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Abstract

Seismic full-waveform inversion (FWI) is a powerful technique used in geophysical
exploration to infer subsurface properties. However, FWI often suffers from
challenges such as cycle skipping and sensitivity to uncertainties in seismic
observations. This study aims to tackle these challenges by developing a novel
fully automatic differentiation (AD) strategy for seismic FWI, coupling U-Net-based
reparameterization inspired by the deep image prior concept into a reformulated
wave equation simulation framework utilizing recurrent neural networks (RNNs).
We demonstrate that the U-Net reparameterization serves as a form of implicit
regularization for FWI, mitigating the ill-posed nature of the inversion problem and
enhancing the stability of the optimization process.In addition, the RNN reformulation
offers a flexible approach for backpropagating the FWI misfit, allowing the gradient
with respect to the velocity parameters to be computed using the AD capabilities
inherent in deep learning frameworks. Through extensive experiments on synthetic
datasets, we showcase the regularization effect of our proposed method, leading to
improved inversion results in terms of accuracy and robustness. This study offers a
promising avenue for enhancing the reliability and accuracy of FWI through the lens
of deep learning methodologies.

Keywords: Full-waveform inversion; U-Net; Deep image prior; RNN-based FWI

1. Introduction

Seismic full-waveform inversion (FWI) stands out as a crucial method in geophysical
exploration, allowing for high-resolution reconstruction of subsurface properties.'”
FWTI iteratively refines velocity models by minimizing the difference between synthetic
and observed data, employing gradient descent algorithms with gradients computed
through the adjoint-state method.** Despite its significance, traditional FWI methods
face challenges such as cycle-skipping and ill-posedness, making it difficult to accurately
represent complex subsurface velocity models when initial models are inaccurate and
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observations are incomplete or contaminated with noise.*®
Moreover, computation of gradients in traditional FWI
through the adjoint state method can be cumbersome,
requiring formulation for each wave equation, making
numerical implementation challenging and prone to
errors.>'

Deep learning has emerged as a promising approach
in seismic FWI, offering novel solutions to longstanding
challenges in conventional seismic inversion.''? By
leveraging annotated seismic data pairs consisting of
observed seismogram and corresponding subsurface
models, supervised learning-based FWI methods train
neural networks to learn the complex mapping between
seismic data and subsurface properties."*'* However,
supervised learning FWT heavily relies on the availability
of large volumes of labeled training data. Obtaining such
datasets can be challenging and resource-intensive. Apart
from directly mapping seismic data to inverted models, the
integration of deep learning to aid seismic FWT has been
intensively explored over the recent years. This includes
employing deep learning techniques for tasks such as data
augmentation, model initialization, optimization, misfit
function design, and learned regularization.”>* Supervised
learning FWT shows promise but comes with limitations,
such as reliance on high-quality labeled data and potential
overfitting to specific datasets. In addition, its generalization
to diverse geological settings can be problematic, limiting
its effectiveness in real-world applications.*??

Recent research has shifted toward physics-based deep
learning FWI, where the neural network architecture
or loss function encodes underlying physical principles.
This approach aims to enhance the interpretability
and generalization capabilities of FWI models by
explicitly incorporating prior knowledge of the physics
governing seismic wave propagation.””** Physics-based
deep learning for FWI can be approached in various
ways. First, the utilization of deep learning tools like
automatic differentiation (AD) and optimization methods
has streamlined the FWI process, making it more
straightforward and robust.*'**%% These techniques
reformulate  the  time-marching finite-difference
discretized wave equation as a recurrent neural network
(RNN), which is often referred to as RNN-based FWI. This
approach allows for the automatic calculation of gradients
and facilitates efficient model updates. Second, integrating
the wave equation into neural networks, as demonstrated
by physics-informed neural networks (PINNs), enhances
the ability of neural networks to grasp the fundamental
physics of wave propagation, thereby improving inversion
accuracy.**®® This approach allows the model to leverage
known physical principles, reducing the reliance on large

datasets and improving generalization across different
scenarios. As a result, PINNs-based FWT can offer more
robust solutions in complex subsurface environments,
addressing some of the limitations faced by traditional
methods. Third, the recently developed neural operator
learning methods aim to approximate implicit operators
defined by partial differential equations (PDEs) between
functional spaces.’** These methods can serve as a rapid
surrogate for the wave equation, enhancing the efficiency
of seismic inversion by reducing the need for multiple
wave equation simulations.’**? In addition, the concept
of deep image prior suggests that the architecture of a
neural network itself can act as a potent prior for inversion
tasks.”?* In the realm of linear inversion, the deep neural
network (DNN) parameterization method is referred
to as regularization by architecture, where the spatial
and temporal features of DNNs are harnessed to adjust
inversion results to meet specific expectations.** The
efficacy of regularization by architecture relies, to some
extent, on the meticulous design of network architectures.
In the geophysics community, the use of DNNG, particularly
convolutional neural networks (CNNs), has gained
traction for regularized estimation in FWI. This approach
leverages the inherent structure of CNNs to capture spatial
dependencies in geophysical data, improving the accuracy
and robustness of subsurface model estimations.***!

In this study, we propose a novel seismic FWI
framework with coupling DNNs for reparameterization
and reformulation, termed fully automatic differentiation-
based FWI (FAD-FWI). In this approach, the subsurface
velocity models are reparameterized by the weights of
DNNs and then fed into an RNN-based FWI module.
The seamless integration of these two neural networks
enables FAD, allowing the weights of the DNNs to be
updated by backpropagating the misfit between synthetic
and observed seismograms. The integration of DNNs
and RNNs enhances inversion outcomes by eliminating
the need for manual tuning of regularization parameters
and the reliance on error-prone adjoint state methods.
In addition, the FAD-FWI framework offers flexibility
in handling complex geological structures and can
potentially outperform traditional FWI techniques by
exploiting the strengths of deep learning for regularization
and optimization. By harnessing the hierarchical feature
extraction capabilities of the U-Net, our proposed FAD-
FWI method can effectively map a Gaussian random field
(GRF) input to the inverted velocity model, aligning it with
seismic observations through RNN-based FWI. FAD-FWI
outperforms traditional FWI with lower dependency on
initial model estimations and better robustness in the face
of uncertainties in seismic observations. Through extensive
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experiments on synthetic seismic datasets, we demonstrate
that FAD-FWI provides more accurate subsurface models
and offers greater computational flexibility compared
to conventional FWI methods. The main contributions
of this work are twofold. We propose the FAD-FWI
architecture, which overcomes a key limitation of prior
deep learning-based FWI methods. By employing a linear
activation in the final layer, our model directly outputs
velocity values in a physically realistic range, eliminating
the need for a problem-dependent scaling factor. In
addition, we develop a fully AD framework that seamlessly
integrates a DNN-based model parameterization with
the physics of wave propagation. This unified approach
automatically computes the gradients of the FWI objective
function through both the U-Net and the wave equation
solver, removing the dependency on manually derived and
implemented adjoint-state equations.

2. Methodology
2.1. FWI with regularization

Seismic FWI seeks to estimate subsurface properties by
iteratively updating the velocity model until synthetic
seismic data closely match the observed seismic data.
FWI minimizes an objective function that measures the
discrepancy between recorded and simulated seismic data.
This function typically combines a data-misfit term with
regularization to ensure stability and to guide the solution.
Mathematically, the objective function can be expressed as:

J(m) = %Zs,rd"hs (x,,t;x,)—d_, (xr,t;xs;m)2 + kR(m)

@
Where d, and d_, are observed wavefield and the
calculated wavefield recorded at receivers associated
with sources , respectively. R denotes the regularization
term on velocity model m with weighting coefficient A.
The handcrafted regularization terms, often based on
expert knowledge or empirical observations, help guide
the inversion process toward solutions that are physically
plausible and consistent with prior expectations. However,
these priors can sometimes be overly general, as the
models generated using their associated probability density
functions may encompass a broader range of possibilities
than those specifically relevant to geophysics. As a result,
there is a risk of introducing biases or inaccuracies into
the inversion results, particularly when the priors do not
accurately capture the true distribution of subsurface
properties in the study area.”>* This limitation has
prompted researchers to explore alternative approaches
to regularization that can adaptively incorporate domain-
specific knowledge and better capture the complexities of
subsurface structures in geophysical inversion tasks.

2.2. FWI with U-Net reparameterization

As demonstrated in the seminal work of deep image
prior, a randomly-initialized neural network can serve as
effective prior in inverse problems.** In this study, we
employ U-Net reparameterization for seismic FWI with
the following objective function:

j(e):%Zs’rdobs(x,,t;xs)—dml(x,,t;xs;/\/'(Z;G))z (1)

Where velocity model is reparameterized by a U-Net
N (z; 0) with weights 6 and fixed latent variable z. In this
study, we use a latent variable z generated by GRE In
contrast to traditional FWI with the velocity m updated in
model space, the proposed FAD-FWI updates the U-Net
weights 0 iteratively to match the observed data d , using
a gradient-based optimization method with the gradient
computed through the chain rule as follows:

= (I11)

ﬂ_(amjrﬂz(amjr S0 2Am)

0 \o0) om Ziou om

Here, we assume the time-marching finite-difference
discretization of the wave equation u, = A(m) u_, + s,
with A(m) being the finite difference coefficient matrix.
In general, regularization by U-Net architecture ensures
that the inverted subsurface models maintain consistency
with observed seismic data while also achieving desired
properties such as spatial coherence and smoothness.?****!
The input to the U-Net-reparameterized FWI consists
of GRF realizations of random latent variables, with
dimensions matching those of the velocity model. In this
study, GRF has a covariance kernel function as follows:
2 dY d
e )
Ple) ™ B) “L B

Where ¢ is the variance of the Gaussian process, a is
known as the smoothness of GRE** The constants used
in the GRF kernel are determined by the complexity of the
velocity model. Figure 1 presents the GRF latent variables
with different smoothness, (a) a = 1.0, (b) « = 3.0, and
(¢) @ = 5.0, respectively. In this study, we let a = 3.0 for
all experiments. The U-Net architecture consists of an
encoder-decoder structure: the encoder extracts features
through a series of convolutional and downsampling
layers, while the decoder upsamples the features to
recover spatial resolution. Skip connections between
corresponding layers in the encoder and decoder allow for
detailed feature preservation.***” The output of the U-Net
is the predicted velocity model, which is subsequently fed
into the FWI module to ensure that the synthetic data

C,(d)=0’
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match the observed data. In this U-Net reparameterization
scheme, the U-Net serves as a regularizer, leveraging
its inductive biases, such as spatial consistency and
hierarchical feature extraction. These biases help preserve
important structural patterns in the velocity model,
promoting smoother and more geologically plausible
solutions. By incorporating this learned regularization,
the FWI process becomes more stable and less prone to
overfitting, improving the accuracy and robustness of the
inversion results.

2.3. FAD-based FWI

U-Net-reparameterized FWI leverages the inductive biases
of the U-Net architecture, enhancing the accuracy and
robustness of the inversion process. However, challenges
arise when coupling the gradients of DNNs om/0d0 with
that of the PDEs 9dJ/0m, where the former is typically
computed using backpropagation by AD within deep
learning framework,*® whereas the latter is commonly
derived through the adjoint-state method.* Fortunately,
the recently developed RNN-based FWI reformulates FWI

Depth (km) >
e
N
w o

o
]
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Distance (km)
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into an RNN, enabling the gradient calculation of velocity
parameters using AD as well.*** The schematic architecture
of the proposed FAD-FWI is shown in Figure 2, which
seamlessly integrates two parts, with a U-Net architecture
playing a pivotal role in reparameterizing the velocity
model and an RNN enabling the gradients with respect
to inversion parameters calculated by AD in a modern
deep learning framework. This integrated approach holds
promise for overcoming traditional FWI limitations
and advancing the capabilities of seismic imaging in
characterizing subsurface properties. In our proposed
framework, two neural networks are combined, allowing
the gradient of the cost function with respect to the U-Net
weights to be fully computed through AD. This seamless
gradient calculation eliminates the need for manual
derivation of adjoint equations, enabling efficient updates
to the U-Net weights during the inversion process. This
is why we refer to the method as FAD-FWI, as it takes
advantage of AD to optimize both the velocity model and
neural network parameters simultaneously, streamlining
the FWI workflow.

1.0 0.0 0.5 1.0
Distance (km)

Figure 1. The Gaussian random field latent variables with different smoothness: (A) a = 1.0, (B) a = 3.0, and (C) a = 5.0, respectively
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Figure 2. The schematic architecture of the proposed FAD-FWI. The GRF latent variable is fed into an encoder to generate a fused feature map, which
is decoded and subsequently directed into an RNN-FWI module. The gradient of the cost function with respect to the U-Net weights is fully computed

through AD. The plot of the RNN-based FWI module is adopted from Ref.?*

Abbreviations: AD: Automatic differentiation; FAD: Fully automatic differentiation; FWI: Full-waveform inversion; GRF: Gaussian random field;

RNN: Recurrent neural network.
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3. Numerical examples
3.1. FAD-FWI regularized by U-Net architecture

In the first experiment, we aim to demonstrate the
advantages of our proposed FAD-FWI framework
regularized by the U-Net architecture compared to
generative neural networks (GNNs). Specifically, we seek to
verify that the inductive biases of U-Net, such as its ability
to capture spatial hierarchies and maintain structural
consistency, provide more robust regularization, and lead
to more accurate velocity model predictions. By comparing
the performance of FAD-FWI with U-Net regularization
against GNN, we will highlight its effectiveness in
producing geologically plausible models while improving
the stability and convergence of the inversion process.
The optimization configuration is consistent across all
experiments. We use the Adam optimizer to minimize
the objective function. The learning rate is set to 0.01 and
kept constant throughout the inversion process. Each
experiment is run for a fixed budget of 2000 iterations,
which is empirically determined to be sufficient for the loss
to converge in all tested scenarios.

We utilize an angular unconformity geological model
shown in Figure 3A to demonstrate the superiority of
our proposed FAD-FWI framework, regularized by the
U-Net architecture (FAD-FWI-U-Net), in comparison to

© Depth (km) >

™ Depth (km)

Depth (km)

the version regularized by a GNN (FAD-FWI-GNN) with
varying scaling factors as developed by Zhu et al.*® The
scaling factors are critical for mapping the bounded output
of the neural network to the physically meaningful range of
velocity models. As pointed by Zhu et al.,’ applying scaling
factors to the output of neural networks depends on the
physical parameters and units. The final layer of the neural
network used a Tanh activation function, which constrains
its output to the range [-1, 1]. To map this bounded output
to a meaningful velocity perturbation, a scaling factor is
required. In contrast, our primary proposed method, FAD-
FWI-U-Net, uses a linear activation (i.e., no activation
function) in its final layer. This is a significant advantage,
as it allows the network to output velocity values in an
unbounded range directly, without the need to assume or
tune a predefined scaling factor. This makes FAD-FWI-U-
Net more robust and easier to apply to new datasets where
the appropriate velocity range may not be known a priori.

Figure 3A and B present the velocity model and a
homogeneous initial model for FWI, respectively. The
seismic acquisition configuration includes a total of 20
shots indicated by red stars and 256 receivers indicated
by white dots, as shown in Figure 3B. The inverted
velocity model obtained by FAD-FWI-U-Net is displayed
in Figure 3C, showcasing good agreement with the true
model in Figure 3A. Figure 3D-F depicts the recovered

"FAD-FWI-GNN (scaling:100) -

0 025 05 075 1 1.25
Distance (km)

0 025 05 075 1 1.25
Distance (km)

Figure 3. Comparison of inverted velocity models obtained using the proposed FAD-FWI-U-Net and FAD-FWI-GNN with different scaling factors.
(A) The angular unconformity geological model; (B) homogeneous initial model; (C) inverted model by FAD-FWI-U-Net, and the inverted models by

FAD-FWI-GNN with scaling factor of 100 (D), 1000 (E), and no scaling (F).

Abbreviations: FAD: Fully automatic differentiation; FWT: Full-waveform inversion; GNN: Generative neural network.
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velocity models obtained by FAD-FWI-GNN with scaling
factors of 100, 1000, and no scaling, respectively. Our
results illustrate that FAD-FWI-U-Net can accurately
reconstruct the velocity model without the need for
predefined scaling, whereas FAD-FWI-GNN requires
appropriate scaling for successful inversion; otherwise, it
fails to accurately recover the velocity model. In addition,
even after removing the Tanh activation in FAD-FWI-
GNN, the inversion result shown in Figure 3F remains
inferior to that of our proposed FAD-FWI-U-Net shown
in Figure 3C. This difference is primarily due to the U-Net
architecture, which effectively captures spatial hierarchies,
preserves structural consistency, and offers more robust
regularization for FWI. Figure 4 shows the loss curves for
the proposed FAD-FWI-U-Net and FAD-FWI-GNN with
scaling factors of 100, 1000, and no scaling. The results
indicate that our proposed FAD-FWI-U-Net achieves a
faster convergence rate after 500 iterations and a lower
L1 error compared to FAD-FWI-GNN across different
scaling factors. The impact of DNN architecture on
parameterized FWI is a promising area for exploration in
future work.

3.2. FAD-FWI across initial models

The second experiment focuses on evaluating the
sensitivity of the proposed FAD-FWI method to the initial
model estimation. Traditional FWI methods are often
highly dependent on an accurate initial model; they tend to
perform poorly when initialized with a less accurate model.
In contrast, our FAD-FWI method, utilizing U-Net for
parameterization, provides a strong regularizer that helps
mitigate this dependency, enhancing inversion results even
with suboptimal initial models. This robustness highlights
the potential of our framework to improve inversion
accuracy in challenging scenarios where initial model
quality is compromised. In this experiment, we compare
our proposed FAD-FWI method with traditional FWI
implemented using Deepwave (https://ausargeo.com/
deepwave/) and referred to as DW-FWT for simplicity.

Figure 5 presents the Marmousi velocity model, along
with three different initial velocity models: smoothed
model, smoothed 1D model, and homogeneous model,
respectively. The acquisition configuration consists of 20
shots and 256 receivers, positioned at a depth of 85 m.
Figure 6 presents the inverted velocity models obtained
by DW-FWI and the proposed FAD-FWI with three
different initial velocity models as shown in Figure 5. As
the accuracy of the initial models decreases, the inversion
results from DW-FWI deteriorate significantly. In contrast,
our FAD-FWI approach achieves acceptable inversion
results even when starting from a homogeneous initial
model. Figure 7 depicts the comparison of the extracted

0.040 —— FAD-FWI-UNct
~—— FAD-FWI-GNN {scaling:100}
—— FAD-FWI-GNN {5¢aling:1000)
0.035 1 —— FAD-FWI-CNN (no scaling}
1
0.030
0.025 A
wn
8
= 0.020
-
-l
0.015 -
0.010
0.005
0.000 +— - v v r v v v r
Qo 250 500 750 1000 1250 1500 1750 2000

Iterations

Figure 4. Comparison of the loss curves of the proposed FAD-FWI-U-
Net and FAD-FWI-GNN with scaling factors of 100, 1000, and no scaling.
We observe that FAD-FWI-GNN with a scaling factor of 100 fails to
converge to lower L errors due to improper scaling.

Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform
inversion; GNN: Generative neural network.
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Figure 5. The Marmousi velocity model (A), along with three different
initial velocity models: (B) smoothed model, (C) smoothed 1D model,
and (D) homogeneous model. The acquisition configuration consists of
20 shots marked by red stars and 256 receivers by white dots, positioned
at a depth of 85 m.

traces from Figure 6 at 0.25 km, 0.5 km, 0.75 km, and
1.0 km. It indicates that DW-FWI struggles to recover
the velocity model when provided with an inaccurate
homogeneous initial model, while the proposed FAD-FWI
method still achieves satisfactory results, although with a
slightly degraded quality. Figure 8 depicts the loss curves
of DW-FWI and the proposed FAD-FWI with different
initial velocity models. It is evident that conventional
FWI without regularization exhibits a faster convergent
rate at the early stages. However, the proposed FAD-FWI,
which incorporates regularization by U-Net architecture,
demonstrates lower L, errors overall. We further conduct
sensitivity analysis of DW-FWI and the proposed FAD-
FWI given a smoothed 1D initial model with different
velocity perturbations from —30% to +30%. The inverted
velocity models are displayed in Figure 9. The implication is
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that DW-FWT is more susceptible to velocity perturbations
compared to FAD-FWI. This experiment demonstrates the
robustness of the proposed FAD-FWI to variations in the
initial model estimation.

(=}

DW-FWI (Smooth)

FAD-FWI (Smooth)

DW-FWI (Smooth 1D) FAD-FWI (Smooth 1D)

Depth (km) ™M Depth (km) © Depth (km) 3>

0 025 05075 1 125 0 025 05 095 1 125
Distance (km) Distance (km)

Figure 6. Comparison of inverted velocity models obtained using
DW-FWI (A, C, E) and the proposed FAD-FWI (B, D, F) with different
initial velocity models shown in Figure 5. From top to bottom, the rows
correspond to inverted models with the smoothed model, smoothed 1D
model, and the homogeneous model.

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation;
FWTI: Full-waveform inversion.

3.3. FAD-FWI across uncertainties in seismic
observations

In our third experiment, we apply FAD-FWI to the 2D
Overthrust velocity model, as depicted in Figure 10, in
the presence of uncertainties in seismic observations such
as noise and incomplete frequency components. We use
a smoothed 1D initial model shown in Figure 10B for all
tests. The acquisition configuration for this experiment
is the same as in the previous experiments, with 20 shots
and 256 receivers positioned at a depth of 85 m. Figure 11
presents shot gathers under various uncertainties in
seismic observations, including clean and noisy data,
as well as complete and incomplete data with missing
frequencies below 2.5 Hz. The extracted traces at the
left-most position, along with their spectra, are displayed
alongside the shot gathers.

In this experiment, we perform FWI under conditions
of uncertainty in seismic observations, including noise and
incomplete frequency components. Figure 12 compares
the inverted velocity models obtained by DW-FWT using
different seismic observations with clean and noisy data,
as well as complete and incomplete data with missing
frequencies below 2.5 Hz. In this scenario, DW-FWI
demonstrates acceptable performance with clean

- TR
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== UNet-FWI (Smooth)

e THiE

~— DW-FWI (Smooth_ID)
e UNet-FWI (Smooth 1 D)
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=== True ™ 1==7t
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Velocity (km/s) < Velocity (km/s) @ Velocity (km/s) o Velocity (km/s) >
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2
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Depth (km)

T T T T T T
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Figure 7. Comparison of the traces extracted from the inverted velocity models shown in Figure 6 at four trace locations. From top to bottom, the rows
correspond to trace positions at 0.25 km (A, B, C), 0.5 km (D, E, F), 0.75 km (G, H, I), and 1.0 km (], K, L). From left to right, the columns correspond to
smoothed model (A, D, G, J), smoothed 1D model (B, E, H, K), and homogeneous model (C, E I, L).
Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; FWI: Full-waveform inversion.
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observations; however, its accuracy declines significantly
when the seismic data are contaminated with random
noise. It fails to recover the velocity model effectively when
faced with both noisy data and missing low-frequency
components. Figure 13 compares the inverted velocity
models obtained using the proposed FAD-FWI with
different seismic observations. The FAD-FWI method

‘ ——  DW-FWI (Smooth)
—— FAD-FWI (Smooth)
‘ —— DW-FWI (Smooth_1D)
0.04 —— FAD FWI {Smooth_1D)
—— | DW-FWI (Homo)
—— FAD-FWI (Homo)
0.03 4 T
1%]
g |
-
—
— 0.021
0.01 4
0.00 . . . . -
0 250 500 750 1000 1250 1500 1750 2000
Iterations

Figure 8. Comparison of the loss curves of DW-FWTI and the proposed
FAD-FWI with different initial velocity models.

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation;
FWI: Full-waveform inversion.

(=}
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o
W

demonstrates robust performance, maintaining high-
quality inversion results even as data quality degrades
due to noise or incomplete frequency information.
This resilience highlights the effectiveness of FAD-FWI
in handling challenging data conditions. We provide
quantitative evaluation metrics in Table 1 to assess the
performance of the proposed FAD-FWI. The quantitative
metrics mean squared error (MSE), structural similarity
index measure (SSIM), and peak signal-to-noise ratio
(PSNR) are defined by:

MSE(mtrue > minv ) = %Zil[mtme (l) - minv (1)]2 (V)

2
MAX mme —MIN(mme)
PSNR(mtrue’minV)ZIOZOglo I: ]E/IStE(Zﬂ m )t :I
true" " inv
(V1)
2 C (20, +C
SSIM (x,y) = ( K, + 1)( Oy * 2) (VID)

(,uj+,uj+Cl)(0'z+0'j+C2)

Where _and x are the mean intensities, and o and
O'j are the variances of true model and the inverted model,
respectively. C, and C, are small constants stabilizing the
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Figure 9. Sensitivity analysis of DW-FWTI and the proposed FAD-FWI given smoothed 1D initial model with different velocity perturbations. The first
column denotes the inverted models from DW-FWI with —10% (A), —20% (E), and —30% (I) deviated from the smoothed 1D initial model shown in
Figure 5C. The second column denotes the inverted models from FAD-FWI with velocity perturbations of —10% (B), =20% (F), and —30%(J). The third
and fourth columns correspond to the inverted models from DW-FWI and FAD-FWI with velocity perturbations of +10% (C and D), +20% (G and H),
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Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation; FWI: Full-waveform inversion.
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Abbreviations: DW: Deepwave; FWI: Full-waveform inversion.
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Abbreviations: FAD: Fully automatic differentiation; FWI: Full-waveform inversion.

Table 1. Quantitative evaluation metrics of the inverted
velocity models obtained using DW-FWI and the proposed
FAD-FWI under varying uncertainties in seismic
observations

Methods Metrics MSE SSIM PSNR
DW-FWI Full data 113.94 0.99 50.55
Filtered data 200.87 0.98 48.09
Noisy data 317.46 0.96 46.10
Filtered noisy data 318.96 0.96 46.08
FAD-FWI Full data 124.59 0.99 50.16
Filtered data 132.03 0.99 49.91
Noisy data 186.22 0.98 48.41
Filtered noisy data 180.29 0.98 48.55

Abbreviations: DW: Deepwave; FAD: Fully automatic differentiation;
FWI: Full-waveform inversion; MSE: Mean squared error; PSNR: Peak
signal-to-noise ratio; SSIM: Structural similarity index measure.

FAD-FWI. On an NVIDIA GeForce RTX 3080Ti (12 GB)
GPU, the traditional DW-FWI method completed in 8 min
and 31 s with a peak memory usage of 5.3 GB. In
comparison, our proposed FAD-FWI method required
9 min and 6 s and 6.4 GB of memory. This represents a
modest increase in runtime and memory usage for FAD-
FWI, which is a reasonable trade-oft given its significant
improvements in accuracy and stability, as demonstrated
by the quantitative metrics in Table 1.

4, Discussion

Our study proposes the FAD-FWI framework, an
innovative approach to FWI that leverages U-Net
reparameterization within an RNN-based paradigm.
This approach demonstrates potential in handling
challenging scenarios where conventional FWT struggles,
such as noisy seismic data with missing low-frequency
components and imprecise initial models. While the
results affirm the robustness and flexibility of FAD-FWI,
the method also presents some limitations and potential
areas for enhancement. The primary bottleneck of the
proposed FAD-FWI framework lies in the memory
requirements associated with the RNN-based FWI. Using
reverse-mode AD to compute gradients requires storing
intermediate variables at each step, which significantly
increases memory demands.>?* This constraint can
be addressed by employing efficient boundary-saving
techniques and checkpointing, which reduce memory
requirements by selectively saving intermediate steps at
the cost of increased computational overhead.” Balancing
this trade-off between memory and computational
demand is crucial for scaling FAD-FWT to larger, more
complex models.

Furthermore, our FAD-FWI framework is general and
flexible, providing a foundation for integrating DNN-
based parameterization and reformulation within FWI
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workflows. This versatility suggests promising applications
beyond single-physics inversion. The framework can be
extended to multi-physics coupled inversion and multi-
data joint inversion, allowing for the incorporation
of complementary data types (e.g., electromagnetic,
gravitational) to improve the resolution and accuracy of
subsurface models.”**** Such extensions could enhance
imaging and characterization in diverse geophysical
applications, from reservoir monitoring to mineral
exploration. In summary, the proposed FAD-FWI
framework addresses some key challenges in FWI and
shows potential for broad applicability. Future work will
focus on optimizing memory efficiency and extending the
FAD-FWI framework to multi-physics and joint inversion
scenarios, further advancing seismic inversion and
subsurface imaging capabilities in geophysics.

5. Conclusion

This study introduces a novel FAD-FWI framework
that couples U-Net reparameterization within an RNN-
based paradigm. Through a series of experiments, we
demonstrated the superiority of our proposed FAD-FWI
over conventional DW-FWI approach without DNN
reparameterization, highlighting its robustness in scenarios
with inaccurate initial models and in the presence of
uncertainties in seismic observations, such as noise and
missing frequency components. Recovering a velocity
model from noisy seismic observations that lack low-
frequency components and begin with a rough initial model
is typically very challenging for conventional FWI methods.
However, our proposed FAD-FWI achieves impressive
performance in this demanding scenario. Our findings
underscore the potential of deep learning techniques to
significantly improve seismic inversion processes, thereby
advancing subsurface imaging capabilities and contributing
to more accurate geophysical explorations.
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