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Abstract
Distributed acoustic sensing (DAS) has attracted much attention in seismic 
data acquisition because of its low cost, anti-electromagnetic interference, and 
high acquisition density. Unfortunately, the acquired DAS records are usually 
accompanied by various kinds of complex noise, affecting subsequent interpretation 
and inversion. Traditional methods have difficulties in effectively attenuating the 
intense background noise. In general, the denoising task of DAS data is challenging. 
Recently, convolutional neural networks (CNNs) exhibit a good ability in suppressing 
the noise in DAS records. However, traditional CNN-based frameworks always have a 
relatively simple network architecture, bringing negative impacts on the denoising 
capability. To solve this problem, we propose a dual-branch dense network 
(DBD-Net) in this paper. Specifically, DBD-Net introduces a novel combination 
of dual-branch modules and an attention mechanism: the dual-branch modules 
extract multi-scale coarse-to-fine features, while the attention mechanism highlights 
the most informative features. This joint design strengthens feature representation 
and signal recovery compared with conventional CNN structures such as denoising 
CNN (DnCNN) and U-Net. Moreover, an attention module is employed to enhance 
the effective features. To verify the denoising ability, we compare DBD-Net with 
other competing methods, including band-pass filter, DnCNN, and U-Net, in 
terms of denoising capability and processing accuracy. Experimental results verify 
that DBD-Net can improve the quality of DAS records with a signal-to-noise ratio 
increment of nearly 26  dB. Meanwhile, the intense DAS background noise is also 
perfectly suppressed and the weak signals are effectively restored, representing 
advantages over the competing methods.
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1. Introduction
Distributed acoustic sensing (DAS), by capturing the 
phase change of Rayleigh scattered light in optical fibers, is 
capable of accurately detecting subtle ground deformations 
induced by artificial seismic waves. Compared with 
traditional geophones, it exhibits advantages in acquisition 
properties and has been extensively used for seismic 
exploration, mainly combined with the vertical seismic 
profiles technique.1-3 Unfortunately, effective signals 
acquired by the DAS system are relatively weak and are often 
susceptible to interference from strong background noise.4 
In addition, the DAS noise has complicated characteristics, 
and a few of them are not observed in the seismic records 
acquired by the geophones, such as fading noise, horizontal 
noise, and coupling noise.5-8 It means that the traditional 
denoising methods might be unable to accurately attenuate 
this specific noise, leading to a degradation in denoising 
performance.9,10 Therefore, effectively suppressing seismic 
noise and recovering effective signals has become a key 
aspect of seismic data processing.

Recently, researchers proposed many denoising methods 
to process seismic data, and some remarkable results have 
been achieved. In general, traditional denoising methods 
are classified into four categories: time-frequency analysis 
methods,11,12 signal-decomposition-based methods,13 
multi-scale analysis methods,14,15 and low-rank-based 
methods.16,17 First, the time-frequency analysis methods 
can detect the effective signals by utilizing the differences 
in physical or spectral properties between signal and noise 
components. Typical methods include the band-pass filter 
(BPF),18 median filter,19 and Wiener filter.20 Their denoising 
principles are relatively idealized. Thus, their performance 
might degrade when processing intense DAS background 
noise. Aiming to enhance the denoising ability, signal-
decomposition-based methods, such as empirical mode 
decomposition,21 variational mode decomposition,22,23 and 
singular value decomposition,24 were proposed. Generally 
speaking, these methods can decompose the signal into 
different modes and then accomplish the denoising task by 
retaining the signal-dominant modes. However, the signals 
and noise have overlaps, which limit the decomposition 
accuracy. Therefore, extracting the signal components 
from the mixed mode is often difficult and significantly 
affects the denoising performance. Meanwhile, multi-
scale analysis methods are another type of commonly 
used denoising approach in the exploration industry. 
The application of these methods considers the fact that 
seismic signals and background noise have distinct 
characteristics in sparsity. In other words, we can use 
multi-scale analysis, such as shearlet,14,25,26 seislet,27 and 
curvelet transform,28 to convert the temporal signals into 

a given sparse domain, and apply a 2D filter to maintain 
the signal components. Unfortunately, it is difficult to 
determine the critical parameters. Inappropriate thresholds 
or filters will inevitably cause signal leakage or residual 
noise. Furthermore, the low-rank-based approach is based 
on the assumption that the matrices of pure signals have 
low-rank properties. Rank is increased by the presence of 
DAS noise.16,17 Therefore, the denoising task is equivalent 
to an optimization problem, which aims to obtain the 
minimal rank and output the attenuation results. Although 
low-rank-based methods can provide great denoising 
performance, the determination of optimal rank and 
huge computational cost still hinder the wide application 
of these methods. In summary, traditional denoising 
methods all have their shortcomings, and the attenuation 
accuracy cannot be ensured when faced with low signal-
to-noise ratio (SNR) DAS data.

Nowadays, deep-learning-based methods are widely 
used in the field of seismic data processing.29-32 Some 
successful applications have been reported in waveform 
inversion,33,34 classification,35,36 interpolation,37 and 
migration.38-40 As one of the hot topics in deep learning, 
the convolutional neural network (CNN) has been 
applied to DAS background noise attenuation. Dong 
et al.9 proposed a method based on denoising CNNs 
(DnCNNs) to suppress the noise of seismic data, which 
optimizes the parameters and training data of DnCNNs so 
that they can adapt to the desert seismic data denoising 
environment and achieve adaptive blind denoising. 
The feasibility of CNNs in seismic data denoising was 
also verified through experiments.41 Liu et al.42 applied 
U-Net in seismic data noise suppression to achieve more 
effective seismic data processing through multi-scale 
extraction and channel expansion. Moreover, they verified 
the effectiveness of U-Net in seismic signal recovery and 
intense noise attenuation. These studies demonstrate the 
effectiveness of CNN in seismic data processing and show 
the superiority over traditional denoising methods at the 
same time. Its excellent performance is mainly benefited 
from the network structure and training data. The shortage 
of high-quality training data is certainly an important 
potential problem for CNN-based methods. It is well 
recognized that acquiring pure signals from field data is 
infeasible, posing a significant challenge in constructing 
signal training dataset. In addition, low-quality training 
data always impacts the signal amplitude preservation and 
weak signal recovery. Although carefully designed datasets 
can mitigate this issue, the fundamental limitation still lies 
in the network’s ability to effectively extract and utilize the 
features of DAS data. This highlights the need for more 
advanced architectures.
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To enhance the processing accuracy, a novel dual-
branch dense network (DBD-Net) is proposed. Unlike 
previous CNN-based frameworks with relatively simple 
architectures that limit denoising capability, our method 
employs dual-branch modules to extract both coarse and 
fine features at multiple scales. In addition, a dense module 
is introduced to alleviate the gradient disappearance and 
improve feature fusion, while an attention mechanism 
is designed to enhance effective signals under complex 
noise conditions. With these improvements, the proposed 
network cannot only suppress intense DAS background 
noise but also preserve weak seismic signals more effectively. 
Therefore, compared with conventional CNN models 
such as DnCNN and U-Net, our method provides a more 
targeted solution for DAS denoising. The paper consists of 
four parts. Section 1 is the introduction, which introduces 
the significance of the study and the current status of 
the study. Section 2 is the method, which introduces the 
CNN network designed in this paper and the process of 
constructing a high-quality training set. Section 3 presents 
the results, which demonstrate the effectiveness of DBD-
Net through the comparison experiments of synthetic and 
field records. Section 4 is the conclusion of this paper.

2. Methods
Figure 1 shows DBD-Net’s network structure. In general, 
DBD-Net consists of the dual-branch module, the dense 
module, and the attention module. Specifically, DBD-
Net has two network branches, a main scale, and a self-
attention module. In the main scale, five convolutional 
layers are first applied to capture the initial features. Then, 

the dual-branch module, shown in Figure  2, is used to 
capture the multi-scale features. Meanwhile, the dense 
module transfers the shallow features, aiming to fuse them 
with deep features and improve the feature representation. 
In addition, a self-attention module is used to assist the 
effective feature extraction. Next, we will detail the specific 
descriptions of the network components.

2.1. DB module

Figure 2 presents the structure of the dual-branch module. 
The dual-branch module has double branches, designed 
to achieve multi-scale feature extraction. Specifically, the 
top branch focuses on capturing local fine features, while 
the bottom branch captures global coarse features. In the 
top branch, the feature map is first up-sampled by bilinear 
interpolation. Then, the dilated convolutional layers with 
different dilation rates (i.e., 2, 3, 5), alternated with regular 
convolutional layers, are used to capture detailed local 
features in DAS data. Meanwhile, skip connections are 
used to transfer and fuse the features. Here, the application 
of dilated convolution rapidly enlarges the receptive field, 
and the utilization of different dilation rates maintains the 
diversity of captured features and avoids feature loss caused 
by the chessboard effect. In the bottom branch, the feature 
map is first down-sampled using max-pooling, which 
reduces its resolution to highlight coarse structures. Then, 
the same set of dilated convolutional layers, alternated with 
regular convolutional layers, is applied to capture global 
features. Skip connections are also employed to transfer 
and fuse features at this scale. Finally, the outputs of the 
top and bottom branches are added with the initial input of 

Figure 1. Structure of DBD-Net
Abbreviations: DB Module: Dual-branch module; DBD-Net: Dual-branch dense network.
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the dual-branch module to enhance the effective features 
and reduce data redundancy.

2.2. Dense module

In general, with the depth of the network increasing, 
the learnable features are inundated with redundant 
information, which undoubtedly results in gradient 
disappearance and local optimum problems. The shallow 
features can reduce data redundancy and have good 
maintenance for gradients. In this study, we design a dense 
module, as depicted in Figure  1, to transfer and merge 
shallow features with deep features. The dense module 
has three convolutional layers, and all the outputs of 
convolutional layers are concatenated with the initial input 
data of the network through skip connections. It means 
that the feature utilization ability is enhanced and the 
gradient disappearance phenomenon is relieved, thereby 
improving the effective features.

2.3. Attention module

Effective signals in DAS data are commonly heavily affected 
by complex noise. To enhance the feature extraction 
capability, we design a spatial attention module. Specifically, 
the features are extracted using six convolutional layers, 
and then shallow feature fusion is implemented using skip 
connections. A softmax function is then used to activate 
the output of the sixth convolutional layer and distributions 
of the captured features. On this basis, the distributions 
are used as the weights to multiply with input features, 
and then, the desired features are enhanced because the 
effective features always have a larger probability value. 

Finally, the output of the attention module works as the 
guidance information to concatenate with the output of 
the main scale, thereby highlighting the primary features 
and improving the denoising accuracy, particularly for the 
weak up-going signals. In summary, the function of the 
attention module is to suppress noise-related features and 
emphasize effective seismic signals, significantly enhancing 
the recovery of weak events in complex DAS records.

2.4. Seismic denoising principle

In this study, we used DBD-Net to denoise noisy DAS 
records, and the detailed principle is shown below. The 
expression of the noisy DAS record is shown as follows:

y=x+n� (I)

where y denotes the noisy data, x and n represent 
the effective signals and background noise, respectively. 
Subsequently, y is used as the network input. The network 
output is an estimation of the effective signal, which is 
expressed as follows:

( )ζ=ˆ ;x F y � (II)

where x̂  denotes the estimation of the effective signal, 
F is the high-dimensional nonlinear mapping relationship 
constructed by the DBD-Net, with network parameters 
of ζ = {ω,k}. Here, ω is the weight, and k denotes bias. 
The network parameters are obtained randomly at the 
beginning, and the estimation error of the effective signal 
is quite large at this time. Then, we need to construct a loss 
function to evaluate error, which is defined as follows:

Figure 2. Structure of dual-branch module
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Where yi is the noisy record and xi is the effective signal. 
We can iteratively optimize the parameters by using the 
backpropagation strategy. After training the network for 
several epochs, the error converges and becomes stable. In 
this study, we selected a set of parameters that minimize 
the loss function as the optimal set of parameters ζout. The 
final denoising results are given as follows:

( )ζ≈ =ˆ ;out outx x F y � (IV)

2.5. Construction of the training set

Our training dataset contains a clean set of pure signal 
data and a set of field noise data. The pure signal dataset is 
simulated by simple seismic wavelets as in other previous 
studies, which have some differences from the properties 
of field DAS signals. It means that the performance of the 
trained models cannot be guaranteed and even recover 
some fake events in some conditions. To improve the 
denoising performance, we generated the clean signal 
training dataset using the forward modeling method. 
Specifically, it uses seismic wavelets to excite the artificial 
velocity model. Meanwhile, we utilized the finite difference 
method to simulate the propagation of the wavefield and 
then obtained synthetic data. To ensure the accuracy of 
learnable features, the previously acquired seismic profiles 
were considered references in the construction of velocity 
models. In this study, there were 20 velocity models. We 
obtained a total of 160 clean synthetic records. Table  1 
presents the modeling parameters. The modeling equations 
of the Ricker Wavelet are described as:

L t A f t t e f t t� � � � � � �� ��
��

�
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2 0 0
2
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where A is the amplitude, t0 and f0 denote the initial 
time and dominant frequency, respectively. As shown in 
Figure 3, we provide an example of a velocity model and 
synthetic recording. The inverted triangle at the top right 
identifies the source location, while the black line on the 

left symbolizes the receiving line, as shown in the figure. 
Subsequently, the synthetic records were divided into 
64 × 64 patches. The signal dataset consisted of 20000 
patches. For the field noise dataset, the passive source data 
acquired in Northeast China were employed. Similarly, 
the field noise data were divided into noise patches by the 
64 × 64 sliding window. Here, we selected 30000 patches 
randomly to generate the test dataset. The field noise 
patches were multiplied by a weight ranging from 1 to 8 and 
then added with signal patches to form the noisy patches 
in the training process. We input signal patches and noise 
patches into DBD-Net, and through this training process, 
we successfully obtained denoising models. Figure 4 shows 
some samples of pure signal and field noise patches.

2.6. Training details

In general, the high-performance computation technique 
affects CNN-based methods’ performance. In this work, 
a graphics workstation was built with a configuration 
consisting of Intel (R) Core (TM) i5-9400F, NVIDIA 
GeForce RTX 2060 Super, and 16GB RAM. The specific 
parameters are listed in Table 2.

3. Results
3.1. Synthetic data results

Figure 5 shows the results concerning the synthetic DAS 
record, with Figure  5A presenting the corresponding 
velocity model, which has four layers, for the synthetic DAS 
record shown in Figure 5B. The fundamental frequency of 
the Ricker wavelet is 40 Hz.

Figure  5C shows the field seismic noise, which was 
combined with the synthetic DAS record to yield the noisy 
record, as shown in Figure  5D, which was used as the 
analyzed data. Here, we used BPF, DnCNN,43 and U-Net,44 
for experimental comparison to process the noisy data 
with the proposed DBD-Net. Specifically, the pass band of 
BPF is 20–90 Hz, while DnCNN and U-Net use the same 
strategy and dataset as DBD-Net to train the denoising 
models.

The noisy data is shown in Figure 6A. BPF (Figure 6B) 
cannot effectively suppress the complex DAS noise, whose 
limited performance is demonstrated by the signal leakage 
and residual horizontal noise. Compared with BPF, CNN-
based frameworks always provide better denoising results 
and the weak signals can also be restored. Among these 
methods, DnCNN and U-Net (Figure 6C and D) are 
outperformed by DBD-Net (Figure 6E). Notably, recovered 
events in DBD-Net are continuous and smooth, indicating 
its advantages in intensive DAS noise suppression. On 
this basis, two areas of interest are enlarged, as shown 
in Figure 7, for detailed comparisons. Area 1 is the local 

Table 1. Forward modeling parameters

Parameters Value

Seismic wavelet Ricker wavelet

Seismic wave frequency (Hz) 20–110

Wave velocity (m/s) 800–4700

Trace space (m) 1

Offset (m) 100–300

Sampling interval (s) 0.0004
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record (900–1200 traces) ranging from 1.5 to 1.8 s, which 
is contaminated by complex optical noise, while area 2 is 
the local record (240–540 traces) between 1.3 and 1.7 s, 
which is dominated by weak reflection events (Figure 7A).  
Similar results could be observed that BPF is affected by 
disordered information (Figure 7B), which also brings 
difficulty for the recognition of weak signals. Although 
DnCNN can effectively attenuate the background noise to 
some extent, the recovered events are corrupted and few 
weak signals have been recovered  (Figure 7C). In addition, 
U-Net (Figure 7D) and DBD-Net represent close denoising 
ability; however, the recovered signals of DBD-Net are 
more complete and smoother (Figure 7E), indicating the 

impressive performance of DBD-Net in intensive DAS 
noise suppression.

Meanwhile, the F-K spectral analysis was conducted 
to compare the denoising method from the spectral 
perspective. As shown in Figure 8A, there is a conspicuous 
aliasing phenomenon between the clean signals and 
field noise. BPF (Figure  8B) shows limited effects when 
confronted with aliasing noise, and only noise components 
out of the pass band could be attenuated. The comparisons 
for the CNN-based frameworks can be achieved from two 
aspects: signal recovery performance and noise attention 
ability. On the one hand, there are obvious signal leakage 
components in the filtered noise results of DnCNN and 
U-Net (Figure 8C and 8D), demonstrating the adverse effect 
on signal amplitude preservation during the denoising 
process. On the other hand, the reconstructed results of 
DBD-Net (Figure 8E) have the most similar properties as 
the clean signals, indicating its capability in intensive DAS 
noise suppression. In summary, the comparisons in the 
F-K domain illuminate the superiority of DBD-Net.

In addition, a quantitative analysis was performed to 
further investigate the performance of each denoising 
method. In signal processing, SNR and root-mean-
square-error (RMSE) are two key metrics for evaluating 
the denoising effect, and their specific expressions are as 
follows:
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where S represents the clean record, and N represents 
the denoising result. In addition, i and j represent the 

Figure  4. Samples of the training dataset. (A) Clean and noisy signal 
patches. (B) Noisy signal patches.

BA

Figure 3. Clean synthetic record. (A) Forward model. (B) Synthetic record.

BA

Table 2. Network architecture parameters

Hyper‑parameter DnCNN U‑Net DBD‑Net

Optimizer ADAM ADAM ADAM

Patch size 64×64 64×64 64×64

Batch size 32 32 32

Epoch 60 60 60

Learning rate range [10−4,10−5,10−6] [10−4,10−5,10−6] [10−4,10−5,10−6]

Input channels 1 1 1

Layers 17 19 22

Convolution kernel size 3×3 × 64 3×3 × 64 3×3 × 64

Abbreviations: DBD‑Net: Dual‑branch dense network; 
DnCNN: Denoising convolutional neural network.
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dimensions of the synthetic record. From the expressions, 
it can be seen that SNR is more inclined to measure the 
denoising effect, and a higher SNR means that the method 
is more capable of denoising. Meanwhile, RMSE is able to 
evaluate the effective signal maintenance ability, and a lower 
RMSE implies that the corresponding method is good at 
preserving the effective signal. To further investigate the 
denoising performance, we processed synthetic recordings 
with different SNRs. Table 3 presents the SNR and RMSE 
results for different methods. BPF has the lowest SNR 
increment among all the denoising methods, indicating 
its limited noise suppression ability. In contrast, the CNN-
based methods have better performance, demonstrating 
significant SNR increment and small RMSE value. Under 
the same training environment, the training time of 
DnCNN, U-Net, and our proposed DBD-Net is about 
1.26 h, 0.73 h, and 0.94 h, respectively. Although DBD-Net 

takes slightly longer to train than U-Net, the SNR improves 
by almost 3  dB. Compared with other methods, DBD-
Net can increase the SNR by nearly 26  dB, reflecting its 
superiority in noise attenuation. Similar trends are also 
observed in RMSE results, indicating the effectiveness of 
DBD-Net in signal amplitude preservation.

3.2. Field data results

Figure  9 shows the results of the noise suppression. To 
better demonstrate the performance of DBD-Net in 
practical applications, the field DAS records in Figure 9A 
were processed using DBD-Net and other aforementioned 
methods. Specifically, the field DAS record, acquired in 
Northeast China, contains 1360 traces of seismic data. 
The corresponding sampling frequency is 2500  Hz. The 
reflection events in this field DAS record are severely 
corrupted by complex DAS interference, such as fading 

Figure 5. The synthetic DAS record for the test. (A) Forward model. (B) Synthetic clean seismic record. (C) Added noise. (D) Noisy DAS record with an 
SNR of 0 dB.
Abbreviations: DAS: Distributed acoustic sensing; SNR: Signal-to-noise ratio.

DC

BA
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noise and time-varying optical noise. It is known that BPF, 
as depicted in Figure 9B, cannot suppress the background 
noise in the pass band, resulting in residual horizontal 
noise and disordered recovered events. Moreover, as 
shown in Figure  9C, DnCNN has limited performance 
in DAS noise elimination, and the residual noise still 
influences the recognition of reflection signals, especially 
for weak up-going events. Although U-Net outperforms 
DnCNN (Figure  9D), the remained fading noise still 

affects the denoising results. In contrast, DBD-Net has 
a clear background with continuously recovered events 
(Figure 9E), indicating its great performance in denoising 
complex DAS data.

To further evaluate the denoising performance, we 
enlarged a local record (1000–1360 traces), ranging from 
0.93 to 1.33 s as shown in Figure 10A. Similar to the results 
in Figure  9, BPF is incapable of suppressing the DAS 
background noise (Figure 10B). Meanwhile, as shown in 

Figure 7. Enlarged figures showing denoising results corresponding to Figure 6. (A) Noisy record (top: Area 1, bottom: Area 2). (B–E) Results of BPF (B), 
DnCNN (C), U-Net (D), and DBD-Net (E) (top: Area 1, bottom: Area 2).
Abbreviations: BPF: Band-pass filter; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural network.

DCBA E

Figure 6. Synthetic record processing results. (A) Noisy record with an SNR of 0 dB and field data. (B) Results of BPF (10.24 dB). (C) Results of DnCNN 
(18.43 dB). (D) Results of U-Net (23.24 dB). (E) Results of DBD-Net (26.09 dB).
Abbreviations: BPF: Band-pass filter; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural network; SNR: Signal-to-noise 
ratio.

DCBA E
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Figure 8. F-K spectral analysis. (A) F-K spectra of the clean record, noise data, and noisy data. (B–E) F-K spectra for the denoising results and filtered noise 
obtained by BPF (B), DnCNN (C), U-Net (D), and DBD-Net (E).
Abbreviations: BPF: Band-pass filter; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural network.

D

CB

A

E
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Figure  10. Enlargements of denoising results in Figure  9. (A) Field DAS records. (B) Results of BPF. (C) Results of DnCNN. (D) Results of U-Net.  
(E) Results of DBD-Net.
Abbreviations: BPF: Band-pass filter; DAS: Distributed acoustic sensing; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural 
network.

DCBA E

Table 3. Comparison of SNR and RMSE among different algorithms

Synthetic 
record (dB)

BPF DnCNN U‑Net DBD‑Net

SNR (dB) RMSE SNR (dB) RMSE SNR (dB) RMSE SNR (dB) RMSE

0 10.24 0.2674 18.43 0.1041 23.24 0.0599 26.09 0.0431

−2 9.08 0.3056 17.27 0.1191 22.55 0.0648 25.46 0.0464

−4 7.71 0.3578 15.99 0.1378 21.70 0.0714 24.71 0.0505

−6 6.16 0.4277 14.58 0.1623 20.71 0.0807 23.81 0.0561

−8 4.47 0.5196 12.88 0.1973 19.60 0.0910 22.69 0.0638

−10 2.68 0.6387 10.94 0.2466 18.32 0.1055 21.36 0.0744

Abbreviations: BPF: Band‑pass filter; DBD‑Net: Dual‑branch dense network; DnCNN: Denoising convolutional neural network; RMSE: Root‑mean‑square‑error; 
SNR: Signal‑to‑noise ratio.

Figure 9. Field DAS records results. (A) Field DAS records. (b) Results of BPF. (C) Results of DnCNN. (D) Results of U-Net. (E) Results of DBD-Net.
Abbreviations: BPF: Band-pass filter; DAS: Distributed acoustic sensing; DBD-Net: Dual-branch dense network; DnCNN: Denoising convolutional neural 
network.

DCBA E

Figure  10C, DnCNN also performs below expectations, 
producing corrupted and discontinuous recovered signals. 
Among these methods, U-Net and DBD-Net, as displayed 
in Figure  10D and E, demonstrate similar denoising 
performance. However, DBD-Net is more competent 

in intense DAS noise elimination because of the clear 
background and smooth reconstructed events. Therefore, 
this analysis has proven the effectiveness of DBD-Net in 
denoising the complex DAS records, not only in noise 
attenuation but also in signal recovery.

https://dx.doi.org/10.36922/JSE025290038
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4. Discussion
In this paper, we propose a CNN-based method named 
DBD-Net for seismic data denoising. Unlike traditional 
methods such as BPF, DBD-Net is capable of capturing 
complex seismic features and attenuating intense noise. 
Compared with representative CNN architectures such as 
DnCNN and U-Net, the main novelty of DBD-Net lies in 
the introduction of dual-branch modules for multi-scale 
feature extraction, together with a dense module for feature 
fusion and an attention mechanism for emphasizing 
effective signals. This design enables the network to more 
effectively restore weak seismic events while suppressing 
strong background noise.

Moreover, the noise dataset used in this study was 
collected from field DAS records and contains multiple 
types of interference, such as horizontal noise and fading 
noise. The experimental results show that DBD-Net 
maintains stable performance across these noise conditions, 
verifying its practical applicability. From a computational 
perspective, although training is relatively time-consuming 
due to the multi-branch design, the inference stage is 
efficient and suitable for practical denoising. In the future, 
lightweight strategies such as model pruning will be 
investigated to further reduce computational overhead and 
enhance deployment feasibility under different acquisition 
conditions.

5. Conclusion
In this study, we propose a novel multiscale denoising 
network that incorporates a multiscale scheme and an 
attention mechanism. Specifically, the proposed network 
uses a dual-branch module to extract coarse and detailed 
features in seismic data from multi-scale inputs. The 
attention module highlights and extends the primary 
features, thus improving the denoising ability. Meanwhile, 
for the training of this network, we have carefully designed 
a high-quality seismic training dataset. Synthetic clean 
records are constructed using the forward modeling 
method. The field seismic noise is superimposed on the 
dataset to guarantee the generalization of the training data. 
After processing the synthetic records and the field records, 
the results show that DBD-Net has a better performance 
in suppressing complex DAS background noise, coupled 
with an enhanced ability to accurately recover the effective 
signal, especially up-going signals with weak energy. 
Therefore, DBD-Net proves effective in suppressing 
strong DAS background noise and demonstrates notable 
application potential.
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