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Abstract
First-arrival picking of seismic data is one of the key steps in seismic data processing. 
When seismic data have low signal-to-noise ratio (SNR) and weak first-arrival energy, 
accurately and efficiently picking first arrivals remain a critical challenge for most 
automatic picking methods. To address this issue, this paper proposes a Multi-
perspective Residual Long Short-Term Memory (M-Res-LSTM) network. This network 
integrates the spatial feature extraction advantage of Residual Networks and the 
temporal dynamic modeling capability of LSTM networks, while introducing a 
coordinate attention mechanism. Through multi-perspective learning in both time 
and frequency domains, it effectively improves the reliability of automatic first-arrival 
picking. First, this paper elaborates on the core principle of the M-Res-LSTM network 
for automatic first-arrival picking: the amplitude, frequency, and phase features 
of seismic data are used as network inputs, and the accurately picked first arrivals 
manually serve as network outputs. After training the network using a supervised 
learning approach, the well-trained model is applied to perform automatic first-
arrival picking. Second, an analysis of the network’s hyperparameters is conducted 
to determine the optimal parameter configuration. Finally, automatic first-arrival 
picking tests are carried out on seismic datasets with different characteristics, and 
the picking results are compared with those obtained by the energy ratio method, 
single-input Res-LSTM, and Swin-Transformer. The results demonstrate that the 
proposed M-Res-LSTM method maintains good stability and accuracy even in 
complex scenarios with low first-arrival energy and poor SNR.

Keywords: Automatic first-arrival picking; Time-frequency dual domain; 
Multi-perspective learning; Res-LSTM; Attention mechanism

1. Introduction
First-arrival waves refer to the seismic waves that propagate through subsurface media 
and reach geophones first, typically existing in the form of direct waves or refracted 
waves. In the seismic data processing workflow, the travel time of first-arrival waves is 
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of crucial significance, as it can provide core foundational 
data for near-surface inversion work. Although the 
method of manual picking of the first arrival has high 
accuracy, it is time-consuming and labor-intensive. 
Moreover, the accuracy of the picking is also affected by 
the experience of the interpreters.1 To pick the first arrivals 
efficiently and accurately and reduce the workload of data 
processing personnel, scholars have proposed different 
semi-automatic or automatic first-arrival picking methods.

Given the similar characteristics of adjacent traces, 
existing studies have proposed a method to determine 
the first-arrival time through cross-correlation operations 
between adjacent traces.2-4 The selection of the standard 
trace has a great influence on the first-arrival picking results 
of this type of method, and its effect needs to be further 
improved when the signal-to-noise ratio (SNR) of the 
data is low. The algorithm based on energy characteristics 
possesses robust anti-noise performance and achieves 
favorable automatic picking results, and has also achieved 
good results in the processing of actual data.5-8 Since this 
method is greatly affected by the window length, many 
picking methods based on multiple time windows have also 
been developed.9,10 Another common method is the Akaike 
Information Criterion (AIC), which discriminates the first 
arrivals using the difference in AIC values between the 
seismic signal and the noise.11-13 However, the picking results 
are not satisfactory under a low SNR. The fractal dimension 
algorithm14-17 has relatively good anti-noise ability, but it 
does not take into account the similarity between seismic 
traces. Clustering-based methods identify first arrivals in an 
unsupervised manner based on the characteristic differences 
between first arrivals and noise. However, the inherent 
temporal connections between different subsequences 
are not considered, making it difficult to distinguish low-
amplitude signals from noise under low SNR conditions.18,19

Transforming seismic signals into other domains or 
spaces can further highlight the differences between first-
arrival waves and noises. Performing τ-p transformation,20 
wavelet transformation,21 shearlet transformation,22-24 etc., 
are also commonly used means to enhance the precision 
of first-arrival picking; Beyond the common shot gather, 
picking first arrivals on common offset gathers and 
common receiver gathers also offers distinct advantages.5,25 
In addition to time-space domain signals, neural networks 
incorporate attributes such as amplitude, frequency, time-
frequency characteristics, short-term average/long-term 
average (STA/LTA) ratios, and data distribution skewness 
as inputs,26-31 thereby facilitating more effective capture of 
relevant features by the networks.

Deep learning can efficiently extract the internal laws 
of data, construct multi-level data representations, and is 

more friendly to massive data. Leveraging the capabilities 
of generative adversarial networks,32 convolutional neural 
networks,1,33 UNet,34-37 recurrent neural networks, meta-
learning,38,39 transformers,40-42 transfer learning,43 and 
various hybrid networks38,44 in extracting complex features 
from seismic data, deep learning algorithms have emerged 
as a critical force in the picking of seismic first arrivals. 
Similar to conventional methods, to further improve the 
picking accuracy, scholars have attempted to input data 
with different attributes into the network, such as time-
frequency domain data and STA/LTA feature maps.44,45 The 
rich data features provide more information references for 
the model.

Studies indicate that current first-arrival picking 
operations are typically performed exclusively within either 
the time-space domain or a single transformed domain. 
The energy features and time-frequency features of seismic 
data serve as valid criteria for first-arrival identification, 
and the integration of multiple sets of feature data can, 
further, enhance the precision of first-arrival extraction. 
Building on this insight, this study comprehensively 
leverages the data features from both the time domain and 
frequency domain, proposes a Multi-perspective Residual 
Long Short-Term Memory (M-Res-LSTM) network 
tailored for first-arrival picking, and elaborates in detail on 
the complete workflow of automatic first-arrival picking. 
Finally, experiments on automatic first-arrival picking 
were conducted on real seismic datasets with distinct 
characteristics using this network, thereby verifying the 
effectiveness of the proposed method.

2. Methods
2.1. Network architecture

To fully leverage the spatiotemporal and time-frequency 
characteristics of seismic signals, this study proposes the 
M-Res-LSTM network for automatic first-arrival picking. 
Figure 1 shows its structural schematic with key features.

2.1.1. Branch structure

The network comprises four parallel branch modules, 
each consisting of m residual modules and n residual 
LSTM modules. These branches process four types of two-
dimensional (2D) input data, namely, time-space domain 
seismic signals, instantaneous amplitude, frequency, 
and phase features, thereby enabling multi-perspective 
extraction of seismic information. A  parameter-sharing 
mechanism between LSTM branches enhances training 
efficiency and generalization.

Residual modules retain spatial information through 
shortcut paths, mitigating degradation in deep networks 
through direct gradient flow.46 For seismic data, this 
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preserves inter-trace correlations and nonlinear spatial 
features. For input data X R kk H W� �� , , , ,1 2 3 4 , the output 
of the i-th residual layer is:

Z X F X i mi
res

k i k res
i� � � � �, , ,� 1 2 � (I)

Where Fi denotes nonlinear transformations 
(convolution, batch normalization, and activation) with 
parameters θres

i .

Following residual processing, outputs are converted 
to sequences for residual LSTM modules. LSTM’s gating 
mechanisms (input, forget, and output) capture temporal 
dynamics. For n residual LSTM layers, the recurrence 
relation is:

h x LSTM x x j nj
t

j
t

t
j

j
t

j� � � � ��1 1 2, , , ,�  � (II)

where hj
t is the hidden state of the j-th layer at time t, ϕj 

are layer parameters, and the n-th layer output hn
t represents 

temporal features, which are reshaped to 2D for fusion.

2.1.2. Coordinate attention module

To adapt to the requirements of the first-arrival picking task, 
multi-domain features extracted from the four branches 
are fused through the coordinate attention mechanism.47 
Unlike the standard coordinate attention, the proposed 

method first extracts multi-dimensional visual features 
tailored to the task characteristics, then assigns adaptive 
weights to enhance critical information. Meanwhile, 
it not only additionally designs a convolutional gating 
structure specifically for suppressing high-amplitude 
noise in seismic data but also further integrates a residual 
connection to prevent first-arrival signals from being 
excessively suppressed. The detailed process is as follows:

First, global pooling is performed on the concatenated 
feature F RH W C� � �  along the width (W) and height (H) 
directions:

z k
W

F h i k z
H

F j kh w j Hj W� � � � � � � � � �� �� � ��1 1
00

, , , , ,� � �
� (III)

After aligning the dimensions of xw with xh through a 
transposition operation, the two are concatenated along 
the height direction. The concatenated result is processed 
by a custom activation function and 1×1 convolution to 
obtain the feature m. The processed feature m is split into 
height-related and width-related components. Meanwhile, 
a convolutional gating structure is designed based on the 
original branch features to generate a screening mask gi. 
Finally, branch attention weights are generated and fused:

branch att
a a

gh w
i_ �

�
2

 � (IV)

Figure 1. Schematic diagram of the M-Res-LSTM network model structure. “m” and “n” represent the numbers of Residual Networks and LSTM modules, 
respectively.
Abbreviation: LSTM: Long Short-Term Memory; M-Res-LSTM: Multi-perspective Residual Long Short-Term Memory; Res-LSTM: Residual Long Short-
Term Memory.
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Here, ah and aw are the branch attention weights, 
respectively; and e denotes element-wise multiplication.

Each branch feature is multiplied by its corresponding 
attention weight, and the weighted branch features are 
summed to obtain a fused representation:

( )=
=∑ 4

1
_fused i ii

F b branch att• � (V)

Where bi is the feature of the i-th branch, and branch_
atti is its corresponding attention weight.

This process not only retains the feature advantages 
of each branch in specific domains but also mitigates the 
interference of redundant information and noise through 
weight modulation.

To further focus on regions with concentrated first-
arrival wave energy, coordinate attention computation 
is re-applied to Ffused: first, global average pooling is 
performed along the width and height directions, with the 
pooling formulas as follows:

� � � � � � � � � � � �� �� � ��z k
W

F h i k z
H

F j kh fused w fusedj Hj W

1 1
00

, , , , ,� �  
� (VI)

After dimension alignment, feature concatenation, 
channel compression, and component splitting, the 
base spatial attention weights ch and cw are obtained. 
Concurrently, a convolutional gating structure is designed 
based on Ffused to generate the spatial screening mask gs. The 
spatially attentive weights with enhanced noise robustness 
are derived through the following formulas:

� �� �c g c gh s w s , � (VII)

Finally, the spatial attention weights are combined with 
Ffused through residual connection to enhance the signals in 
key regions. The calculation formula for the final output 
feature F̂  is as follows:
˘ , , , , , , , ,F h k F h i k F h i k h k kfused fused� � � �� � � � � � � � � � � � � � �

� (VIII)

By generating screening masks with the same dimension 
as the attention weights through convolutional gating, this 
method can effectively suppress high-amplitude noise in 
seismic data, accurately focus on regions with significant 
first-arrival wave energy variations, and remarkably 
improve the processing performance of seismic data with 
low SNR.

2.1.3. Output layer

Fused features F̂ are passed through two convolution layers 
and a Softmax activation to predict first-arrival positions:

( )( )( )ω ω= 2 1 1 2
ˆmax , ,P Soft Conv Conv F � (IX)

Where ω1, ω2 are convolution parameters.

The network takes the amplitude, frequency, and phase 
characteristics of seismic data as inputs and incorporates 
a coordinate attention mechanism to achieve feature 
fusion across different branches. By assigning distinct 
weights to multiple features, it allocates varying levels of 
attention to them, thereby enhancing task-critical features 
while suppressing those irrelevant to the current task. This 
mechanism effectively mitigates the mispicking of first 
arrivals.

In recent studies, a multitude of innovative networks 
have been proposed for seismic first-arrival picking, 
including those based on Transformer,40 meta-learning,38 
and multi-stage network45 architectures. Table  1 presents 
a comparison between the method proposed in this study 
and the aforementioned methods, focusing on their 
characteristics including network architecture, input, 
advantages, and dependency conditions.

Compared with other networks, M-Res-LSTM still 
possesses unique characteristics and advantages:
(i)	 In terms of feature input types, M-Res-LSTM 

innovatively incorporates amplitude, frequency, and 
phase information, providing more comprehensive 
feature support for first-arrival picking

(ii)	 M-Res-LSTM introduces the coordinate attention 
mechanism, which includes a time-frequency domain 
weight allocation layer. By calculating the weights of 
time-domain and frequency-domain features, it can 
more accurately capture key information in the time-
frequency domain and improve the ability to identify 
weak first-arrival signals and the like

(iii)	In terms of feature fusion methods, M-Res-LSTM 
employs parallel branches and adaptive weight fusion, 
enabling collaborative optimization of multi-domain 
features such as time and frequency, thus enhancing 
the effectiveness and flexibility of feature fusion.

2.2. Dataset and training

To apply the M-Res-LSTM network for automatic first-
arrival picking, seismic data are first transformed to 
generate profiles containing amplitude, phase, and 
frequency features. Subsequently, these feature profiles are 
partitioned into three subsets: the training set, validation 
set, and test set, with the respective proportions accounting 
for 80%, 10%, and 10% of the total dataset, respectively. 
Finally, the network is trained using the training set, the 
optimal generalization of the model is achieved on the 
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validation set, and the first-arrival picking test is carried out 
on the test set. In this study, common shot gather records 
are selected as the original seismic data. Theoretically, 
common receiver gather records, common offset gather 
records, and common midpoint gather records are all 
optional. The main steps of the model training process are 
described as follows.

2.2.1. Generation of feature profiles

The three instantaneous profiles calculated using the Hilbert 
transform can reflect various characteristics of seismic data. 
The analytic signal of a seismic signal can be expressed as:48

x t x t ix t� � � � � � � �* � (X)

Where x(t) denotes the real component of the complex 
trace, corresponding to the actual seismic record trace; 
x* (t) represents the imaginary component of the complex 
trace, which is orthogonal to the real component.

Instantaneous amplitude reflects the energy intensity 
of a seismic signal at a certain moment, which is usually 
related to the reflection coefficient of the stratum. A high 
instantaneous amplitude may indicate lithologic abrupt 
changes or the presence of fluids.49 Instantaneous amplitude 
can be expressed as:

A t x t x t� � � � � � � �2 2* � (XI)

Instantaneous phase describes the phase state of 
a signal, which can identify stratal continuity and 

structural features. Abrupt changes may indicate faults or 
unconformities:

� t tg x t x t� � � � � � ��� ��
�1 * / � (XII)

Instantaneous frequency is the time rate of change 
of the phase and can assist in identifying lithology and 
predicting reservoirs:

� �t d t dt� � � � � / � (XIII)

In the first-arrival picking process, the energy 
mutation points of instantaneous amplitude facilitate 
the identification of the first-arrival wavefront; the jump 
characteristics of instantaneous phase can enhance the 
identification of interfaces at the first-arrival time; and 
the high-frequency concentration characteristics of 
instantaneous frequency help distinguish signal differences 
between first-arrival waves and subsequent reflected waves, 
thereby providing abundant information for improving the 
accuracy of first-arrival picking.

Since first arrivals correspond to the high-amplitude 
signals first received by geophones in seismic records, 
amplitude serves as their primary characteristic. However, 
seismic data may contain noise with frequency and phase 
similar to those of effective signals. To suppress such noise, 
it is necessary to constrain the instantaneous frequency 
and instantaneous phase through amplitude (i.e., seismic 
data) to obtain frequency and phase characteristic data.

Table 1. Comparison of different network features

Comparison M‑Res‑LSTM Res‑LSTM Swin‑Transformer40 Meta‑learning38 MSSPN45

Architecture Multi‑branch parallel 
architecture and realizing 
dynamic fusion of 
time‑frequency dual‑domain 
features via the coordinate 
attention mechanism

Single‑branch 
cascaded 
architecture

U‑shaped hierarchical 
self‑attention architecture

Dual‑loop 
meta‑training 
framework

Four‑stage cascaded 
segmentation architecture

Input Spatiotemporal signals, 
amplitude, frequency, phase

Spatiotemporal 
domain signals

Spatiotemporal domain 
signals

Spatiotemporal domain 
signals

Spatiotemporal domain 
signals and STA/LTA 
feature maps

Advantages Multi‑input supports the 
attention mechanism for 
accurate noise suppression; 
residual‑temporal modeling 
adapts to seismic wave 
propagation

Concise architecture, 
low computational 
overhead, and easy 
reproduction

SW‑MSA adapts to 
drastic changes in local 
first arrivals; Dilated 
convolution expands the 
receptive field

Only 5–20% of manual 
labels are required, 
reducing costs; weight 
matrix filters label noise

VCTE effectively narrows 
the first‑arrival range; 
mixed loss enhances the 
continuity of first arrivals

Dependency 
Conditions

High‑quality labels High‑quality labels High‑quality labels Allowing partial 
low‑quality labels

Requiring prior 
information and 
high‑quality labels

Abbreviations: LTA: Long‑term average; LSTM: Long‑Short‑Term Memory; M‑Res‑LSTM: Multi‑perspective Residual Long‑Short‑Term Memory; 
MSSPN: Multistage segmentation picking network; Res‑LSTM: Residual Long‑Short Term Memory; SW‑MSA: Shifted window‑multihead 
self‑attention; STA: Short‑term average; VCTE: Velocity‑constrained trend estimation.
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2.2.2. Data normalization and cropping

Seismic data and feature data exhibit differences in 
dimensions and numerical magnitudes, so it is necessary 
to normalize all types of data to enable the network to 
better capture the first-arrival features. In this study, 
the maximum absolute value normalization method is 
adopted, defined as follows:

x x abs x= / max( ( )) � (XIV)

Before the network training, the seismic data are 
segmented into a size of 256 × 256, so as to speed 
up the training process and eliminate unnecessary 
information.

2.2.3. Network training

Typically, identifying the actual location of the first arrivals 
(i.e., the onset) poses a challenge. Therefore, in practical 
processing, a fixed phase (such as a wave crest or a wave 
trough) is selected as the first-arrival position.5 In this 
study, the network treats first-arrival picking as a binary 
segmentation task. During sample preparation, the first 
peak value of the first-arrival wave is taken as the first-
arrival position and labeled as 1 (the first category), while 
positions corresponding to all other time points are labeled 
as 0 (the second category). Accordingly, the network 
employs a binary cross-entropy loss function to quantify 
the discrepancy between the network output and the labels 
for classification purposes. The loss is defined as the sum 
of the losses of all pixels in the training samples within a 
mini-batch, expressed as follows:

Loss
N

y p y y p yi
i

N

i i� � � �� � � �� � � � �� �
�
�1 1 1

1

log log � (XV)

Where y stands for the binary label (either 0 or 1), while 
p(y) denotes the probability that the output corresponds to 
label y.

The network undergoes training through the Adaptive 
Moment Estimation (Adam) algorithm,50 combined with 
the back-propagation approach. When the validation set 
loss decreases and stays stable over a certain number of 
iteration cycles, training halts, and the weights are saved 
as training results. The saved optimal weights are then 
applied to predict the first arrivals in the test set according 
to a specific formula:

y xtest opt test� � �� � ,  (XVI)

With Φ representing the function of the network.

2.2.4. Performance evaluation

Pixel accuracy serves as a widely used indicator in semantic 
segmentation,51 defined as the proportion of correctly 
labeled pixels relative to the total number of pixels:

PA p pii
i

k

ij
j

k

i

k

�
� ��
� ��

0 00

/ � (XVII)

Where pii represents the quantity of pixels for which 
class i is inferred as class i, and pij

j

k

i

k

��
��

00

 represents all the 
pixel points.

After processing by the deep learning network, the 
probability of a point being a first arrival ranges from 
0 to 1 (with a maximum of 1 and a minimum of 0). To 
determine the first-arrival position, thresholding is first 
applied to all seismic traces: if a trace contains no points 
with probability exceeding the threshold, the entire trace 
is discarded. For traces containing points with probability 
exceeding the threshold, the position corresponding to the 
original maximum probability is designated as the first-
arrival position. Verified through tests on multiple datasets 
with distinct characteristics, the model achieves optimal 
overall performance when the threshold is set to 0.4.

2.2.5. Hyperparameter analysis

The first-arrival picking results of the M-Res-LSTM network 
are affected by hyperparameters. Therefore, during the 
process of training the model, we conducted experiments 
on some parameters, including the learning rate, the size 
of the kernel matrix, batch size, and the network depth. 
During the experiments, only the parameter being tested 
was changed while other parameters remained the same, 
and the optimal parameters were determined according 
to the pixel accuracy value of the validation set. The test 
results are shown in Figure 2.

Through the experiments, it can be seen that an overly 
large learning rate will make it difficult for the network 
to converge, and the phenomenon of back-and-forth 
oscillation will occur. For this data, a learning rate of 
0.005 has the best effect, as shown in Figure  2A; as 
illustrated in Figure  2B, when the kernel matrix size is 
5 × 5 of Residual Networks (ResNet), the model achieves 
the highest accuracy along with a fast convergence rate; 
Figure 2C shows that a larger batch size results in better 
generalization performance, though it accordingly 
demands more computation time and memory capacity. 
Using the network structures of 4×ResNet + 4×lstm 
and 5×ResNet + 5×lstm can both achieve relatively 
good accuracy, but a deeper network means that more 
memory will be occupied (Figure 2D). Table 2 shows the 
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pixel accuracy values obtained with different parameters 
when 50 epochs of iteration are carried out. Considering 
comprehensively the changing trend of the pixel accuracy 
value with the epoch (Figure  2) and the final accuracy 
(Table 2), the network will be trained with the parameters 
of kernel size = 5×5, learning rate = 0.005, batch size = 4, 
and 4×ResNet + 4×lstm. This parameter combination is 
expected to obtain the optimal convergence effect.

Table 3 elaborates on the parameter configurations of 
each module within the M-Res-LSTM network, including 
the input/output dimensions, channel numbers, and kernel 
sizes for submodules such as ResNet, LSTM, and coordinate 
attention. It provides a detailed technical blueprint for the 
network’s architecture, with a total parameter quantity of 
5.73 million, thus enabling the network to efficiently tackle 
seismic data processing tasks.

3. Results and discussion
We utilized the M-Res-LSTM network to perform first-
arrival picking on three sets of real seismic data with 
distinct characteristics, and compared its prediction 
results with those from manual picking and the traditional 
energy ratio method. All the training was conducted on 
a single NVIDIA GeForce GTX 1080 Ti GPU, using the 
TensorFlow framework.

3.1. Data 1

Data 1 consists of small-scale 3D seismic data acquired 
in a plain area using dynamite sources. For each shot, 10 
receiver arrays were designed, with 60 geophones deployed 
in each array, and the maximum offset is 1200 m. Each trace 
of the acquired data contains 501 sampling points, with a 
sampling interval set to 4 ms, and the effective recording 
duration of each trace is 2 s. The work area features hilly 
terrain, with surface elevation varying in the range of 
92–160 m. Due to the limited coverage range of a single 
shot, the impact of topographic relief is relatively minor, 
and the first arrivals of seismic waves exhibit an overall 
smooth characteristic, providing a favorable foundation 
for first-arrival picking. It should be specifically noted 

Figure 2. Pixel accuracy curves corresponding to various hyperparameters. (A) Curves of accuracy under different learning rates. (B) Accuracy curves with 
varying kernel matrix sizes. (C) Accuracy curves for different batch sizes. (D) Accuracy curves across different model depths.

DC

BA

Table 2. Experimental results of hyperparameters at the 
50th epoch

Hyperparameters Variants PA

Learning rate 0.01 0.981

0.005 0.987

0.001 0.984

0.0005 0.977

Batch size 1 0.976

2 0.987

4 0.987

8 0.986

Kernel size (3,3) 0.982

(5,5) 0.987

(7,7) 0.985

Network depth 2+2 0.979

3+3 0.976

4+4 0.987

5+5 0.984

Notes: Values in boldface represent the values corresponding to the 
optimal performance for each hyperparameter.
Abbreviation: PA: Pixel accuracy.
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that the acquired seismic data contain strong industrial 
electrical interference and mechanical interference, and 
such interference signals have exerted a significant impact 
on first-arrival picking for some seismic traces.

The results of the energy ratio method (blue circles), 
manual picking (green triangles), and M-Res-LSTM 
(red triangles) are displayed on a representative single 
shot record, as shown in Figure  3. When the seismic 
trace contains clear first arrivals that can be identified 
manually, the results of M-Res-LSTM are consistent 
with those of manual picking. When the first arrivals are 
indistinguishable even to human interpreters (often due to 
strong abnormal noise), the model fails to pick them. This 
is because training labels cannot provide corresponding 
first-arrival positions for such unidentifiable traces. The 
energy ratio method attempts to pick every seismic trace, 
resulting in messy outputs for traces with unrecognizable 
first arrivals. It is reasonable to abandon picking for traces 
where first arrivals are unidentifiable (even manually) 
than to generate incorrect picks, as erroneous first arrivals 
significantly impact velocity modeling, while the absence of 
a small number of picks has minimal effect on subsequent 
processing.

Figure 4 shows the projections of the first-arrival time 
on the seismic data, instantaneous amplitude, frequency 
characteristic profile, and phase characteristic profile. 
After zooming in on the data in the red box, it can be seen 
that the first arrivals are located at the position of the first 

continuous strong amplitude and has similar phase and 
frequency characteristics. The method proposed in this 
paper can accurately pick the first arrivals through these 
characteristics. Figure 5 shows the absolute error of each 
seismic trace relative to the result of manual picking (only 
comparing the picked seismic traces). It can be seen from 
the absolute error that the picking effect of the energy ratio 
method is not as good as that of M-Res-LSTM.

3.2. Data 2

Data 2 used in this study is 2D seismic data acquired in a 
loess tableland area with dynamite sources. Each shot has 
800 receiver channels, and the maximum offset is 8000 m. 
Each trace contains 751 sampling points with a sampling 
interval of 2 ms. From the perspective of the work area’s 
geological conditions and data characteristics, the thickness 
of the loess layer in the work area varies significantly, with 
surface elevation ranging from 1200 to 1800  m and a 
maximum elevation difference of 600 m in the region. The 
severe topographic relief exerts a significant impact on the 
propagation path of seismic waves—not only causing the 
first-arrival phase within a single shot to be significantly 
disturbed by terrain but also leading to a large first-arrival 
time difference between adjacent receiver channels, which 
increases the basic difficulty of first-arrival picking. More 
critically, affected by the strong scattering of the loess layer 
itself and the energy attenuation of seismic waves, the 
first-arrival energy of the acquired data is generally weak, 
with unobvious onset characteristics. This has become the 

Figure 3. Data 1. (A) Original seismic record. (B) Picking results.

BA

Table 3. Detailed parameter table of each module in the M‑Res‑LSTM network

Network module Submodule Input dimension Output dimension Channel Kernel size

Branch 1/2/3/4 ResNet 256×256×1 256×256×2 [256,128,64,32,16,8,4,2] 5×5

LSTM 256×512 256×256×2 ‑ ‑

Feature fusion Coordinate attention 4×[256×256×2] 256×256×4 4 1×1

Output layer Convolutional Layer1 256×256×4 256×256×2 2 3×3

Convolutional Layer2 256×256×2 256×256×1 1 1×1

Note: Parameter quantity=5.73 million.
Abbreviation: LSTM: Long Short‑Term Memory.
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core difficulty in first-arrival picking for this dataset: most 
conventional picking methods tend to mistakenly identify 
subsequent phases after the first arrival as the first arrival, 
resulting in deviations in picking results.

Figure  6A presents a typical original profile, while 
Figure  6B displays the picking results obtained through 
manual picking (green triangles), the energy ratio method 

(blue circles), and the method proposed in this paper 
(red triangles). As observed from the picking results, the 
proposed method exhibits high consistency with manual 

Figure 5. Absolute errors of the picking results between the energy ratio 
method and the method proposed in this paper (for Data 1)

Figure 6. Data 2. (A) Original seismic record. (B) Picking results.

B

A

Figure 4. Projections of the seismic first arrivals on Data 1. (A) Original seismic record. (B) Instantaneous amplitude. (C) Frequency characteristic data. 
(D) Phase characteristic data.
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picking, whereas the energy ratio method erroneously 
identifies the position of the second peak (with stronger 
energy) as the first arrival. In addition, the proposed 
method successfully picks a small number of noisy traces in 
the seismic profile (at the position of the red arrow). This is 
attributed to the adoption of multi-trace input for training, 
enabling the network to infer first-arrival positions based 
on the characteristics of adjacent traces—analogous to the 
logic of manual picking. Figure  7 illustrates the absolute 

errors of the picking results of the two methods. Since the 
energy ratio method regards the second peak as the first 
arrivals, it has a relatively large absolute error. Similarly, 
by projecting the first-arrival time onto the seismic data, 
instantaneous amplitude, frequency characteristic profile, 
and phase characteristic profile (Figure 8), it can be seen 
that the first arrivals exhibit good consistency with these 
profiles. On magnification (within the white square), the 
proposed network is shown to accurately capture the 
amplitude, phase, and frequency characteristics of the first 
arrivals. Under the joint constraints of these three aspects, 
the accuracy of the picking is ensured.

3.3. Data 3

Data 3 is 3D seismic data acquired in the marginal area 
of a basin using a vibroseis source. For each shot, 30 
receiver arrays were designed, with each array containing 
170 receiver channels; the maximum offset exceeds 
5000 m, enabling wide-range coverage of deep geological 
structures. However, due to the inherent limitation of the 
vibroseis source, namely, its limited excitation energy, the 
effective seismic wave energy received by geophones far 
from the source is significantly weakened, resulting in a 
relatively low overall SNR of the data. From the perspective 
of the work area’s geological and topographic conditions, 
this region features a typical piedmont zone landscape, 
with extremely severe surface elevation relief: the elevation 

Figure 7. Absolute errors of the picking results between the energy ratio 
method and the method proposed in this paper (for Data 2)

Figure 8. Projections of the seismic first arrivals on Data 2. (A) Original seismic record. (B) Instantaneous amplitude. (C) Frequency characteristic data. 
(D) Phase characteristic data.
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ranges from 300 to 1500 m, and the maximum elevation 
difference in the area reaches 1200  m. Such severe 
topographic relief leads to a significant increase in the first-
arrival time difference between adjacent receiver channels. 
Combined with the data’s inherent issues—weak first-
arrival energy and strong noise interference—this further 
complicates first-arrival picking.

To verify the cross-work area generalization ability 
of M-Res-LSTM, the model trained on Data 1 and Data 
2 was directly transferred to Data 3 without any fine-
tuning. Figure  9A shows a typical shot gather of Data 3, 
from which it can be seen that the first-arrival signals of 
some receiver channels are completely submerged in noise, 
and the energy difference between the first arrivals and 
background noise is small. Figure 9B compares the picking 
results of manual picking (yellow triangles), the energy 
ratio method (green triangles), and the proposed M-Res-
LSTM in this study (red triangles). In Data 3, the energy 
ratio method is significantly affected by noise; in contrast, 
relying on the time-frequency dual-domain multi-feature 
constraint and coordinate attention mechanism, M-Res-
LSTM still achieves favorable picking performance.

Figure 10 presents the absolute errors of the proposed 
method relative to manual picking (only valid picked 
channels are counted). The average absolute error of the 
energy ratio method reaches 5.9 ms, with the maximum 
error exceeding 150 ms, which is far beyond the acceptable 
range for seismic processing. In contrast, the average 
absolute error of M-Res-LSTM is only 1.34 ms, and 
the error of more than 87% of the gathers is controlled 
within 5 ms, which meets the accuracy requirements 
for near-surface inversion. These results indicate that by 
virtue of multi-domain feature learning and the attention 
mechanism, M-Res-LSTM effectively avoids overfitting 
to the features of the training work areas and can adapt 
to new work areas with significantly different geological 
conditions and noise levels.

3.4. Comparison against deep learning-driven first-
arrival picking methods

To further verify the effectiveness of the proposed method, 
this study conducted deep learning-based tests on 
1,000,000 seismic traces collected from multiple distinct 
work areas, in addition to testing traditional methods. 
The evaluation metrics selected include pixel accuracy, 
F1-score, first-arrival time deviation (characterized by 
mean absolute error, MAE), picking rate, and single-trace 
picking time (unit: milliseconds per trace),40,45 which 
are used to comprehensively assess the performance of 
different networks in the seismic first-arrival picking task. 
Table  4 presents the performance differences between 

Table 4. Comparison of picking results of different networks

Network PA F1‑score MAE 
(ms)

Picking 
rate (%)

Time 
(ms/trace)

Res‑LSTM 0.975 0.942 7.8 92.1 0.65

Swin‑Transformer 0.983 0.965 6.5 92.7 0.77

M‑Res‑LSTM 0.985 0.964 5.9 93.4 0.73

Abbreviation: M‑Res‑LSTM: Multi‑perspective Residual Long 
Short‑Term Memory; MAE: Mean absolute error; PA: Pixel accuracy; 
Res‑LSTM: Residual Long‑Short Term Memory.

Figure 10. Absolute errors of the picking results between the energy 
ratio method and the method proposed in this paper (for Data 3)

Figure 9. Data 3. (A) Original seismic record. (B) Picking results.
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the proposed M-Res-LSTM network, Res-LSTM-based 
networks, and Swin-Transformer-based networks40 in 
seismic first-arrival picking.

Although Res-LSTM integrates the advantages of 
ResNet and LSTM networks, its simple cascaded structure 
prevents it from fully exploiting multi-dimensional 
information, resulting in limited overall performance and 
the lowest values across all metrics. Swin-Transformer 
achieves the highest F1-score by virtue of its self-attention 
mechanism; however, its single-input design restricts 
multi-domain feature fusion capability, and the high 
computational complexity of the self-attention mechanism 
causes it to underperform M-Res-LSTM in both first-
arrival time accuracy and picking comprehensiveness.

The proposed M-Res-LSTM network in this study 
processes spatiotemporal signals, amplitude, frequency, 
and phase features in parallel through its multi-branch 
structure and coordinate attention mechanism, enabling 
comprehensive capture of spatiotemporal features. As 
shown in the table data, except for a slightly lower F1-score 
than Swin-Transformer, M-Res-LSTM outperforms 
Swin-Transformer in PA, picking rate, and single-trace 
picking time, with the first-arrival time deviation as low 
as 5.9 ms. This indicates that while ensuring classification 
accuracy comparable to Swin-Transformer, M-Res-LSTM 
achieves better performance in picking efficiency, picking 
comprehensiveness, and time accuracy through multi-
domain feature parallel processing and efficient structural 
design. It fully verifies the effectiveness of the multi-branch 
structure and coordinates attention mechanism in the 
seismic first-arrival picking task, and can better balance 
accuracy, efficiency, and robustness.

4. Conclusion
The M-Res-LSTM network enables high-precision 
automatic picking of seismic first arrivals using time-
frequency dual-domain features and an attention 
mechanism. Its multi-branch architecture supports 
parallel processing of amplitude, frequency, and phase 
features, thereby fully exploiting the multi-dimensional 
discriminative information inherent in seismic signals. 
The combination of residual modules and LSTM not only 
solves the degradation problem of deep networks but also 
strengthens the joint capture of spatiotemporal features. 
The coordinate attention mechanism effectively suppresses 
noise interference by dynamically adjusting feature 
weights, reducing the impact of incorrect first arrivals on 
subsequent velocity modeling.

Compared with traditional methods, manual picking 
achieves relatively high accuracy but suffers from the 
drawbacks of being time-consuming and labor-intensive. 

Furthermore, its results are significantly influenced by the 
experience of interpreters, making it difficult to meet the 
requirements of large-scale data processing. In contrast, 
the traditional energy ratio method enables automated 
processing yet is highly sensitive to the SNR of data, 
and tends to produce disorganized picking results or 
misjudgments in low-SNR scenarios. When compared 
with existing deep learning methods, the M-Res-LSTM 
network, leveraging a multi-feature parallel processing 
mechanism, exhibits superior robustness in practical 
applications compared to the single-branch Res-LSTM 
network. Meanwhile, in comparison with the Swin-
Transformer network, although the M-Res-LSTM is 
slightly inferior in terms of pixel accuracy, it demonstrates 
distinct advantages in the average deviation of first-arrival 
time, picking rate, and single-trace computation time, 
thereby effectively balancing the accuracy and efficiency 
of first-arrival picking. Verified through data processing 
across different work areas, the proposed method can 
still obtain relatively ideal picking results even in complex 
scenarios with low SNR and weak first-arrival energy.

M-Res-LSTM adopts an end-to-end training mode, 
requiring no manual intervention. Moreover, as the 
amount of training data increases, its transfer ability to 
data from new work areas is expected to further improve. 
However, the complexity of the network structure makes 
its computation time slightly longer than that of simple 
models. In the future, efficiency can be optimized through 
model lightweighting. In addition, this paper verifies the 
effectiveness of time-frequency dual-domain features. 
Future research can explore fusion methods of more 
features or combine transfer learning to solve the training 
problems in small-sample work areas, promoting the large-
scale application of this method under complex surface 
conditions.
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