales (set to 5 in
this study). «,, is the weight of the fifth scale, which equals
0.1333; a, 3, and y are the weights vector for each part,
set to a = § = y [0.0448, 0.2856, 0.3001, 0.2363, 0.1333],
x and y are the output image of GMLAN and the label
image, respectively; y, 0%, 0,, represent the mean, variance,

SSIM (x, y) = (XVII)
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and covariance of the corresponding images. C, and C,
are stabilizing terms used to prevent division by zero.
Structural similarity takes into account the luminance
I(x,y), contrast c(x,y), and structural s(x,y) information
of the image, providing a more comprehensive evaluation
that aligns more closely with the human visual system’s
perception of image quality.

Among them, brightness, contrast, and structural
similarity can be expressed as:

2p pu, +C
(x,y)=—"5— (XVIII)
M, + 1, +C
20 0 +C
Xy 2
co\x%y)=——5—— (XIX)
(x.7) o.+0,+C,
(ry)= a2 (XX)
0.0,+C, /2

After pre-training tests, we set a = 0.6.

2.4. Evaluation metrics

The peak signal-to-noise ratio (PSNR) is an indicator used
to measure the quality of image reconstruction. It calculates
the pixel-level error between the ground truth and the
network’s output based on the mean squared error (MSE).
PSNR provides an intuitive numerical value describing the
accuracy of the reconstructed image. Generally, the larger
the PSNR value, the higher the quality of the reconstructed
image. The PSNR can be expressed as follows:

MAX?
PSNR=10xlog, | ———— XXI
gw[ MSE J (XXI)
Where
MSE=23(y,-x,) (XXID)
n;-

Where MAX denotes the maximum value of the image
data (set to 1), MSE is the MSE, n denotes the sample size (i.e.,
the number of seismic images used for training). y, represents
GMLANs prediction for the i-th seismic image, whereas x,
denotes the true value of the i-th seismic image. However,
PSNR only describes the pixel-level error between images
and cannot fully reflect the perception of the human visual
system, especially in terms of image details and textures.

Therefore, to address this limitation, the SSIM was
introduced as another evaluation indicator during training.

The range of SSIM value is [-1, 1]; a value closer to 1
indicates a higher similarity between the super-resolution
reconstructed image and the labeled image.

2.5. Experimental setup

The experiment was conducted using PyCharm (PyCharm
Community Edition, version 2024.3, JetBrains, Czech
Republic) and the PyTorch (version 2.5.1, Meta Platforms,
Inc., United States) GPU framework. A Compute Unified
Device Architecture parallel computing framework was
implemented (version 12.4, NVIDIA Corporation, United
States), and training was performed on two NVIDIA RTX
4090 GPUs, each with 24 GB of memory.

To enhance training efficiency, the data were normalized
during training. The input data were normalized to the
range of [-1, 1] using the following method:

x = “min_ (XXIII)
x - xmin

Where x denotes the variable to be normalized, which,
in the context of the experiment, corresponds to the input
training data. x,, and x,,, represent the maximum and
minimum values of x, respectively, and x* indicates the
normalized result.

To ensure the accuracy of the predicted images, the
GMLAN outputs were denormalized before calculating
the evaluation metrics:

X =X X (X = X )+ X (XXIV)
Where x' signifies the denormalized output.
The parameter configurations for the experiment are
detailed in Table 1.
3. Numerical tests
3.1. Comparison method

In this section, we compare the super-resolution
performance of the proposed method with that of the
U-Net. U-Net is highly flexible and can be adapted
to various super-resolution tasks and datasets by

Table 1. Training parameters of different methods

Hyperparameter U-Net GMLAN

(the proposed model)
Optimizer Adam Adam
Batch size 8 8
Epoch 400 400
Learning rate [*farn=3, 1rni™*, 1rni~’] ["rn=3, 1rni %, 1rni~®]
Epochs for learning [200, 300] [200, 300]
rate decay
Input channels 1 1
Parameters counts 17,409,537 3,377,140

Abbreviations: Adam: Adaptive moment estimation;
GMLAN: Grouped-residual and multi-scale large-kernel attention network.
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adjusting parameters such as network depth, width, and
convolution kernel size. It has been widely applied in
numerous image processing tasks, including image super-
resolution reconstruction, where it has demonstrated high
effectiveness and adaptability.

To ensure the fairness of the comparison experiment
and the persuasiveness of the results, we trained a U-Net
on the same dataset and kept the hyperparameters (such
as the number of epochs, learning rate, optimizer, etc.)
consistent with those used in the proposed model. The
specific parameter settings are shown in Table 1. After
completing parameter and data preparation, we trained
GMLAN and U-Net for the same number of epochs. The
comparison of the training process is shown in Figure 2.

As depicted in Figure 2A, the loss curve of the U-Net
model exhibits a rapid decline during the initial 50 epochs,
after which the rate of decrease gradually slows. After 200
epochs, the loss reached a stable state. In contrast, the
proposed approach demonstrated a significantly faster
reduction in loss at the start of training, and the loss value
consistently remained lower than that of the U-Net model
throughout the entire training process.

As illustrated in Figure 2B and C, the proposed method
consistently outperforms U-Net in terms of both PSNR
and SSIM, particularly in the later stages of training.
The SSIM value of U-Net increased rapidly during the
initial 50 epochs, then slowed, and ultimately stabilized
at approximately 0.85. In contrast, the proposed model
maintained a stable SSIM value of around 0.91. Regarding
PSNR, the U-Net’s value eventually stabilized at 19 dB,
whereas the proposed approach achieved a value exceeding
21 dB. Therefore, considering the loss function and these
two metrics comprehensively, the proposed method
demonstrated significant superiority over U-Net in all
training indicators.

3.2. Synthetic data testing

First, we evaluated the performance of GMLAN on the test
dataset. As shown in Figure 3, at the positions indicated by
the red arrows, the proposed model outperforms U-Net in
fault recovery. The fault edges recovered by the proposed
approach are clear and easily observable, while the fault
edges within the solid red box recovered by U-Net appear
smooth and blurred, resulting in the loss of edge features.
In the area within the dashed yellow box, the interfaces
between different layers are blurred in the prediction
produced by the U-Net. We extracted the 40" trace from
the data in Figure 3B-D to more effectively demonstrate
the signal restoration performance. The amplitudes
derived from both the proposed method and the U-Net
closely resemble those of the ground truth. Nevertheless,

A
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0.005 1 —— Ours
(2]
2 0.004 1
=
&, 0.003 -
5
> 0.002
<
0.001 - g
0.000 +— T T T T
0 100 200 300 400
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10 1
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0 100 200 300 400
c Epoch
2 0.8 1
—
75}
wn
)
s 0.6 1
2
]
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0.4 1 —— Ours
0 100 200 300 400
Epoch

Figure 2. Comparison plot of average loss (A), peak signal-to-noise ratio
(PSNR; B), and structural similarity index measure (SSIM; C) achieved
by different methods with identical hyperparameters

the curve produced by the proposed model aligns more
precisely with the ground truth, suggesting that the seismic
images reconstructed by the proposed approach contain
more detailed amplitude information. The coherence
attribute serves as a highly effective and extensively utilized
tool in the identification of structural and stratigraphic
anomalies within seismic data.’**! To effectively highlight
the variations in strata and the fault prediction results
obtained by different methods, we have incorporated
a coherence analysis, as depicted in Figure 4. The red
solid-line frame within the image distinctly illustrates
that the proposed approach outperforms Unet in fault
recovery. This visual representation serves to underscore
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Figure 3. Comparison of super-resolution reconstruction results on synthetic data for different networks. (A) The low-resolution seismic image. (B) The
ground truth of one synthetic dataset. (C) The super-resolution result predicted by the U-Net. (D) The super-resolution results predicted by the grouped-
residual and multi-scale large-kernel attention network. The yellow line represents the 40" trace. In panels B, C, and D, the red, green, and yellow curves
denote the amplitude of the corresponding seismic images at the 40" trace, respectively.

the enhanced capability of the proposed approach in
accurately delineating geological features, which is a
critical aspect of seismic image analysis. Figure 5 presents
the spectra corresponding to the seismic images shown
in Figure 3. Across most frequency bands, the proposed
method closely matches the spectral curves of the ground
truth, particularly in the mid-to-high frequency range
(50-150 Hz). This consistency indicates that the proposed
model excels at recovering the frequency components of
low-resolution seismic images. The U-Netalso approximates
the ground truth with reasonable accuracy across some
frequencies; however, it shows discrepancies at specific
frequency points, especially in the high-frequency band.
These discrepancies suggest that the U-Net is less effective
than the proposed approach in recovering high-frequency
components. In addition, Table 2 provides the evaluation
metrics for the super-resolution prediction results of the
synthetic data using the U-Net and the proposed method.
The results demonstrate that the proposed model achieves
significantly superior performance compared to U-Net in
terms of PSNR, SSIM, and root mean square error. These
findings corroborate the results presented in Figures 3-5.

3.3. Field data testing

To further verify the performance of GMLAN on field
data, we selected a seismic image from the Netherlands
F3 seismic survey for testing. The data, consisting of 512
traces contaminated by noise, were used as the input low-
resolution seismic images. There is no ground truth for the
field data. As shown in Figure 6, Figure 6A presents the field
data from the Netherlands F3 block, Figure 6B illustrates the
prediction result of the U-Net, and Figure 6C displays the
prediction result of the proposed approach. Figures 6D-F
are the coherence maps corresponding to Figure 6A-C,
respectively. From the seismic images, it is evident that
the prediction result of U-Net (Figure 6B) exhibits
excessive smoothness at the fault locations indicated by
the red arrows within the blue dashed box, leading to the
loss of critical details. In contrast, the proposed method
(Figure 6C) effectively restores the minor faults within the
stratigraphic layers with high clarity. Within the two red
solid boxes, the regions indicated by the red arrows show
the recovered fault edges. The fault edges reconstructed
by U-Net are less distinct compared to those recovered by
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Figure 4. Comparison of seismic coherence results on synthetic data. (A) Coherence map of the low-resolution synthetic data. (B) Coherence map of the
ground truth of the synthetic image. (C) Coherence map of the super-resolution result predicted by U-Net. (D) Coherence map of the super-resolution
result predicted by the grouped-residual and multi-scale large-kernel attention network.
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Figure 5. Spectral comparison for a synthetic seismic image
Abbreviations: GMLAN: Grouped-residual and multi-scale large-kernel
attention network; GT: Ground truth.

GMLAN. In Figure 6A, the position indicated by the blue
arrow within the red solid boxes reveals a faintly discernible
fault structure in the input low-resolution seismic image.
However, as depicted in Figure 6B, the U-Net result
fails to accurately restore this fault structure and instead
incorrectly reconstructs it as a continuous stratigraphic
layer, thereby introducing continuity artifacts into the

Table 2. Comparison of evaluation metrics for
super-resolution results

Method PSNR (dB) SSIM RMSE
U-Net 13.68 0.68 0.25
GMLAN (the proposed model) 19.42 0.89 0.12

Abbreviations: GMLAN: Grouped-residual and multi-scale large-kernel
attention network; PSNR: Peak signal-to-noise ratio; RMSE: Root mean
square error; SSIM: Structural similarity index measure.

super-resolution seismic image. In contrast, Figure 6C
illustrates that GMLAN clearly restores the fault structure.
This comparison with U-Net on field seismic images
underscores the superior detail fidelity and structural
accuracy of GMLAN. Similarly, the coherence maps in
Figure 6 clearly demonstrate that, at the corresponding
positions to the seismic images, the stratigraphic structure
details reconstructed by the proposed model exhibit
notably enhanced resolution and precision. The objective
of super-resolution reconstruction for seismic images was
to preserve low-frequency signals without degradation
while simultaneously expanding the high-frequency
bands. Figure 7 presents the average spectra of the low-
resolution field seismic images and the super-resolution
results reconstructed using the two different methods. In
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Figure 6. Comparison of super-resolution results on field data. (A) The low-resolution field data. (B) The reconstruction result of the U-Net. (C) The super-
resolution reconstruction result of the proposed model. (D) Coherence map corresponding to the low-resolution field data in panel A. (E) Coherence map
corresponding to the U-Net reconstruction result in panel B. (F) Coherence map corresponding to the reconstruction result of the proposed approach in

panel C.
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Figure 7. Comparison of average spectra of super-resolution results on
field seismic images obtained by different methods

the low-frequency range, the proposed approach exhibits
a higher degree of correlation with the low-frequency
components of the low-resolution seismic images. In
contrast, the proposed method not only effectively expands
the high-frequency band but also maintains a significant
superiority in preserving the consistency of low-frequency
information.

In this section, we conduct a comparative analysis
between GMLAN and U-Net across various datasets. These
comparisons consistently demonstrate the superiority
of the proposed method in the context of seismic image
super-resolution  reconstruction.  Furthermore, the
proposed model also demonstrates robust performance on
field data, highlighting its strong generalization capability
and reliability when applied to diverse datasets.

4. Discussion
4.1. Ablation test

In this section, the indispensable contributions of the
network components are verified through ablation
experiments, including the configuration of the number of
stages for the MLKA and the DFE.

First, we removed all MLKA modules from the
network. This variant is referred to as the grouped residual
attention network (GRAN), which was trained using the
same parameter settings and training data. In addition, we
conducted experiments to explore the impact of different
numbers of DFE stages on network performance. The
experiments in this section are summarized as follows:
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(i) GRAN, without MLKA, used to verify the impact
of large-kernel attention on network performance;
(ii) MLKA,, a network with two DFE stages; (iii) MLKA,,
a network with three DFE stages; (iv) MLKA,, a network
with five DFE stages. Given that the proposed network
incorporated four DFE stages, it was designated as MLKA,,.

After determining the number of experiments to be
conducted, we set identical hyperparameters for all four
networks and trained them using the same dataset. The
evaluation metrics for the training results are presented in
Table 3.

From the evaluation results, it can be observed
that the network without MLKA exhibited the poorest
performance. Although MLKA, performed slightly
better than MLKA,, the improvement in PSNR and
SSIM was marginal. This minor enhancement came at

Table 3. Comparison of evaluation index results from
different methods

Method PSNR (dB) SSIM Training time (s)
GRAN 19.20 0.8879 70,104
MLKA, 19.90 0.9080 80,160
MLKA, 20.32 0.9228 83,688
MLKA, 21.98 0.9324 90,744

The proposed model 21.94 0.9321 87,216
(GMLAN/MLKA,)

Note: The subscript attached to “MLKA” denotes the number of deep
feature extraction stages.

Abbreviations: GMLAN: Grouped-residual and multi-scale
large-kernel attention network; MLKA: Multi-scale large-kernel
attention; PSNR: Peak signal-to-noise ratio; SSIM: Structural similarity
index measure.

Trace B
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the cost of an additional 3,528 seconds of training time,
making it computationally inefficient. In contrast, MLKA,
demonstrated a slight advantage over MLKA,, achieving a
1.62db increase in PSNR. This enhancement is considered
reasonable given the moderate increase in training time (an
additional 3,528 s). Overall, the incorporation of MLKA
and the implementation of the four DFE stages prove to be
the optimal configuration.

To further illustrate the rationale and effectiveness
of the proposed network design, we applied the four
methods to the field seismic data for testing. Specifically,
we selected a sample from the Netherlands F3 seismic
survey as the low-resolution input for the network
prediction. The prediction results of each network are
shown in Figure 8.

The yellow dashed boxes in Figure 8 highlight each
model’s capability to recover stratigraphic structures. In
Figure 8B-D, the recovered strata appear overly smooth,
leading to a loss of detailed information. In contrast,
Figures 8E and F demonstrate the recovery of complex
stratigraphic structures, preserving richer details. The
regions indicated by the yellow arrows within the red solid
boxes in Figure 8 show that these areas are reconstructed
as discontinuous strata (Figure 8B-D). However, as
shown in Figure 8A, these positions should represent
continuous stratigraphic structures, accurately depicted
in Figure 8E and F. Compared with Figure 8E, the super-
resolution result in Figure 8F demonstrates that the
proposed approach achieves satisfactory outcomes even
with fewer DFE stages.

To further compare the reconstruction performance
of different networks, we used field data from the Kerry
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Figure 8. F3 field data prediction for networks with different structures. (A) Low-resolution field seismic image. (B) Super-resolution result by the
grouped residual attention network. (C) Super-resolution result by MLKA,. (D) Super-resolution result by MLKA,. (E) Super-resolution result by MLKA,.

(F) Super-resolution result by MLKA,.

Note: The subscript attached to “MLKA” denotes the number of deep feature extraction stages.

Abbreviation: MLKA: Multi-scale large-kernel attention.
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block in New Zealand and extracted 512 traces for testing.
Figure 9 displays the super-resolution results of these
networks.

The yellow dashed boxes in Figure 9 highlight the
stratigraphic recovery results of the different networks.
The positions indicated by the red arrows reveal that
Figure 9B-D fail to clearly delineate the detailed information
of the stratigraphic structures, resulting in overly smooth
reconstructions. In contrast, Figures 9E and F successfully
recover each stratigraphic layer with greater clarity.
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200 400 600 800 1000
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The red solid boxes indicate the fault recovery regions,
with the yellow arrows pointing to small fault structures.
Figure 9B-D fail to recover these minor fault structures,
instead reconstructing them as continuous stratigraphic
layers with folded structures. Conversely, Figure 9E and F
exhibit the highest accuracy in fault recovery.

Opverall, the test and comparative analyses based on
field data demonstrate that MLKA is crucial for improving
the resolution of seismic images and reducing artifacts.
Furthermore, the combined performance across different
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Figure 9. Kerry field data prediction for networks with different structures. (A) Low-resolution field seismic image. (B) Super-resolution result by the
grouped residual attention network. (C) Super-resolution result by MLKA,. (D) Super-resolution result by MLKA,. (E) Super-resolution result by MLKA.
(F) Super-resolution result by the proposed MLKA,.

Note: The subscript attached to “MLKA” denotes the number of deep feature extraction stages.

Abbreviation: MLKA: Multi-scale large-kernel attention.
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Figure 10. Comparison of denoising results for noisy synthetic seismic data at different signal-to-noise ratio (SNR) levels. (A) Noisy seismic data with
SNR = 1 dB. (B) Noisy seismic data with SNR = 5 dB. (C) Noisy seismic data with SNR =15 dB. (D) Denoised result corresponding to panel A. (E) Denoised
result corresponding to panel B. (F) Denoised result corresponding to panel C.
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Figure 11. Test results of deep seismic data super-resolution. (A) Seismic
data from the North Sea Volve Field in Norway. (B) Low-resolution deep
seismic data. (C) Super-resolution result generated by the proposed
approach.

DEFE stage configurations suggests that a four-stage setup
in the DFE component offers the best balance between
accuracy and efficiency. This ablation study validates the
interpretability and robustness of the proposed method.

4.2.Testing on noise robustness

We performed noise robustness assessments using
synthetic seismic data engineered to exhibit distinct
signal-to-noise ratio (SNR) characteristics. Specifically,
we subjected high-resolution synthetic seismic data
to a process of simple downsampling, followed by the
introduction of colored noise at different intensities, as
illustrated in Figure 10. The data represent SNR levels of
1 dB, 5 dB, and 15 dB, corresponding to strong, medium,
and weak noise conditions, respectively.

On examination of the red solid-line boxes in

Figure 10D-E it is evident that the denoising performance
at the strong noise level (1 dB) is less effective compared to
the medium (5 dB) and weak (15 dB) noise levels. Notably,
Figure 10D exhibits discontinuities in layer boundaries
and the presence of artifacts, indicative of the challenges
posed by high noise levels. Although the performance in
low-SNR scenarios has not yet reached an optimal level,
the majority of geological strata, including faults, have been
successfully and clearly reconstructed. Figure 10E and F
demonstrate a clearer restoration of the layer structure,
highlighting the enhanced denoising capabilities of the
proposed model under conditions of moderate and low
noise, respectively. This comparative analysis underscores
the adaptability and robustness of the proposed denoising
technique in mitigating noise and preserving seismic data
integrity across a spectrum of noise environments.

4.3, Testing on deep structures

In the preceding sections, we conducted super-resolution
tests on field seismic data and denoising tests on synthetic
seismic data. To showcase the adaptability of the proposed
methodology, we applied it to the super-resolution of deep
seismic data. In this segment, we selected deep seismic
data from the North Sea Volve Field in Norway for the
experiment, as depicted in Figure 11. The red dashed box
in Figure 11A delineates the specific region of the deep
seismic image that was extracted. This region is depicted
in Figure 11B. The results illustrated in the figure indicate
that the proposed model is effective in restoring layer
boundaries. Within the red solid box, the minor fault
indicated by the red arrow has also been clearly restored.

5. Conclusion

In this study, we propose GMLAN to achieve improved
super-resolution for seismic images by integrating the
benefits of group residual learning and large-kernel
attention mechanisms. GMLAN comprises two primary
components: feature extraction and image super-
resolution reconstruction. Following the feature extraction
phase, residual connections were employed to integrate
the geological morphology and ground inclination
characteristics of the seismic images. Subsequently, the
output was fed into the IRM to produce super-resolution
seismic images. A suite of comparative and ablation
experiments demonstrated that the proposed network
can significantly enhance and restore the high-frequency
details of seismic images while preserving low-frequency
information, indicating that the proposed approach
is both highly effective and precise for seismic image
super-resolution. Furthermore, the proposed method
demonstrated superior noise robustness under different
noise conditions. However, its efficacy in low SNR
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scenarios has yet to be optimized. In future work, the
authors plan to address this issue through two approaches:
(i) implementing a multi-scale framework for adaptive
noise analysis and suppression tailored to seismic data
across various SNR levels; and (ii) developing an adaptive
SNR enhancement strategy that fine-tunes super-resolution
reconstruction parameters based on the input seismic
images’ SNR. By applying these strategies, the authors aim
to substantially boost the proposed model’s performance
in low SNR environments and further enhance the super-
resolution of seismic images.
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