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Abstract
Seismic full-waveform inversion (FWI) is a powerful technique used in geophysical 
exploration to infer subsurface properties. However, FWI often suffers from 
challenges such as cycle skipping and sensitivity to uncertainties in seismic 
observations. This study aims to tackle these challenges by developing a novel 
fully automatic differentiation (AD) strategy for seismic FWI, coupling U-Net-based 
reparameterization inspired by the deep image prior concept into a reformulated 
wave equation simulation framework utilizing recurrent neural networks (RNNs). 
We demonstrate that the U-Net reparameterization serves as a form of implicit 
regularization for FWI, mitigating the ill-posed nature of the inversion problem and 
enhancing the stability of the optimization process. In addition, the RNN reformulation 
offers a flexible approach for backpropagating the FWI misfit, allowing the gradient 
with respect to the velocity parameters to be computed using the AD capabilities 
inherent in deep learning frameworks. Through extensive experiments on synthetic 
datasets, we showcase the regularization effect of our proposed method, leading to 
improved inversion results in terms of accuracy and robustness. This study offers a 
promising avenue for enhancing the reliability and accuracy of FWI through the lens 
of deep learning methodologies.
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1. Introduction
Seismic full-waveform inversion (FWI) stands out as a crucial method in geophysical 
exploration, allowing for high-resolution reconstruction of subsurface properties.1-3 
FWI iteratively refines velocity models by minimizing the difference between synthetic 
and observed data, employing gradient descent algorithms with gradients computed 
through the adjoint-state method.4,5 Despite its significance, traditional FWI methods 
face challenges such as cycle-skipping and ill-posedness, making it difficult to accurately 
represent complex subsurface velocity models when initial models are inaccurate and 
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observations are incomplete or contaminated with noise.6-8 
Moreover, computation of gradients in traditional FWI 
through the adjoint state method can be cumbersome, 
requiring formulation for each wave equation, making 
numerical implementation challenging and prone to 
errors.9,10

Deep learning has emerged as a promising approach 
in seismic FWI, offering novel solutions to longstanding 
challenges in conventional seismic inversion.11,12 By 
leveraging annotated seismic data pairs consisting of 
observed seismogram and corresponding subsurface 
models, supervised learning-based FWI methods train 
neural networks to learn the complex mapping between 
seismic data and subsurface properties.13,14 However, 
supervised learning FWI heavily relies on the availability 
of large volumes of labeled training data. Obtaining such 
datasets can be challenging and resource-intensive. Apart 
from directly mapping seismic data to inverted models, the 
integration of deep learning to aid seismic FWI has been 
intensively explored over the recent years. This includes 
employing deep learning techniques for tasks such as data 
augmentation, model initialization, optimization, misfit 
function design, and learned regularization.15-20 Supervised 
learning FWI shows promise but comes with limitations, 
such as reliance on high-quality labeled data and potential 
overfitting to specific datasets. In addition, its generalization 
to diverse geological settings can be problematic, limiting 
its effectiveness in real-world applications.21,22

Recent research has shifted toward physics-based deep 
learning FWI, where the neural network architecture 
or loss function encodes underlying physical principles. 
This approach aims to enhance the interpretability 
and generalization capabilities of FWI models by 
explicitly incorporating prior knowledge of the physics 
governing seismic wave propagation.22-24 Physics-based 
deep learning for FWI can be approached in various 
ways. First, the utilization of deep learning tools like 
automatic differentiation (AD) and optimization methods 
has streamlined the FWI process, making it more 
straightforward and robust.9,10,23,25-27 These techniques 
reformulate the time-marching finite-difference 
discretized wave equation as a recurrent neural network 
(RNN), which is often referred to as RNN-based FWI. This 
approach allows for the automatic calculation of gradients 
and facilitates efficient model updates. Second, integrating 
the wave equation into neural networks, as demonstrated 
by physics-informed neural networks (PINNs), enhances 
the ability of neural networks to grasp the fundamental 
physics of wave propagation, thereby improving inversion 
accuracy.22,28,29 This approach allows the model to leverage 
known physical principles, reducing the reliance on large 

datasets and improving generalization across different 
scenarios. As a result, PINNs-based FWI can offer more 
robust solutions in complex subsurface environments, 
addressing some of the limitations faced by traditional 
methods. Third, the recently developed neural operator 
learning methods aim to approximate implicit operators 
defined by partial differential equations (PDEs) between 
functional spaces.30,31 These methods can serve as a rapid 
surrogate for the wave equation, enhancing the efficiency 
of seismic inversion by reducing the need for multiple 
wave equation simulations.24,32 In addition, the concept 
of deep image prior suggests that the architecture of a 
neural network itself can act as a potent prior for inversion 
tasks.33-35 In the realm of linear inversion, the deep neural 
network (DNN) parameterization method is referred 
to as regularization by architecture, where the spatial 
and temporal features of DNNs are harnessed to adjust 
inversion results to meet specific expectations.34 The 
efficacy of regularization by architecture relies, to some 
extent, on the meticulous design of network architectures. 
In the geophysics community, the use of DNNs, particularly 
convolutional neural networks (CNNs), has gained 
traction for regularized estimation in FWI. This approach 
leverages the inherent structure of CNNs to capture spatial 
dependencies in geophysical data, improving the accuracy 
and robustness of subsurface model estimations.36-41

In this study, we propose a novel seismic FWI 
framework with coupling DNNs for reparameterization 
and reformulation, termed fully automatic differentiation-
based FWI (FAD-FWI). In this approach, the subsurface 
velocity models are reparameterized by the weights of 
DNNs and then fed into an RNN-based FWI module. 
The seamless integration of these two neural networks 
enables FAD, allowing the weights of the DNNs to be 
updated by backpropagating the misfit between synthetic 
and observed seismograms. The integration of DNNs 
and RNNs enhances inversion outcomes by eliminating 
the need for manual tuning of regularization parameters 
and the reliance on error-prone adjoint state methods. 
In addition, the FAD-FWI framework offers flexibility 
in handling complex geological structures and can 
potentially outperform traditional FWI techniques by 
exploiting the strengths of deep learning for regularization 
and optimization. By harnessing the hierarchical feature 
extraction capabilities of the U-Net, our proposed FAD-
FWI method can effectively map a Gaussian random field 
(GRF) input to the inverted velocity model, aligning it with 
seismic observations through RNN-based FWI. FAD-FWI 
outperforms traditional FWI with lower dependency on 
initial model estimations and better robustness in the face 
of uncertainties in seismic observations. Through extensive 
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experiments on synthetic seismic datasets, we demonstrate 
that FAD-FWI provides more accurate subsurface models 
and offers greater computational flexibility compared 
to conventional FWI methods. The main contributions 
of this work are twofold. We propose the FAD-FWI 
architecture, which overcomes a key limitation of prior 
deep learning-based FWI methods. By employing a linear 
activation in the final layer, our model directly outputs 
velocity values in a physically realistic range, eliminating 
the need for a problem-dependent scaling factor. In 
addition, we develop a fully AD framework that seamlessly 
integrates a DNN-based model parameterization with 
the physics of wave propagation. This unified approach 
automatically computes the gradients of the FWI objective 
function through both the U-Net and the wave equation 
solver, removing the dependency on manually derived and 
implemented adjoint-state equations.

2. Methodology
2.1. FWI with regularization

Seismic FWI seeks to estimate subsurface properties by 
iteratively updating the velocity model until synthetic 
seismic data closely match the observed seismic data.
FWI minimizes an objective function that measures the 
discrepancy between recorded and simulated seismic data. 
This function typically combines a data-misfit term with 
regularization to ensure stability and to guide the solution.
Mathematically, the objective function can be expressed as:

J Rm d x t x d x t x m mobs r s cal r ss r� � � � � � � � ��1
2

2( , ; ) , ; ;
,

λ �
� (I)

Where dobs and dcal are observed wavefield and the 
calculated wavefield recorded at receivers associated 
with sources , respectively. R  denotes the regularization 
term on velocity model m with weighting coefficient λ. 
The handcrafted regularization terms, often based on 
expert knowledge or empirical observations, help guide 
the inversion process toward solutions that are physically 
plausible and consistent with prior expectations. However, 
these priors can sometimes be overly general, as the 
models generated using their associated probability density 
functions may encompass a broader range of possibilities 
than those specifically relevant to geophysics. As a result, 
there is a risk of introducing biases or inaccuracies into 
the inversion results, particularly when the priors do not 
accurately capture the true distribution of subsurface 
properties in the study area.42,43 This limitation has 
prompted researchers to explore alternative approaches 
to regularization that can adaptively incorporate domain-
specific knowledge and better capture the complexities of 
subsurface structures in geophysical inversion tasks.

2.2. FWI with U-Net reparameterization

As demonstrated in the seminal work of deep image 
prior, a randomly-initialized neural network can serve as 
effective prior in inverse problems.33,34 In this study, we 
employ U-Net reparameterization for seismic FWI with 
the following objective function:
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Where velocity model is reparameterized by a U-Net 
N (z; θ) with weights θ and fixed latent variable z. In this 
study, we use a latent variable z generated by GRF. In 
contrast to traditional FWI with the velocity m updated in 
model space, the proposed FAD-FWI updates the U-Net 
weights θ iteratively to match the observed data dobs using 
a gradient-based optimization method with the gradient 
computed through the chain rule as follows:
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Here, we assume the time-marching finite-difference 
discretization of the wave equation ut = A(m) ut-1 + st-1 
with A(m) being the finite difference coefficient matrix. 
In general, regularization by U-Net architecture ensures 
that the inverted subsurface models maintain consistency 
with observed seismic data while also achieving desired 
properties such as spatial coherence and smoothness.36,38,41 
The input to the U-Net-reparameterized FWI consists 
of GRF realizations of random latent variables, with 
dimensions matching those of the velocity model. In this 
study, GRF has a covariance kernel function as follows:

C d d K d
α

α α

ασ
Γ α

α
β

α
β

� � � � �
�

�
�

�

�
�

�

�
�

�

�
�

�
2

12 2 2 � (IV)

Where σ is the variance of the Gaussian process, α is 
known as the smoothness of GRF.44,45 The constants used 
in the GRF kernel are determined by the complexity of the 
velocity model. Figure 1 presents the GRF latent variables 
with different smoothness, (a) α = 1.0, (b) α = 3.0, and 
(c) α = 5.0, respectively. In this study, we let α = 3.0 for 
all experiments. The U-Net architecture consists of an 
encoder-decoder structure: the encoder extracts features 
through a series of convolutional and downsampling 
layers, while the decoder upsamples the features to 
recover spatial resolution. Skip connections between 
corresponding layers in the encoder and decoder allow for 
detailed feature preservation.46,47 The output of the U-Net 
is the predicted velocity model, which is subsequently fed 
into the FWI module to ensure that the synthetic data 
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match the observed data. In this U-Net reparameterization 
scheme, the U-Net serves as a regularizer, leveraging 
its inductive biases, such as spatial consistency and 
hierarchical feature extraction. These biases help preserve 
important structural patterns in the velocity model, 
promoting smoother and more geologically plausible 
solutions. By incorporating this learned regularization, 
the FWI process becomes more stable and less prone to 
overfitting, improving the accuracy and robustness of the 
inversion results.

2.3. FAD-based FWI

U-Net-reparameterized FWI leverages the inductive biases 
of the U-Net architecture, enhancing the accuracy and 
robustness of the inversion process. However, challenges 
arise when coupling the gradients of DNNs ∂m/∂θ with 
that of the PDEs ∂J/∂m, where the former is typically 
computed using backpropagation by AD within deep 
learning framework,48 whereas the latter is commonly 
derived through the adjoint-state method.4 Fortunately, 
the recently developed RNN-based FWI reformulates FWI 

into an RNN, enabling the gradient calculation of velocity 
parameters using AD as well.23,25 The schematic architecture 
of the proposed FAD-FWI is shown in Figure  2, which 
seamlessly integrates two parts, with a U-Net architecture 
playing a pivotal role in reparameterizing the velocity 
model and an RNN enabling the gradients with respect 
to inversion parameters calculated by AD in a modern 
deep learning framework. This integrated approach holds 
promise for overcoming traditional FWI limitations 
and advancing the capabilities of seismic imaging in 
characterizing subsurface properties. In our proposed 
framework, two neural networks are combined, allowing 
the gradient of the cost function with respect to the U-Net 
weights to be fully computed through AD. This seamless 
gradient calculation eliminates the need for manual 
derivation of adjoint equations, enabling efficient updates 
to the U-Net weights during the inversion process. This 
is why we refer to the method as FAD-FWI, as it takes 
advantage of AD to optimize both the velocity model and 
neural network parameters simultaneously, streamlining 
the FWI workflow.

Figure 2. The schematic architecture of the proposed FAD-FWI. The GRF latent variable is fed into an encoder to generate a fused feature map, which 
is decoded and subsequently directed into an RNN-FWI module. The gradient of the cost function with respect to the U-Net weights is fully computed 
through AD. The plot of the RNN-based FWI module is adopted from Ref.25

Abbreviations: AD: Automatic differentiation; FAD: Fully automatic differentiation; FWI: Full-waveform inversion; GRF: Gaussian random field; 
RNN: Recurrent neural network.

Figure 1. The Gaussian random field latent variables with different smoothness: (A) α = 1.0, (B) α = 3.0, and (C) α = 5.0, respectively

CBA
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3. Numerical examples
3.1. FAD-FWI regularized by U-Net architecture

In the first experiment, we aim to demonstrate the 
advantages of our proposed FAD-FWI framework 
regularized by the U-Net architecture compared to 
generative neural networks (GNNs). Specifically, we seek to 
verify that the inductive biases of U-Net, such as its ability 
to capture spatial hierarchies and maintain structural 
consistency, provide more robust regularization, and lead 
to more accurate velocity model predictions. By comparing 
the performance of FAD-FWI with U-Net regularization 
against GNN, we will highlight its effectiveness in 
producing geologically plausible models while improving 
the stability and convergence of the inversion process. 
The optimization configuration is consistent across all 
experiments. We use the Adam optimizer to minimize 
the objective function. The learning rate is set to 0.01 and 
kept constant throughout the inversion process. Each 
experiment is run for a fixed budget of 2000 iterations, 
which is empirically determined to be sufficient for the loss 
to converge in all tested scenarios.

We utilize an angular unconformity geological model 
shown in Figure  3A to demonstrate the superiority of 
our proposed FAD-FWI framework, regularized by the 
U-Net architecture (FAD-FWI-U-Net), in comparison to 

the version regularized by a GNN (FAD-FWI-GNN) with 
varying scaling factors as developed by Zhu et al.38 The 
scaling factors are critical for mapping the bounded output 
of the neural network to the physically meaningful range of 
velocity models. As pointed by Zhu et al.,38 applying scaling 
factors to the output of neural networks depends on the 
physical parameters and units. The final layer of the neural 
network used a Tanh activation function, which constrains 
its output to the range [-1, 1]. To map this bounded output 
to a meaningful velocity perturbation, a scaling factor is 
required. In contrast, our primary proposed method, FAD-
FWI-U-Net, uses a linear activation (i.e., no activation 
function) in its final layer. This is a significant advantage, 
as it allows the network to output velocity values in an 
unbounded range directly, without the need to assume or 
tune a predefined scaling factor. This makes FAD-FWI-U-
Net more robust and easier to apply to new datasets where 
the appropriate velocity range may not be known a priori.

Figure  3A and B present the velocity model and a 
homogeneous initial model for FWI, respectively. The 
seismic acquisition configuration includes a total of 20 
shots indicated by red stars and 256 receivers indicated 
by white dots, as shown in Figure  3B. The inverted 
velocity model obtained by FAD-FWI-U-Net is displayed 
in Figure  3C, showcasing good agreement with the true 
model in Figure  3A. Figure  3D-F depicts the recovered 

Figure 3. Comparison of inverted velocity models obtained using the proposed FAD-FWI-U-Net and FAD-FWI-GNN with different scaling factors. 
(A) The angular unconformity geological model; (B) homogeneous initial model; (C) inverted model by FAD-FWI-U-Net, and the inverted models by 
FAD-FWI-GNN with scaling factor of 100 (D), 1000 (E), and no scaling (F).
Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform inversion; GNN: Generative neural network.
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velocity models obtained by FAD-FWI-GNN with scaling 
factors of 100, 1000, and no scaling, respectively. Our 
results illustrate that FAD-FWI-U-Net can accurately 
reconstruct the velocity model without the need for 
predefined scaling, whereas FAD-FWI-GNN requires 
appropriate scaling for successful inversion; otherwise, it 
fails to accurately recover the velocity model. In addition, 
even after removing the Tanh activation in FAD-FWI-
GNN, the inversion result shown in Figure  3F remains 
inferior to that of our proposed FAD-FWI-U-Net shown 
in Figure 3C. This difference is primarily due to the U-Net 
architecture, which effectively captures spatial hierarchies, 
preserves structural consistency, and offers more robust 
regularization for FWI. Figure 4 shows the loss curves for 
the proposed FAD-FWI-U-Net and FAD-FWI-GNN with 
scaling factors of 100, 1000, and no scaling. The results 
indicate that our proposed FAD-FWI-U-Net achieves a 
faster convergence rate after 500 iterations and a lower 
L1 error compared to FAD-FWI-GNN across different 
scaling factors. The impact of DNN architecture on 
parameterized FWI is a promising area for exploration in 
future work.

3.2. FAD-FWI across initial models

The second experiment focuses on evaluating the 
sensitivity of the proposed FAD-FWI method to the initial 
model estimation. Traditional FWI methods are often 
highly dependent on an accurate initial model; they tend to 
perform poorly when initialized with a less accurate model. 
In contrast, our FAD-FWI method, utilizing U-Net for 
parameterization, provides a strong regularizer that helps 
mitigate this dependency, enhancing inversion results even 
with suboptimal initial models. This robustness highlights 
the potential of our framework to improve inversion 
accuracy in challenging scenarios where initial model 
quality is compromised. In this experiment, we compare 
our proposed FAD-FWI method with traditional FWI 
implemented using Deepwave (https://ausargeo.com/
deepwave/) and referred to as DW-FWI for simplicity.

Figure 5 presents the Marmousi velocity model, along 
with three different initial velocity models: smoothed 
model, smoothed 1D model, and homogeneous model, 
respectively. The acquisition configuration consists of 20 
shots and 256 receivers, positioned at a depth of 85  m. 
Figure  6 presents the inverted velocity models obtained 
by DW-FWI and the proposed FAD-FWI with three 
different initial velocity models as shown in Figure 5. As 
the accuracy of the initial models decreases, the inversion 
results from DW-FWI deteriorate significantly. In contrast, 
our FAD-FWI approach achieves acceptable inversion 
results even when starting from a homogeneous initial 
model. Figure  7 depicts the comparison of the extracted 

traces from Figure  6 at 0.25  km, 0.5  km, 0.75  km, and 
1.0  km. It indicates that DW-FWI struggles to recover 
the velocity model when provided with an inaccurate 
homogeneous initial model, while the proposed FAD-FWI 
method still achieves satisfactory results, although with a 
slightly degraded quality. Figure 8 depicts the loss curves 
of DW-FWI and the proposed FAD-FWI with different 
initial velocity models. It is evident that conventional 
FWI without regularization exhibits a faster convergent 
rate at the early stages. However, the proposed FAD-FWI, 
which incorporates regularization by U-Net architecture, 
demonstrates lower L1 errors overall. We further conduct 
sensitivity analysis of DW-FWI and the proposed FAD-
FWI given a smoothed 1D initial model with different 
velocity perturbations from −30% to +30%. The inverted 
velocity models are displayed in Figure 9. The implication is 

Figure 4. Comparison of the loss curves of the proposed FAD-FWI-U-
Net and FAD-FWI-GNN with scaling factors of 100, 1000, and no scaling. 
We observe that FAD-FWI-GNN with a scaling factor of 100 fails to 
converge to lower L1 errors due to improper scaling.
Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform 
inversion; GNN: Generative neural network.

Figure 5. The Marmousi velocity model (A), along with three different 
initial velocity models: (B) smoothed model, (C) smoothed 1D model, 
and (D) homogeneous model. The acquisition configuration consists of 
20 shots marked by red stars and 256 receivers by white dots, positioned 
at a depth of 85 m.
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that DW-FWI is more susceptible to velocity perturbations 
compared to FAD-FWI. This experiment demonstrates the 
robustness of the proposed FAD-FWI to variations in the 
initial model estimation.

3.3. FAD-FWI across uncertainties in seismic 
observations

In our third experiment, we apply FAD-FWI to the 2D 
Overthrust velocity model, as depicted in Figure  10, in 
the presence of uncertainties in seismic observations such 
as noise and incomplete frequency components. We use 
a smoothed 1D initial model shown in Figure 10B for all 
tests. The acquisition configuration for this experiment 
is the same as in the previous experiments, with 20 shots 
and 256 receivers positioned at a depth of 85 m. Figure 11 
presents shot gathers under various uncertainties in 
seismic observations, including clean and noisy data, 
as well as complete and incomplete data with missing 
frequencies below 2.5  Hz. The extracted traces at the 
left-most position, along with their spectra, are displayed 
alongside the shot gathers.

In this experiment, we perform FWI under conditions 
of uncertainty in seismic observations, including noise and 
incomplete frequency components. Figure  12 compares 
the inverted velocity models obtained by DW-FWI using 
different seismic observations with clean and noisy data, 
as well as complete and incomplete data with missing 
frequencies below 2.5  Hz. In this scenario, DW-FWI 
demonstrates acceptable performance with clean 

Figure  6. Comparison of inverted velocity models obtained using 
DW-FWI (A, C, E) and the proposed FAD-FWI (B, D, F) with different 
initial velocity models shown in Figure 5. From top to bottom, the rows 
correspond to inverted models with the smoothed model, smoothed 1D 
model, and the homogeneous model.
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; 
FWI: Full-waveform inversion.
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Figure 7. Comparison of the traces extracted from the inverted velocity models shown in Figure 6 at four trace locations. From top to bottom, the rows 
correspond to trace positions at 0.25 km (A, B, C), 0.5 km (D, E, F), 0.75 km (G, H, I), and 1.0 km (J, K, L). From left to right, the columns correspond to 
smoothed model (A, D, G, J), smoothed 1D model (B, E, H, K), and homogeneous model (C, F, I, L).
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; FWI: Full-waveform inversion.
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observations; however, its accuracy declines significantly 
when the seismic data are contaminated with random 
noise. It fails to recover the velocity model effectively when 
faced with both noisy data and missing low-frequency 
components. Figure  13 compares the inverted velocity 
models obtained using the proposed FAD-FWI with 
different seismic observations. The FAD-FWI method 

demonstrates robust performance, maintaining high-
quality inversion results even as data quality degrades 
due to noise or incomplete frequency information. 
This resilience highlights the effectiveness of FAD-FWI 
in handling challenging data conditions. We provide 
quantitative evaluation metrics in Table  1 to assess the 
performance of the proposed FAD-FWI. The quantitative 
metrics mean squared error (MSE), structural similarity 
index measure (SSIM), and peak signal-to-noise ratio 
(PSNR) are defined by:
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Where μx and μy are the mean intensities, and σ x
2  and 

σ y
2  are the variances of true model and the inverted model, 

respectively. C1 and C2 are small constants stabilizing the 

Figure 8. Comparison of the loss curves of DW-FWI and the proposed 
FAD-FWI with different initial velocity models.
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; 
FWI: Full-waveform inversion.

Figure 9. Sensitivity analysis of DW-FWI and the proposed FAD-FWI given smoothed 1D initial model with different velocity perturbations. The first 
column denotes the inverted models from DW-FWI with −10% (A), −20% (E), and −30% (I) deviated from the smoothed 1D initial model shown in 
Figure 5C. The second column denotes the inverted models from FAD-FWI with velocity perturbations of −10% (B), −20% (F), and −30%(J). The third 
and fourth columns correspond to the inverted models from DW-FWI and FAD-FWI with velocity perturbations of +10% (C and D), +20% (G and H), 
and +30% (K and L), respectively.
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; FWI: Full-waveform inversion.
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Figure 10. The Overthrust velocity model (A) and the smoothed 1D initial 
model (B). The acquisition configuration consists of 20 shots marked by 
red stars and 256 receivers by white dots, positioned at a depth of 85 m.

BA

Figure 12. Comparison of inverted velocity models obtained using DW-FWI given different observations with clean data (A), clean data with missing 
frequencies below 2.5 Hz (B), noisy data with random noises σ = 0.5σ0 (C), and noisy data with missing frequencies below 2.5 Hz (D).
Abbreviations: DW: Deepwave; FWI: Full-waveform inversion.
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BA

Figure 11. Shot gathers under various uncertainties in seismic observations, including clean data (A), clean data with missing frequencies below 2.5 Hz 
(B), noisy data with random noises σ = 0.5σ0 (C), and noisy data with missing frequencies below 2.5 Hz (D). The extracted traces at the left-most position, 
along with their spectra, are displayed alongside the shot gathers.

DCBA

division. The overall SSIM index is the mean of the SSIM 
values across all windows. The SSIM value ranges from −1 
to 1, and a value of 1 indicates perfect structural similarity. 
This quantitative comparison suggests that the proposed 
FAD-FWI is more robust than DW-FWI in scenarios 
where observations lack low-frequency components and 
are contaminated by noise. In addition, we compare the 
runtime and memory usage for both DW-FWI and 
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FAD-FWI. On an NVIDIA GeForce RTX 3080Ti (12 GB) 
GPU, the traditional DW-FWI method completed in 8 min 
and 31 s with a peak memory usage of 5.3 GB. In 
comparison, our proposed FAD-FWI method required 
9  min and 6 s and 6.4 GB of memory. This represents a 
modest increase in runtime and memory usage for FAD-
FWI, which is a reasonable trade-off given its significant 
improvements in accuracy and stability, as demonstrated 
by the quantitative metrics in Table 1.

4. Discussion
Our study proposes the FAD-FWI framework, an 
innovative approach to FWI that leverages U-Net 
reparameterization within an RNN-based paradigm. 
This approach demonstrates potential in handling 
challenging scenarios where conventional FWI struggles, 
such as noisy seismic data with missing low-frequency 
components and imprecise initial models. While the 
results affirm the robustness and flexibility of FAD-FWI, 
the method also presents some limitations and potential 
areas for enhancement. The primary bottleneck of the 
proposed FAD-FWI framework lies in the memory 
requirements associated with the RNN-based FWI. Using 
reverse-mode AD to compute gradients requires storing 
intermediate variables at each step, which significantly 
increases memory demands.9,25,49 This constraint can 
be addressed by employing efficient boundary-saving 
techniques and checkpointing, which reduce memory 
requirements by selectively saving intermediate steps at 
the cost of increased computational overhead.49 Balancing 
this trade-off between memory and computational 
demand is crucial for scaling FAD-FWI to larger, more 
complex models.

Furthermore, our FAD-FWI framework is general and 
flexible, providing a foundation for integrating DNN-
based parameterization and reformulation within FWI 

Figure 13. Comparison of inverted velocity models obtained using FAD-FWI given different observations with clean data (A), clean data with missing 
frequencies below 2.5 Hz (B), noisy data with random noises σ = 0.5σ0 (C), and noisy data with missing frequencies below 2.5 Hz (D).
Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform inversion.

DC

BA

Table 1. Quantitative evaluation metrics of the inverted 
velocity models obtained using DW‑FWI and the proposed 
FAD‑FWI under varying uncertainties in seismic 
observations

Methods Metrics MSE SSIM PSNR

DW‑FWI Full data 113.94 0.99 50.55

Filtered data 200.87 0.98 48.09

Noisy data 317.46 0.96 46.10

Filtered noisy data 318.96 0.96 46.08

FAD‑FWI Full data 124.59 0.99 50.16

Filtered data 132.03 0.99 49.91

Noisy data 186.22 0.98 48.41

Filtered noisy data 180.29 0.98 48.55

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; 
FWI: Full‑waveform inversion; MSE: Mean squared error; PSNR: Peak 
signal‑to‑noise ratio; SSIM: Structural similarity index measure.
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workflows. This versatility suggests promising applications 
beyond single-physics inversion. The framework can be 
extended to multi-physics coupled inversion and multi-
data joint inversion, allowing for the incorporation 
of complementary data types (e.g., electromagnetic, 
gravitational) to improve the resolution and accuracy of 
subsurface models.9,50,51 Such extensions could enhance 
imaging and characterization in diverse geophysical 
applications, from reservoir monitoring to mineral 
exploration. In summary, the proposed FAD-FWI 
framework addresses some key challenges in FWI and 
shows potential for broad applicability. Future work will 
focus on optimizing memory efficiency and extending the 
FAD-FWI framework to multi-physics and joint inversion 
scenarios, further advancing seismic inversion and 
subsurface imaging capabilities in geophysics.

5. Conclusion
This study introduces a novel FAD-FWI framework 
that couples U-Net reparameterization within an RNN-
based paradigm. Through a series of experiments, we 
demonstrated the superiority of our proposed FAD-FWI 
over conventional DW-FWI approach without DNN 
reparameterization, highlighting its robustness in scenarios 
with inaccurate initial models and in the presence of 
uncertainties in seismic observations, such as noise and 
missing frequency components. Recovering a velocity 
model from noisy seismic observations that lack low-
frequency components and begin with a rough initial model 
is typically very challenging for conventional FWI methods. 
However, our proposed FAD-FWI achieves impressive 
performance in this demanding scenario. Our findings 
underscore the potential of deep learning techniques to 
significantly improve seismic inversion processes, thereby 
advancing subsurface imaging capabilities and contributing 
to more accurate geophysical explorations.
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