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Abstract
Towed-streamer marine seismic acquisition systems generally have a dense receiver 
spacing in the inline receiver direction within common-shot gathers (along-streamer), 
while the streamer spacing is relatively sparse in the crossline receiver direction within 
common-shot gathers (cross-streamer). This disparity can lead to spatial aliasing 
issues in the crossline receiver direction within common-shot gathers and result in 
resolution degradation during the processing of 3D seismic data. To address this issue 
and enhance resolution, data interpolation in the crossline receiver direction within 
common-shot gathers is essential. Various supervised learning-based interpolation 
methods have been developed to this end. However, the absence of true data in 
the crossline receiver direction within common-shot gathers poses challenges for 
training supervised learning models with actual field data. To overcome this, we 
have developed a novel approach called the “transposed arrangement strategy” for 
a deep learning-based reconstruction model for crossline interpolation. This method 
involves training the model with 3D input and labels patched from existing field data, 
and then applying the trained model with transposed 3D input to reconstruct data in 
the crossline receiver direction within common-shot gathers. During this process, the 
3D U-Net and U-Net+ models were utilized, demonstrating their superiority through 
comparisons with traditional interpolation methods.

Keywords: Data processing; Signal processing; Deep learning; Crossline interpolation; 
Transposed arrangement strategy; 3D U-Net+

1. Introduction
Seismic survey data can be subject to loss due to environmental, economic constraints, 
or mechanical defects. Notably, the towed-streamer marine seismic systems are typically 
configured with dense inline and wide crossline spacing to maximize exploration coverage.1 
This setup can lead to spatial aliasing issues in the crossline receiver direction within 
common-shot gathers and resolution degradation during the processing of 3D seismic 
survey data. Consequently, data interpolation in the crossline receiver direction within 
common-shot gathers is necessary to address these problems and improve data resolution.

Before the introduction of deep learning, a wide range of conventional approaches 
were developed for seismic data interpolation. Traditional methods include bicubic 
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interpolation,2 wave-equation–based methods,3,4 and f–x 
interpolation methods.5 Prediction error filtering6 has 
also been widely applied for reconstructing missing traces 
by exploiting predictable structures in seismic data. In 
addition, projection onto convex sets (POCS)7 methods 
and their extensions, such as curvelet-domain POCS,8,9 
have been shown to effectively exploit sparsity in transform 
domains. Rank reduction methods10-12 and sparse 
transform-based methods, including Fourier, curvelet, and 
seislet transforms,13-15 have also been extensively studied. 
These conventional methods perform well for linear or 
near-linear seismic events and can mitigate aliasing, but 
they often involve high computational cost, require careful 
parameter tuning (e.g., window size, rank selection), and 
may struggle with complex or curved structures. With 
the increasing size and complexity of modern 3D seismic 
surveys, these limitations have motivated the exploration 
of more efficient and adaptive approaches, including deep 
learning–based methods.

Recent advancements in deep learning technology have 
been actively incorporated into seismic data interpolation 
research to provide high-accuracy interpolation results 
and more efficient data processing.16-20 Research in 
deep learning-based seismic data interpolation can be 
categorized into techniques for 2D and 3D seismic data 
based on the dimensionality of the data.

2D seismic data interpolation techniques are primarily 
based on convolutional neural networks (CNNs), 
generative adversarial networks (GANs) and diffusion 
models. Yu and Wu21 proposed a CNN that utilizes a hybrid 
loss function combining structural similarity index (SSIM) 
and L1 norm, along with an attention mechanism that 
explicitly leverages global information. Li et al.22 proposed 
a method of integrating a coordinate attention block into 
U-Net for 2D successive missing traces interpolation. 
Park et al.20 proposed a strategy using the Coarse-Refine 
U-Net (CFunet), which consists of two U-Nets and an 
upsampling process between them, along with the Fourier 
loss. Lou et al.23 proposed a wavelet-based convolutional 
block attention deep learning (W-CBADL) network for the 
reconstruction of irregularly sampled seismic data. Dodda 
et al.24 proposed the use of an attention-based wavelet 
convolutional neural network (AWUN) for simultaneous 
noise reduction and reconstruction of incomplete seismic 
data. Tian et al.25 proposed feature restoration-based U-Net 
(FR–U-Net), a feature restoration-based interpolation 
method built upon the U-Net architecture to reconstruct 
consecutively missing seismic traces. Kaur et al.26 proposed 
a model using the cycle GAN structure that comprises 
two generators and one discriminator. Chang et al.27 
proposed a method for interpolating seismic data using the 

conditional generative adversarial network in the time and 
frequency domains (TF-CGAN). Deng et al.28 proposed 
conditional constraint diffusion model, a diffusion model 
with conditional constraints. However, these proposed 
methods are limited to interpolating 2D seismic data and 
have not been applied to multidimensional seismic data.

Consequently, 3D seismic data interpolation techniques 
have been developed, which predominantly involve models 
based on CNNs, GANs, diffusion models and additionally, 
autoencoder-based models. Kong et al.29 proposed a multi-
resolution U-Net model that utilizes the correlations in 3D 
data. Jin et al.30 proposed a method to reduce the operational 
cost of U-Net by introducing depthwise separable 
convolution instead of standard convolution. Chang 
et al.31 proposed a dual-domain conditional generative 
adversarial network that uses seismic data sets and discrete 
Fourier-transformed data sets in the frequency domain as 
input vectors. Dou et al.32 proposed a multi-dimensional 
adversarial GAN that uses three discriminators. Yu 
and Yoon33 applied the conditional Wasserstein GAN 
(cWGAN) model to 3D seismic data interpolation. Ding 
et al.34 proposed Self-Attention Generative Adversarial 
Network, a deep learning-based model that integrates 
the self-attention mechanism with GAN. Wang et al.35 
proposed SeisFusion, a diffusion model combined with 
conditional constraints. Qian et al.36 introduced the deep 
tensor autoencoder model, which is capable of learning 
data-driven, non-linear, and high-dimensional mappings.

Despite these technological advancements, these models 
often fall short of generating new data to reduce the spacing 
between traces compared to the original dataset. Typically, 
they demonstrate strong performance when interpolating 
from decimated data back to its full original format. This is 
because a supervised learning-based interpolation model 
requires a label, which is selected from the original dataset. 
For instance, if the original data has a spacing of 20 m, a 
model might be effectively trained to fill in missing traces 
corresponding to the label, thus decreasing the spacing 
from 40 m to 20 m by reconstructing the decimated data. 
However, this training does not guarantee a reduction in 
spacing from 20 m to 10 m, which is the ultimate goal of 
seismic data interpolation.

This limitation, however, can be mitigated in cross-
streamer wavefield reconstruction due to the denser 
inline sensor spacing compared to the crossline receiver 
direction within common-shot gathers. In this scenario, 
an interpolation model can be trained along the inline 
receiver direction within common shot gathers and 
subsequently applied to reconstruct the coarser data in 
the crossline receiver direction within common-shot 
gathers. Larsen Greiner et al.37 introduced a cross-streamer 
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wavefield reconstruction model using a wavelet domain 
approach, training the model along the inline receiver 
direction within common-shot gathers to reconstruct 
coarse crossline receiver direction within common-shot 
gathers. Yeeh et al.38 proposed a trace-to-trace approach 
for crossline interpolation, which learns the relationship 
between consecutive traces to predict the intermediate 
trace along the dense inline receiver direction within 
common-shot gathers, ultimately bridging the gap in the 
coarse crossline receiver direction within common-shot 
gathers.

Recently, increasing attention has been given to 
self-supervised learning approaches, which mitigate 
the dependency on labeled crossline receiver direction 
within common-shot gathers. Chen et al.39 proposed 
an interpolation method that combines POCS-Net, a 
CNN-based architecture built upon the POCS algorithm, 
with a self-supervised transfer learning framework. In 
addition, Wang et al.40 presented a dip neural network 
(DINN) that leverages self-supervised learning for 
crossline interpolation. More recently, Goyes-Peñafiel 
et al.41 introduced constrained diffusion-driven deep 
image prior (CDDIP), an unsupervised framework that 
combines diffusion processes with deep image prior (DIP) 
to reconstruct missing seismic traces without requiring 
labeled data.

In this study, we extend this strategy39-41 for cross-
wavefield reconstruction by utilizing not only 2D data from 
the inline receiver direction within common-shot gathers 
but also 3D volume data encompassing both inline and 
crossline receiver direction within common-shot gathers 
for training, effectively enhancing data interpolation by 
utilizing information across multiple spatial dimensions. 
The proposed approach, called the transposed arrangement 
strategy, alters the input array during the training and 
inference stages of the crossline interpolation model. This 
strategy allows for the reconstruction of the crossline 
receiver direction within common-shot gathers from 
original field data without the need for specific crossline 
labels. It involves training the model using a 3D input 
dataset from which 50% of the traces are regularly removed 
along the inline receiver direction within common-shot 
gathers. After training, this original input is transposed 
and fed into the model to facilitate data generation in the 
crossline receiver direction within common-shot gathers. 
In addition, to align event patterns between the inline and 
crossline receiver direction within common-shot gathers, 
linear moveout (LMO) correction is applied. Compared 
with existing self-supervised approaches, which rely on 
contrastive objectives, masked autoencoding, or physics-
based regularization to avoid the need for labels, our 

method achieves self-supervision in a different way: It 
directly leverages dense inline traces as surrogate labels 
during training and then transposes the model for crossline 
inference. This provides a simple yet effective mechanism 
for eliminating the need for explicit crossline labels 
while remaining complementary to prior self-supervised 
paradigms. In addition, unlike other frameworks, such as 
DINN and POCS-Net, the proposed transposed strategy 
requires no auxiliary convex constraints, dip picking, or 
secondary network—the self-supervision emerges purely 
from a simple tensor transpose operation, making the 
method both conceptually elegant and computationally 
efficient. For this purpose, we employed two interpolation 
models: 3D U-Net and 3D U-Net+, whose effectiveness was 
measured against the conventional bicubic interpolation 
method,2 the f–x interpolation method,5 POCS6 and 
CDDIP41 through comparative performance evaluations. 
Among these, f–x interpolation was included as a widely 
used conventional method, POCS was selected as a 
representative compressive sensing–based method due to 
its simplicity, robustness, and computational efficiency, and 
CDDIP was considered to represent recent self-supervised 
deep learning approaches.

2. Methodology
2.1. Transposed arrangement strategy

Our proposed transposed arrangement strategy offers 
a label-substituting approach for interpolating actual 
field data. This strategy is universally applicable across 
deep learning models and is particularly optimized for 
scenarios where the receiver-to-streamer spacing ratio 
is 1–2. For example, in the dataset used in this study, the 
inline receiver spacing was 20 m and the crossline streamer 
spacing was 40 m, resulting in a ratio of 1:2. The proposed 
strategy unfolds as follows:

Initially, the original data D is acquired from the actual 
field and consists of Ni traces in the inline receiver direction 
within common-shot gathers, Nx traces in the crossline 
receiver direction within common-shot gathers, and Nt 
time samples. This can be represented as a matrix D with 
dimensions Nx × Ni × Nt, and the trace T can be illustrated 
along the time sample axis as follows:
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Where Tx,i is a trace vector corresponding to the 
crossline index x and inline index i, each with a dimension 
of Nt × 1. Here, Nx denotes the number of traces in the 
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crossline direction, Ni the number of traces in the inline 
direction, and Nt the number of time samples per trace. 
Thus, each element Tx,i represents a seismic trace consisting 
of Nt amplitude values along the time axis.

From the original data D, a volume patch P of size 
  N N Nx i t× ×  is extracted. If the starting position of the 

patch is denoted as (i, j), then the patch P can be represented 
as:
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Where Nx  and Ni  serve as the indices navigating the 
crossline and inline receiver direction within common-shot 
gathers, respectively, within the patch, and  N Ni x� �2 1 .

During the training phase, the complete patch P is 
used as a label, while an input Pin is created by regularly 
removing 50% of P in the inline receiver direction within 
common-shot gathers, represented as follows:
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The training process for the reconstruction model can 
be represented by the following equation:

( )ˆ
inP Net P=

min  ( ˆ, )imize L P P � (IV)

Where Net(.) denotes the reconstruction deep learning 
model, P̂  is the prediction of the model, L(.)is the loss 
function used to train the model. This approach trains 
the reconstruction model to fill in the missing traces 
represented by the zero values in Equation III.

In the inference phase, a new input patch is created by: 
(i) Extracting a patch of size  N Nx x×  with Nt  time 
sampling from the original data D, (ii) regularly adding 
zero values into the crossline receiver direction within 
common-shot gathers expanding the dimensions to 
( )2 1  N N Nx x t� � � , and (iii) transposing the first and 
second dimensions to result in a final dimension 
of   N N Nx x t� � �( )2 1 . Then, the new input patch for 
reconstructing crossline receiver direction within 
common-shot gathers can be represented as follows:
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Subsequently, by inputting new input patches inP
∨

 from 
the original data D into the trained model, Net(.), the 
model is able to generate the crossline receiver direction 
within common-shot gathers between streamers. Figure 1 
visually illustrates examples for Equations III and V.

2.2. LMO correction

In the towed streamer system, the difference in offsets 
between the source and receivers generates varying 
moveout patterns in the inline and crossline receiver 
direction within common-shot gathers. Specifically, the 
moveouts in the inline receiver direction within common-
shot gathers are steeper compared to those in the crossline. 
To harmonize these pattern discrepancies between the 
inline and crossline receiver direction within common-
shot gathers, LMO correction is employed.38

LMO correction is a data processing technique used 
to adjust the arrival time differences of seismic waves 
captured by multiple receivers. This method is primarily 
used to improve the initial alignment of multi-channel 
data and to reduce the time differences between records at 
close ranges. Notably, this correction can be applied using 
just the streamer and receiver intervals, without the need 
for actual subsurface velocity information.42 The formula 
for the LMO correction used in this study is as follows:

τ = t-px� (VI)

Where t represents the original time of the seismic event 
at offset x, p is the ray parameter defined as dt/dx, and τ is 
the time-shift for the corrected events. In this study, LMO 
correction is applied to the original seismic data before 
fetching the volume patches, ensuring that event patterns 
are similar in both inline and crossline receiver direction 
within common-shot gathers, with a typical dip range 
reduced from approximately −8 ms/trace before correction 
to within ±2 ms/trace after correction. The ray parameter 
was estimated from the first arrivals and applied uniformly 
across the line for processing simplicity. In practice, this 
step could be replaced or refined using spatially varying 
normal moveout correction or pre-stack time migration 
velocity fields to achieve higher physical realism.
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2.3. 3D U-Net and 3D U-Net+

Given that our proposed strategy can be applied to any 
deep learning model, we employed the widely used 3D 
U-Net and its extension, 3D U-Net+, as our interpolation 
models.43,44 Both models were implemented using 3×3×3 
convolution layers and 1×1×2 upsampling layers. The 
3D U-Net utilizes rectified linear unit as its activation 
function, whereas 3D U-Net+ employs exponential linear 
unit. During the model training phase, we adopted the 
mean absolute error as the loss function and the Adam 
optimizer for optimization. The learning rate was set to 
0.0001. Figure  2 illustrates the structures of 3D U-Net 
and 3D U-Net+. In this study, the “+” in 3D U-Net+ 
denotes an extension of the basic 3D U-Net by adding 
skip connections, which strengthens feature propagation 
and better preserves structural information during 
interpolation.

3. Data example
We applied our transposed arrangement strategy to the 
publicly available SEG/EAGE Salt Model, specifically to the 
narrow azimuth data. The acquisition parameters for this 
dataset are detailed in Table 1.45 The receiver and streamer 
spacings are 20  m and 40  m, respectively, maintaining a 
1:2 ratio, which is well-suited for the application of our 
strategy.

To evaluate the performance of our proposed strategy, 
we initially removed 50% of the data regularly in both 
inline and crossline receiver direction within common-
shot gathers from the original dataset. Consequently, 
the number of streamers was adjusted from 8 to 4, the 
receiver spacing from 20  m to 40  m, and the streamer 
spacing from 40 m to 80 m. The removed crossline receiver 

direction within common-shot gathers were then utilized 
as the ground truth in our final model evaluation, and to 
distinguish this dataset from the test set used to train the 
model below, we call it the crossline test dataset.

Using the adjusted dataset, we initially applied 
LMO correction based on the first arrival to mitigate 
discrepancies of moveout patterns arising from inline 
and crossline receiver direction within common shot 
gathers, as illustrated in Figure 3. Then, we split the dataset 
into training, validation, and test sets in a 7:2:1 ratio, 
respectively, according to shot locations.

During the training phase, we extracted volume patches 
of size 4×7×624 from the training and validation datasets. 
To generate a sufficient number of patches, each patch was 
configured to include seven receivers. This setup ensured 
that there were overlapping sections between patches. Each 
patch consists of 4×7 traces, aligned along the crossline 
and inline receiver direction within common-shot 
gathers, respectively, with each trace containing 624 time 
samples. These complete patches are used for labels. Then, 
we regularly removed 50% of each volume patch in the 
inline receiver direction within common-shot gathers and 
replaced the removed values with zeros, to serve as input 
for our deep learning models as shown in Figure 1A. Thus, 
the optimal patch size (4×7) for our strategy is determined 
based on the number of streamers and the number of 
receivers per streamer.

We trained models using both 3D U-Net and 3D 
U-Net+ architectures. After training, we evaluated their 
performance on the test dataset. As illustrated in Figure 4, 
both models demonstrated similar residual levels and 
provided interpolation results that closely matched the 
labels. This performance assessment confirms that our 

Figure 1. Input arrays for the transposed arrangement strategy during training (A) and inference stages (B). Blue triangles indicate active receivers, and 
white triangles denote absent receivers, represented as zeros in the data array. Black solid lines represent streamers, while dotted lines show the positions 
of absent streamers.

BA
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models are effectively capable of interpolating data, with 
50% of dataset removed regularly in the inline receiver 
direction within common-shot gathers.

Finally, to reconstruct the crossline receiver direction 
within common-shot gathers, we implemented the 
transposed arrangement strategy by feeding transposed 
input arrays into our trained models, and subsequently 
compared the outputs with the ground truth from the 
crossline test dataset. As depicted in Figure  5, the 3D 
U-Net+ model exhibited smaller residuals compared 
to the 3D U-Net, POCS, CDDIP, the f–x interpolation 
method, and the bicubic interpolation method, with the 
latter showing significantly larger discrepancies relative to 
the deep learning models. In addition, Figure 5H and 5O 
represent the results of training and testing the 3D U-Net+ 
on original data without applying LMO. These results 
demonstrate that applying LMO significantly improved the 
performance of the model.

To further highlight differences in fine-scale textures, 
Figure  6 presents enlarged views of the low amplitude 
regions marked by red boxes in Figure 5. The results show 
that the proposed 3D U-Net+ achieves more accurate 

Figure 2. The architectures of 3D U-Net (A) and 3D U-Net+ (B)

B

A

Table 1. Data acquisition parameter

Acquisition geometry Value

Number of sail lines 50

Spacing of sail lines (m) 160

Shots per line 96

Spacing of shot (m) 80

Number of streamers 8

Spacing of receiver (m) 20

Receivers per streamer 68

Max offset (m) 1,340

Number of samples 625

Spacing of samples (s) 0.008

Spacing of streamer (m) 40

https://dx.doi.org/10.36922/JSE025330056
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Figure 3. Inline receiver direction within common-shot gathers with before (A) and after applying linear moveout correction (B)

BA

Figure  4. Interpolation results for the inline receiver direction within common shot gathers. (A) Ground truth. (B) 3D U-Net. (C) 3D U-Net+. 
(D) Difference between (A) and (B). (E) Difference between (A) and (C).

DCBA E

Figure  5. Linear moveout (LMO)–corrected interpolation results for crossline receiver direction within common-shot gathers. (A) Ground truth. 
(B) Bicubic. (C) f–x interpolation. (D) Projection onto convex sets. (E) Constrained diffusion-driven deep image prior. (F) 3D U-Net. (G) 3D U-Net+. 
(H) 3D U-Net+ (LMO not applied). (I) Difference between (A) and B). (J) Difference between (A) and (C). (K) Difference between (A) and (D). 
(L) Difference between (A) and (E). (M) Difference between (A) and (F). (N) Difference between (A) and (G). (O) Difference between (F) and ground 
truth without LMO applied.

D HC GB FA E

LK OJ NI M
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recovery of subtle structures and produces smaller 
residuals compared to conventional methods, even in low 
amplitude zones.

Further analysis of trace comparisons, as illustrated in 
Figure  7, indicates that both 3D U-Net and 3D U-Net+ 
accurately predict large amplitude events with flat slopes 

Figure 6. Enlarged views of the regions indicated by red boxes in Figure 5, focusing on the weak-amplitude zones. (A) Ground truth. (B) Bicubic. (C) f–x 
interpolation. (D) Projection onto convex sets. (E) Constrained diffusion-driven deep image prior. (F) 3D U-Net. (G) 3D U-Net+. (H) 3D U-Net+ (linear 
moveout [LMO] not applied). (I) Difference between (A) and (B). (J) Difference between (A) and (C). (K) Difference between (A) and (D). (L) Difference 
between (A) and (E). (M) Difference between (A) and (F). (N) Difference between (A) and (G). (O) Difference between (F) and ground truth without 
LMO applied.

D HC GB FA E

LK OJ NI M

Figure 7. Comparison of traces for Figure 5. The black line represents the trace for the ground truth, and the red line represents the trace for the prediction 
result. (A) Bicubic. (B) f–x interpolation. (C) Projection onto convex sets. (D) Constrained diffusion-driven deep image prior. (E) 3D U-Net. (F) 3D 
U-Net+. (G) 3D U-Net+ (linear moveout [LMO] not applied). (H–N) Enlarged views of the blue box in (A), (B), (C), (D), (E), (F), and (G), respectively.

D

H

C GB FA E

LKJ NI M
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and also achieve high precision in reconstructing small 
amplitude events with steep slopes. In contrast, both 
the bicubic method, f–x interpolation method and 
POCS method struggle with the interpolation of small 
amplitude events with steep slopes. CDDIP is a self-
supervised interpolation method whose performance is 

highly sensitive to hyperparameter choices, which can 
substantially affect the quality of reconstructed results. In 
our experiments, we adopted the publicly available code 
with default hyperparameters. As shown in Figure 7, while 
CDDIP successfully predicted the overall seismic signals, 
its reconstruction accuracy in fine-scale details was 
relatively low compared to our proposed method.

For quantitative performance evaluation, we used peak 
signal-to-noise ratio (PSNR) as performance metrics, 
which are calculated using following equations:

PSNR = 10log10 (peakval2)/MSE� (VII)

Where peakval (peak value) is the maximum value in 
the data. A larger PSNR indicates better quality of the data.

Table 2 presents the PSNR results for the test dataset, 
with the 3D U-Net+ model demonstrating higher value 
of 32.86  dB, calculated using data normalized to a unit 
peak amplitude (max = 1). Consequently, it has been 
demonstrated that, even in the absence of label data for 
actual field data, high-accuracy interpolation can be 

Table 2. PSNR and SSIM results

Method PSNR 
(standard deviation)

SSIM 
(standard deviation)

bicubic 30.35 (3.93) 0.60 (0.07)

f–x interpolation 30.79 (3.22) 0.61 (0.11)

POCS 31.21 (3.56) 0.62 (0.14)

CDDIP 31.59 (4.08) 0.68 (0.22)

3D U‑Net 32.23 (1.11) 0.71 (0.21)

3D U‑Net+ 32.86 (3.65) 0.74 (0.11)

3D U‑Net+ (without LMO) 20.36 (1.71) 0.44 (0.01)

Abbreviations: CDDIP: Constrained diffusion‑driven deep image prior; 
LMO: Linear moveout; POCS: Projection onto convex sets; PSNR: Peak 
signal‑to‑noise ratio; SSIM: Structural similarity index.

Figure 8. Interpolation results for crossline receiver direction within common-shot gathers with 5% Gaussian noise. (A) Ground truth. (B) Constrained 
diffusion-driven deep image prior (C) 3D U-Net. (D) 3D U-Net+. (E) Difference between (A) and (B). (F) Difference between (A) and (C). (G) Difference 
between (A) and (D).
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Figure  9. Inline receiver direction within common-shot gathers with 
the interpolated crossline location of 3D U-Net+. (A) Ground-truth. 
(B) Interpolation result. (C) Difference between (A) and (B).

C

B

A

performed through the transposed arrangement strategy-
based deep learning interpolation method.

Figure  8 presents additional experiments conducted 
by adding 5% Gaussian noise to the original test data and 
evaluating the interpolation performance of CDDIP, 3D 
U-Net, and 3D U-Net+, which previously demonstrated 
relatively higher accuracy. The results show that all three 
methods were able to effectively handle a certain level of 
noise, but the proposed 3D U-Net+ produced smaller 
residuals compared to both CDDIP and 3D U-Net, 
indicating superior robustness in noisy conditions. 
Nevertheless, to obtain even better results, additional 
denoising would be necessary.

Table 3 presents a comparison of the computational costs 
of the proposed 3D U-Net and 3D U-Net+ models against 
conventional interpolation methods, including bicubic, 
f–x interpolation, POCS, and CDDIP. The experiments 
were conducted on a server equipped with four NVIDIA 
TITAN RTX GPUs (each with 24 GB memory), running 
CUDA version 12.4 and driver version 550.76. The reported 
memory usage was measured as the peak GPU/CPU 
memory consumption during training and inference. The 
table summarizes training time (GPU hours), inference 
time, and GPU/CPU memory usage for each method.

Figure  9 shows the inline receiver direction within 
common-shot gathers with the reconstructed crossline 
position, combined with the output patches from the 3D 
U-Net+ model, which is identified as our optimal model. 
The results demonstrate that the proposed model is able 
to accurately predict the overall seismic signals, effectively 
capturing both strong reflections and subtle structures. 
Figure  10 presents the f–x spectrum corresponding 
to Figure  9, illustrating the frequency–wavenumber 
characteristics of the reconstructed seismic section. 
Although certain high-frequency components are not 
fully recovered, the overall spectrum closely resembles 
that of the label data, indicating that the proposed method 
preserves the dominant frequency content and structural 
consistency. Figure  11 presents a further trace-based 
analysis of the results in Figure 9 to assess the accuracy of 
the interpolation at the individual trace level.

4. Discussion
Our proposed method is designed for cross-wavefield 
reconstruction in marine towed-streamer systems with 
regularly sampled data and a 1:2 spacing ratio between 
receivers and streamers. The experiment utilizes complete 

Table 3. Computational cost comparison

Method Training time 
(GPU hours)

Inference 
time (min)

GPU/CPU memory 
usage

Bicubic ‑ ~0.1 <1 GB

f–x 
interpolation

~0.5 <1 GB

POCS ~10 <2 GB

CDDIP ~200 ~30 ~6 GB (training)/<2 GB 
(inference)

3D U‑Net ~120 ~2 ~23 GB (training)/<1 GB 
(inference)

3D U‑Net+ ~150 ~2 ~24 GB (training)/<1 GB 
(inference)

Abbreviations: CDDIP: Constrained diffusion‑driven deep image prior; 
POCS: Projection onto convex sets.
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Figure 10. f–x spectrum corresponding to Figure 9. (A) Ground-truth. (B) Interpolation result. (C) Difference between (A) and (B).

C

BA

Figure 11. Comparison of traces 40–49 (out of 624) extracted from the gathers shown in Figure 9. The black line represents the trace for the ground truth, 
and the red line represents the trace for the prediction result.
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common-shot gathers from towed-streamer data; however, 
regularization may be necessary if missing data is present. 
In addition, our method can be extended to CMP gathers 
or seismic image volumes, provided that the data maintain 
a regular 1:2 spacing ratio. If the spacing ratio is 2n, where 
n >1, our method can be applied recursively to interpolate 
the data to a 1:1 ratio. If the spacing ratio is not in the 
form of 1:2n, the transposed arrangement strategy may 
be difficult to apply, and additional data processing may 
be necessary to adjust to a 1:2n ratio. However, it should be 
noted that recursive applications may accumulate errors, 
potentially impacting accuracy.

In addition, the reconstruction performance of the 
proposed strategy is highly dependent on the quality of 
inline receiver direction within common-shot gathers, 
since dense inline traces are employed as surrogate labels 
during training. If the inline receiver direction within 
common-shot gathers are noisy or contain structural 
discontinuities, the errors may propagate into the crossline 
reconstruction. The method may also be sensitive to strong 
random or coherent noise, which could reduce accuracy 
in weak-amplitude regions. Future improvements could 
incorporate denoising pre-processing or noise-aware loss 
functions to enhance robustness.

The experiments were conducted on a server equipped 
with four NVIDIA TITAN RTX GPUs (each with 24 
GB memory), running CUDA version  12.4 and driver 
version  550.76. During training, each model instance 
occupied approximately 23 GB of GPU memory per device, 
nearly exhausting the available capacity of a single TITAN 
RTX card. This high memory demand arises mainly 
from the use of 3D convolutional kernels and large input 
patches (e.g., 4 × 7 × 624 traces). Therefore, multi-GPU 
environments with sufficient memory capacity (≥24 GB per 
GPU) are strongly recommended for training 3D U-Net 
and U-Net+ architectures with the proposed transposed 
arrangement strategy. In this study, the batch size during 
training was set to 128, and we note that reducing the batch 
size would alleviate the memory issue. In contrast, the 
inference stage required <1 GB of GPU memory, making 
the trained models practical for deployment in real-world 
seismic data processing tasks.

The seismic dataset used in this study consists of 50 
sail lines, each containing 96 shots, 8 streamers, and 68 
receivers per streamer. Each receiver records 625 samples 
at an 8 ms sampling interval, resulting in a total data 
volume of approximately 6.1 GB for a single-component 
(float32) dataset.

The proposed 3D U-Net+ model required about 24 
GB of GPU memory per device during training and was 

trained using four TITAN RTX GPUs for approximately 
150 GPU h. In contrast, the inference phase required <1 
GB of GPU memory, demonstrating that the proposed 
framework can process seismic data efficiently even at 
moderate survey scales. Thus, although model training 
requires high-performance GPUs (≥24 GB each), the 
trained network can be efficiently applied to large-scale 
seismic data in practical production environments. This 
method was developed for streamer data on regular 
grids and is not directly applicable to irregular land 
geometries.

5. Conclusion
This study introduced the transposed arrangement 
strategy, a novel approach designed to enhance the 
performance of crossline interpolation. By adjusting 
input array configurations during the training and 
inference phases, our method successfully reconstructed 
crossline receiver direction within common-shot gathers 
without the need for labeled data in the crossline receiver 
direction within common-shot gathers. To address feature 
differences between inline and crossline receiver direction 
within common-shot gathers, we applied LMO correction, 
enabling effective crossline interpolation using a model 
trained with inline receiver direction within common-shot 
gathers.

The interpolation performance of our method was 
rigorously evaluated by comparing it with traditional 
bicubic interpolation methods, f–x interpolation method, 
and POCS using deep learning models, 3D U-Net and 
3D U-Net+. The results demonstrated that 3D U-Net+ 
provided the clearest and most accurate interpolations, 
closely resembling the original data. Numerically, 3D 
U-Net+ also exhibited superior PSNR values, confirming 
its efficacy.

This research confirms that applying the proposed 
method in deep learning-based models significantly 
enhances the accuracy of crossline interpolation, 
suggesting a promising direction for future advancements 
in seismic data processing.
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