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Abstract

First-arrival picking of seismic data is one of the key steps in seismic data processing.
When seismic data have low signal-to-noise ratio (SNR) and weak first-arrival energy,
accurately and efficiently picking first arrivals remain a critical challenge for most
automatic picking methods. To address this issue, this paper proposes a Multi-
perspective Residual Long Short-Term Memory (M-Res-LSTM) network. This network
integrates the spatial feature extraction advantage of Residual Networks and the
temporal dynamic modeling capability of LSTM networks, while introducing a
coordinate attention mechanism. Through multi-perspective learning in both time
and frequency domains, it effectively improves the reliability of automatic first-arrival
picking. First, this paper elaborates on the core principle of the M-Res-LSTM network
for automatic first-arrival picking: the amplitude, frequency, and phase features
of seismic data are used as network inputs, and the accurately picked first arrivals
manually serve as network outputs. After training the network using a supervised
learning approach, the well-trained model is applied to perform automatic first-
arrival picking. Second, an analysis of the network’s hyperparameters is conducted
to determine the optimal parameter configuration. Finally, automatic first-arrival
picking tests are carried out on seismic datasets with different characteristics, and
the picking results are compared with those obtained by the energy ratio method,
single-input Res-LSTM, and Swin-Transformer. The results demonstrate that the
proposed M-Res-LSTM method maintains good stability and accuracy even in
complex scenarios with low first-arrival energy and poor SNR.

Keywords: Automatic first-arrival picking; Time-frequency dual domain;
Multi-perspective learning; Res-LSTM; Attention mechanism

1. Introduction

First-arrival waves refer to the seismic waves that propagate through subsurface media
and reach geophones first, typically existing in the form of direct waves or refracted
waves. In the seismic data processing workflow, the travel time of first-arrival waves is
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of crucial significance, as it can provide core foundational
data for near-surface inversion work. Although the
method of manual picking of the first arrival has high
accuracy, it is time-consuming and labor-intensive.
Moreover, the accuracy of the picking is also affected by
the experience of the interpreters.! To pick the first arrivals
efficiently and accurately and reduce the workload of data
processing personnel, scholars have proposed different
semi-automatic or automatic first-arrival picking methods.

Given the similar characteristics of adjacent traces,
existing studies have proposed a method to determine
the first-arrival time through cross-correlation operations
between adjacent traces.** The selection of the standard
trace has a great influence on the first-arrival picking results
of this type of method, and its effect needs to be further
improved when the signal-to-noise ratio (SNR) of the
data is low. The algorithm based on energy characteristics
possesses robust anti-noise performance and achieves
favorable automatic picking results, and has also achieved
good results in the processing of actual data.”® Since this
method is greatly affected by the window length, many
picking methods based on multiple time windows have also
been developed.”'® Another common method is the Akaike
Information Criterion (AIC), which discriminates the first
arrivals using the difference in AIC values between the
seismic signal and the noise.'""* However, the picking results
are not satisfactory under a low SNR. The fractal dimension
algorithm'"” has relatively good anti-noise ability, but it
does not take into account the similarity between seismic
traces. Clustering-based methods identify first arrivals in an
unsupervised manner based on the characteristic differences
between first arrivals and noise. However, the inherent
temporal connections between different subsequences
are not considered, making it difficult to distinguish low-
amplitude signals from noise under low SNR conditions.'**

Transforming seismic signals into other domains or
spaces can further highlight the differences between first-
arrival waves and noises. Performing T-p transformation,*
wavelet transformation,? shearlet transformation,?? etc.,
are also commonly used means to enhance the precision
of first-arrival picking; Beyond the common shot gather,
picking first arrivals on common offset gathers and
common receiver gathers also offers distinct advantages.**
In addition to time-space domain signals, neural networks
incorporate attributes such as amplitude, frequency, time-
frequency characteristics, short-term average/long-term
average (STA/LTA) ratios, and data distribution skewness
as inputs,?! thereby facilitating more effective capture of
relevant features by the networks.

Deep learning can efficiently extract the internal laws
of data, construct multi-level data representations, and is

more friendly to massive data. Leveraging the capabilities
of generative adversarial networks,*> convolutional neural
networks,"** UNet,*** recurrent neural networks, meta-
learning,*®* transformers,*** transfer learning,* and
various hybrid networks®* in extracting complex features
from seismic data, deep learning algorithms have emerged
as a critical force in the picking of seismic first arrivals.
Similar to conventional methods, to further improve the
picking accuracy, scholars have attempted to input data
with different attributes into the network, such as time-
frequency domain data and STA/LTA feature maps.**** The
rich data features provide more information references for
the model.

Studies indicate that current first-arrival picking
operations are typically performed exclusively within either
the time-space domain or a single transformed domain.
The energy features and time-frequency features of seismic
data serve as valid criteria for first-arrival identification,
and the integration of multiple sets of feature data can,
further, enhance the precision of first-arrival extraction.
Building on this insight, this study comprehensively
leverages the data features from both the time domain and
frequency domain, proposes a Multi-perspective Residual
Long Short-Term Memory (M-Res-LSTM) network
tailored for first-arrival picking, and elaborates in detail on
the complete workflow of automatic first-arrival picking.
Finally, experiments on automatic first-arrival picking
were conducted on real seismic datasets with distinct
characteristics using this network, thereby verifying the
effectiveness of the proposed method.

2. Methods
2.1. Network architecture

To fully leverage the spatiotemporal and time-frequency
characteristics of seismic signals, this study proposes the
M-Res-LSTM network for automatic first-arrival picking.
Figure 1 shows its structural schematic with key features.

2.1.1. Branch structure

The network comprises four parallel branch modules,
each consisting of m residual modules and » residual
LSTM modules. These branches process four types of two-
dimensional (2D) input data, namely, time-space domain
seismic signals, instantaneous amplitude, frequency,
and phase features, thereby enabling multi-perspective
extraction of seismic information. A parameter-sharing
mechanism between LSTM branches enhances training
efficiency and generalization.

Residual modules retain spatial information through
shortcut paths, mitigating degradation in deep networks
through direct gradient flow.** For seismic data, this
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In this study, with m=4 and n=4, the number of channels F1 is set
as [256, 64, 16, 4] (layer - wise decreasing), and F2 is half of F1 .

Figure 1. Schematic diagram of the M-Res-LSTM network model structure. “m” and “n” represent the numbers of Residual Networks and LSTM modules,

respectively.

Abbreviation: LSTM: Long Short-Term Memory; M-Res-LSTM: Multi-perspective Residual Long Short-Term Memory; Res-LSTM: Residual Long Short-

Term Memory.

preserves inter-trace correlations and nonlinear spatial
features. For input data X, €R,, .,k =1,2,3,4, the output
of the i-th residual layer is:

HxW?>

Z® =X, +F(X,,00, )i=12--m (1)

res

Where F, denotes nonlinear transformations
(convolution, batch normalization, and activation) with
parameters 6, .

Following residual processing, outputs are converted
to sequences for residual LSTM modules. LSTM’s gating
mechanisms (input, forget, and output) capture temporal
dynamics. For n residual LSTM layers, the recurrence
relation is:

B =x, +LSTM (x/,x,8,),j=1,2--+n (I

where h is the hidden state of the j-th layer at time ¢, ¢,
are layer parameters, and the n-th layer output h represents
temporal features, which are reshaped to 2D for fusion.

2.1.2. Coordinate attention module

To adapt to the requirements of the first-arrival picking task,
multi-domain features extracted from the four branches
are fused through the coordinate attention mechanism.*
Unlike the standard coordinate attention, the proposed

method first extracts multi-dimensional visual features
tailored to the task characteristics, then assigns adaptive
weights to enhance critical information. Meanwhile,
it not only additionally designs a convolutional gating
structure specifically for suppressing high-amplitude
noise in seismic data but also further integrates a residual
connection to prevent first-arrival signals from being
excessively suppressed. The detailed process is as follows:

First, global pooling is performed on the concatenated
feature FeR,, .. along the width (W) and height (H)
directions:

HxWx

1 . 1 .
Zy (k) = WZosj<wF(h’l’k)’zw (a)) = EZosj<HF(]’w’k)
(II1)

After aligning the dimensions of x_with x, through a
transposition operation, the two are concatenated along
the height direction. The concatenated result is processed
by a custom activation function and 1x1 convolution to
obtain the feature m. The processed feature m is split into
height-related and width-related components. Meanwhile,
a convolutional gating structure is designed based on the
original branch features to generate a screening mask g.
Finally, branch attention weights are generated and fused:
a,+a

branch_att = 5 ~0g

Iv)

i
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Here, a, and a, are the branch attention weights,
respectively; and e denotes element-wise multiplication.

Each branch feature is multiplied by its corresponding
attention weight, and the weighted branch features are
summed to obtain a fused representation:

Fri = z;(b,. e branch_att,) V)

Where bl, is the feature of the i-th branch, and branch_
att is its corresponding attention weight.

This process not only retains the feature advantages
of each branch in specific domains but also mitigates the
interference of redundant information and noise through
weight modulation.

To further focus on regions with concentrated first-
arrival wave energy, coordinate attention computation
is re-applied to F, . first, global average pooling is
performed along the width and height directions, with the
pooling formulas as follows:

. 1 SN 1 .
Zy (k) = Wzosj<WFﬁ“ed (h’l’k)’zw (0)) = EZO§j<HFﬁ4$€d (]’w’k)
(VD)

After dimension alignment, feature concatenation,
channel compression, and component splitting, the
base spatial attention weights ¢, and ¢ are obtained.
Concurrently, a convolutional gating structure is designed
basedonF, ,to generate the spatial screening mask g.. The
spatially attentive weights with enhanced noise robustness
are derived through the following formulas:

a=chOg5,ﬂ=Cwa5 (VII)

Finally, the spatial attention weights are combined with
F, ., through residual connection to enhance the signals in
key regions. The calculation formula for the final output
feature [ is as follows:

F(ho,k)=F,, (hik)+F,,(hik)-a(hk)-B(ok)
(VIII)

By generating screening masks with the same dimension
as the attention weights through convolutional gating, this
method can effectively suppress high-amplitude noise in
seismic data, accurately focus on regions with significant
first-arrival wave energy variations, and remarkably
improve the processing performance of seismic data with
low SNR.

2.1.3. Output layer

Fused features F are passed through two convolution layers
and a Softmax activation to predict first-arrival positions:

P = Soft max(Conv2 (Comz1 (I:",a)1 ),a)2 )) (IX)

Where ®,, , are convolution parameters.

The network takes the amplitude, frequency, and phase
characteristics of seismic data as inputs and incorporates
a coordinate attention mechanism to achieve feature
fusion across different branches. By assigning distinct
weights to multiple features, it allocates varying levels of
attention to them, thereby enhancing task-critical features
while suppressing those irrelevant to the current task. This
mechanism effectively mitigates the mispicking of first
arrivals.

In recent studies, a multitude of innovative networks
have been proposed for seismic first-arrival picking,
including those based on Transformer,” meta-learning,*
and multi-stage network® architectures. Table 1 presents
a comparison between the method proposed in this study
and the aforementioned methods, focusing on their
characteristics including network architecture, input,
advantages, and dependency conditions.

Compared with other networks, M-Res-LSTM still

possesses unique characteristics and advantages:

(i) In terms of feature input types, M-Res-LSTM
innovatively incorporates amplitude, frequency, and
phase information, providing more comprehensive
feature support for first-arrival picking

(ii) M-Res-LSTM introduces the coordinate attention
mechanism, which includes a time-frequency domain
weight allocation layer. By calculating the weights of
time-domain and frequency-domain features, it can
more accurately capture key information in the time-
frequency domain and improve the ability to identify
weak first-arrival signals and the like

(iii) In terms of feature fusion methods, M-Res-LSTM
employs parallel branches and adaptive weight fusion,
enabling collaborative optimization of multi-domain
features such as time and frequency, thus enhancing
the effectiveness and flexibility of feature fusion.

2.2. Dataset and training

To apply the M-Res-LSTM network for automatic first-
arrival picking, seismic data are first transformed to
generate profiles containing amplitude, phase, and
frequency features. Subsequently, these feature profiles are
partitioned into three subsets: the training set, validation
set, and test set, with the respective proportions accounting
for 80%, 10%, and 10% of the total dataset, respectively.
Finally, the network is trained using the training set, the
optimal generalization of the model is achieved on the
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Table 1. Comparison of different network features

Comparison M-Res-LSTM Res-LSTM

Swin-Transformer*’

Meta-learning® MSSPN*

Architecture  Multi-branch parallel Single-branch

architecture and realizing cascaded

dynamic fusion of architecture

time-frequency dual-domain

features via the coordinate

attention mechanism
Input Spatiotemporal signals, Spatiotemporal

amplitude, frequency, phase domain signals signals
Advantages ~ Multi-input supports the

attention mechanism for
accurate noise suppression;
residual-temporal modeling
adapts to seismic wave
propagation

low computational
overhead, and easy
reproduction

Dependency  High-quality labels
Conditions

High-quality labels

U-shaped hierarchical
self-attention architecture meta-training

Spatiotemporal domain

Concise architecture, SW-MSA adapts to
drastic changes in local
first arrivals; Dilated
convolution expands the  matrix filters label noise continuity of first arrivals
receptive field

High-quality labels

Dual-loop Four-stage cascaded
segmentation architecture

framework

Spatiotemporal domain Spatiotemporal domain
signals signals and STA/LTA
feature maps

Only 5-20% of manual VCTE effectively narrows
labels are required, the first-arrival range;
reducing costs; weight ~ mixed loss enhances the

Allowing partial
low-quality labels

Requiring prior
information and
high-quality labels

Abbreviations: LTA: Long-term average; LSTM: Long-Short-Term Memory; M-Res-LSTM: Multi-perspective Residual Long-Short-Term Memory;
MSSPN: Multistage segmentation picking network; Res-LSTM: Residual Long-Short Term Memory; SW-MSA: Shifted window-multihead
self-attention; STA: Short-term average; VCTE: Velocity-constrained trend estimation.

validation set, and the first-arrival picking test is carried out
on the test set. In this study, common shot gather records
are selected as the original seismic data. Theoretically,
common receiver gather records, common offset gather
records, and common midpoint gather records are all
optional. The main steps of the model training process are
described as follows.

2.2.1. Generation of feature profiles

The three instantaneous profiles calculated using the Hilbert
transform can reflect various characteristics of seismic data.
The analytic signal of a seismic signal can be expressed as:*

x(t)=x(t)+ix (t) X)

Where x(t) denotes the real component of the complex
trace, corresponding to the actual seismic record trace;
x* (t) represents the imaginary component of the complex
trace, which is orthogonal to the real component.

Instantaneous amplitude reflects the energy intensity
of a seismic signal at a certain moment, which is usually
related to the reflection coefficient of the stratum. A high
instantaneous amplitude may indicate lithologic abrupt
changes or the presence of fluids.* Instantaneous amplitude
can be expressed as:

A()= (1) +x7 (1) (1)

Instantaneous phase describes the phase state of
a signal, which can identify stratal continuity and

structural features. Abrupt changes may indicate faults or
unconformities:

9(1‘)=tg'1 [x‘(t)/x(t)] (X1I)

Instantaneous frequency is the time rate of change
of the phase and can assist in identifying lithology and
predicting reservoirs:

o(t)=do(t)/dt (XIII)

In the first-arrival picking process, the energy
mutation points of instantaneous amplitude facilitate
the identification of the first-arrival wavefront; the jump
characteristics of instantaneous phase can enhance the
identification of interfaces at the first-arrival time; and
the high-frequency concentration characteristics of
instantaneous frequency help distinguish signal differences
between first-arrival waves and subsequent reflected waves,
thereby providing abundant information for improving the
accuracy of first-arrival picking.

Since first arrivals correspond to the high-amplitude
signals first received by geophones in seismic records,
amplitude serves as their primary characteristic. However,
seismic data may contain noise with frequency and phase
similar to those of effective signals. To suppress such noise,
it is necessary to constrain the instantaneous frequency
and instantaneous phase through amplitude (i.e., seismic
data) to obtain frequency and phase characteristic data.
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2.2.2. Data normalization and cropping

Seismic data and feature data exhibit differences in
dimensions and numerical magnitudes, so it is necessary
to normalize all types of data to enable the network to
better capture the first-arrival features. In this study,
the maximum absolute value normalization method is
adopted, defined as follows:

x = x / max(abs(x)) (XIV)

Before the network training, the seismic data are
segmented into a size of 256 x 256, so as to speed
up the training process and eliminate unnecessary
information.

2.2.3. Network training

Typically, identifying the actual location of the first arrivals
(i.e., the onset) poses a challenge. Therefore, in practical
processing, a fixed phase (such as a wave crest or a wave
trough) is selected as the first-arrival position.” In this
study, the network treats first-arrival picking as a binary
segmentation task. During sample preparation, the first
peak value of the first-arrival wave is taken as the first-
arrival position and labeled as 1 (the first category), while
positions corresponding to all other time points are labeled
as 0 (the second category). Accordingly, the network
employs a binary cross-entropy loss function to quantify
the discrepancy between the network output and the labels
for classification purposes. The loss is defined as the sum
of the losses of all pixels in the training samples within a
mini-batch, expressed as follows:

N

Loss=—%2yilog(p(yi))+(l—y)log(l—p(yi)) (XV)

i=1

Where y stands for the binary label (either 0 or 1), while
p(y) denotes the probability that the output corresponds to
label y.

The network undergoes training through the Adaptive
Moment Estimation (Adam) algorithm, combined with
the back-propagation approach. When the validation set
loss decreases and stays stable over a certain number of
iteration cycles, training halts, and the weights are saved
as training results. The saved optimal weights are then
applied to predict the first arrivals in the test set according
to a specific formula:

Fiw =®(0,,,5%,, ) (XVD)

With @ representing the function of the network.

2.2.4. Performance evaluation

Pixel accuracy serves as a widely used indicator in semantic
segmentation,” defined as the proportion of correctly
labeled pixels relative to the total number of pixels:

k Kk k
PA:ZP;‘:‘ /Zzpij

i=0 j=0

(XVID)

Where p, represents the quakntiiy of pixels for which

class i is inferred as class i, and
: . Zz p, represents all the
pixel points. i=0 j=0

After processing by the deep learning network, the
probability of a point being a first arrival ranges from
0 to 1 (with a maximum of 1 and a minimum of 0). To
determine the first-arrival position, thresholding is first
applied to all seismic traces: if a trace contains no points
with probability exceeding the threshold, the entire trace
is discarded. For traces containing points with probability
exceeding the threshold, the position corresponding to the
original maximum probability is designated as the first-
arrival position. Verified through tests on multiple datasets
with distinct characteristics, the model achieves optimal
overall performance when the threshold is set to 0.4.

2.2.5. Hyperparameter analysis

Thefirst-arrival picking results of the M-Res-LSTM network
are affected by hyperparameters. Therefore, during the
process of training the model, we conducted experiments
on some parameters, including the learning rate, the size
of the kernel matrix, batch size, and the network depth.
During the experiments, only the parameter being tested
was changed while other parameters remained the same,
and the optimal parameters were determined according
to the pixel accuracy value of the validation set. The test
results are shown in Figure 2.

Through the experiments, it can be seen that an overly
large learning rate will make it difficult for the network
to converge, and the phenomenon of back-and-forth
oscillation will occur. For this data, a learning rate of
0.005 has the best effect, as shown in Figure 2A; as
illustrated in Figure 2B, when the kernel matrix size is
5 x 5 of Residual Networks (ResNet), the model achieves
the highest accuracy along with a fast convergence rate;
Figure 2C shows that a larger batch size results in better
generalization performance, though it accordingly
demands more computation time and memory capacity.
Using the network structures of 4xResNet + 4xlstm
and 5xResNet + 5xlstm can both achieve relatively
good accuracy, but a deeper network means that more
memory will be occupied (Figure 2D). Table 2 shows the
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Figure 2. Pixel accuracy curves corresponding to various hyperparameters. (A) Curves of accuracy under different learning rates. (B) Accuracy curves with

varying kernel matrix sizes. (C) Accuracy curves for different batch sizes. (D) Accuracy curves across different model depths.

Table 2. Experimental results of hyperparameters at the
50" epoch

Hyperparameters Variants PA
Learning rate 0.01 0.981
0.005 0.987
0.001 0.984
0.0005 0.977
Batch size 1 0.976
2 0.987
4 0.987
8 0.986
Kernel size (3,3) 0.982
(5,5) 0.987
(7,7) 0.985
Network depth 2+2 0.979
3+3 0.976
4+4 0.987
5+5 0.984

Notes: Values in boldface represent the values corresponding to the
optimal performance for each hyperparameter.
Abbreviation: PA: Pixel accuracy.

pixel accuracy values obtained with different parameters
when 50 epochs of iteration are carried out. Considering
comprehensively the changing trend of the pixel accuracy
value with the epoch (Figure 2) and the final accuracy
(Table 2), the network will be trained with the parameters
of kernel size = 5x5, learning rate = 0.005, batch size = 4,
and 4xResNet + 4xIstm. This parameter combination is
expected to obtain the optimal convergence effect.

Table 3 elaborates on the parameter configurations of
each module within the M-Res-LSTM network, including
the input/output dimensions, channel numbers, and kernel
sizes for submodules such as ResNet, LSTM, and coordinate
attention. It provides a detailed technical blueprint for the
network’s architecture, with a total parameter quantity of
5.73 million, thus enabling the network to efficiently tackle
seismic data processing tasks.

3. Results and discussion

We utilized the M-Res-LSTM network to perform first-
arrival picking on three sets of real seismic data with
distinct characteristics, and compared its prediction
results with those from manual picking and the traditional
energy ratio method. All the training was conducted on
a single NVIDIA GeForce GTX 1080 Ti GPU, using the
TensorFlow framework.

3.1.Data 1

Data 1 consists of small-scale 3D seismic data acquired
in a plain area using dynamite sources. For each shot, 10
receiver arrays were designed, with 60 geophones deployed
in each array, and the maximum offset is 1200 m. Each trace
of the acquired data contains 501 sampling points, with a
sampling interval set to 4 ms, and the effective recording
duration of each trace is 2 s. The work area features hilly
terrain, with surface elevation varying in the range of
92-160 m. Due to the limited coverage range of a single
shot, the impact of topographic relief is relatively minor,
and the first arrivals of seismic waves exhibit an overall
smooth characteristic, providing a favorable foundation
for first-arrival picking. It should be specifically noted
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that the acquired seismic data contain strong industrial
electrical interference and mechanical interference, and
such interference signals have exerted a significant impact
on first-arrival picking for some seismic traces.

The results of the energy ratio method (blue circles),
manual picking (green triangles), and M-Res-LSTM
(red triangles) are displayed on a representative single
shot record, as shown in Figure 3. When the seismic
trace contains clear first arrivals that can be identified
manually, the results of M-Res-LSTM are consistent
with those of manual picking. When the first arrivals are
indistinguishable even to human interpreters (often due to
strong abnormal noise), the model fails to pick them. This
is because training labels cannot provide corresponding
first-arrival positions for such unidentifiable traces. The
energy ratio method attempts to pick every seismic trace,
resulting in messy outputs for traces with unrecognizable
first arrivals. It is reasonable to abandon picking for traces
where first arrivals are unidentifiable (even manually)
than to generate incorrect picks, as erroneous first arrivals
significantly impact velocity modeling, while the absence of
a small number of picks has minimal effect on subsequent
processing.

Figure 4 shows the projections of the first-arrival time
on the seismic data, instantaneous amplitude, frequency
characteristic profile, and phase characteristic profile.
After zooming in on the data in the red box, it can be seen
that the first arrivals are located at the position of the first

continuous strong amplitude and has similar phase and
frequency characteristics. The method proposed in this
paper can accurately pick the first arrivals through these
characteristics. Figure 5 shows the absolute error of each
seismic trace relative to the result of manual picking (only
comparing the picked seismic traces). It can be seen from
the absolute error that the picking effect of the energy ratio
method is not as good as that of M-Res-LSTM.

3.2.Data 2

Data 2 used in this study is 2D seismic data acquired in a
loess tableland area with dynamite sources. Each shot has
800 receiver channels, and the maximum offset is 8000 m.
Each trace contains 751 sampling points with a sampling
interval of 2 ms. From the perspective of the work area’s
geological conditions and data characteristics, the thickness
of the loess layer in the work area varies significantly, with
surface elevation ranging from 1200 to 1800 m and a
maximum elevation difference of 600 m in the region. The
severe topographic relief exerts a significant impact on the
propagation path of seismic waves—not only causing the
first-arrival phase within a single shot to be significantly
disturbed by terrain but also leading to a large first-arrival
time difference between adjacent receiver channels, which
increases the basic difficulty of first-arrival picking. More
critically, affected by the strong scattering of the loess layer
itself and the energy attenuation of seismic waves, the
first-arrival energy of the acquired data is generally weak,
with unobvious onset characteristics. This has become the

Table 3. Detailed parameter table of each module in the M-Res-LSTM network

Network module Submodule Input dimension Output dimension Channel Kernel size

Branch 1/2/3/4 ResNet 256x256x1 256x256x2 [256,128,64,32,16,8,4,2] 5x5
LSTM 256x512 256x256x2 -

Feature fusion Coordinate attention 4x[256%256x2] 256x256x4 4 1x1

Output layer Convolutional Layerl 256x256x4 256%256x2 2 3x3
Convolutional Layer2 256x256x2 256x256x1 1 1x1

Note: Parameter quantity=5.73 million.
Abbreviation: LSTM: Long Short-Term Memory.
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Figure 5. Absolute errors of the picking results between the energy ratio
method and the method proposed in this paper (for Data 1)

core difficulty in first-arrival picking for this dataset: most
conventional picking methods tend to mistakenly identify
subsequent phases after the first arrival as the first arrival,
resulting in deviations in picking results.

Figure 6A presents a typical original profile, while
Figure 6B displays the picking results obtained through
manual picking (green triangles), the energy ratio method
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(blue circles), and the method proposed in this paper
(red triangles). As observed from the picking results, the
proposed method exhibits high consistency with manual
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picking, whereas the energy ratio method erroneously
identifies the position of the second peak (with stronger
energy) as the first arrival. In addition, the proposed
method successfully picks a small number of noisy traces in
the seismic profile (at the position of the red arrow). This is
attributed to the adoption of multi-trace input for training,
enabling the network to infer first-arrival positions based
on the characteristics of adjacent traces—analogous to the
logic of manual picking. Figure 7 illustrates the absolute

r : ™ r
— Energy ratio method
150 f —— Proposed method
g |
£ 100 )
(0]
£
|_
501 i
0 AfL\\A /W N I\J K MA /\AJ\ A
0 20 40 60 80 100

Trace number

Figure 7. Absolute errors of the picking results between the energy ratio
method and the method proposed in this paper (for Data 2)
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errors of the picking results of the two methods. Since the
energy ratio method regards the second peak as the first
arrivals, it has a relatively large absolute error. Similarly,
by projecting the first-arrival time onto the seismic data,
instantaneous amplitude, frequency characteristic profile,
and phase characteristic profile (Figure 8), it can be seen
that the first arrivals exhibit good consistency with these
profiles. On magnification (within the white square), the
proposed network is shown to accurately capture the
amplitude, phase, and frequency characteristics of the first
arrivals. Under the joint constraints of these three aspects,
the accuracy of the picking is ensured.

3.3.Data3

Data 3 is 3D seismic data acquired in the marginal area
of a basin using a vibroseis source. For each shot, 30
receiver arrays were designed, with each array containing
170 receiver channels; the maximum offset exceeds
5000 m, enabling wide-range coverage of deep geological
structures. However, due to the inherent limitation of the
vibroseis source, namely, its limited excitation energy, the
effective seismic wave energy received by geophones far
from the source is significantly weakened, resulting in a
relatively low overall SNR of the data. From the perspective
of the work area’s geological and topographic conditions,
this region features a typical piedmont zone landscape,
with extremely severe surface elevation relief: the elevation

—_
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Figure 8. Projections of the seismic first arrivals on Data 2. (A) Original seismic record. (B) Instantaneous amplitude. (C) Frequency characteristic data.

(D) Phase characteristic data.
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ranges from 300 to 1500 m, and the maximum elevation
difference in the area reaches 1200 m. Such severe
topographic relief leads to a significant increase in the first-
arrival time difference between adjacent receiver channels.
Combined with the data’s inherent issues—weak first-
arrival energy and strong noise interference—this further
complicates first-arrival picking.

To verify the cross-work area generalization ability
of M-Res-LSTM, the model trained on Data 1 and Data
2 was directly transferred to Data 3 without any fine-
tuning. Figure 9A shows a typical shot gather of Data 3,
from which it can be seen that the first-arrival signals of
some receiver channels are completely submerged in noise,
and the energy difference between the first arrivals and
background noise is small. Figure 9B compares the picking
results of manual picking (yellow triangles), the energy
ratio method (green triangles), and the proposed M-Res-
LSTM in this study (red triangles). In Data 3, the energy
ratio method is significantly affected by noise; in contrast,
relying on the time-frequency dual-domain multi-feature
constraint and coordinate attention mechanism, M-Res-
LSTM still achieves favorable picking performance.

Figure 10 presents the absolute errors of the proposed
method relative to manual picking (only valid picked
channels are counted). The average absolute error of the
energy ratio method reaches 5.9 ms, with the maximum
error exceeding 150 ms, which is far beyond the acceptable
range for seismic processing. In contrast, the average
absolute error of M-Res-LSTM is only 1.34 ms, and
the error of more than 87% of the gathers is controlled
within 5 ms, which meets the accuracy requirements
for near-surface inversion. These results indicate that by
virtue of multi-domain feature learning and the attention
mechanism, M-Res-LSTM effectively avoids overfitting
to the features of the training work areas and can adapt
to new work areas with significantly different geological
conditions and noise levels.

3.4. Comparison against deep learning-driven first-
arrival picking methods

To further verify the effectiveness of the proposed method,
this study conducted deep learning-based tests on
1,000,000 seismic traces collected from multiple distinct
work areas, in addition to testing traditional methods.
The evaluation metrics selected include pixel accuracy,
Fl-score, first-arrival time deviation (characterized by
mean absolute error, MAE), picking rate, and single-trace
picking time (unit: milliseconds per trace),"** which
are used to comprehensively assess the performance of
different networks in the seismic first-arrival picking task.
Table 4 presents the performance differences between
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Figure 10. Absolute errors of the picking results between the energy
ratio method and the method proposed in this paper (for Data 3)

Table 4. Comparison of picking results of different networks

Network PA  Fl-score MAE Picking Time
(ms) rate (%) (ms/trace)
Res-LSTM 0.975  0.942 7.8 92.1 0.65
Swin-Transformer 0.983  0.965 6.5 92.7 0.77
M-Res-LSTM 0.985  0.964 59 93.4 0.73

Abbreviation: M-Res-LSTM: Multi-perspective Residual Long
Short-Term Memory; MAE: Mean absolute error; PA: Pixel accuracy;
Res-LSTM: Residual Long-Short Term Memory.
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the proposed M-Res-LSTM network, Res-LSTM-based
networks, and Swin-Transformer-based networks® in
seismic first-arrival picking.

Although Res-LSTM integrates the advantages of
ResNet and LSTM networks, its simple cascaded structure
prevents it from fully exploiting multi-dimensional
information, resulting in limited overall performance and
the lowest values across all metrics. Swin-Transformer
achieves the highest F1-score by virtue of its self-attention
mechanism; however, its single-input design restricts
multi-domain feature fusion capability, and the high
computational complexity of the self-attention mechanism
causes it to underperform M-Res-LSTM in both first-
arrival time accuracy and picking comprehensiveness.

The proposed M-Res-LSTM network in this study
processes spatiotemporal signals, amplitude, frequency,
and phase features in parallel through its multi-branch
structure and coordinate attention mechanism, enabling
comprehensive capture of spatiotemporal features. As
shown in the table data, except for a slightly lower F1-score
than Swin-Transformer, M-Res-LSTM outperforms
Swin-Transformer in PA, picking rate, and single-trace
picking time, with the first-arrival time deviation as low
as 5.9 ms. This indicates that while ensuring classification
accuracy comparable to Swin-Transformer, M-Res-LSTM
achieves better performance in picking efficiency, picking
comprehensiveness, and time accuracy through multi-
domain feature parallel processing and efficient structural
design. It fully verifies the effectiveness of the multi-branch
structure and coordinates attention mechanism in the
seismic first-arrival picking task, and can better balance
accuracy, efficiency, and robustness.

4, Conclusion

The M-Res-LSTM network enables high-precision
automatic picking of seismic first arrivals using time-
frequency dual-domain features and an attention
mechanism. Its multi-branch architecture supports
parallel processing of amplitude, frequency, and phase
features, thereby fully exploiting the multi-dimensional
discriminative information inherent in seismic signals.
The combination of residual modules and LSTM not only
solves the degradation problem of deep networks but also
strengthens the joint capture of spatiotemporal features.
The coordinate attention mechanism effectively suppresses
noise interference by dynamically adjusting feature
weights, reducing the impact of incorrect first arrivals on
subsequent velocity modeling.

Compared with traditional methods, manual picking
achieves relatively high accuracy but suffers from the
drawbacks of being time-consuming and labor-intensive.

Furthermore, its results are significantly influenced by the
experience of interpreters, making it difficult to meet the
requirements of large-scale data processing. In contrast,
the traditional energy ratio method enables automated
processing yet is highly sensitive to the SNR of data,
and tends to produce disorganized picking results or
misjudgments in low-SNR scenarios. When compared
with existing deep learning methods, the M-Res-LSTM
network, leveraging a multi-feature parallel processing
mechanism, exhibits superior robustness in practical
applications compared to the single-branch Res-LSTM
network. Meanwhile, in comparison with the Swin-
Transformer network, although the M-Res-LSTM is
slightly inferior in terms of pixel accuracy, it demonstrates
distinct advantages in the average deviation of first-arrival
time, picking rate, and single-trace computation time,
thereby effectively balancing the accuracy and efficiency
of first-arrival picking. Verified through data processing
across different work areas, the proposed method can
still obtain relatively ideal picking results even in complex
scenarios with low SNR and weak first-arrival energy.

M-Res-LSTM adopts an end-to-end training mode,
requiring no manual intervention. Moreover, as the
amount of training data increases, its transfer ability to
data from new work areas is expected to further improve.
However, the complexity of the network structure makes
its computation time slightly longer than that of simple
models. In the future, efficiency can be optimized through
model lightweighting. In addition, this paper verifies the
effectiveness of time-frequency dual-domain features.
Future research can explore fusion methods of more
features or combine transfer learning to solve the training
problems in small-sample work areas, promoting the large-
scale application of this method under complex surface
conditions.
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