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Abstract

Towed-streamer marine seismic acquisition systems generally have a dense receiver
spacingintheinline receiver direction within common-shot gathers (along-streamer),
while the streamer spacing is relatively sparse in the crossline receiver direction within
common-shot gathers (cross-streamer). This disparity can lead to spatial aliasing
issues in the crossline receiver direction within common-shot gathers and result in
resolution degradation during the processing of 3D seismic data. To address this issue
and enhance resolution, data interpolation in the crossline receiver direction within
common-shot gathers is essential. Various supervised learning-based interpolation
methods have been developed to this end. However, the absence of true data in
the crossline receiver direction within common-shot gathers poses challenges for
training supervised learning models with actual field data. To overcome this, we
have developed a novel approach called the “transposed arrangement strategy” for
a deep learning-based reconstruction model for crossline interpolation. This method
involves training the model with 3D input and labels patched from existing field data,
and then applying the trained model with transposed 3D input to reconstruct data in
the crossline receiver direction within common-shot gathers. During this process, the
3D U-Net and U-Net+ models were utilized, demonstrating their superiority through
comparisons with traditional interpolation methods.

Keywords: Data processing; Signal processing; Deep learning; Crossline interpolation;
Transposed arrangement strategy; 3D U-Net+

1. Introduction

Seismic survey data can be subject to loss due to environmental, economic constraints,
or mechanical defects. Notably, the towed-streamer marine seismic systems are typically
configured with denseinlineand wide crossline spacingto maximize exploration coverage.'
This setup can lead to spatial aliasing issues in the crossline receiver direction within
common-shot gathers and resolution degradation during the processing of 3D seismic
survey data. Consequently, data interpolation in the crossline receiver direction within
common-shot gathersis necessary to address these problems and improve data resolution.

Before the introduction of deep learning, a wide range of conventional approaches
were developed for seismic data interpolation. Traditional methods include bicubic
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interpolation,? wave-equation-based methods,** and f-x
interpolation methods.” Prediction error filtering® has
also been widely applied for reconstructing missing traces
by exploiting predictable structures in seismic data. In
addition, projection onto convex sets (POCS)” methods
and their extensions, such as curvelet-domain POCS,*’
have been shown to effectively exploit sparsity in transform
domains. Rank reduction methods'™'? and sparse
transform-based methods, including Fourier, curvelet, and
seislet transforms,"*!* have also been extensively studied.
These conventional methods perform well for linear or
near-linear seismic events and can mitigate aliasing, but
they often involve high computational cost, require careful
parameter tuning (e.g., window size, rank selection), and
may struggle with complex or curved structures. With
the increasing size and complexity of modern 3D seismic
surveys, these limitations have motivated the exploration
of more efficient and adaptive approaches, including deep
learning-based methods.

Recent advancements in deep learning technology have
been actively incorporated into seismic data interpolation
research to provide high-accuracy interpolation results
and more efficient data processing.'**® Research in
deep learning-based seismic data interpolation can be
categorized into techniques for 2D and 3D seismic data
based on the dimensionality of the data.

2D seismic data interpolation techniques are primarily
based on convolutional neural networks (CNNs),
generative adversarial networks (GANs) and diffusion
models. Yu and Wu?' proposed a CNN that utilizes a hybrid
loss function combining structural similarity index (SSIM)
and L1 norm, along with an attention mechanism that
explicitly leverages global information. Li et al.** proposed
a method of integrating a coordinate attention block into
U-Net for 2D successive missing traces interpolation.
Park et al.®® proposed a strategy using the Coarse-Refine
U-Net (CFunet), which consists of two U-Nets and an
upsampling process between them, along with the Fourier
loss. Lou et al.?® proposed a wavelet-based convolutional
block attention deep learning (W-CBADL) network for the
reconstruction of irregularly sampled seismic data. Dodda
et al** proposed the use of an attention-based wavelet
convolutional neural network (AWUN) for simultaneous
noise reduction and reconstruction of incomplete seismic
data. Tian et al.” proposed feature restoration-based U-Net
(FR-U-Net), a feature restoration-based interpolation
method built upon the U-Net architecture to reconstruct
consecutively missing seismic traces. Kaur et al.*® proposed
a model using the cycle GAN structure that comprises
two generators and one discriminator. Chang et al.”
proposed a method for interpolating seismic data using the

conditional generative adversarial network in the time and
frequency domains (TF-CGAN). Deng et al.*® proposed
conditional constraint diffusion model, a diffusion model
with conditional constraints. However, these proposed
methods are limited to interpolating 2D seismic data and
have not been applied to multidimensional seismic data.

Consequently, 3D seismic data interpolation techniques
have been developed, which predominantly involve models
based on CNNs, GANS, diffusion models and additionally,
autoencoder-based models. Kong et al.*’ proposed a multi-
resolution U-Net model that utilizes the correlations in 3D
data. Jin et al.* proposed a method to reduce the operational
cost of U-Net by introducing depthwise separable
convolution instead of standard convolution. Chang
et al’' proposed a dual-domain conditional generative
adversarial network that uses seismic data sets and discrete
Fourier-transformed data sets in the frequency domain as
input vectors. Dou et al.** proposed a multi-dimensional
adversarial GAN that uses three discriminators. Yu
and Yoon* applied the conditional Wasserstein GAN
(c(WGAN) model to 3D seismic data interpolation. Ding
et al** proposed Self-Attention Generative Adversarial
Network, a deep learning-based model that integrates
the self-attention mechanism with GAN. Wang et al.*®
proposed SeisFusion, a diffusion model combined with
conditional constraints. Qian et al.*® introduced the deep
tensor autoencoder model, which is capable of learning
data-driven, non-linear, and high-dimensional mappings.

Despite these technological advancements, these models
often fall short of generating new data to reduce the spacing
between traces compared to the original dataset. Typically,
they demonstrate strong performance when interpolating
from decimated data back to its full original format. This is
because a supervised learning-based interpolation model
requires a label, which is selected from the original dataset.
For instance, if the original data has a spacing of 20 m, a
model might be effectively trained to fill in missing traces
corresponding to the label, thus decreasing the spacing
from 40 m to 20 m by reconstructing the decimated data.
However, this training does not guarantee a reduction in
spacing from 20 m to 10 m, which is the ultimate goal of
seismic data interpolation.

This limitation, however, can be mitigated in cross-
streamer wavefield reconstruction due to the denser
inline sensor spacing compared to the crossline receiver
direction within common-shot gathers. In this scenario,
an interpolation model can be trained along the inline
receiver direction within common shot gathers and
subsequently applied to reconstruct the coarser data in
the crossline receiver direction within common-shot
gathers. Larsen Greiner et al.”” introduced a cross-streamer
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wavefield reconstruction model using a wavelet domain
approach, training the model along the inline receiver
direction within common-shot gathers to reconstruct
coarse crossline receiver direction within common-shot
gathers. Yeeh et al.’® proposed a trace-to-trace approach
for crossline interpolation, which learns the relationship
between consecutive traces to predict the intermediate
trace along the dense inline receiver direction within
common-shot gathers, ultimately bridging the gap in the
coarse crossline receiver direction within common-shot
gathers.

Recently, increasing attention has been given to
self-supervised learning approaches, which mitigate
the dependency on labeled crossline receiver direction
within common-shot gathers. Chen et al.*® proposed
an interpolation method that combines POCS-Net, a
CNN-based architecture built upon the POCS algorithm,
with a self-supervised transfer learning framework. In
addition, Wang et al.*® presented a dip neural network
(DINN) that leverages self-supervised learning for
crossline interpolation. More recently, Goyes-Penafiel
et al* introduced constrained diffusion-driven deep
image prior (CDDIP), an unsupervised framework that
combines diffusion processes with deep image prior (DIP)
to reconstruct missing seismic traces without requiring

labeled data.

In this study, we extend this strategy®®*' for cross-
wavefield reconstruction by utilizing not only 2D data from
the inline receiver direction within common-shot gathers
but also 3D volume data encompassing both inline and
crossline receiver direction within common-shot gathers
for training, effectively enhancing data interpolation by
utilizing information across multiple spatial dimensions.
The proposed approach, called the transposed arrangement
strategy, alters the input array during the training and
inference stages of the crossline interpolation model. This
strategy allows for the reconstruction of the crossline
receiver direction within common-shot gathers from
original field data without the need for specific crossline
labels. It involves training the model using a 3D input
dataset from which 50% of the traces are regularly removed
along the inline receiver direction within common-shot
gathers. After training, this original input is transposed
and fed into the model to facilitate data generation in the
crossline receiver direction within common-shot gathers.
In addition, to align event patterns between the inline and
crossline receiver direction within common-shot gathers,
linear moveout (LMO) correction is applied. Compared
with existing self-supervised approaches, which rely on
contrastive objectives, masked autoencoding, or physics-
based regularization to avoid the need for labels, our

method achieves self-supervision in a different way: It
directly leverages dense inline traces as surrogate labels
during training and then transposes the model for crossline
inference. This provides a simple yet effective mechanism
for eliminating the need for explicit crossline labels
while remaining complementary to prior self-supervised
paradigms. In addition, unlike other frameworks, such as
DINN and POCS-Net, the proposed transposed strategy
requires no auxiliary convex constraints, dip picking, or
secondary network—the self-supervision emerges purely
from a simple tensor transpose operation, making the
method both conceptually elegant and computationally
efficient. For this purpose, we employed two interpolation
models: 3D U-Netand 3D U-Net+, whose effectiveness was
measured against the conventional bicubic interpolation
method,? the f-x interpolation method,” POCS® and
CDDIP* through comparative performance evaluations.
Among these, f-x interpolation was included as a widely
used conventional method, POCS was selected as a
representative compressive sensing-based method due to
its simplicity, robustness, and computational efficiency, and
CDDIP was considered to represent recent self-supervised
deep learning approaches.

2. Methodology
2.1. Transposed arrangement strategy

Our proposed transposed arrangement strategy offers
a label-substituting approach for interpolating actual
field data. This strategy is universally applicable across
deep learning models and is particularly optimized for
scenarios where the receiver-to-streamer spacing ratio
is 1-2. For example, in the dataset used in this study, the
inline receiver spacing was 20 m and the crossline streamer
spacing was 40 m, resulting in a ratio of 1:2. The proposed
strategy unfolds as follows:

Initially, the original data D is acquired from the actual
field and consists of N, traces in the inline receiver direction
within common-shot gathers, N_traces in the crossline
receiver direction within common-shot gathers, and N,
time samples. This can be represented as a matrix D with
dimensions N_x N, x N, and the trace T can be illustrated
along the time sample axis as follows:

T1,1 o TI,N

D=| : . i (I)
T

N1 T AN,
Where T, is a trace vector corresponding to the
crossline index x and inline index i, each with a dimension

of N, x 1. Here, N_denotes the number of traces in the
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crossline direction, N, the number of traces in the inline
direction, and N, the number of time samples per trace.
Thus, each element T represents a seismic trace consisting
of N, amplitude values along the time axis.

y Fron t}~1e original data D, a volume patch P of size
N_xN,xN, is extracted. If the starting position of the
patchis denoted as (i, ), then the patch P can be represented
as:

p=| : (I1)

i+N, -1,j i+N, -1,j+N; -1

Where N, and N, serve as the indices navigating the
crossline and inline receiver direction within common-shot
gathers, respectively, within the patch, and N, =2N_-1.

During the training phase, the complete patch P is
used as a label, while an input P_ is created by regularly
removing 50% of P in the inline receiver direction within
common-shot gathers, represented as follows:

T, 0 T, 0 - Tf,jux‘z, -1
_ Ti+1,j 0 Ti+1,j+2 0 - Ti+1,j+ﬂzi4 (1)
in . . . . . :
i+N,-1,j 0 Ti+m71,j+2 0 i+N,~1,j+N; -1

The training process for the reconstruction model can
be represented by the following equation:

P = Net (Pm )
minimize L(IS,P) av)

Where Net(.) denotes the reconstruction deep learning
model, p is the prediction of the model, L(.)is the loss
function used to train the model. This approach trains
the reconstruction model to fill in the missing traces
represented by the zero values in Equation III.

In the inference phase, a new input patch is created by:
(i) Extracting a patch of size N xN, with N, time
sampling from the original data D, (ii) regularly adding
zero values into the crossline receiver direction within
common-shot gathers expanding the dimensions to
(Zﬁx—l)xl\?xxﬁt, and (iii) transposing the first and
second dimensions to result in a final dimension
of N x(2N,-1)xN,. Then, the new input patch for
reconstructing crossline receiver direction within
common-shot gathers can be represented as follows:

Tz; Ti,;‘+2 i,j+2(N, 1)
0 0 0
IVD,-n _ TMJ Ti+1,1+2 Tm, j+2(K, 1) V)
0 0 0
_Tiﬂ\'lfl,j THNX—I,]}Z i+1\7x—1,j+2(1\7x71)_

Subsequently, by inputting new input patches Pin from
the original data D into the trained model, Net(.), the
model is able to generate the crossline receiver direction
within common-shot gathers between streamers. Figure 1
visually illustrates examples for Equations ITI and V.

2.2. LMO correction

In the towed streamer system, the difference in offsets
between the source and receivers generates varying
moveout patterns in the inline and crossline receiver
direction within common-shot gathers. Specifically, the
moveouts in the inline receiver direction within common-
shot gathers are steeper compared to those in the crossline.
To harmonize these pattern discrepancies between the
inline and crossline receiver direction within common-
shot gathers, LMO correction is employed.*®

LMO correction is a data processing technique used
to adjust the arrival time differences of seismic waves
captured by multiple receivers. This method is primarily
used to improve the initial alignment of multi-channel
data and to reduce the time differences between records at
close ranges. Notably, this correction can be applied using
just the streamer and receiver intervals, without the need
for actual subsurface velocity information.*> The formula
for the LMO correction used in this study is as follows:

T=1-px (VD)

Where ¢ represents the original time of the seismic event
at offset x, p is the ray parameter defined as dt/dx, and 7 is
the time-shift for the corrected events. In this study, LMO
correction is applied to the original seismic data before
fetching the volume patches, ensuring that event patterns
are similar in both inline and crossline receiver direction
within common-shot gathers, with a typical dip range
reduced from approximately —8 ms/trace before correction
to within +2 ms/trace after correction. The ray parameter
was estimated from the first arrivals and applied uniformly
across the line for processing simplicity. In practice, this
step could be replaced or refined using spatially varying
normal moveout correction or pre-stack time migration
velocity fields to achieve higher physical realism.
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Figure 1. Input arrays for the transposed arrangement strategy during training (A) and inference stages (B). Blue triangles indicate active receivers, and
white triangles denote absent receivers, represented as zeros in the data array. Black solid lines represent streamers, while dotted lines show the positions

of absent streamers.

2.3.3D U-Net and 3D U-Net+

Given that our proposed strategy can be applied to any
deep learning model, we employed the widely used 3D
U-Net and its extension, 3D U-Net+, as our interpolation
models.**** Both models were implemented using 3x3x3
convolution layers and 1x1x2 upsampling layers. The
3D U-Net utilizes rectified linear unit as its activation
function, whereas 3D U-Net+ employs exponential linear
unit. During the model training phase, we adopted the
mean absolute error as the loss function and the Adam
optimizer for optimization. The learning rate was set to
0.0001. Figure 2 illustrates the structures of 3D U-Net
and 3D U-Net+. In this study, the “+” in 3D U-Net+
denotes an extension of the basic 3D U-Net by adding
skip connections, which strengthens feature propagation
and better preserves structural information during
interpolation.

3. Data example

We applied our transposed arrangement strategy to the
publicly available SEG/EAGE Salt Model, specifically to the
narrow azimuth data. The acquisition parameters for this
dataset are detailed in Table 1.* The receiver and streamer
spacings are 20 m and 40 m, respectively, maintaining a
1:2 ratio, which is well-suited for the application of our
strategy.

To evaluate the performance of our proposed strategy,
we initially removed 50% of the data regularly in both
inline and crossline receiver direction within common-
shot gathers from the original dataset. Consequently,
the number of streamers was adjusted from 8 to 4, the
receiver spacing from 20 m to 40 m, and the streamer
spacing from 40 m to 80 m. The removed crossline receiver

direction within common-shot gathers were then utilized
as the ground truth in our final model evaluation, and to
distinguish this dataset from the test set used to train the
model below, we call it the crossline test dataset.

Using the adjusted dataset, we initially applied
LMO correction based on the first arrival to mitigate
discrepancies of moveout patterns arising from inline
and crossline receiver direction within common shot
gathers, as illustrated in Figure 3. Then, we split the dataset
into training, validation, and test sets in a 7:2:1 ratio,
respectively, according to shot locations.

During the training phase, we extracted volume patches
of size 4x7x624 from the training and validation datasets.
To generate a sufficient number of patches, each patch was
configured to include seven receivers. This setup ensured
that there were overlapping sections between patches. Each
patch consists of 4x7 traces, aligned along the crossline
and inline receiver direction within common-shot
gathers, respectively, with each trace containing 624 time
samples. These complete patches are used for labels. Then,
we regularly removed 50% of each volume patch in the
inline receiver direction within common-shot gathers and
replaced the removed values with zeros, to serve as input
for our deep learning models as shown in Figure 1A. Thus,
the optimal patch size (4x7) for our strategy is determined
based on the number of streamers and the number of
receivers per streamer.

We trained models using both 3D U-Net and 3D
U-Net+ architectures. After training, we evaluated their
performance on the test dataset. As illustrated in Figure 4,
both models demonstrated similar residual levels and
provided interpolation results that closely matched the
labels. This performance assessment confirms that our
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Upsampling
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X 3D convolution block

Figure 2. The architectures of 3D U-Net (A) and 3D U-Net+ (B)

Table 1. Data acquisition parameter

Acquisition geometry Value
Number of sail lines 50
Spacing of sail lines (m) 160
Shots per line 96
Spacing of shot (m) 80
Number of streamers 8
Spacing of receiver (m) 20
Receivers per streamer 68
Max offset (m) 1,340
Number of samples 625
Spacing of samples (s) 0.008
Spacing of streamer (m) 40

models are effectively capable of interpolating data, with
50% of dataset removed regularly in the inline receiver
direction within common-shot gathers.

Finally, to reconstruct the crossline receiver direction
within common-shot gathers, we implemented the
transposed arrangement strategy by feeding transposed
input arrays into our trained models, and subsequently
compared the outputs with the ground truth from the
crossline test dataset. As depicted in Figure 5, the 3D
U-Net+ model exhibited smaller residuals compared
to the 3D U-Net, POCS, CDDIP, the f-x interpolation
method, and the bicubic interpolation method, with the
latter showing significantly larger discrepancies relative to
the deep learning models. In addition, Figure 5H and 50
represent the results of training and testing the 3D U-Net+
on original data without applying LMO. These results
demonstrate that applying LMO significantly improved the
performance of the model.

To further highlight differences in fine-scale textures,
Figure 6 presents enlarged views of the low amplitude
regions marked by red boxes in Figure 5. The results show
that the proposed 3D U-Net+ achieves more accurate
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Figure 3. Inline receiver direction within common-shot gathers with before (A) and after applying linear moveout correction (B)
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Figure 4. Interpolation results for the inline receiver direction within common shot gathers. (A) Ground truth. (B) 3D U-Net. (C) 3D U-Net+.
(D) Difference between (A) and (B). (E) Difference between (A) and (C).
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Figure 5. Linear moveout (LMO)-corrected interpolation results for crossline receiver direction within common-shot gathers. (A) Ground truth.
(B) Bicubic. (C) f-x interpolation. (D) Projection onto convex sets. (E) Constrained diffusion-driven deep image prior. (F) 3D U-Net. (G) 3D U-Net+.
(H) 3D U-Net+ (LMO not applied). (I) Difference between (A) and B). (J) Difference between (A) and (C). (K) Difference between (A) and (D).
(L) Difference between (A) and (E). (M) Difference between (A) and (F). (N) Difference between (A) and (G). (O) Difference between (F) and ground
truth without LMO applied.
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recovery of subtle structures and produces smaller Further analysis of trace comparisons, as illustrated in
residuals compared to conventional methods, even in low Figure 7, indicates that both 3D U-Net and 3D U-Net+
amplitude zones. accurately predict large amplitude events with flat slopes
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Figure 6. Enlarged views of the regions indicated by red boxes in Figure 5, focusing on the weak-amplitude zones. (A) Ground truth. (B) Bicubic. (C) f-x
interpolation. (D) Projection onto convex sets. (E) Constrained diffusion-driven deep image prior. (F) 3D U-Net. (G) 3D U-Net+. (H) 3D U-Net+ (linear
moveout [LMO] not applied). (I) Difference between (A) and (B). (J) Difference between (A) and (C). (K) Difference between (A) and (D). (L) Difference
between (A) and (E). (M) Difference between (A) and (F). (N) Difference between (A) and (G). (O) Difference between (F) and ground truth without
LMO applied.
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Figure 7. Comparison of traces for Figure 5. The black line represents the trace for the ground truth, and the red line represents the trace for the prediction
result. (A) Bicubic. (B) f-x interpolation. (C) Projection onto convex sets. (D) Constrained diffusion-driven deep image prior. (E) 3D U-Net. (F) 3D
U-Net+. (G) 3D U-Net+ (linear moveout [LMO] not applied). (H-N) Enlarged views of the blue box in (A), (B), (C), (D), (E), (F), and (G), respectively.
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and also achieve high precision in reconstructing small
amplitude events with steep slopes. In contrast, both
the bicubic method, f-x interpolation method and
POCS method struggle with the interpolation of small
amplitude events with steep slopes. CDDIP is a self-
supervised interpolation method whose performance is

Table 2. PSNR and SSIM results

Method PSNR SSIM
(standard deviation) (standard deviation)

bicubic 30.35(3.93) 0.60 (0.07)
f-x interpolation 30.79 (3.22) 0.61 (0.11)
POCS 31.21 (3.56) 0.62 (0.14)
CDDIP 31.59 (4.08) 0.68 (0.22)
3D U-Net 32.23 (1.11) 0.71 (0.21)
3D U-Net+ 32.86 (3.65) 0.74 (0.11)
3D U-Net+ (without LMO) 20.36 (1.71) 0.44 (0.01)

Abbreviations: CDDIP: Constrained diffusion-driven deep image prior;
LMO: Linear moveout; POCS: Projection onto convex sets; PSNR: Peak
signal-to-noise ratio; SSIM: Structural similarity index.
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highly sensitive to hyperparameter choices, which can
substantially affect the quality of reconstructed results. In
our experiments, we adopted the publicly available code
with default hyperparameters. As shown in Figure 7, while
CDDIP successfully predicted the overall seismic signals,
its reconstruction accuracy in fine-scale details was
relatively low compared to our proposed method.

For quantitative performance evaluation, we used peak
signal-to-noise ratio (PSNR) as performance metrics,
which are calculated using following equations:

PSNR = 10log,, (peakval’)/ MSE (VII)

Where peakval (peak value) is the maximum value in
the data. A larger PSNR indicates better quality of the data.

Table 2 presents the PSNR results for the test dataset,
with the 3D U-Net+ model demonstrating higher value
of 32.86 dB, calculated using data normalized to a unit
peak amplitude (max = 1). Consequently, it has been
demonstrated that, even in the absence of label data for
actual field data, high-accuracy interpolation can be
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Figure 8. Interpolation results for crossline receiver direction within common-shot gathers with 5% Gaussian noise. (A) Ground truth. (B) Constrained
diffusion-driven deep image prior (C) 3D U-Net. (D) 3D U-Net+. (E) Difference between (A) and (B). (F) Difference between (A) and (C). (G) Difference

between (A) and (D).
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performed through the transposed arrangement strategy-
based deep learning interpolation method.

Figure 8 presents additional experiments conducted
by adding 5% Gaussian noise to the original test data and
evaluating the interpolation performance of CDDIP, 3D
U-Net, and 3D U-Net+, which previously demonstrated
relatively higher accuracy. The results show that all three
methods were able to effectively handle a certain level of
noise, but the proposed 3D U-Net+ produced smaller
residuals compared to both CDDIP and 3D U-Net,
indicating superior robustness in noisy conditions.
Nevertheless, to obtain even better results, additional
denoising would be necessary.
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Figure 9. Inline receiver direction within common-shot gathers with
the interpolated crossline location of 3D U-Net+. (A) Ground-truth.
(B) Interpolation result. (C) Difference between (A) and (B).

Table 3 presents a comparison of the computational costs
of the proposed 3D U-Net and 3D U-Net+ models against
conventional interpolation methods, including bicubic,
f-x interpolation, POCS, and CDDIP. The experiments
were conducted on a server equipped with four NVIDIA
TITAN RTX GPUs (each with 24 GB memory), running
CUDA version 12.4 and driver version 550.76. The reported
memory usage was measured as the peak GPU/CPU
memory consumption during training and inference. The
table summarizes training time (GPU hours), inference
time, and GPU/CPU memory usage for each method.

Figure 9 shows the inline receiver direction within
common-shot gathers with the reconstructed crossline
position, combined with the output patches from the 3D
U-Net+ model, which is identified as our optimal model.
The results demonstrate that the proposed model is able
to accurately predict the overall seismic signals, effectively
capturing both strong reflections and subtle structures.
Figure 10 presents the f-x spectrum corresponding
to Figure 9, illustrating the frequency-wavenumber
characteristics of the reconstructed seismic section.
Although certain high-frequency components are not
fully recovered, the overall spectrum closely resembles
that of the label data, indicating that the proposed method
preserves the dominant frequency content and structural
consistency. Figure 11 presents a further trace-based
analysis of the results in Figure 9 to assess the accuracy of
the interpolation at the individual trace level.

4, Discussion

Our proposed method is designed for cross-wavefield
reconstruction in marine towed-streamer systems with
regularly sampled data and a 1:2 spacing ratio between
receivers and streamers. The experiment utilizes complete

Table 3. Computational cost comparison

Method Training time  Inference GPU/CPU memory
(GPU hours)  time (min) usage

Bicubic - ~0.1 <1GB

f—x ~0.5 <1 GB

interpolation

POCS ~10 <2 GB

CDDIP ~200 ~30 ~6 GB (training)/<2 GB
(inference)

3D U-Net ~120 ~2 ~23 GB (training)/<1 GB
(inference)

3D U-Net+ ~150 ~2 ~24 GB (training)/<1 GB
(inference)

Abbreviations: CDDIP: Constrained diffusion-driven deep image prior;
POCS: Projection onto convex sets.
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Figure 10. f-x spectrum corresponding to Figure 9. (A) Ground-truth. (B) Interpolation result. (C) Difference between (A) and (B).
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common-shot gathers from towed-streamer data; however,
regularization may be necessary if missing data is present.
In addition, our method can be extended to CMP gathers
or seismic image volumes, provided that the data maintain
a regular 1:2 spacing ratio. If the spacing ratio is 2", where
n >1, our method can be applied recursively to interpolate
the data to a 1:1 ratio. If the spacing ratio is not in the
form of 1:2, the transposed arrangement strategy may
be difficult to apply, and additional data processing may
be necessary to adjust to a 1:2" ratio. However, it should be
noted that recursive applications may accumulate errors,
potentially impacting accuracy.

In addition, the reconstruction performance of the
proposed strategy is highly dependent on the quality of
inline receiver direction within common-shot gathers,
since dense inline traces are employed as surrogate labels
during training. If the inline receiver direction within
common-shot gathers are noisy or contain structural
discontinuities, the errors may propagate into the crossline
reconstruction. The method may also be sensitive to strong
random or coherent noise, which could reduce accuracy
in weak-amplitude regions. Future improvements could
incorporate denoising pre-processing or noise-aware loss
functions to enhance robustness.

The experiments were conducted on a server equipped
with four NVIDIA TITAN RTX GPUs (each with 24
GB memory), running CUDA version 12.4 and driver
version 550.76. During training, each model instance
occupied approximately 23 GB of GPU memory per device,
nearly exhausting the available capacity of a single TITAN
RTX card. This high memory demand arises mainly
from the use of 3D convolutional kernels and large input
patches (e.g., 4 x 7 x 624 traces). Therefore, multi-GPU
environments with sufficient memory capacity (=24 GB per
GPU) are strongly recommended for training 3D U-Net
and U-Net+ architectures with the proposed transposed
arrangement strategy. In this study, the batch size during
training was set to 128, and we note that reducing the batch
size would alleviate the memory issue. In contrast, the
inference stage required <1 GB of GPU memory, making
the trained models practical for deployment in real-world
seismic data processing tasks.

The seismic dataset used in this study consists of 50
sail lines, each containing 96 shots, 8 streamers, and 68
receivers per streamer. Each receiver records 625 samples
at an 8 ms sampling interval, resulting in a total data
volume of approximately 6.1 GB for a single-component
(float32) dataset.

The proposed 3D U-Net+ model required about 24
GB of GPU memory per device during training and was

trained using four TITAN RTX GPUs for approximately
150 GPU h. In contrast, the inference phase required <1
GB of GPU memory, demonstrating that the proposed
framework can process seismic data efficiently even at
moderate survey scales. Thus, although model training
requires high-performance GPUs (224 GB each), the
trained network can be efficiently applied to large-scale
seismic data in practical production environments. This
method was developed for streamer data on regular
grids and is not directly applicable to irregular land
geometries.

5. Conclusion

This study introduced the transposed arrangement
strategy, a novel approach designed to enhance the
performance of crossline interpolation. By adjusting
input array configurations during the training and
inference phases, our method successfully reconstructed
crossline receiver direction within common-shot gathers
without the need for labeled data in the crossline receiver
direction within common-shot gathers. To address feature
differences between inline and crossline receiver direction
within common-shot gathers, we applied LMO correction,
enabling effective crossline interpolation using a model
trained with inline receiver direction within common-shot
gathers.

The interpolation performance of our method was
rigorously evaluated by comparing it with traditional
bicubic interpolation methods, f-x interpolation method,
and POCS using deep learning models, 3D U-Net and
3D U-Net+. The results demonstrated that 3D U-Net+
provided the clearest and most accurate interpolations,
closely resembling the original data. Numerically, 3D
U-Net+ also exhibited superior PSNR values, confirming
its efficacy.

This research confirms that applying the proposed
method in deep learning-based models significantly
enhances the accuracy of crossline interpolation,
suggesting a promising direction for future advancements
in seismic data processing.
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