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Abstract
Quantitative prediction of petrophysical parameters, such as porosity, is crucial for 
the evaluation and development of coalbed methane (CBM) reservoirs. However, 
conventional methods based on linear assumptions and empirical formulas often 
fall short due to the strong heterogeneity of coal seams, complex lithologies 
and structures, and the highly non-linear relationship between seismic elastic 
parameters and reservoir properties under deep-buried conditions. While machine 
learning techniques have shown promise in petrophysical prediction, many 
existing approaches struggle to effectively capture long-range dependencies 
within sequential log data. This study proposes a deep learning-based method that 
integrates comprehensive input feature selection with a bidirectional long short-
term memory (Bi-LSTM) network incorporating dropout regularization for enhanced 
petrophysical parameter prediction. The proposed method is designed to fully 
exploit the non-linear mapping between seismic elastic parameters (e.g., P-wave 
velocity, S-wave velocity, density, elastic impedance) and petrophysical parameter 
(porosity). By combining the bidirectional contextual learning capability of Bi-LSTM, 
the model effectively captures feature relationships within depth sequences. 
Comparative analysis against a fully connected neural network and a standard LSTM 
network demonstrates the superiority of the proposed method. The analysis also 
reveals the optimal feature combination and network parameter setting (sequential 
length, sampling interval, etc.). Results indicate that the Bi-LSTM model achieves a 
significant improvement in prediction accuracy, outperforming other models, and 
demonstrating better generalization capability in blind well tests. The method 
provides a reliable and effective tool for quantitative reservoir characterization, 
offering substantial potential for application in deep CBM exploration.

Keywords: Deep coalbed methane; Porosity prediction; Deep learning; LSTM network

1. Introduction
Coalbed methane (CBM), as an important component of unconventional natural gas, 
is currently one of the hotspots in natural gas exploration.1 Its efficient exploration and 
development have become a critical pathway for increasing reserve and optimizing 
energy structure.2 Petrophysical parameters of CBM reservoirs, such as porosity, 
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are key for characterizing reservoir quality, predicting 
production potential, and formulating development 
plans.3,4 Previous studies calculated and predicted 
reservoir porosity in unknown intervals by establishing 
empirical formulas or simplified geological models.5 
However, due to factors such as strong coal heterogeneity, 
complex reservoir structure, and ambiguity in well log 
responses,6,7 conventional seismic prediction methods 
based on linear assumptions or statistical relation are 
limited for detailed quantitative reservoir evaluation.8-11 
Particularly in deep CBM exploration, high temperature 
and pressure conditions further intensify the non-linear 
characteristics of rock physics relationships, making 
conventional prediction methods inadequate for refined 
reservoir characterization.12,13 In general, the heterogeneity 
and complexity of CBM reservoirs cause the relationship 
between porosity and elastic parameters to vary significantly 
under different geological conditions. Traditional linear 
methods are unable to adapt to these variations, resulting 
in reduced prediction accuracy. Therefore, the accurate 
formulation of non-linear relation between seismic elastic 
parameters and petrophysical parameters is crucial for the 
quantitative evaluation of deep CBM reservoirs.

With the rapid development of artificial intelligence, 
an increasing number of machine learning methods have 
been applied to porosity prediction. Wu et al.14 used an 
optimized RBF neural network to predict reservoir porosity 
models from well data, achieving high prediction accuracy. 
Ahmadi et al.15 proposed a GA-LSSVM model optimized 
by a genetic algorithm for reservoir porosity prediction to 
establish more reliable static reservoir simulation models. 
Zerrouki et al.16 employed an artificial neural network 
combined with a fuzzy ranking method to predict fracture 
porosity. Cao et al.17 investigated the use of an extreme 
learning machine for estimating porosity and permeability 
in heterogeneous sandstone reservoirs. Zou et al.18 utilized 
a random forest-based method to predict pore distribution 
in subsurface reservoirs.

In recent years, the rapid development of deep learning 
technology has demonstrated significant potential in 
geophysical exploration.19-22 Deep learning techniques 
possess powerful feature extraction and high-dimensional 
data processing capabilities, enabling effective mining 
of deeper features from large datasets.23-25 Their strong 
ability to learn complex non-linear relationships allows 
for more accurate approximation of the highly non-linear 
relationships between seismic/elastic data and target 
parameters.26 Wang et al.27 employed a Gaussian Mixture 
Model Deep Neural Network for porosity prediction, with 
experimental results showing its capability to reasonably 
estimate porosity distribution across the entire target 

area. Wu et al.28 proposed a joint inversion method based 
on fluid factor and brittleness index. They developed 
a new P-P wave reflection coefficient approximation 
formula specifically for coal-measure gas reservoirs 
and combined it with a Bayesian inversion framework, 
effectively enhancing the comprehensive evaluation 
of gas-bearing potential and fracability.28 Liu et al.29 
incorporated a low-frequency porosity model into a deep 
learning framework, significantly improving the trend 
continuity and generalization ability of porosity prediction 
in carbonate reservoirs. Zhang et al.30 optimized the pore 
aspect ratio using the deep learning network aided by the 
Hunger Games Search algorithm to achieve joint inversion 
of multiple parameters in tight sandstone reservoirs, 
effectively improving the accuracy and reliability of rock 
physics modeling and inversion. Sun et al.31 proposed a 
CNN-Transformer model aimed at improving the accuracy 
and generalizability of log-based porosity prediction. 
Tao et al.32 introduced a UNet-based bidirectional neural 
network method to establish a mapping relationship 
between seismic data and porosity. While these methods 
have, to some extent, improved the accuracy and 
interpretability of porosity prediction under complex 
reservoir conditions, they cannot effectively handle long-
range information in sequence data and fail to capture the 
relationships of reservoir features in deep sequences.

To address the aforementioned issues, this paper 
proposes a method combining input feature selection and a 
bidirectional long short-term memory (Bi-LSTM) network 
for petrophysical parameter prediction. Comparisons are 
made with fully connected neural (FCN) networks and 
unidirectional LSTM networks. The proposed method 
not only fully exploits the non-linear relationship between 
seismic elastic parameters and reservoir petrophysical 
parameters, but is also more sensitive to the contextual 
correlations within reservoir information sequences. 
Consequently, it can accurately capture the relationships 
of reservoir features within depth sequences. Furthermore, 
the analysis on feature selection and network parameter 
setting (such as sequence length and sampling interval) 
also provided practical guidance for deep learning-based 
seismic prediction of CBM reservoirs.

2. Methodologies
2.1. Fully-connected neural network

FCN network is a basic form of deep learning networks. 
FCN is composed of multiple layers of neurons, where 
each neuron in the current layer is connected to every 
neuron in the subsequent layer. A typical neuron receives 
multiple input signals, computes their weighted sum, 
introduces non-linearity through an activation function, 
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and ultimately produces an output signal. This process can 
be mathematically expressed as:

y f w x bi i
i

n

� �
�
�( )

1

� (I)

Where xi represents the input signal; wi denotes the 
weight of the input signal, reflecting its importance to 
the neuron output; b is the bias term, which adjusts the 
activation threshold of the neuron; n is the dimensionality 
of the input features; f(.) is the activation function, which 
provides non-linear transformations; and y is the output 
signal of the neuron. Figure 1 shows a schematic diagram 
of a simple FCN network with an input feature of three 
dimensions, an output of one dimension, and three hidden 
layers.

The training of an FCN network involves four key 
steps.33,34 First, in forward propagation, input feature passes 
through the network, undergoing weighted sums and 
activation functions at each layer to generate a prediction. 
The loss function then compares this prediction to the true 
value. Next, backpropagation calculates the gradient of the 
loss with respect to all network parameters using the chain 
rule. Finally, these gradients are used by an optimization 
algorithm to update the weights and biases. This cycle 
repeats until the loss converges or a maximum iteration is 
reached.

2.2. Long short-term memory

The long short-term memory (LSTM) network is featured 
by capturing long-term dependencies in sequential data by 
introducing a gating mechanism.35 The core component of 
an LSTM is a memory cell, which contains three gates: a 
forget gate, an input gate, and an output gate. These gates 
regulate the flow of information into, within, and out of 
the cell, enabling the network to learn and maintain long-
range dependencies. The structure of a single LSTM cell is 
illustrated in Figure 2.

The procedure of an LSTM network can be summarized 
in the following steps:

Step 1—Compute the forget gate: This gate determines 
what information to discard from the cell state, indicating 
the degree of information retention. It is computed using 
a sigmoid activation function, which produces an output 
between 0 and 1 as:

f W h x bt f t t f� � ��� ( [ , ] )1 � (II)

Where ft is the output of the forget gate; σ is the sigmoid 
activation function; ht-1 and xt represent the hidden state 
from the previous timestep and the input at the current 
timestep, respectively; Wf and bf represent the weight 
matrix and bias term of the forget gate.

Step 2—Compute the input gate: This gate decides 
what new information will be stored in the cell state. The 
calculations take the form as:

i W h x bt i t t i� � ��� ( [ , ] )1 � (III)

c W h x bt c t t c

~
tanh( [ , ] )� � ��1 � (IV)

Where it is the activation vector of the input gate, 
determining which values to update;  

t
C
  is the candidate 

value vector, determining the new values to be added; is 
the hyperbolic tangent activation function; Wi, Wc, bi and bc 
represent the weight matrices and bias terms for the input 
gate and candidate values, respectively.

Step 3—Update the cell state: The cell state, which 
embodies the long-term memory of the model, is updated 
as follows:

c f c i ct t t t t� � � ��1

~
� (V)

Where ct is the current cell state; ft is the output of the 
forget gate, representing the information to be discarded; 
ct-1 is the cell state from the previous timestep; it is the 
activation vector of the input gate, representing the 
information to be updated; and  

t
C
  is the candidate value 

vector.

Step 4—Compute the output gate: This gate determines 
the value of the next hidden state. The hidden state contains 
information about the previous timestep and can be used 
for predicting the output at the next timestep as:

o W h x bt o t t o� � ��� ( [ , ] )1 � (VI)

h o ct t t� � tanh( ) � (VII)

Where ot is the output of the output gate; ht is the hidden 
state at the current timestep; and Wo and bo represent the 
weight matrix and bias term of the output gate.

In particular, the Bi-LSTM network is an extension of the 
standard LSTM. It incorporates two separate LSTM layers: 
One processing the input sequence in the forward direction Figure 1. Structure of a simple fully connected neural network
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Figure 2. Structure of a single long short-term memory cell

and the other processing it in the reverse direction. The 
final output is generated by merging (e.g., concatenating or 
summing) the outputs from both directions (Figure 3). This 
architecture enables the model to capture dependencies 
from both past and future contexts simultaneously.

2.3. Activation and loss functions

The activation function is a crucial component in neural 
networks. Its primary role is to introduce non-linearity, 
enabling neural networks to learn and represent complex 
non-linear relationships. Common activation functions 
include the ReLU function, the Tanh function, and the 
Sigmoid function. Here, we employ the ReLU function as 
the activation function, which takes the form as:

f x x( ) max{ , }= 0 � (VIII)

The loss function, aiming at training neural networks, 
quantifies the discrepancy between model predictions and 
true values, thereby driving the optimization of network 
parameters. Here, we employ the mean squared error to 
formulate the loss function, which takes the form as:

L
N d

y yMSE
i
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j
i
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Where LMSE represents the average loss over the entire 

training batch, 
^
( )i
jy is the predicted value, ( )i

jy  denotes 

the ground truth labels, N is the number of samples in the 
batch, and d indicates the dimensionality of the vectors.

2.4. Workflow

In this study, two different deep learning networks—FCN 
and LSTM—were employed for predicting petrophysical 

parameters from well log data. The overall workflow is 
illustrated in Figure 4. First, after acquiring true log data, 
dataset preparation was conducted, analyzing the effect 
of different intervals and sampling rates on prediction 
accuracy. Subsequently, feature selection was performed 
using various combinations of elastic parameters from 
the log data—such as S-wave velocity, P-wave velocity, 
density, P-to-S-wave velocity ratio, S-wave impedance, and 
P-wave impedance—as inputs, while using porosity as the 
network output, to identify the optimal combination of 
input features for training. Then, the prediction accuracy 
of the two network models was compared to determine 
the more suitable model for petrophysical parameter 
prediction, wherein the effect of sequence length of LSTM 
on prediction accuracy was also analyzed. Finally, blind 
well testing was conducted to evaluate the effectiveness of 
the proposed method. In addition, an attempt was made 
to introduce Bi-LSTM to enhance prediction accuracy and 
incorporate dropout to mitigate overfitting during model 
training.

3. Tests and applications
3.1. Dataset preparation

A total of 45,606 data points from well log measurements 
acquired across six wells in the study area were compiled 
to form the dataset. The data underwent min-max 
normalization, scaling all feature values to the range of 0 
to 1. Outliers were removed based on the 3σ rule. These 
preprocessing steps ensured data quality and provided 
a reliable foundation for model training. The data were 
measured from a deep CBM reservoir in north China, 
with the target coal layer buried at a depth around 2000 m. 
It includes data from different geological settings, such as 
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Figure 3. Structure of bidirectional long short-term memory cell

varying coal thickness, fracture development, and pore 
structures. This diversity provides a solid foundation 
for model training and validation, ensuring prediction 
accuracy and generalization under different geological 
conditions. The log curves and corresponding lithofacies 
interpretations for the selected Well B and Well C are shown 
in Figures 5 and 6, respectively, which exhibit a complex 

relationship between elastic and petrophysical properties, 
especially for coal sections. These data points, which 
include all necessary variables, are suitable for training 
and testing our models. This study used 80% of the data 
for training and 20% for validation, with random splitting 
to ensure consistent distribution between training and 
validation sets, thereby improving model generalization.

Figure 4. Workflow of the study
Abbreviations: Bi-LSTM: Bidirectional long short-term memory; FCN: Fully connected neural; LSTM: Long short-term memory.
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The selection of the dataset for training plays a crucial 
role in the accuracy and reliability of the network. We 
conducted a preliminary analysis on the effect of using 
different stratigraphic sections and sampling intervals 
on prediction accuracy. The analysis was performed on 
standard FCN networks with P-, S-wave velocities, and 
density as input features and porosity as output. The 
root mean square error (RMSE) and the coefficient of 
determination (R2) from various wells were employed 
as evaluation metrics for prediction performance. As 
evidenced by the data presented in Figure 7 and Table 1, 

utilizing the coal section for training can effectively 
enhance model accuracy. It is due to the highly non-linear 
relation between elastic properties and porosity primarily 
exists in coal sections. Moreover, the analysis suggests that 
appropriately increasing the sampling interval can reduce 
the prediction error (Figure 8 and Table 2).

3.2. Feature selection

To determine the optimal input features for training, we 
evaluated five combinations of elastic parameters, i.e., 
[VP, VS], [VP, VS, ρ], [VP, VS, ρ, VP/VS], [VP, VS, ρ, VP/VS, 

Figure 5. Log curve of P-wave velocity (A), S-wave velocity (B), density (C), porosity (D), and lithofacies interpretation result (E), for Well B

A B C D E

Figure 6. Log curve of P-wave velocity (A), S-wave velocity (B), density (C), porosity (D), and lithofacies interpretation result (E), for Well C

A B C D E
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Table 1. Prediction accuracy with different stratigraphic sections

Stratigraphic section Mean RMSE Mean R2

Entire section 0.0578 0.4429

Coal section 0.0639 0.5714

Abbreviation: RMSE: Root mean square error.

Table 2. Prediction accuracy with different sampling intervals

Sampling interval Mean RMSE Mean R2

0.1 m 0.0578 0.4429

0.5 m 0.0576 0.4706

2.5 m 0.0470 0.6279

Abbreviation: RMSE: Root mean square error.

Zp], and [VP, VS, ρ, VP/VS, ZP, ZS]. Each combination was 
used to train the network, and the model performance was 
validated using test data. When selecting certain wells for 
testing, the remaining wells are used to train the model. In 
this experiment, Wells B, D, and F within the study area 
were selected as the test data, respectively. The true and 
predicted values were recorded, and the corresponding 
scatter plots were shown in Figures 9-11. The RMSE and 

R² were calculated to assess the prediction accuracy and 
identify the optimal input feature combination. To enhance 
the training outcome, data sampled at an interval of 2.5 m, 
as suggested by the analysis in Section 3.1, was adopted as 
the dataset for this experiment.

As observed from the scatter plots in Figures 9-11, the 
prediction accuracy varies with different combinations of 
input features, which can be inferred by comparing the 
predicted against true values with the diagonal reference 
line. Figure  12 and Table  3 present a comparison of 
prediction accuracy under these different combinations. 
The results indicate that using Combination 5—that is, the 
six parameters VP, VS, ρ, VP/VS, ZP, ZS as input features—
yields the best performance, achieving an average RMSE of 
0.0647 and an average R² of 0.6574, which represents the 
highest relative accuracy among the five combinations. To 
better illustrate the prediction performance using different 
combinations, Figure 13 compares the true and predicted 
porosity curves for Well B when using the input feature 
of Combination 1 and Combination 5 with the sampling 
interval of 2.5 m, respectively, which indicates a significant 
reducing of prediction error by the optimal feature selection.

Figure 7. Prediction accuracy in term of root mean square error (A) and R2 (B) using the training data from different stratigraphic sections

Figure 8. Prediction accuracy in term of root mean square error (A) and R2 (B) using the training data with different sampling intervals (0.1, 0.5, and 2.5 m)

A B

A B
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Journal of Seismic Exploration Porosity prediction with Bi-LSTM

Volume X Issue X (2025)	 8� doi: 10.36922/JSE025410087

3.3. Model tests

To compare the performance of FCN and LSTM networks 
in petrophysical prediction, we conducted FCN and LSTM 
models and applied them to the prediction, respectively. The 
FCN adopts a 5-layer architecture with hidden layer sizes 
of 32-64-128-64-32 and uses the ReLU activation function. 
The LSTM model has a hidden size of 64, comprises 2 
stacked layers, and is followed by a fully connected layer 
for output. Both networks have a dropout rate set to 0.2 

Figure 9. Prediction results with different input feature combinations for Well B

Table 3. Prediction accuracy with different combinations of 
input feature

Combination Features Mean RMSE Mean R2

1 [VP, VS] 0.0767 0.4078

2 [VP, VS, ρ] 0.0737 0.5117

3 [VP, VS, ρ, VP/VS] 0.0708 0.5710

4 [VP, VS, ρ, VP/VS, ZP] 0.0724 0.6283

5 [VP, VS, ρ, VP/VS, ZP, ZS] 0.0647 0.6574

Abbreviation: RMSE: Root mean square error.

https://dx.doi.org/10.36922/JSE025410087


Journal of Seismic Exploration Porosity prediction with Bi-LSTM

Volume X Issue X (2025)	 9� doi: 10.36922/JSE025410087

Figure 10. Prediction results with different input feature combinations for Well D

and were trained under identical conditions: Each training 
session employed a unified loss function, optimizer, 
learning rate, and batch size. We used the Adam optimizer 
with a learning rate of 0.001. The optimizer is crucial for 
efficiently and stably updating network parameters to 
minimize the loss. The learning rate is adjusted based on 
model convergence speed and stability to ensure optimal 
performance within a reasonable time. The models were 
trained by iteratively updating weights using the same 
training, validation, and test sets. The RMSE and R² for 
each test well were calculated to assess prediction accuracy.

As indicated by the data in Figure  14 and Table  4, 
the LSTM network demonstrates superior performance 

Table 4. Prediction accuracy with different network models

Network model Mean RMSE Mean R2

FCN 0.0691 0.5705

LSTM 0.0621 0.6125

Abbreviations: FCN: Fully connected neural; LSTM: Long Short‑Term 
Memory.

over the FCN network in most wells, with lower RMSE 
and higher R² values, indicating its greater suitability for 
petrophysical parameter prediction, especially for well-
measured sequential data.

When training the LSTM model, the sequence length, 
which defines the number of sequence length in each input 

https://dx.doi.org/10.36922/JSE025410087
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Figure 11. Prediction results with different input feature combinations for Well F

Figure 12. Prediction accuracy in term of root mean square error (A) and R2 (B) with different combinations of input feature

A B
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sequence, is a crucial parameter for data processing. Omitting 
this step would prevent the LSTM network from learning 
the influence of historical data on current values. The pore 
structure and fracture networks of coal seams exhibit similarity 
within a certain depth range (e.g., coal seams and surrounding 
rocks), but beyond this range, geological characteristics 
change significantly. The choice of sequence length is related 
to the geological variability with depth. A shorter sequence 
length may overlook the influence of geological layers, while 
an excessively long sequence length increases training time 
and may reduce generalization performance due to noise 
accumulation. Therefore, we analyzed the LSTM network 

using different sequence length values and evaluated the 
prediction accuracy for each test well.

As evidenced by the data in Figures 15, 16, and Table 5, 
a sequence length of 32 yielded the optimal performance in 
this test, resulting in the lowest average RMSE and the highest 
average R2 across all wells. It should also be noted that the 
choice of sequence length significantly impacts the training 
duration, requiring a careful balance between sequence 
length and computational cost (Table  6). If the sequence 
length is too short, the model may fail to capture sufficient 
historical information, leading to issues such as underfitting 
and prediction lag. Conversely, an excessively long sequence 

Figure 13. Comparison between the true and predicted porosity using the input feature of Combination 1 (A) and Combination 5 (B) for Well B, and 
their corresponding absolute residual errors (C and D)

A B C D

Figure 14. Prediction accuracy in term of root mean square error (A) and R2 (B) with different network models 
Abbreviations: FCN: Fully connected neural; LSTM: Long short-term memory.

A B
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Figure 15. Prediction accuracy in term of root mean square error (A) and R2 (B) with different sequence length for the long short-term memory network

length, while theoretically capable of incorporating richer 
contextual information, can cause an expansion in input 

dimensions and prolong the gradient backpropagation path 
through the LSTM hidden states. This not only substantially 
increases GPU memory usage and training time per 
iteration but may also degrade generalization performance 
due to accumulated noise. To reduce time costs and improve 
engineering feasibility, distributed training with multi-GPU 
acceleration can be used, or the sequence length and input 
dimensions can be reduced to shorten training time.

3.4. Application

To validate the effectiveness of the aforementioned method, 
Well C within the study area was designated as the test well, 

A B

Table 5. Prediction accuracy with different sequence length 
for the long short‑term memory (LSTM) network

Sequence length Mean RMSE Mean R2

Sequence length=1 0.0621 0.6125

Sequence length=8 0.0570 0.6704

Sequence length=32 0.0470 0.7901

Sequence length=64 0.0552 0.7105

Abbreviation: RMSE: Root mean square error.

Figure 16. True and predicted porosity comparison using the long short-term memory model with sequence length of 1(A), 8 (B), 32 (C), and 64 (D), 
for Well D

A B C D
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Table 6. Comparison of training time for different sequence 
lengths

Model Sequence length Training time in seconds (100 epochs)

FCN / 35.8

LSTM Sequence length=1 44.2

Sequence length=8 82.3

Sequence length=32 246.9

Sequence length=64 506.0

Abbreviations: FCN: Fully connected neural; LSTM: Long short‑term 
memory.

while the remaining wells were used for training. Utilizing 
Combination 5 (i.e., the six parameters Vp, Vs, ρ, Vp/Vs, Zp, 
and Zs as input features), the models were trained for 100 
epochs. The remaining hyperparameters were kept at their 
default and identical values, and the sequence length for 
the LSTM network was set to 32. Both the FCN and LSTM 

Table 7. Prediction accuracy with different network models 
for Well C

Network model Mean RMSE Mean R2

FCN 0.0546 0.4104

LSTM 0.0309 0.7972

Bi‑LSTM 0.0279 0.8342

Abbreviations: Bi‑LSTM: Bidirectional Long Short‑Term Memory; 
FCN: Fully connected neural; LSTM: Long Short‑Term Memory; 
RMSE: Root mean square error.

models were trained under these conditions to generate 
and compare their prediction results. Figures 17A and B 
demonstrate the superior prediction performance of the 
LSTM network. As indicated in Table 7, the LSTM model 
achieves a reduction in RMSE of approximately 43.41% and 
an improvement in R2 to 0.7972 compared to the baseline.

Furthermore, we employed a Bi-LSTM model to 
perform the prediction, while keeping all other parameters 
unchanged. The corresponding results are shown in 
Figure  17C. The Bi-LSTM model achieved an RMSE 
of 0.0279, representing a further reduction of 9.71% 
compared to the standard LSTM, and an R2 of 0.8342, 
corresponding to an increase of 0.0370. In Figure 17C, it 
can be observed that the areas with high porosities accord 
with the interpreted coals at the depths around 1980  m, 
2040  m, and 2080  m, which indicates the prediction 
could help identify coal sections in good accuracy. These 
results indicate that the Bi-LSTM model outperforms the 
standard LSTM both in terms of prediction accuracy and 
robustness, demonstrating its effectiveness for the task of 
petrophysical parameter inversion.

4. Discussion
The findings of this study indicate the potential of deep 
learning, especially sequence models such as LSTM and 
Bi-LSTM, in addressing the complex challenge of porosity 
prediction in deep CBM reservoirs. LSTM network 
inherently captures the contextual dependencies and long-

Figure 17. Prediction accuracy with FCN (A), LSTM (B), and Bi-LSTM (C), and the lithofacies interpretation (D) for Well C 
Abbreviations: Bi-LSTM: Bidirectional long short-term memory; FCN: Fully connected neural; LSTM: Long short-term memory.

A B C D
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range trends within the log curves. This capability is crucial 
for petrophysical prediction, as reservoir parameters 
at a given depth are often geologically influenced by 
the overlying and underlying formations. The further 
improvement by the Bi-LSTM model indicates that 
integrating information from both shallower and deeper 
sections leads to a more accurate prediction. Due to its 
bidirectional learning capability, Bi-LSTM is theoretically 
applicable to other sequence data-driven reservoir 
prediction tasks. For example, shale gas and carbonate 
reservoirs also have complex pore structures and non-
linear relationships. With appropriate feature selection 
and parameter tuning, the Bi-LSTM model can be applied 
to porosity prediction in these reservoirs. However, it 
should be noted that the present study only analyzes the 
FCN and LSTM models, while a more comprehensive 
comparison with other advanced networks, such as 
Temporal Convolutional Networks or Transformer-based 
models, was not conducted. Future work should include 
such comparisons to more fairly evaluate the performance 
of Bi-LSTM model.

Overfitting remains a critical challenge in deep 
learning. This study employed the dropout method to 
mitigate overfitting by randomly dropping some neurons 
during training, thereby reducing the model’s reliance on 
training data. In future research, L2 regularization will 
be introduced to further constrain model complexity and 
reduce overfitting by adding the L2 norm of weights to the 
loss function.

The inherent difficulties in predicting porosity in CBM 
reservoirs extend beyond the selection of an appropriate 
algorithm. The complexities of coal seams also present a 
fundamental task. Coal has a unique dual-porosity system, 
including the cleat/fracture network and the matrix pores, 
which governs the storage and transport mechanisms 
of methane. Porosity measurements and log responses 
are generally affected by this complex pore structure 
and the presence of adsorbed gas. Such inherent pore 
complexities are significant factors influencing the non-
linear and challenging nature of the porosity prediction. 
However, although our data-driven model constructs 
the relationship between elastic parameters and porosity, 
it does not explicitly explain or analyze the influence of 
those pore complexities. A deeper investigation into how 
these dual-porosity characteristics manifest in the seismic 
elastic parameters represents a critical area for further 
research.

Errors may arise from model limitations and the 
complexity of geological characteristics. For example, the 
complex and variable pore structure and fracture networks 
in coal seams result in a highly non-linear relationship 

between porosity and elastic parameters. Although the 
Bi-LSTM model performs well in capturing such non-
linear relationships, prediction errors may still occur in 
certain depth intervals. Future research could reduce 
errors by introducing more complex model structures or 
increasing the amount of training data.

The proposed method is primarily a data-driven 
approach. It takes advantage of the powerful non-
linear mapping capabilities of deep learning to establish 
a relationship between input features and the target 
output, without explicitly considering the governing 
physical laws. It may limit the model generalizability 
and physical interpretability in practical applications. 
To address this issue, our further research will focus on 
developing a physics-guided deep learning model. In 
particular, rock physics models can provide the physical 
relationship between porosity and elastic parameters, 
offering prior knowledge for deep learning models. 
By incorporating a coal-specific rock physics model 
into the network or loss function, we aim to constrain 
the predictions to be not only data-consistent but 
also physically plausible for different CBM fields. In 
addition, rock physics models can supplement labeled 
data, compensating for the problem of overfitting of 
deep learning models in small sample scenarios and 
alleviating the impact of insufficient data.

5. Conclusion
This work proposes a deep learning-based method for 
predicting porosity in deep CBM reservoirs with well 
log data. The study investigates the input features of 
seismic elastic parameters for training, which leads to the 
optimal combination of P-wave velocity, S-wave velocity, 
density, and impedance for predicting porosity. The study 
also focuses on the analysis of network parameters such 
as sampling interval and sequence length, to achieve 
an optimal balance between prediction accuracy and 
computational efficiency. Tests and comparisons indicate 
that the LSTM network demonstrates a reduction in 
RMSE of approximately 43.41% and an improvement in 
R2 from 0.4104 to 0.7972 compared to the FCN network. 
Furthermore, the proposed Bi-LSTM model not only 
enhances bidirectional contextual awareness but also 
significantly improves generalization capability. Compared 
to the standard LSTM, it achieved a further RMSE 
reduction of approximately 9.71% and increased the R2 
to 0.8342. The predictions by the Bi-LSTM model exhibit 
good capability in identifying potential coal layers. The 
proposed method provides a reliable approach for porosity 
prediction with well log data, which could effectively assist 
in seismic exploration for deep CBM reservoirs.

https://dx.doi.org/10.36922/JSE025410087


Journal of Seismic Exploration Porosity prediction with Bi-LSTM

Volume X Issue X (2025)	 15� doi: 10.36922/JSE025410087

Acknowledgments
None.

Funding
We appreciate the support provided by the National 
Key Research and Development Program of China 
(2024YFC3015802), the National Natural Science 
Foundation of China (42574178 and 42374128) and 
the Jiangsu Provincial Science and Technology Plan 
Project (Natural Science Foundation of Jiangsu Province, 
BK20252046).

Conflict of interest
Qiang Guo and Jing Ba are Editorial Board Members of this 
journal but were not in any way involved in the editorial 
and peer-review process conducted for this paper, directly 
or indirectly. The authors declare they have no competing 
interests.

Author contributions
Conceptualization: Qiang Guo
Formal analysis: Xinyu Zhao
Investigation: Cong Luo
Methodology: Jing Ba
Writing–original draft: Qiang Guo, Xinyu Zhao
Writing–review & editing: Qiang Guo, Xinyu Zhao

Availability of data
Data are available from the corresponding author on 
reasonable request.

References
1.	 Pan J, Ge T, Liu W, et al. Organic matter provenance and 

accumulation of transitional facies coal and mudstone in 
Yangquan, China: Insights from petrology and geochemistry. 
J Nat Gas Sci Eng. 2021;94:104076.

	 doi: 10.1016/j.jngse.2021.104076

2.	 Hou X, Liu S, Zhu Y, Yang Y. Evaluation of gas contents for 
a multi-seam deep coalbed methane reservoir and their 
geological controls: In situ direct method versus indirect 
method. Fuel. 2020;265:116917.

	 doi: 10.1016/j.fuel.2019.116917

3.	 Gong F, Cheng J, Wang G, Peng S, Zhang Z. The effect of 
lamination on elastic anisotropy of primary coals under 
confining pressure: Experiment and theoretical modelling. 
Geophys Prospect. 2025;73(4):1228-1242.

	 doi: 10.1111/1365-2478.70009

4.	 Gong F, Huang A, Kang W, et al. The influence of lamination 
and fracture on the velocity anisotropy of tectonic coals. 
Geophysics. 2024;89(6):MR355-MR365.

	 doi: 10.1190/GEO2024-0033.1

5.	 Khaksar A, Griffiths CM. Porosity from sonic log in gas-
bearing shale sandstones: Field data versus empirical 
equations. Explor Geophys. 1998;29(4):440-446.

	 doi: 10.1071/EG998440

6.	 Liu X, Shao G, Yuan C, Chen X, Li J, Chen Y. Mixture of 
relevance vector regression experts for reservoir properties 
prediction. J Petrol Sci Eng. 2022;214:110498.

	 doi: 10.1016/j.petrol.2022.110498

7.	 Wang P, Chen X, Wang B, Li J, Dai H. An improved method 
for lithology identification based on a hidden Markov model 
and random forests. Geophysics. 2020;85(6):IM27-IM36.

	 doi: 10.1190/GEO2020-0108.1

8.	 Sang K, Yin X, Zhang F. Machine learning seismic reservoir 
prediction method based on virtual sample generation. 
Petrol Sci. 2021;18(6):1662-1674.

	 doi: 10.1016/j.petsci.2021.09.034

9.	 Guo Q, Ba J, Luo C. Seismic rock-physics linearized 
inversion for reservoir- property and pore-type parameters 
with application to carbonate reservoirs. Geoenergy Sci Eng. 
2023;224:211640.

	 doi: 10.1016/j.geoen.2023.211640

10.	 Luo C, Ba J, Guo Q. Probabilistic seismic petrophysical 
inversion with statistical double-porosity Biot-Rayleigh 
model. Geophysics. 2023;88(3):M157-M171.

	 doi: 10.1190/GEO2022-0288.1

11.	 Wang P, Cui Y, Zhou L. Multi-task learning for seismic 
elastic parameter inversion with the lateral constraint of 
angle-gather difference. Petrol Sci. 2024;21(6):4001-4009.

	 doi: 10.1016/j.petsci.2024.06.010

12.	 Zhao L, Nasser M, Han D. Quantitative geophysical pore-
type characterization and its geological implication in 
carbonate reservoirs. Geophys Prospect. 2013;61:827-841.

	 doi: 10.1111/1365-2478.12043

13.	 Song L, Yin X, Zong Z, Jiang M. Semi-supervised learning 
seismic inversion based on Spatio-temporal sequence 
residual modeling neural network. J  Petrol Sci Eng. 
2022;208:109549.

	 doi: 10.1016/j.petrol.2021.109549

14.	 Wu X, Jiang G, Wang X, et al. Prediction of reservoir 
sensitivity using RBF neural network with trainable radial 
basis function. Neural Comput Appl. 2013;22:947-953.

	 doi: 10.1007/s00521-011-0787-z

15.	 Ahmadi MA, Ebadi M, Shokrollahi A, Majidi SMJ. Evolving 
artificial neural network and imperialist competitive 
algorithm for prediction oil flow rate of the reservoir. Appl 
Soft Comput. 2013;13(2):1082-1098.

https://dx.doi.org/10.36922/JSE025410087
http://dx.doi.org/10.1016/j.jngse.2021.104076
http://dx.doi.org/10.1016/j.fuel.2019.116917
http://dx.doi.org/10.1111/1365-2478.70009
http://dx.doi.org/10.1190/GEO2024-0033.1
http://dx.doi.org/10.1071/EG998440
http://dx.doi.org/10.1016/j.petrol.2022.110498
http://dx.doi.org/10.1190/GEO2020-0108.1
http://dx.doi.org/10.1016/j.petsci.2021.09.034
http://dx.doi.org/10.1016/j.geoen.2023.211640
http://dx.doi.org/10.1190/GEO2022-0288.1
http://dx.doi.org/10.1016/j.petsci.2024.06.010
http://dx.doi.org/10.1111/1365-2478.12043
http://dx.doi.org/10.1016/j.petrol.2021.109549
http://dx.doi.org/10.1007/s00521-011-0787-z


Journal of Seismic Exploration Porosity prediction with Bi-LSTM

Volume X Issue X (2025)	 16� doi: 10.36922/JSE025410087

	 doi: 10.1016/j.asoc.2012.10.009

16.	 Zerrouki AA, Aifa T, Baddari K. Prediction of natural 
fracture porosity from well log data by means of fuzzy 
ranking and an artificial neural network in Hassi Messaoud 
oil field, Algeria. J Petrol Sci Eng. 2014;115:78-89.

	 doi: 10.1016/j.petrol.2014.01.011

17.	 Cao J, Yang J, Wang Y, Wang D, Shi Y. Extreme learning 
machine for reservoir parameter estimation in heterogeneous 
sandstone reservoir. Math Probl Eng. 2015;2015:287816.

	 doi: 10.1155/2015/287816

18.	 Zou C, Zhao L, Xu M, Chen Y, Geng J. Porosity prediction 
with uncertainty quantification from multiple seismic 
attributes using Random Forest. J Geophys Res Solid Earth. 
2021;126:e2021JB021826.

	 doi: 10.1029/2021JB021826

19.	 Elkatatny S, Mahmoud M, Tariq Z. New insights into 
the prediction of heterogeneous carbonate reservoir 
permeability from well logs using artificial intelligence 
network. Neural Comput Appl. 2018;30(9):2673-2683.

	 doi: 10.1007/s00521-017-2850-x

20.	 Wu X, Shi Y, Fomel S. FaultNet3D: Predicting fault 
probabilities, strikes, and dips with a single convolutional 
neural network. IEEE Trans Geosci Remote Sens. 
2019;57(11):9138-9155.

	 doi: 10.1109/TGRS.2019.2925003

21.	 Wang P, Xu H, Peng Z, Wang Z, Yang M. Application of data 
augmentation based on generative adversarial network in 
impedance inversion. J Seismic Explor. 2023;32(2):155-168.

22.	 Behnia AMO, Reza M, Ali M. A  new approach for 
seismic inversion with GAN algorithm. J  Seismic Explor. 
2024;33(3):1-36.

23.	 Suraj P, Omer S, Aditya N, et al. Model fusion with physics-
guided machine learning: Projection-based reduced-order 
modeling. Phys Fluids. 2021;33(6):067123.

	 doi: 10.1063/5.0053349

24.	 Xu M, Zhao L, Gao S, Zhu X, Geng J. Joint use of multiseismic 
information for lithofacies prediction via supervised 
convolutional neural networks. Geophysics. 2022;87(5): 
151-162.

	 doi: 10.1190/GEO2021-0554.1

25.	 Gao S, Xu M, Zhao L, Chen Y, Geng J. Seismic predictions 
of fluids via supervised deep learning: Incorporating various 
class-rebalance strategies. Geophysics. 2023;88(4):185-200.

	 doi: 10.1190/GEO2022-0363.1

26.	 Yu S, Ma J. Deep learning for geophysics: Current and future 
trends. Rev Geophys. 2021;59:e2021RG000742.

	 doi: 10.1029/2021RG000742

27.	 Wang Y, Niu L, Zhao L, et al. Gaussian mixture model deep 
neural network and its application in porosity prediction of 
deep carbonate reservoir. Geophysics. 2022;87(2):59-72.

	 doi: 10.1190/GEO2020-0740.1

28.	 Wu H, Wu R, Zhang P, Huang Y, Huang Y, Dong S. Combined 
fluid factor and brittleness index inversion for coal-measure 
gas reservoirs. Geophys Prospect. 2022;70:751-764.

	 doi: 10.1111/1365-2478.13172

29.	 Liu J, Zhao L, Xu M, Zhao X, You Y, Geng J. Porosity 
prediction from prestack seismic data via deep learning: 
Incorporating a low-frequency porosity model. J  Geophys 
Eng. 2023;20(5):1016-1029.

	 doi: 10.1093/jge/gxad063

30.	 Zhang J, Liu Z, Zhou Y, Ai H, Han H. Joint inversion method 
of rock physics based on hunger games search correction and 
Bi-LSTM. IEEE Trans Geosci Remote Sens. 2024;62:5914310.

31.	 Sun Y, Pang S, Zhang J, Zhang Y. Porosity prediction through 
well logging data: A  combined approach of convolutional 
neural network and transformer model (CNN-transformer). 
Phys Fluids. 2024;36(2):026604.

	 doi: 10.1063/5.0190078

32.	 Tao B, Zhou H, Chen L, Liu B, Wang R, Liu X. Porosity 
prediction based on stochastic modeling and facies-
controlled dataset constrained by seismic attribute. IEEE 
Geosci Remote Sens Lett. 2025;22:1-5.

	 doi: 10.1109/LGRS.2025.3580778

33.	 Ashraf M, Robles WRQ, Kim M, Ko YS, Yi MY. A loss-based 
patch label denoising method for improving whole-slide 
image analysis using a convolutional neural network. Sci 
Rep. 2022;12:1392.

	 doi: 10.1038/s41598-022-05001-8

34.	 Gao Z, Li C, Yang T, Pan Z, Gao J, Xu Z. OMMDE-Net: A deep 
learning-based global optimization method for seismic 
inversion. IEEE Geosci Remote Sens Lett. 2021;18:208-212.

	 doi: 10.1109/LGRS.2020.2973266

35.	 Hochreiter S, Schmidhuber J. Long short-term memory. 
Neural Comput. 1997;9:1735-1780.

	 doi: 10.1162/neco.1997.9.8.1735

https://dx.doi.org/10.36922/JSE025410087
http://dx.doi.org/10.1016/j.asoc.2012.10.009
http://dx.doi.org/10.1016/j.petrol.2014.01.011
http://dx.doi.org/10.1155/2015/287816
http://dx.doi.org/10.1029/2021JB021826
http://dx.doi.org/10.1007/s00521-017-2850-x
http://dx.doi.org/10.1109/TGRS.2019.2925003
http://dx.doi.org/10.1063/5.0053349
http://dx.doi.org/10.1190/GEO2021-0554.1
http://dx.doi.org/10.1190/GEO2022-0363.1
http://dx.doi.org/10.1029/2021RG000742
http://dx.doi.org/10.1190/GEO2020-0740.1
http://dx.doi.org/10.1111/1365-2478.13172
http://dx.doi.org/10.1093/jge/gxad063
http://dx.doi.org/10.1063/5.0190078
http://dx.doi.org/10.1109/LGRS.2025.3580778
http://dx.doi.org/10.1038/s41598-022-05001-8
http://dx.doi.org/10.1109/LGRS.2020.2973266
http://dx.doi.org/10.1162/neco.1997.9.8.1735

