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Abstract

Distributed acoustic sensing (DAS) has attracted much attention in seismic
data acquisition because of its low cost, anti-electromagnetic interference, and
high acquisition density. Unfortunately, the acquired DAS records are usually
accompanied by various kinds of complex noise, affecting subsequent interpretation
and inversion. Traditional methods have difficulties in effectively attenuating the
intense background noise. In general, the denoising task of DAS data is challenging.
Recently, convolutional neural networks (CNNs) exhibit a good ability in suppressing
the noise in DAS records. However, traditional CNN-based frameworks always have a
relatively simple network architecture, bringing negative impacts on the denoising
capability. To solve this problem, we propose a dual-branch dense network
(DBD-Net) in this paper. Specifically, DBD-Net introduces a novel combination
of dual-branch modules and an attention mechanism: the dual-branch modules
extract multi-scale coarse-to-fine features, while the attention mechanism highlights
the most informative features. This joint design strengthens feature representation
and signal recovery compared with conventional CNN structures such as denoising
CNN (DnCNN) and U-Net. Moreover, an attention module is employed to enhance
the effective features. To verify the denoising ability, we compare DBD-Net with
other competing methods, including band-pass filter, DnCNN, and U-Net, in
terms of denoising capability and processing accuracy. Experimental results verify
that DBD-Net can improve the quality of DAS records with a signal-to-noise ratio
increment of nearly 26 dB. Meanwhile, the intense DAS background noise is also
perfectly suppressed and the weak signals are effectively restored, representing
advantages over the competing methods.

Keywords: Background noise suppression; Distributed acoustic sensing; Convolutional
neural network; Vertical seismic profile; Signal-to-noise ratio improvement
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1. Introduction

Distributed acoustic sensing (DAS), by capturing the
phase change of Rayleigh scattered light in optical fibers, is
capable of accurately detecting subtle ground deformations
induced by artificial seismic waves. Compared with
traditional geophones, it exhibits advantages in acquisition
properties and has been extensively used for seismic
exploration, mainly combined with the vertical seismic
profiles technique.'” Unfortunately, effective signals
acquired by the DAS system are relatively weak and are often
susceptible to interference from strong background noise.*
In addition, the DAS noise has complicated characteristics,
and a few of them are not observed in the seismic records
acquired by the geophones, such as fading noise, horizontal
noise, and coupling noise.”® It means that the traditional
denoising methods might be unable to accurately attenuate
this specific noise, leading to a degradation in denoising
performance.”'® Therefore, effectively suppressing seismic
noise and recovering effective signals has become a key
aspect of seismic data processing.

Recently, researchers proposed many denoisingmethods
to process seismic data, and some remarkable results have
been achieved. In general, traditional denoising methods
are classified into four categories: time-frequency analysis
methods,'"'>  signal-decomposition-based = methods,"”
multi-scale analysis methods,'"” and low-rank-based
methods.'®"” First, the time-frequency analysis methods
can detect the effective signals by utilizing the differences
in physical or spectral properties between signal and noise
components. Typical methods include the band-pass filter
(BPF),"® median filter,"* and Wiener filter.?* Their denoising
principles are relatively idealized. Thus, their performance
might degrade when processing intense DAS background
noise. Aiming to enhance the denoising ability, signal-
decomposition-based methods, such as empirical mode
decomposition,” variational mode decomposition,”* and
singular value decomposition,** were proposed. Generally
speaking, these methods can decompose the signal into
different modes and then accomplish the denoising task by
retaining the signal-dominant modes. However, the signals
and noise have overlaps, which limit the decomposition
accuracy. Therefore, extracting the signal components
from the mixed mode is often difficult and significantly
affects the denoising performance. Meanwhile, multi-
scale analysis methods are another type of commonly
used denoising approach in the exploration industry.
The application of these methods considers the fact that
seismic signals and background noise have distinct
characteristics in sparsity. In other words, we can use
multi-scale analysis, such as shearlet,'**% seislet,”” and
curvelet transform,? to convert the temporal signals into

a given sparse domain, and apply a 2D filter to maintain
the signal components. Unfortunately, it is difficult to
determine the critical parameters. Inappropriate thresholds
or filters will inevitably cause signal leakage or residual
noise. Furthermore, the low-rank-based approach is based
on the assumption that the matrices of pure signals have
low-rank properties. Rank is increased by the presence of
DAS noise.'*"” Therefore, the denoising task is equivalent
to an optimization problem, which aims to obtain the
minimal rank and output the attenuation results. Although
low-rank-based methods can provide great denoising
performance, the determination of optimal rank and
huge computational cost still hinder the wide application
of these methods. In summary, traditional denoising
methods all have their shortcomings, and the attenuation
accuracy cannot be ensured when faced with low signal-
to-noise ratio (SNR) DAS data.

Nowadays, deep-learning-based methods are widely
used in the field of seismic data processing.** Some
successful applications have been reported in waveform
inversion,”*  classification,”* interpolation,” and
migration.*®* As one of the hot topics in deep learning,
the convolutional neural network (CNN) has been
applied to DAS background noise attenuation. Dong
et al® proposed a method based on denoising CNNs
(DnCNNs) to suppress the noise of seismic data, which
optimizes the parameters and training data of DnCNNs so
that they can adapt to the desert seismic data denoising
environment and achieve adaptive blind denoising.
The feasibility of CNNs in seismic data denoising was
also verified through experiments.*! Liu et al*? applied
U-Net in seismic data noise suppression to achieve more
effective seismic data processing through multi-scale
extraction and channel expansion. Moreover, they verified
the effectiveness of U-Net in seismic signal recovery and
intense noise attenuation. These studies demonstrate the
effectiveness of CNN in seismic data processing and show
the superiority over traditional denoising methods at the
same time. Its excellent performance is mainly benefited
from the network structure and training data. The shortage
of high-quality training data is certainly an important
potential problem for CNN-based methods. It is well
recognized that acquiring pure signals from field data is
infeasible, posing a significant challenge in constructing
signal training dataset. In addition, low-quality training
data always impacts the signal amplitude preservation and
weak signal recovery. Although carefully designed datasets
can mitigate this issue, the fundamental limitation still lies
in the networK’s ability to effectively extract and utilize the
features of DAS data. This highlights the need for more
advanced architectures.
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To enhance the processing accuracy, a novel dual-
branch dense network (DBD-Net) is proposed. Unlike
previous CNN-based frameworks with relatively simple
architectures that limit denoising capability, our method
employs dual-branch modules to extract both coarse and
fine features at multiple scales. In addition, a dense module
is introduced to alleviate the gradient disappearance and
improve feature fusion, while an attention mechanism
is designed to enhance effective signals under complex
noise conditions. With these improvements, the proposed
network cannot only suppress intense DAS background
noisebutalso preserve weak seismic signals more effectively.
Therefore, compared with conventional CNN models
such as DnCNN and U-Net, our method provides a more
targeted solution for DAS denoising. The paper consists of
four parts. Section 1 is the introduction, which introduces
the significance of the study and the current status of
the study. Section 2 is the method, which introduces the
CNN network designed in this paper and the process of
constructing a high-quality training set. Section 3 presents
the results, which demonstrate the effectiveness of DBD-
Net through the comparison experiments of synthetic and
field records. Section 4 is the conclusion of this paper.

2. Methods

Figure 1 shows DBD-Net’s network structure. In general,
DBD-Net consists of the dual-branch module, the dense
module, and the attention module. Specifically, DBD-
Net has two network branches, a main scale, and a self-
attention module. In the main scale, five convolutional
layers are first applied to capture the initial features. Then,

DB module

the dual-branch module, shown in Figure 2, is used to
capture the multi-scale features. Meanwhile, the dense
module transfers the shallow features, aiming to fuse them
with deep features and improve the feature representation.
In addition, a self-attention module is used to assist the
effective feature extraction. Next, we will detail the specific
descriptions of the network components.

2.1. DB module

Figure 2 presents the structure of the dual-branch module.
The dual-branch module has double branches, designed
to achieve multi-scale feature extraction. Specifically, the
top branch focuses on capturing local fine features, while
the bottom branch captures global coarse features. In the
top branch, the feature map is first up-sampled by bilinear
interpolation. Then, the dilated convolutional layers with
different dilation rates (i.e., 2, 3, 5), alternated with regular
convolutional layers, are used to capture detailed local
features in DAS data. Meanwhile, skip connections are
used to transfer and fuse the features. Here, the application
of dilated convolution rapidly enlarges the receptive field,
and the utilization of different dilation rates maintains the
diversity of captured features and avoids feature loss caused
by the chessboard effect. In the bottom branch, the feature
map is first down-sampled using max-pooling, which
reduces its resolution to highlight coarse structures. Then,
the same set of dilated convolutional layers, alternated with
regular convolutional layers, is applied to capture global
features. Skip connections are also employed to transfer
and fuse features at this scale. Finally, the outputs of the
top and bottom branches are added with the initial input of

—--Dense module _ _ _

y
Conv, kernel size=3%3. Dilate conv, kernel
padding=1 size=3*3. padding=2.
a o=

dilate rate=2

Figure 1. Structure of DBD-Net
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Abbreviations: DB Module: Dual-branch module; DBD-Net: Dual-branch dense network.
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Figure 2. Structure of dual-branch module

the dual-branch module to enhance the effective features
and reduce data redundancy.

2.2. Dense module

In general, with the depth of the network increasing,
the learnable features are inundated with redundant
information, which undoubtedly results in gradient
disappearance and local optimum problems. The shallow
features can reduce data redundancy and have good
maintenance for gradients. In this study, we design a dense
module, as depicted in Figure 1, to transfer and merge
shallow features with deep features. The dense module
has three convolutional layers, and all the outputs of
convolutional layers are concatenated with the initial input
data of the network through skip connections. It means
that the feature utilization ability is enhanced and the
gradient disappearance phenomenon is relieved, thereby
improving the effective features.

2.3. Attention module

Effective signals in DAS data are commonly heavily affected
by complex noise. To enhance the feature extraction
capability, we design a spatial attention module. Specifically,
the features are extracted using six convolutional layers,
and then shallow feature fusion is implemented using skip
connections. A softmax function is then used to activate
the output of the sixth convolutional layer and distributions
of the captured features. On this basis, the distributions
are used as the weights to multiply with input features,
and then, the desired features are enhanced because the
effective features always have a larger probability value.

Finally, the output of the attention module works as the
guidance information to concatenate with the output of
the main scale, thereby highlighting the primary features
and improving the denoising accuracy, particularly for the
weak up-going signals. In summary, the function of the
attention module is to suppress noise-related features and
emphasize effective seismic signals, significantly enhancing
the recovery of weak events in complex DAS records.

2.4. Seismic denoising principle

In this study, we used DBD-Net to denoise noisy DAS
records, and the detailed principle is shown below. The
expression of the noisy DAS record is shown as follows:

@

where y denotes the noisy data, x and n represent
the effective signals and background noise, respectively.
Subsequently, y is used as the network input. The network
output is an estimation of the effective signal, which is
expressed as follows:

=F(5:{)

y=x+n

(II)

where X denotes the estimation of the effective signal,
F is the high-dimensional nonlinear mapping relationship
constructed by the DBD-Net, with network parameters
of { = {w,k}. Here, w is the weight, and k denotes bias.
The network parameters are obtained randomly at the
beginning, and the estimation error of the effective signal
is quite large at this time. Then, we need to construct a loss
function to evaluate error, which is defined as follows:
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LZ(C):%i”F(%;g)_xiW (I11)

Where y. is the noisy record and x; is the effective signal.
We can iteratively optimize the parameters by using the
backpropagation strategy. After training the network for
several epochs, the error converges and becomes stable. In
this study, we selected a set of parameters that minimize
the loss function as the optimal set of parameters ¢ . The
final denoising results are given as follows:

JACout zx:F(y;é/tmt) (IV)

2.5. Construction of the training set

Our training dataset contains a clean set of pure signal
data and a set of field noise data. The pure signal dataset is
simulated by simple seismic wavelets as in other previous
studies, which have some differences from the properties
of field DAS signals. It means that the performance of the
trained models cannot be guaranteed and even recover
some fake events in some conditions. To improve the
denoising performance, we generated the clean signal
training dataset using the forward modeling method.
Specifically, it uses seismic wavelets to excite the artificial
velocity model. Meanwhile, we utilized the finite difference
method to simulate the propagation of the wavefield and
then obtained synthetic data. To ensure the accuracy of
learnable features, the previously acquired seismic profiles
were considered references in the construction of velocity
models. In this study, there were 20 velocity models. We
obtained a total of 160 clean synthetic records. Table 1
presents the modeling parameters. The modeling equations
of the Ricker Wavelet are described as:

Lt)=a1-2m f(e-t,) |- 000 W)

where A is the amplitude, £, and f, denote the initial
time and dominant frequency, respectively. As shown in
Figure 3, we provide an example of a velocity model and
synthetic recording. The inverted triangle at the top right
identifies the source location, while the black line on the

Table 1. Forward modeling parameters

Parameters Value

Seismic wavelet Ricker wavelet

Seismic wave frequency (Hz) 20-110
Wave velocity (m/s) 800-4700
Trace space (m) 1
Offset (m) 100-300
Sampling interval (s) 0.0004

left symbolizes the receiving line, as shown in the figure.
Subsequently, the synthetic records were divided into
64 x 64 patches. The signal dataset consisted of 20000
patches. For the field noise dataset, the passive source data
acquired in Northeast China were employed. Similarly,
the field noise data were divided into noise patches by the
64 x 64 sliding window. Here, we selected 30000 patches
randomly to generate the test dataset. The field noise
patches were multiplied by a weight ranging from 1 to 8 and
then added with signal patches to form the noisy patches
in the training process. We input signal patches and noise
patches into DBD-Net, and through this training process,
we successfully obtained denoising models. Figure 4 shows
some samples of pure signal and field noise patches.

2.6. Training details

In general, the high-performance computation technique
affects CNN-based methods’ performance. In this work,
a graphics workstation was built with a configuration
consisting of Intel (R) Core (TM) i5-9400F, NVIDIA
GeForce RTX 2060 Super, and 16GB RAM. The specific
parameters are listed in Table 2.

3. Results
3.1. Synthetic data results

Figure 5 shows the results concerning the synthetic DAS
record, with Figure 5A presenting the corresponding
velocity model, which has four layers, for the synthetic DAS
record shown in Figure 5B. The fundamental frequency of
the Ricker wavelet is 40 Hz.

Figure 5C shows the field seismic noise, which was
combined with the synthetic DAS record to yield the noisy
record, as shown in Figure 5D, which was used as the
analyzed data. Here, we used BPE, DnCNN,* and U-Net,*
for experimental comparison to process the noisy data
with the proposed DBD-Net. Specifically, the pass band of
BPF is 20-90 Hz, while DnCNN and U-Net use the same
strategy and dataset as DBD-Net to train the denoising
models.

The noisy data is shown in Figure 6A. BPF (Figure 6B)
cannot effectively suppress the complex DAS noise, whose
limited performance is demonstrated by the signal leakage
and residual horizontal noise. Compared with BPF, CNN-
based frameworks always provide better denoising results
and the weak signals can also be restored. Among these
methods, DnCNN and U-Net (Figure 6C and D) are
outperformed by DBD-Net (Figure 6E). Notably, recovered
events in DBD-Net are continuous and smooth, indicating
its advantages in intensive DAS noise suppression. On
this basis, two areas of interest are enlarged, as shown
in Figure 7, for detailed comparisons. Area 1 is the local
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Table 2. Network architecture parameters

Hyper-parameter DnCNN U-Net DBD-Net
Optimizer ADAM ADAM ADAM
Patch size 64x64 64x64 64x64
Batch size 32 32 32
Epoch 60 60 60
Learning rate range [10741075,10°] [1074107%,10°°] [107%107%,107°]
Input channels 1 1 1
Layers 17 19 22
Convolution kernel size ~ 3x3 x 64 3x3 x 64 3x3 x 64

Abbreviations: DBD-Net: Dual-branch dense network;
DnCNN: Denoising convolutional neural network.

record (900-1200 traces) ranging from 1.5 to 1.8 s, which
is contaminated by complex optical noise, while area 2 is
the local record (240-540 traces) between 1.3 and 1.7 s,
which is dominated by weak reflection events (Figure 7A).
Similar results could be observed that BPF is affected by
disordered information (Figure 7B), which also brings
difficulty for the recognition of weak signals. Although
DnCNN can effectively attenuate the background noise to
some extent, the recovered events are corrupted and few
weak signals have been recovered (Figure 7C). In addition,
U-Net (Figure 7D) and DBD-Net represent close denoising
ability; however, the recovered signals of DBD-Net are
more complete and smoother (Figure 7E), indicating the

impressive performance of DBD-Net in intensive DAS
noise suppression.

Meanwhile, the F-K spectral analysis was conducted
to compare the denoising method from the spectral
perspective. As shown in Figure 8A, there is a conspicuous
aliasing phenomenon between the clean signals and
field noise. BPF (Figure 8B) shows limited effects when
confronted with aliasing noise, and only noise components
out of the pass band could be attenuated. The comparisons
for the CNN-based frameworks can be achieved from two
aspects: signal recovery performance and noise attention
ability. On the one hand, there are obvious signal leakage
components in the filtered noise results of DnCNN and
U-Net (Figure 8C and 8D), demonstrating the adverse effect
on signal amplitude preservation during the denoising
process. On the other hand, the reconstructed results of
DBD-Net (Figure 8E) have the most similar properties as
the clean signals, indicating its capability in intensive DAS
noise suppression. In summary, the comparisons in the
F-K domain illuminate the superiority of DBD-Net.

In addition, a quantitative analysis was performed to
further investigate the performance of each denoising
method. In signal processing, SNR and root-mean-
square-error (RMSE) are two key metrics for evaluating
the denoising effect, and their specific expressions are as
follows:

228,
i=1 j=1 (VI)

) i(Nﬁ_Sij)z

=1

SNR=101g

i=1

-

RMSE = \/ S (N, -5,) (VID)

nzl]:l

where S represents the clean record, and N represents
the denoising result. In addition, i and j represent the
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Figure 5. The synthetic DAS record for the test. (A) Forward model. (B) Synthetic clean seismic record. (C) Added noise. (D) Noisy DAS record with an

SNR of 0 dB.

Abbreviations: DAS: Distributed acoustic sensing; SNR: Signal-to-noise ratio.

dimensions of the synthetic record. From the expressions,
it can be seen that SNR is more inclined to measure the
denoising effect, and a higher SNR means that the method
is more capable of denoising. Meanwhile, RMSE is able to
evaluate the effective signal maintenance ability, and alower
RMSE implies that the corresponding method is good at
preserving the effective signal. To further investigate the
denoising performance, we processed synthetic recordings
with different SNRs. Table 3 presents the SNR and RMSE
results for different methods. BPF has the lowest SNR
increment among all the denoising methods, indicating
its limited noise suppression ability. In contrast, the CNN-
based methods have better performance, demonstrating
significant SNR increment and small RMSE value. Under
the same training environment, the training time of
DnCNN, U-Net, and our proposed DBD-Net is about
1.26 h, 0.73 h, and 0.94 h, respectively. Although DBD-Net

takes slightly longer to train than U-Net, the SNR improves
by almost 3 dB. Compared with other methods, DBD-
Net can increase the SNR by nearly 26 dB, reflecting its
superiority in noise attenuation. Similar trends are also
observed in RMSE results, indicating the effectiveness of
DBD-Net in signal amplitude preservation.

3.2. Field data results

Figure 9 shows the results of the noise suppression. To
better demonstrate the performance of DBD-Net in
practical applications, the field DAS records in Figure 9A
were processed using DBD-Net and other aforementioned
methods. Specifically, the field DAS record, acquired in
Northeast China, contains 1360 traces of seismic data.
The corresponding sampling frequency is 2500 Hz. The
reflection events in this field DAS record are severely
corrupted by complex DAS interference, such as fading
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Abbreviations: BPF: Band-pass filter; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural network.

noise and time-varying optical noise. It is known that BPF,
as depicted in Figure 9B, cannot suppress the background
noise in the pass band, resulting in residual horizontal
noise and disordered recovered events. Moreover, as
shown in Figure 9C, DnCNN has limited performance
in DAS noise elimination, and the residual noise still
influences the recognition of reflection signals, especially
for weak up-going events. Although U-Net outperforms
DnCNN (Figure 9D), the remained fading noise still

affects the denoising results. In contrast, DBD-Net has
a clear background with continuously recovered events
(Figure 9E), indicating its great performance in denoising
complex DAS data.

To further evaluate the denoising performance, we
enlarged a local record (1000-1360 traces), ranging from
0.93 to 1.33 s as shown in Figure 10A. Similar to the results
in Figure 9, BPF is incapable of suppressing the DAS
background noise (Figure 10B). Meanwhile, as shown in
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Figure 8. F-K spectral analysis. (A) F-K spectra of the clean record, noise data, and noisy data. (B-E) F-K spectra for the denoising results and filtered noise

obtained by BPF (B), DnCNN (C), U-Net (D), and DBD-Net (E).

Abbreviations: BPF: Band-pass filter; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural network.
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Figure 9. Field DAS records results. (A) Field DAS records. (b) Results of BPE. (C) Results of DnCNN. (D) Results of U-Net. (E) Results of DBD-Net.
Abbreviations: BPF: Band-pass filter; DAS: Distributed acoustic sensing; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural
network.
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Figure 10. Enlargements of denoising results in Figure 9. (A) Field DAS records. (B) Results of BPE. (C) Results of DnCNN. (D) Results of U-Net.
(E) Results of DBD-Net.

Abbreviations: BPF: Band-pass filter; DAS: Distributed acoustic sensing; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural
network.

Table 3. Comparison of SNR and RMSE among different algorithms

Synthetic BPF DnCNN U-Net DBD-Net

record (dB) SNR (dB) RMSE SNR (dB) RMSE SNR (dB) RMSE SNR (dB) RMSE
0 10.24 0.2674 18.43 0.1041 2324 0.0599 26.09 0.0431
-2 9.08 0.3056 17.27 0.1191 22.55 0.0648 25.46 0.0464
-4 7.71 0.3578 15.99 0.1378 21.70 0.0714 2471 0.0505
-6 6.16 0.4277 14.58 0.1623 2071 0.0807 23.81 0.0561
-8 447 0.5196 12.88 0.1973 19.60 0.0910 22.69 0.0638
-10 2.68 0.6387 10.94 0.2466 18.32 0.1055 2136 0.0744

Abbreviations: BPF: Band-pass filter; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural network; RMSE: Root-mean-square-error;
SNR: Signal-to-noise ratio.

Figure 10C, DnCNN also performs below expectations, in intense DAS noise elimination because of the clear
producing corrupted and discontinuous recovered signals. background and smooth reconstructed events. Therefore,
Among these methods, U-Net and DBD-Net, as displayed this analysis has proven the effectiveness of DBD-Net in
in Figure 10D and E, demonstrate similar denoising denoising the complex DAS records, not only in noise
performance. However, DBD-Net is more competent attenuation but also in signal recovery.
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4, Discussion

In this paper, we propose a CNN-based method named
DBD-Net for seismic data denoising. Unlike traditional
methods such as BPE, DBD-Net is capable of capturing
complex seismic features and attenuating intense noise.
Compared with representative CNN architectures such as
DnCNN and U-Net, the main novelty of DBD-Net lies in
the introduction of dual-branch modules for multi-scale
feature extraction, together with a dense module for feature
fusion and an attention mechanism for emphasizing
effective signals. This design enables the network to more
effectively restore weak seismic events while suppressing
strong background noise.

Moreover, the noise dataset used in this study was
collected from field DAS records and contains multiple
types of interference, such as horizontal noise and fading
noise. The experimental results show that DBD-Net
maintains stable performance across these noise conditions,
verifying its practical applicability. From a computational
perspective, although training is relatively time-consuming
due to the multi-branch design, the inference stage is
efficient and suitable for practical denoising. In the future,
lightweight strategies such as model pruning will be
investigated to further reduce computational overhead and
enhance deployment feasibility under different acquisition
conditions.

5. Conclusion

In this study, we propose a novel multiscale denoising
network that incorporates a multiscale scheme and an
attention mechanism. Specifically, the proposed network
uses a dual-branch module to extract coarse and detailed
features in seismic data from multi-scale inputs. The
attention module highlights and extends the primary
features, thus improving the denoising ability. Meanwhile,
for the training of this network, we have carefully designed
a high-quality seismic training dataset. Synthetic clean
records are constructed using the forward modeling
method. The field seismic noise is superimposed on the
dataset to guarantee the generalization of the training data.
After processing the synthetic records and the field records,
the results show that DBD-Net has a better performance
in suppressing complex DAS background noise, coupled
with an enhanced ability to accurately recover the effective
signal, especially up-going signals with weak energy.
Therefore, DBD-Net proves effective in suppressing
strong DAS background noise and demonstrates notable
application potential.
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