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Abstract

Quantitative prediction of petrophysical parameters, such as porosity, is crucial for
the evaluation and development of coalbed methane (CBM) reservoirs. However,
conventional methods based on linear assumptions and empirical formulas often
fall short due to the strong heterogeneity of coal seams, complex lithologies
and structures, and the highly non-linear relationship between seismic elastic
parameters and reservoir properties under deep-buried conditions. While machine
learning techniques have shown promise in petrophysical prediction, many
existing approaches struggle to effectively capture long-range dependencies
within sequential log data. This study proposes a deep learning-based method that
integrates comprehensive input feature selection with a bidirectional long short-
term memory (Bi-LSTM) network incorporating dropout regularization for enhanced
petrophysical parameter prediction. The proposed method is designed to fully
exploit the non-linear mapping between seismic elastic parameters (e.g., P-wave
velocity, S-wave velocity, density, elastic impedance) and petrophysical parameter
(porosity). By combining the bidirectional contextual learning capability of Bi-LSTM,
the model effectively captures feature relationships within depth sequences.
Comparative analysis against a fully connected neural network and a standard LSTM
network demonstrates the superiority of the proposed method. The analysis also
reveals the optimal feature combination and network parameter setting (sequential
length, sampling interval, etc.). Results indicate that the Bi-LSTM model achieves a
significant improvement in prediction accuracy, outperforming other models, and
demonstrating better generalization capability in blind well tests. The method
provides a reliable and effective tool for quantitative reservoir characterization,
offering substantial potential for application in deep CBM exploration.

Keywords: Deep coalbed methane; Porosity prediction; Deep learning; LSTM network

1. Introduction

Coalbed methane (CBM), as an important component of unconventional natural gas,
is currently one of the hotspots in natural gas exploration.' Its efficient exploration and
development have become a critical pathway for increasing reserve and optimizing
energy structure.” Petrophysical parameters of CBM reservoirs, such as porosity,
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are key for characterizing reservoir quality, predicting
production potential, and formulating development
plans.>* Previous studies calculated and predicted
reservoir porosity in unknown intervals by establishing
empirical formulas or simplified geological models.®
However, due to factors such as strong coal heterogeneity,
complex reservoir structure, and ambiguity in well log
responses,*” conventional seismic prediction methods
based on linear assumptions or statistical relation are
limited for detailed quantitative reservoir evaluation.®!!
Particularly in deep CBM exploration, high temperature
and pressure conditions further intensify the non-linear
characteristics of rock physics relationships, making
conventional prediction methods inadequate for refined
reservoir characterization.'" In general, the heterogeneity
and complexity of CBM reservoirs cause the relationship
between porosityand elastic parameters to vary significantly
under different geological conditions. Traditional linear
methods are unable to adapt to these variations, resulting
in reduced prediction accuracy. Therefore, the accurate
formulation of non-linear relation between seismic elastic
parameters and petrophysical parameters is crucial for the
quantitative evaluation of deep CBM reservoirs.

With the rapid development of artificial intelligence,
an increasing number of machine learning methods have
been applied to porosity prediction. Wu et al.'* used an
optimized RBF neural network to predict reservoir porosity
models from well data, achieving high prediction accuracy.
Ahmadi et al.® proposed a GA-LSSVM model optimized
by a genetic algorithm for reservoir porosity prediction to
establish more reliable static reservoir simulation models.
Zerrouki et al.'* employed an artificial neural network
combined with a fuzzy ranking method to predict fracture
porosity. Cao et al.”” investigated the use of an extreme
learning machine for estimating porosity and permeability
in heterogeneous sandstone reservoirs. Zou et al.*® utilized
a random forest-based method to predict pore distribution
in subsurface reservoirs.

In recent years, the rapid development of deep learning
technology has demonstrated significant potential in
geophysical exploration.?* Deep learning techniques
possess powerful feature extraction and high-dimensional
data processing capabilities, enabling effective mining
of deeper features from large datasets.** Their strong
ability to learn complex non-linear relationships allows
for more accurate approximation of the highly non-linear
relationships between seismic/elastic data and target
parameters.” Wang et al.”’ employed a Gaussian Mixture
Model Deep Neural Network for porosity prediction, with
experimental results showing its capability to reasonably
estimate porosity distribution across the entire target

area. Wu et al.*® proposed a joint inversion method based
on fluid factor and brittleness index. They developed
a new P-P wave reflection coefficient approximation
formula specifically for coal-measure gas reservoirs
and combined it with a Bayesian inversion framework,
effectively enhancing the comprehensive evaluation
of gas-bearing potential and fracability.® Liu et al.”
incorporated a low-frequency porosity model into a deep
learning framework, significantly improving the trend
continuity and generalization ability of porosity prediction
in carbonate reservoirs. Zhang et al.** optimized the pore
aspect ratio using the deep learning network aided by the
Hunger Games Search algorithm to achieve joint inversion
of multiple parameters in tight sandstone reservoirs,
effectively improving the accuracy and reliability of rock
physics modeling and inversion. Sun et al.*' proposed a
CNN-Transformer model aimed at improving the accuracy
and generalizability of log-based porosity prediction.
Tao et al.** introduced a UNet-based bidirectional neural
network method to establish a mapping relationship
between seismic data and porosity. While these methods
have, to some extent, improved the accuracy and
interpretability of porosity prediction under complex
reservoir conditions, they cannot effectively handle long-
range information in sequence data and fail to capture the
relationships of reservoir features in deep sequences.

To address the aforementioned issues, this paper
proposes a method combining input feature selection and a
bidirectional long short-term memory (Bi-LSTM) network
for petrophysical parameter prediction. Comparisons are
made with fully connected neural (FCN) networks and
unidirectional LSTM networks. The proposed method
not only fully exploits the non-linear relationship between
seismic elastic parameters and reservoir petrophysical
parameters, but is also more sensitive to the contextual
correlations within reservoir information sequences.
Consequently, it can accurately capture the relationships
of reservoir features within depth sequences. Furthermore,
the analysis on feature selection and network parameter
setting (such as sequence length and sampling interval)
also provided practical guidance for deep learning-based
seismic prediction of CBM reservoirs.

2. Methodologies
2.1. Fully-connected neural network

FCN network is a basic form of deep learning networks.
FCN is composed of multiple layers of neurons, where
each neuron in the current layer is connected to every
neuron in the subsequent layer. A typical neuron receives
multiple input signals, computes their weighted sum,
introduces non-linearity through an activation function,
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and ultimately produces an output signal. This process can
be mathematically expressed as:

y :f(iwixi +b) D

Where x, represents the input signal; w, denotes the
weight of the input signal, reflecting its importance to
the neuron output; b is the bias term, which adjusts the
activation threshold of the neuron; # is the dimensionality
of the input features; f{") is the activation function, which
provides non-linear transformations; and y is the output
signal of the neuron. Figure 1 shows a schematic diagram
of a simple FCN network with an input feature of three
dimensions, an output of one dimension, and three hidden
layers.

The training of an FCN network involves four key
steps.**** First, in forward propagation, input feature passes
through the network, undergoing weighted sums and
activation functions at each layer to generate a prediction.
The loss function then compares this prediction to the true
value. Next, backpropagation calculates the gradient of the
loss with respect to all network parameters using the chain
rule. Finally, these gradients are used by an optimization
algorithm to update the weights and biases. This cycle
repeats until the loss converges or a maximum iteration is
reached.

2.2. Long short-term memory

The long short-term memory (LSTM) network is featured
by capturing long-term dependencies in sequential data by
introducing a gating mechanism.* The core component of
an LSTM is a memory cell, which contains three gates: a
forget gate, an input gate, and an output gate. These gates
regulate the flow of information into, within, and out of
the cell, enabling the network to learn and maintain long-
range dependencies. The structure of a single LSTM cell is
illustrated in Figure 2.

The procedure of an LSTM network can be summarized
in the following steps:

/ Hidden layer

Input layer

Q,//
N
AN/

Figure 1. Structure of a simple fully connected neural network

Step 1—Compute the forget gate: This gate determines
what information to discard from the cell state, indicating
the degree of information retention. It is computed using
a sigmoid activation function, which produces an output
between 0 and 1 as:

fi=0W, [h_,x]+b)) (I1)

Where f is the output of the forget gate; o is the sigmoid
activation function; h _ and x, represent the hidden state
from the previous timestep and the input at the current
timestep, respectively; W, and b, represent the weight
matrix and bias term of the forget gate.

Step 2—Compute the input gate: This gate decides
what new information will be stored in the cell state. The
calculations take the form as:

i, =c(W,-[h_,x,]+b,) (111)

¢, =tanh(W_-[h_,,x,]+b.) (V)

Where i, is the activation vector of the input gate,
determining which values to update; C, is the candidate
value vector, determining the new values to be added; is
the hyperbolic tangent activation function; W, W, b,and b,
represent the weight matrices and bias terms for the input
gate and candidate values, respectively.

Step 3—Update the cell state: The cell state, which
embodies the long-term memory of the model, is updated
as follows:

¢ :ft'ct—l_’—it’ct V)

t

Where c, is the current cell state; f, is the output of the
forget gate, representing the information to be discarded;
c., is the cell state from the previous timestep; i, is the
activation vector of the input gate, representing the
information to be updated; and C, is the candidate value
vector.

Step 4—Compute the output gate: This gate determines
the value of the next hidden state. The hidden state contains
information about the previous timestep and can be used
for predicting the output at the next timestep as:

o,=c(W -[h,_,x]+b) (VD)

h, =o, -tanh(c,) (VII)

Where o, is the output of the output gate; h is the hidden
state at the current timestep; and W and b represent the
weight matrix and bias term of the output gate.

In particular, the Bi-LSTM network is an extension of the
standard LSTM. It incorporates two separate LSTM layers:
One processing the input sequence in the forward direction
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Figure 2. Structure of a single long short-term memory cell

and the other processing it in the reverse direction. The
final output is generated by merging (e.g., concatenating or
summing) the outputs from both directions (Figure 3). This
architecture enables the model to capture dependencies
from both past and future contexts simultaneously.

2.3. Activation and loss functions

The activation function is a crucial component in neural
networks. Its primary role is to introduce non-linearity,
enabling neural networks to learn and represent complex
non-linear relationships. Common activation functions
include the ReLU function, the Tanh function, and the
Sigmoid function. Here, we employ the ReLU function as
the activation function, which takes the form as:

f(x) =max{0,x} (VIII)

The loss function, aiming at training neural networks,
quantifies the discrepancy between model predictions and
true values, thereby driving the optimization of network
parameters. Here, we employ the mean squared error to
formulate the loss function, which takes the form as:

_iilzd:( ?ﬂ_
TN&ag

Where L, represents the average loss over the entire

) (IX)

LMSE

training batch, )’j-i) is the predicted value, yj.i) denotes

the ground truth labels, N is the number of samples in the
batch, and d indicates the dimensionality of the vectors.

2.4. Workflow

In this study, two different deep learning networks—FCN
and LSTM—were employed for predicting petrophysical

parameters from well log data. The overall workflow is
illustrated in Figure 4. First, after acquiring true log data,
dataset preparation was conducted, analyzing the effect
of different intervals and sampling rates on prediction
accuracy. Subsequently, feature selection was performed
using various combinations of elastic parameters from
the log data—such as S-wave velocity, P-wave velocity,
density, P-to-S-wave velocity ratio, S-wave impedance, and
P-wave impedance—as inputs, while using porosity as the
network output, to identify the optimal combination of
input features for training. Then, the prediction accuracy
of the two network models was compared to determine
the more suitable model for petrophysical parameter
prediction, wherein the effect of sequence length of LSTM
on prediction accuracy was also analyzed. Finally, blind
well testing was conducted to evaluate the effectiveness of
the proposed method. In addition, an attempt was made
to introduce Bi-LSTM to enhance prediction accuracy and
incorporate dropout to mitigate overfitting during model
training.

3. Tests and applications
3.1. Dataset preparation

A total of 45,606 data points from well log measurements
acquired across six wells in the study area were compiled
to form the dataset. The data underwent min-max
normalization, scaling all feature values to the range of 0
to 1. Outliers were removed based on the 3o rule. These
preprocessing steps ensured data quality and provided
a reliable foundation for model training. The data were
measured from a deep CBM reservoir in north China,
with the target coal layer buried at a depth around 2000 m.
It includes data from different geological settings, such as
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Output layer
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Figure 3. Structure of bidirectional long short-term memory cell
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Figure 4. Workflow of the study
Abbreviations: Bi-LSTM: Bidirectional long short-term memory; FCN: Fully connected neural; LSTM: Long short-term memory.

varying coal thickness, fracture development, and pore
structures. This diversity provides a solid foundation
for model training and validation, ensuring prediction
accuracy and generalization under different geological
conditions. The log curves and corresponding lithofacies
interpretations for the selected Well B and Well C are shown
in Figures 5 and 6, respectively, which exhibit a complex

relationship between elastic and petrophysical properties,
especially for coal sections. These data points, which
include all necessary variables, are suitable for training
and testing our models. This study used 80% of the data
for training and 20% for validation, with random splitting
to ensure consistent distribution between training and
validation sets, thereby improving model generalization.
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Figure 5. Log curve of P-wave velocity (A), S-wave velocity (B), density (C), porosity (D), and lithofacies interpretation result (E), for Well B
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Figure 6. Log curve of P-wave velocity (A), S-wave velocity (B), density (C), porosity (D), and lithofacies interpretation result (E), for Well C

The selection of the dataset for training plays a crucial
role in the accuracy and reliability of the network. We
conducted a preliminary analysis on the effect of using
different stratigraphic sections and sampling intervals
on prediction accuracy. The analysis was performed on
standard FCN networks with P-, S-wave velocities, and
density as input features and porosity as output. The
root mean square error (RMSE) and the coefficient of
determination (R*) from various wells were employed
as evaluation metrics for prediction performance. As
evidenced by the data presented in Figure 7 and Table 1,

utilizing the coal section for training can effectively
enhance model accuracy. It is due to the highly non-linear
relation between elastic properties and porosity primarily
exists in coal sections. Moreover, the analysis suggests that
appropriately increasing the sampling interval can reduce
the prediction error (Figure 8 and Table 2).

3.2. Feature selection

To determine the optimal input features for training, we
evaluated five combinations of elastic parameters, i.e.,
[V, V], [V, Vg pl, [V, Vg po VIV, [V, Vg py VIV,
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Figure 7. Prediction accuracy in term of root mean square error (A) and R* (B) using the training data from different stratigraphic sections
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Figure 8. Prediction accuracy in term of root mean square error (A) and R? (B) using the training data with different sampling intervals (0.1, 0.5, and 2.5 m)

Table 1. Prediction accuracy with different stratigraphic sections

Stratigraphic section Mean RMSE Mean R?
Entire section 0.0578 0.4429
Coal section 0.0639 0.5714

Abbreviation: RMSE: Root mean square error.

Table 2. Prediction accuracy with different sampling intervals

Sampling interval Mean RMSE Mean R?
0.1 m 0.0578 0.4429
0.5m 0.0576 0.4706
2.5m 0.0470 0.6279

Abbreviation: RMSE: Root mean square error.

ZP], and [V, V, p, V/V,, Z, Z]. Each combination was
used to train the network, and the model performance was
validated using test data. When selecting certain wells for
testing, the remaining wells are used to train the model. In
this experiment, Wells B, D, and F within the study area
were selected as the test data, respectively. The true and
predicted values were recorded, and the corresponding
scatter plots were shown in Figures 9-11. The RMSE and

R? were calculated to assess the prediction accuracy and
identify the optimal input feature combination. To enhance
the training outcome, data sampled at an interval of 2.5 m,
as suggested by the analysis in Section 3.1, was adopted as
the dataset for this experiment.

As observed from the scatter plots in Figures 9-11, the
prediction accuracy varies with different combinations of
input features, which can be inferred by comparing the
predicted against true values with the diagonal reference
line. Figure 12 and Table 3 present a comparison of
prediction accuracy under these different combinations.
The results indicate that using Combination 5—that is, the
six parameters V,, V, p, V,/V, Z, Z_ as input features—
yields the best performance, achieving an average RMSE of
0.0647 and an average R” of 0.6574, which represents the
highest relative accuracy among the five combinations. To
better illustrate the prediction performance using different
combinations, Figure 13 compares the true and predicted
porosity curves for Well B when using the input feature
of Combination 1 and Combination 5 with the sampling
interval of 2.5 m, respectively, which indicates a significant
reducing of prediction error by the optimal feature selection.

Volume X Issue X (2025)

doi: 10.36922/JSE025410087


https://dx.doi.org/10.36922/JSE025410087

Journal of Seismic Exploration

Porosity prediction with Bi-LSTM

Well B - Combination #1

Well B - Combination #2

0.20 0.20
JUIER T R=03752 0154 " R?=0.4563
< <
> -
E 0.10 1 % . 'g .
o o . ° LI
B . B T
& . & & an
0.05 1 . 3 .
o » '!.l .- : -
0.00 T T T 1 T T 1
0.00 0.05 0.10 0.15 0.20 0.10 0.15 0.20
True values True values
020+ Well B - Combination #3 020~ Well B - Combination #4
0.15 T R2=0.5109 0.15 " R¥=0.5493
] v . 8 B
= =
< - [ ..
= . . A 2
B 0.104 o & . B 0.104 LR
S o 5 & 3
5 % e, e . 3 L R
5 T | e 53 .
& gty L B3 o
L] 0.054 .
« 8 0 o . e
° . .
— T ] 0.00 +— T T T 1
0.10 0.15 0.20 0.0 0.05 0.10 0.15 0.20
True values True values
0.20 - Well B - Combination #5
0.15- -~ R=0.6135
2 g
=2
<
>
g 0.10- ¢ .
9 g
B G ol
& : .
0.051 e et
0.00 + T T |
0.00 0.05 0.10 0.15 0.20

True values

Figure 9. Prediction results with different input feature combinations for Well B

Table 3. Prediction accuracy with different combinations of

input feature

Combination  Features Mean RMSE ~ Mean R?
1 [V, V] 0.0767 0.4078
2 [V, Vg pl 0.0737 0.5117
3 [V, Vo p, VIV 0.0708 0.5710
4 [V Vo ps VIV, Z,) 0.0724 0.6283
5 V, Vo p, VI Vo Z, Z] 0.0647 0.6574

Abbreviation: RMSE: Root mean square error.

3.3. Model tests

To compare the performance of FCN and LSTM networks
in petrophysical prediction, we conducted FCN and LSTM
modelsand applied them to the prediction, respectively. The
FCN adopts a 5-layer architecture with hidden layer sizes
of 32-64-128-64-32 and uses the ReLU activation function.
The LSTM model has a hidden size of 64, comprises 2
stacked layers, and is followed by a fully connected layer
for output. Both networks have a dropout rate set to 0.2
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Figure 10. Prediction results with different input feature combinations for Well D

and were trained under identical conditions: Each training
session employed a unified loss function, optimizer,
learning rate, and batch size. We used the Adam optimizer
with a learning rate of 0.001. The optimizer is crucial for
efficiently and stably updating network parameters to
minimize the loss. The learning rate is adjusted based on
model convergence speed and stability to ensure optimal
performance within a reasonable time. The models were
trained by iteratively updating weights using the same
training, validation, and test sets. The RMSE and R? for
each test well were calculated to assess prediction accuracy.

As indicated by the data in Figure 14 and Table 4,
the LSTM network demonstrates superior performance

Table 4. Prediction accuracy with different network models

Network model Mean RMSE Mean R?
FCN 0.0691 0.5705
LSTM 0.0621 0.6125

Abbreviations: FCN: Fully connected neural; LSTM: Long Short-Term
Memory.

over the FCN network in most wells, with lower RMSE
and higher R? values, indicating its greater suitability for
petrophysical parameter prediction, especially for well-
measured sequential data.

When training the LSTM model, the sequence length,
which defines the number of sequence length in each input
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Figure 12. Prediction accuracy in term of root mean square error (A) and R? (B) with different combinations of input feature
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Figure 13. Comparison between the true and predicted porosity using the input feature of Combination 1 (A) and Combination 5 (B) for Well B, and
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Figure 14. Prediction accuracy in term of root mean square error (A) and R? (B) with different network models
Abbreviations: FCN: Fully connected neural; LSTM: Long short-term memory.

sequence, is a crucial parameter for data processing. Omitting
this step would prevent the LSTM network from learning
the influence of historical data on current values. The pore
structure and fracture networks of coal seams exhibit similarity
within a certain depth range (e.g., coal seams and surrounding
rocks), but beyond this range, geological characteristics
change significantly. The choice of sequence length is related
to the geological variability with depth. A shorter sequence
length may overlook the influence of geological layers, while
an excessively long sequence length increases training time
and may reduce generalization performance due to noise
accumulation. Therefore, we analyzed the LSTM network

using different sequence length values and evaluated the
prediction accuracy for each test well.

As evidenced by the data in Figures 15, 16, and Table 5,
a sequence length of 32 yielded the optimal performance in
this test, resulting in the lowest average RMSE and the highest
average R? across all wells. It should also be noted that the
choice of sequence length significantly impacts the training
duration, requiring a careful balance between sequence
length and computational cost (Table 6). If the sequence
length is too short, the model may fail to capture sufficient
historical information, leading to issues such as underfitting
and prediction lag. Conversely, an excessively long sequence
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Figure 15. Prediction accuracy in term of root mean square error (A) and R? (B) with different sequence length for the long short-term memory network
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Figure 16. True and predicted porosity comparison using the long short-term memory model with sequence length of 1(A), 8 (B), 32 (C), and 64 (D),
for Well D

Table 5. Prediction accuracy with different sequence length
for the long short-term memory (LSTM) network

Sequence length Mean RMSE Mean R?
Sequence length=1 0.0621 0.6125
Sequence length=8 0.0570 0.6704
Sequence length=32 0.0470 0.7901
Sequence length=64 0.0552 0.7105

Abbreviation: RMSE: Root mean square error.

length, while theoretically capable of incorporating richer

contextual information, can cause an expansion in input

dimensions and prolong the gradient backpropagation path
through the LSTM hidden states. This not only substantially
increases GPU memory usage and training time per
iteration but may also degrade generalization performance
due to accumulated noise. To reduce time costs and improve
engineering feasibility, distributed training with multi-GPU
acceleration can be used, or the sequence length and input
dimensions can be reduced to shorten training time.

3.4. Application

To validate the effectiveness of the aforementioned method,
Well C within the study area was designated as the test well,
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while the remaining wells were used for training. Utilizing
Combination 5 (i.e., the six parameters V., V, p, V [V, Z,,
and Z_ as input features), the models were trained for 100
epochs. The remaining hyperparameters were kept at their
default and identical values, and the sequence length for
the LSTM network was set to 32. Both the FCN and LSTM

Table 6. Comparison of training time for different sequence
lengths

Model Sequence length Training time in seconds (100 epochs)

FCN / 35.8
LSTM  Sequence length=1 442
Sequence length=8 823
Sequence length=32 246.9
Sequence length=64 506.0

Abbreviations: FCN: Fully connected neural; LSTM: Long short-term
memory.

Table 7. Prediction accuracy with different network models
for Well C

Network model Mean RMSE Mean R?
FCN 0.0546 0.4104
LSTM 0.0309 0.7972
Bi-LSTM 0.0279 0.8342

Abbreviations: Bi-LSTM: Bidirectional Long Short-Term Memory;
FCN: Fully connected neural; LSTM: Long Short-Term Memory;
RMSE: Root mean square error.

models were trained under these conditions to generate
and compare their prediction results. Figures 17A and B
demonstrate the superior prediction performance of the
LSTM network. As indicated in Table 7, the LSTM model
achieves a reduction in RMSE of approximately 43.41% and
an improvement in R* to 0.7972 compared to the baseline.

Furthermore, we employed a Bi-LSTM model to
perform the prediction, while keeping all other parameters
unchanged. The corresponding results are shown in
Figure 17C. The Bi-LSTM model achieved an RMSE
of 0.0279, representing a further reduction of 9.71%
compared to the standard LSTM, and an R* of 0.8342,
corresponding to an increase of 0.0370. In Figure 17C, it
can be observed that the areas with high porosities accord
with the interpreted coals at the depths around 1980 m,
2040 m, and 2080 m, which indicates the prediction
could help identify coal sections in good accuracy. These
results indicate that the Bi-LSTM model outperforms the
standard LSTM both in terms of prediction accuracy and
robustness, demonstrating its effectiveness for the task of
petrophysical parameter inversion.

4, Discussion

The findings of this study indicate the potential of deep
learning, especially sequence models such as LSTM and
Bi-LSTM, in addressing the complex challenge of porosity
prediction in deep CBM reservoirs. LSTM network
inherently captures the contextual dependencies and long-
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Figure 17. Prediction accuracy with FCN (A), LSTM (B), and Bi-LSTM (C), and the lithofacies interpretation (D) for Well C
Abbreviations: Bi-LSTM: Bidirectional long short-term memory; FCN: Fully connected neural; LSTM: Long short-term memory.
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range trends within the log curves. This capability is crucial
for petrophysical prediction, as reservoir parameters
at a given depth are often geologically influenced by
the overlying and underlying formations. The further
improvement by the Bi-LSTM model indicates that
integrating information from both shallower and deeper
sections leads to a more accurate prediction. Due to its
bidirectional learning capability, Bi-LSTM is theoretically
applicable to other sequence data-driven reservoir
prediction tasks. For example, shale gas and carbonate
reservoirs also have complex pore structures and non-
linear relationships. With appropriate feature selection
and parameter tuning, the Bi-LSTM model can be applied
to porosity prediction in these reservoirs. However, it
should be noted that the present study only analyzes the
FCN and LSTM models, while a more comprehensive
comparison with other advanced networks, such as
Temporal Convolutional Networks or Transformer-based
models, was not conducted. Future work should include
such comparisons to more fairly evaluate the performance
of Bi-LSTM model.

Overfitting remains a critical challenge in deep
learning. This study employed the dropout method to
mitigate overfitting by randomly dropping some neurons
during training, thereby reducing the model’s reliance on
training data. In future research, L2 regularization will
be introduced to further constrain model complexity and
reduce overfitting by adding the L2 norm of weights to the
loss function.

The inherent difficulties in predicting porosity in CBM
reservoirs extend beyond the selection of an appropriate
algorithm. The complexities of coal seams also present a
fundamental task. Coal has a unique dual-porosity system,
including the cleat/fracture network and the matrix pores,
which governs the storage and transport mechanisms
of methane. Porosity measurements and log responses
are generally affected by this complex pore structure
and the presence of adsorbed gas. Such inherent pore
complexities are significant factors influencing the non-
linear and challenging nature of the porosity prediction.
However, although our data-driven model constructs
the relationship between elastic parameters and porosity,
it does not explicitly explain or analyze the influence of
those pore complexities. A deeper investigation into how
these dual-porosity characteristics manifest in the seismic
elastic parameters represents a critical area for further
research.

Errors may arise from model limitations and the
complexity of geological characteristics. For example, the
complex and variable pore structure and fracture networks
in coal seams result in a highly non-linear relationship

between porosity and elastic parameters. Although the
Bi-LSTM model performs well in capturing such non-
linear relationships, prediction errors may still occur in
certain depth intervals. Future research could reduce
errors by introducing more complex model structures or
increasing the amount of training data.

The proposed method is primarily a data-driven
approach. It takes advantage of the powerful non-
linear mapping capabilities of deep learning to establish
a relationship between input features and the target
output, without explicitly considering the governing
physical laws. It may limit the model generalizability
and physical interpretability in practical applications.
To address this issue, our further research will focus on
developing a physics-guided deep learning model. In
particular, rock physics models can provide the physical
relationship between porosity and elastic parameters,
offering prior knowledge for deep learning models.
By incorporating a coal-specific rock physics model
into the network or loss function, we aim to constrain
the predictions to be not only data-consistent but
also physically plausible for different CBM fields. In
addition, rock physics models can supplement labeled
data, compensating for the problem of overfitting of
deep learning models in small sample scenarios and
alleviating the impact of insufficient data.

5. Conclusion

This work proposes a deep learning-based method for
predicting porosity in deep CBM reservoirs with well
log data. The study investigates the input features of
seismic elastic parameters for training, which leads to the
optimal combination of P-wave velocity, S-wave velocity,
density, and impedance for predicting porosity. The study
also focuses on the analysis of network parameters such
as sampling interval and sequence length, to achieve
an optimal balance between prediction accuracy and
computational efficiency. Tests and comparisons indicate
that the LSTM network demonstrates a reduction in
RMSE of approximately 43.41% and an improvement in
R? from 0.4104 to 0.7972 compared to the FCN network.
Furthermore, the proposed Bi-LSTM model not only
enhances bidirectional contextual awareness but also
significantly improves generalization capability. Compared
to the standard LSTM, it achieved a further RMSE
reduction of approximately 9.71% and increased the R’
to 0.8342. The predictions by the Bi-LSTM model exhibit
good capability in identifying potential coal layers. The
proposed method provides a reliable approach for porosity
prediction with well log data, which could effectively assist
in seismic exploration for deep CBM reservoirs.
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