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Abstract
Seismic impedance inversion is essential for reservoir characterization but remains 
challenging in complex geological environments due to the inherent limitations 
of conventional methods. This study proposes a hybrid deep learning framework 
integrating a convolutional neural network (CNN), a graph attention network (GAT), 
and a gradient boosting decision tree (GBDT) to achieve high-resolution impedance 
inversion. The CNN extracts local structural features from seismic waveforms, the 
GAT captures long-range geological dependencies through self-attention between 
traces, and the GBDT performs robust non-linear regression for final prediction. 
Extensive evaluations on synthetic and field datasets demonstrate that the method 
achieves a root mean square error of 285 m/s·g/cm3 on the Society of Exploration 
Geophysicists salt model, representing a 15.2% improvement over XGBoost and a 
32.1% improvement over sparse spike inversion. The framework performs particularly 
well in complex regions, achieving a 22.7% error reduction at salt boundaries and 
a thin-bed detection rate of 92% for layers exceeding 4  m in thickness. Statistical 
uncertainty quantification indicates 94.2% coverage of true impedance values within 
95% confidence intervals. In practical applications, the method reduces interpretation 
time by 40% while maintaining reservoir thickness prediction errors within ± 3 m, 
demonstrating strong robustness and operational value for seismic interpretation.
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1. Introduction
1.1. Research background and motivation

Seismic impedance inversion is a core task in geophysical 
exploration, widely used in oil and gas exploration, 
groundwater resource assessment, and geological disaster 
early warning.1 Impedance is a key parameter that describes 
the physical properties of subsurface formations, reflecting 
velocity and density variations across different rock layers 
and providing critical geological information for seismic 
exploration.2 However, due to the non-linear nature of 
seismic data and noise interference, traditional impedance 
inversion methods often face challenges, including 
insufficient inversion accuracy, low computational 
efficiency, and poor adaptability to complex geological 
environments. Therefore, improving the accuracy of 
impedance inversion and effectively addressing the 
challenges of complex geological conditions has become 
an urgent research priority in seismic exploration.3

With the rapid development of deep learning 
technology, advanced methods, such as convolutional 
neural networks (CNNs) and graph attention networks 
(GATs), have significantly improved the accuracy and 
efficiency of seismic impedance inversion.4 CNNs can 
automatically extract spatial features from seismic data, 
while GATs can fully exploit spatial correlations within 
seismic data. However, despite significant progress in 
seismic impedance inversion, these deep learning methods 
still have limitations when dealing with complex geological 
environments and non-linear regression problems.5-7 
Therefore, the effective integration of deep learning and 
traditional machine learning methods to form an efficient 
and accurate inversion framework constitutes the primary 
motivation of this study.

1.2. Literature review

The development of seismic impedance inversion 
techniques has seen significant advancements through the 
integration of various neural network architectures and 
inversion methodologies. Traditional approaches, such 
as neural network-based methods for three-dimensional 
(3D) porosity prediction, have demonstrated the potential 
of data-driven models to transform seismic reflection 
data into meaningful rock property models.8 These early 
efforts laid the groundwork for more sophisticated deep 
learning frameworks that aim to enhance the accuracy and 
robustness of impedance inversion.

Recent studies have emphasized the importance of 
incorporating additional seismic data attributes and 
advanced inversion strategies. For instance, the use of 
full-azimuth broadband land data with dense wavefield 

sampling and low-frequency extension has improved the 
interpretability and robustness of acoustic impedance 
inversion results, thereby facilitating better reservoir 
characterization.9 Similarly, the estimation of elastic 
properties, including P-  and S-wave impedances and 
attenuation factors, has been approached through multi-
step inversion processes combining model-based and 
Bayesian methods, highlighting the role of probabilistic 
frameworks in capturing uncertainties.10

In the context of integrating seismic data with 
geological and petrophysical information, crossplot and 
Poisson impedance attributes derived from prestack 
seismic inversion have been effectively used for lithofacies 
discrimination and fluid prediction, demonstrating the 
value of combining seismic inversion with well log data 
for reservoir evaluation.11 Furthermore, incorporating 
geostatistical uncertainty assessments has provided a 
comprehensive understanding of the large- and local-scale 
uncertainties inherent in seismic inversion, emphasizing 
the importance of uncertainty quantification in model 
reliability.12

Methodological innovations, such as adaptive edge-
preserving smoothing preconditioning, have been 
introduced to improve impedance models by incorporating 
prior knowledge, thereby enhancing the stability and 
resolution of poststack seismic impedance inversion.13 In 
addition, the application of flow-simulation-driven time-
lapse seismic studies has demonstrated the potential of 
integrated workflows that combine seismic interpretation, 
inversion, earth modeling, and reservoir simulation to 
monitor reservoir dynamics effectively.14

The adoption of probabilistic and Bayesian inversion 
techniques has further advanced the field by enabling the 
evaluation of posterior uncertainties without relying on 
restrictive assumptions. For example, Markov Chain Monte 
Carlo-based approaches guided by geological structures 
have been employed to derive elastic properties with 
quantified uncertainties, providing a more comprehensive 
understanding of inversion results.15 Building on these 
developments, deep learning models, such as UB-Net, have 
been proposed to perform impedance inversion within 
a closed-loop framework, simultaneously predicting 
impedance and epistemic uncertainty, thus addressing the 
need for uncertainty-aware inversion models.16

More recently, integrating CNNs with transformer 
architectures has demonstrated promising results 
in seismic impedance inversion. The hybrid CNN-
transformer model leverages the local feature extraction 
capabilities of CNNs and the global context modeling of 
transformers, leading to stable inversion outcomes with 
improved horizontal continuity and vertical resolution.17 
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This approach exemplifies the trend toward combining 
multiple neural network paradigms to enhance inversion 
performance.

1.3. Article contribution

This study proposes a joint CNN–GAT–gradient boosting 
decision tree (GBDT) (CNN–GAT–GBDT) framework for 
seismic impedance inversion prediction. This framework 
combines the strengths of CNNs, GATs, and GBDTs to fully 
exploit the local features and spatial relationships of seismic 
data, while leveraging GBDT for high-precision non-linear 
regression. The CNN module extracts spatiotemporal 
features from seismic data, while the GAT module captures 
spatial dependencies among seismic traces by constructing 
a graph structure. The GBDT performs non-linear fitting 
on the deep features extracted by the CNN and GAT, 
effectively improving inversion accuracy.

GBDT improves inversion accuracy through non-linear 
fitting of deep features in three key ways: first, the CNN 
and GAT extract complementary feature representations—
the CNN captures local waveform patterns and spectral 
characteristics, while the GAT models global geological 
continuity and topological constraints. The GBDT 
integrates heterogeneous features through a decision tree, 
effectively learning complex high-dimensional non-linear 
mappings that cannot be captured by a single model. Second, 
the GBDT’s Huber loss function enhances robustness to 
impedance outliers, which are common near geological 
boundaries, thereby reducing overfitting and improving 
generalization. Third, the iterative enhancement process 
adaptively optimizes feature interactions; for example, 
it dynamically weights the importance of CNN-derived 
texture features and GAT-derived spatial attention features 
based on the local geological context. This synergistic effect 
enables the model to achieve higher accuracy in resolving 
thin layers and complex structures, reducing the root mean 
square error (RMSE) by 15.2% in experiments.

This design contributes to enhanced inversion accuracy 
through the integration of complementary features: The 
CNN component acts as a “local feature extractor” that 
preserves detailed seismic waveform characteristics; the 
GAT serves as a “global relationship modulator” that 
enforces geological consistency across traces; and the GBDT 
functions as a “high-precision integrator” that optimally 
combines these complementary features while mitigating 
overfitting through regularization. Specifically, GBDT’s 
feature importance mechanism automatically weights the 
contribution of CNN-  and GAT-derived features based 
on their predictive value for different geological contexts, 
prioritizing CNN features in homogeneous regions and 

GAT features near structural boundaries. This adaptive 
integration results in a 15.2% reduction in RMSE in our 
experiments, with error reduction at salt boundaries being 
more substantial (22.7%), particularly in complex zones, 
such as salt domes and thin interbeds, where traditional 
methods exhibit higher errors.

Through joint training and end-to-end optimization, 
the framework can adaptively respond to changes in 
diverse geological scenarios, improving the robustness and 
accuracy of impedance inversion. Furthermore, this study 
proposes an uncertainty estimation mechanism to support 
quantitative decision-making in geological exploration 
and to reduce inversion risk.

1.4. Article structure

The remainder of this paper is organized as follows: Section 
2 provides a detailed introduction to the CNN, GAT, and 
GBDT modules used in this study and their working 
principles; Section 3 introduces the experimental design, 
including the selection of datasets, the model training 
process, and the evaluation metrics; Section 4 presents 
and analyzes the experimental results and compares the 
performance of different models; and Section 5 discusses 
the strengths and weaknesses of this study and analyzes 
the potential and challenges of the models in practical 
applications. Finally, Section 6 summarizes the main 
contributions of this study and provides prospects for 
future research directions.

2. Method theory
This paper proposes a joint inversion framework that 
integrates a CNN, a GAT, and a GBDT. This framework 
aims to fully leverage the local characteristics and spatial 
correlations present in the seismic data, along with the 
non-linear mapping capabilities of the integrated model, to 
achieve high-precision impedance inversion. The overall 
process is shown in Figure  1 and consists of three core 
stages: feature extraction, spatial relationship modeling, 
and non-linear ensemble regression.

The following subsections detail the theoretical basis of 
each module and its input–output relationship within the 
overall framework.

2.1. CNN module

A CNN module is used to extract local spatial features of 
seismic data.18,19 The core function of this module is to 
capture local variations in seismic trace data through one-
dimensional (1D) or two-dimensional (2D) convolution 
operations. For 1D convolution, the input seismic trace 
data is X� �T C , where T is the number of time sampling 
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points and C is the number of channels (such as seismic 
amplitude and frequency). The convolution kernel 
W� �k C  slides in the time dimension. The output feature 
map F

’

� �T D  is calculated, as shown in Equation (I).
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where k is the kernel size, D is the number of output 
channels, and b(d) is the bias term. If 2D convolution is 
used, the seismic profile needs to be treated as an image, 
and the convolution kernel W� � � �k k C Dh w  with increased 
spatial dimensions is used to capture lateral continuity.

To improve the training stability of deep networks, 
residual connections are introduced such that the output of 
the layer l is given by H H W Hl l l l� �� � ( , )1 1 , where   is 
the convolution operation. Furthermore, a multi-scale 
feature fusion strategy is adopted, using dilated convolution 

with different dilation rates to extract multi-resolution 
features, enhancing sensitivity to thin layers and fault 
boundaries.

2.2. GAT module

Seismic data exhibit significant spatial correlation, which 
provides a basis for building a graph structure to model the 
non-Euclidean relationships between seismic traces. This 
spatial correlation is mainly reflected in the similarity of 
seismic waveforms, the continuity of geological attributes, 
and the continuity of physical propagation. Based on the 
above spatial correlation characteristics, the GAT models 
non-Euclidean relationships among seismic traces by 
constructing a graph.20,21 The graph structure is modeled as 
G = (V, E), where each node vi∈V corresponds to a seismic 
record. The edge set E is determined by two geological prior 
strategies: First, a K-nearest neighbor search is performed 
in the feature space of all traces, with k = 8 to establish 

Figure 1. Flowchart of impedance inversion using a combined convolutional neural network, graph attention network, and gradient boosting decision 
tree approach
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AKNN. Second, trace pairs falling within this circle are 
connected with a radius of 500 m to obtain Aradius. The final 
adjacency matrix A = AKNN + Aradius ensures both local spatial 
correlation and sparsity. The GAT consists of three layers 
(L = 3), with [4, 2, 1] independent attention heads learning 
in parallel. The hidden units are fixed at 128 dimensions, 
and 0.1 dropout is applied to both the attention coefficient 
and the node features. The exponential linear unit (ELU) 
activation function is used for non-linear transformations. 
GAT uses a multi-head attention mechanism to calculate 
the attention coefficient vi of node vj on its neighbor αij 
(Equation [II]).

�ij

T
i j

k
T

i
i

�
� �� �

��

exp [ || ]

[ ||

LeakyReLU a Wh Wh

exp LeakyReLU a Wh W


hhk ]� �� �
� (II)

where hi is the node feature, W is the learnable weight 
matrix, a is the attention vector, || represents the 
concatenation operation,  i  is the set of neighbors of vi, 
and leaky linear rectifier function (LeakyReLU) is an 
improved rectified linear unit activation function that 
introduces a non-linear transformation to the attention 
score while ensuring that the gradient does not completely 
disappear in the negative interval, enabling the model to 
more effectively learn and distribute importance weights 
across different nodes. The final node update formula is 
shown in Equation (III).
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where σ represents the ELU activation function. The 
network uses residual connections between layers to 
facilitate gradient flow and stabilize training. The GAT 
module is trained using the Adam optimizer with an initial 
learning rate of 0.005 and a regularized weight decay of 
1 × 10−4. Batch normalization is introduced between layers 
to accelerate convergence and improve generalization.

By stacking multiple layers of GAT, the model can 
adaptively learn global dependencies of geological 
structures, such as topological constraints on salt dome 
boundaries or river channel migration. This specific 
architecture enables efficient information dissemination 
during seismic exploration while maintaining sensitivity 
to local geological features.

2.3. GBDT module

A GBDT is used to integrate deep features extracted by 
CNNs and GATs and perform high-precision non-linear 
regression.22,23 Let the CNN output features be FCNN �

�N D1  

and the GAT output be FGAT �
�N D2 . After concatenation, 

they form the GBDT input F F Fjoint CNN GAT= [ || ] . GBDT 
optimizes the objective function by iteratively constructing 
a decision tree (Equation [IV]).

= =
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Where L is the loss function. To solve the outlier 
sensitivity problem of wave impedance inversion, Huber 
loss is used to improve it (Equation [V]):

δ

δ δ

 − − ≤= 
 − −


2

2

1 ( ) | |
2( , )

1| |
2

ˆ ˆ 
ˆ

ˆ  

y y if y y
L y y

y y otherwise
� (V)

where δ is the threshold parameter, Tm is the number of 
trees, and Ω is the regularization term that controls model 
complexity. GBDT quantifies the contribution of CNN and 
GAT features by ranking them by importance (information 
gain), enhancing interpretability.

2.4. Joint training frame

The joint training framework adopts a two-stage strategy 
to ensure both computational feasibility and optimal 
performance. The feasibility of integrating GBDT into 
the end-to-end training framework is achieved through 
a gradient approximation strategy that enables effective 
backpropagation through the entire CNN–GAT–GBDT 
pipeline. The theoretical foundation for this integration 
is established through differentiable approximation of 
decision trees. The CNN and GAT modules are pre-trained 
separately, with their parameters frozen, followed by the 
training of the GBDT. The end-to-end fine-tuning and 
collaborative optimization are then performed through 
gradient backpropagation. The joint loss function is 
defined as Equation (VI).

   total CNN GAT GBDT� � �� � �1 2 3 � (VI)

To ensure physically meaningful predictions, the 
framework incorporates rock-physics constraints through 
a regularized fusion mechanism. The final wave impedance 
prediction is formulated as Equation (VII).

( )γ λ
=

= + ×∑
3

phy
1

ˆ ˆ
i i

i

Z Z R Z � (VII)

where Ẑ  represents the rock-physics regularization 
term that enforces geological plausibility (Equation [VIII]).
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The implementation of rock-physics limits incorporates 
a minimum acoustic impedance value of Zmin = 2,000 m/s.g/
cm3 as the lower bound for unconsolidated sediments, 
alongside a maximum value of Zmzx = 8,000  m/s.g/cm3 
representing the upper bound for dense carbonates. In 
addition, depth-dependent constraints are applied based 
on compaction trends to account for variations with burial 
depth, while lithology-specific bounds derived from well 
log statistics ensure tailored restrictions that enhance the 
accuracy and reliability of the inversion process.

The weights γi are dynamically adjusted based on 
module-specific uncertainty estimates and geological 
consistency metrics (Equation [IX]).
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where σ i
2  is the prediction variance, Ci represents the 

geological consistency score (0–1 scale) based on rock-
physics compliance, τ is a temperature parameter, and α 
controls the geological constraint influence.

Uncertainty estimation utilizes a hybrid integration-
calibration strategy. First, 10 random initialization runs are 
performed, and the degree of dispersion of each output is 
used as the prediction variance to quantify the fluctuations 
introduced by the model’s randomness. Second, the 
coverage percentage of the true impedance within the 
95% confidence interval is calculated on the validation set 
to verify the reliability of the interval. Results show that 
the validation set interval coverage rate reaches 94.2%, 
indicating that the quantitative results are fully calibrated. 
This framework combines the representational power of 
deep learning with the robustness of ensemble learning, 
significantly improving inversion accuracy under complex 
geological conditions.

3. Experimental design
3.1. Data preparation

The experimental data consisted of both synthetic and real 
data. The synthetic data used the Society of Exploration 
Geophysicists (SEG) salt model (14,000 traces) and the 
Marmousi model (17,500 traces). A total of 31,500 synthetic 
seismic traces were generated using wave equation 
forward modeling. Gaussian white noise (signal-to-noise 

ratio [SNR] = 10  dB) was added to simulate real-world 
acquisition conditions. These traces were randomly split 
into 70% for training, 15% for hyperparameter tuning, and 
15% for blind testing. The salt model included complex salt 
dome structures, and its wave impedance distribution Zsalt 
(x,z) is defined by Equation (X).

ρ
 ×=  ×

3

salt
sed sed

4,500 / 2.8 g / cm Salt Rock Area,
( , )

( ) ( ) Sedimentary rock area
 m s

Z x z
v z z

� (X)

where vsed and ρsed increased linearly with depth. The 
Marmousi model simulated tilted bedding and fault 
structures. Its synthetic seismic records were generated 
using the convolution model S(t,x) = R(t,x) × W(t), where 
R(t,x) was the reflection coefficient and W(t) was the 
Ricker wavelet (dominant frequency 30 Hz).

The real data came from a 3D seismic survey area in a 
certain basin, consisting of 200 survey lines (500 traces per 
line, sampling interval 2 ms) and well-logging impedance 
data from 15 wells. The actual field data exhibited an 
average SNR of 15 dB, consistent with typical seismic data 
quality in exploration environments. Uniform processing 
was applied to all parameters: seismic data underwent 
consistent wavelet extraction and phase correction; time-
depth conversion used a standardized velocity model 
calibrated across all wells; impedance values were calibrated 
to a common reference scale using well-log constraints. 
Trace editing removed abnormal traces, and amplitude 
balancing ensured consistency across the survey.

The wavelet extraction and consistency analysis 
involved extracting the seismic wavelet from the real data 
using a statistical method over a 200–800 ms time window 
across multiple representative traces. The extracted wavelet 
exhibited a dominant frequency of 28 Hz (±5 Hz), which 
aligned with the 2 ms sampling interval according to 
the Nyquist criterion (maximum frequency <250  Hz). 
Wavelet consistency was verified through several steps: 
Cross-correlation analysis between wavelets extracted 
from different sub-volumes that yielded correlation 
coefficients greater than 0.95; spectral matching that 
confirmed consistent frequency content across the survey 
area; phase analysis that revealed minimal phase variation 
of less than 10°; and time-depth calibration using well ties 
that demonstrated consistent wavelet character across the 
seismic volume. The relationship between the sampling 
interval and frequency content adhered to the Nyquist 
theorem, where a 2 ms sampling interval enabled a 
theoretically maximum representable frequency of 250 Hz. 
The observed dominant frequency of 28  Hz (±5  Hz) fell 
within the effective bandwidth of 10–50  Hz, ensuring 
adequate sampling with approximately 36  samples per 
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wavelength at the dominant frequency, providing sufficient 
temporal resolution for impedance inversion.

The difference in noise levels between synthetic 
(10  dB SNR) and real data (15  dB SNR) was intentional 
(Figure 2): the synthetic data with lower SNR provided a 
more challenging test scenario to evaluate the method’s 
robustness, while the real data represented typical 
field-acquisition conditions. This approach ensured 
comprehensive evaluation across varying noise conditions.

In the SEG salt model (Figure 2A), salt domes exhibited 
high impedance anomalies (4,500  m/s·g/cm3), in stark 
contrast to the surrounding sedimentary rocks (3,000–
3,500  m/s·g/cm3). Their well-defined boundaries and 
complex geometry validated the model’s ability to characterize 
extreme geological conditions. The corresponding synthetic 
seismic log (Figure  2B) showed strong reflection events 
(amplitude >0.8) corresponding to the top and bottom 
interfaces of the salt body. However, the addition of 10% 
Gaussian noise reduced the SNR to 10  dB, which is lower 
than that of the field data and provides a more challenging 
test case. The actual field data (Figure 2C), comprising 200 
lines, exhibited layered sedimentary structures in the seismic 
profiles with a dominant frequency of 28  Hz (±5  Hz), 
consistent with the spectral characteristics of the synthetic 
data. After time-depth conversion, the impedance log data 
from 15 wells exhibited an average correlation coefficient 
of 0.82 (standard deviation 0.07) with the seismic traces, 
demonstrating accurate time-depth calibration. Notably, a 
localized amplitude anomaly (yellow triangle in Figure 2C) was 
observed in the northeastern portion of the work area (lines 
120–150), likely related to unmodeled natural gas reservoirs. 
Its impedance value (approximately 2,800  m/s·g/cm3) was 
significantly lower than the minimum value of the salt 
model (3,000  m/s·g/cm3), highlighting the heterogeneity 
challenges inherent in real-world data.

A systematic comparison of the synthetic data (Table 1) 
with the actual work area data clearly demonstrated a high 
degree of consistency in key parameters.

In terms of amplitude characteristics, the SEG salt 
model and the actual working area’s wave impedance range 
overlapped by 85% (3,000–6,000  m/s·g/cm3  vs. 2,800–
6,200 m/s·g/cm3). The impedance range corresponding to 
the main reservoir (3,500–4,500 m/s·g/cm3) accounted for 
41.3% and 38.7%, respectively, a difference of only 2.6%. 
The comparison of frequency domain characteristics 
was significant. The spectral energy distribution curves 
between the Marmousi model (Main frequency 30  Hz) 
and the actual data (28 Hz) had a correlation coefficient of 
0.93 in the 6–45 Hz frequency band. Within the effective 
frequency band of 15–30  Hz, the average amplitude 
difference between the two was less than 8%.

3.2. Comparative experimental setup

To verify the superiority of the proposed CNN–GAT–
GBDT framework, the following baseline models were set:
(i)	 Traditional method: Sparse pulse inversion (SPI), with 

the objective function min || || || ||d Gm m� �2
2

1� , 
where G is the seismic wavelet matrix and m is the 

Figure  2. Comparison of synthetic and measured seismic data. (A) Society of Exploration Geophysicists salt model impedance profile. (B) The 
corresponding noisy seismic record. (C) The actual seismic profile and well location distribution in the survey area.

CBA

Table 1. Data statistical characteristics

Dataset Channels Time 
sampling 

points

Main 
frequency 

(Hz)

Impedance range 
(m/s·g/cm3)

SEG salt 
model

300 500 25 3,000–6,000

Marmousi 
model

500 600 30 2,500–5,500

Actual work 
area

100,000 400 28 2,800–6,200

Abbreviation: SEG: Society of Exploration Geophysicists.
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reflection coefficient.24

(ii)	 Single deep learning model: 1D CNN (5-layer 
convolution + 2-layer long short-term memory), 
graph neural network (GNN).

(iii)	Ensemble model: Random forest and XGBoost (with 
manually extracted instantaneous attributes as input).

To evaluate the performance of the proposed seismic 
impedance inversion framework, we used three common 
evaluation metrics: RMSE, correlation coefficient (R2), and 
structural similarity index (SSIM).25-28 The RMSE was used 
to measure the difference between the inversion result 
and the true value. Its calculation formula is shown in 
Equation (XI).

=

= −∑ 2

1

1RMSE ( )ˆ
N

i i
i

Z Z
N

� (XI)

where N represents the total number of samples, Zi is 
the true impedance value of the i-th sample, and ˆ

iZ  is the 
predicted impedance value of the i-th sample. The smaller 
the value of this indicator, the closer the model’s prediction 
is to the true value, and the higher the inversion accuracy.

The correlation coefficient (R2) was used to assess the 
linear relationship between the predicted and actual values. 
The formula is shown in Equation (XII).
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where z  is the mean of all true impedance values. R2 
values range from 0 to 1, with values closer to 1 indicating 
that the model explains more variation in the actual values, 
reflecting its predictive power.

The SSIM measures the structural similarity between 
two images (or impedance profiles), specifically providing 
a comprehensive assessment of image quality from the 

perspectives of brightness, contrast, and structure. Its 
calculation formula is shown in Equation (XIII).
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where µz and µẐ  represent the meaning of the real wave 
impedance image Z and the predicted wave impedance 
image Ẑ , respectively. σz and σ Ẑ  denote the standard 
deviations of Z and Ẑ , respectively. σ ˆZZ  is the covariance 
of Z and Ẑ , where µ is the mean, σ is the standard deviation, 
and (c1, c2) are stability constants. Figure 3 compares the 
prediction results of various models on the SEG salt model.

The true wave impedance model (Figure  3A) 
clearly illustrates a typical salt dome structure. Its 
high impedance region (4,500  m/s·g/cm3) contrasted 
sharply with the surrounding sedimentary rocks 
(3,000  m/s·g/cm3), with clear boundaries and complete 
geometry, providing a reliable benchmark for subsequent 
inversion results. While conventional SPI results 
(Figure 3B) identified the spatial location of the salt body, 
they introduced significant high-frequency oscillation 
noise (average amplitude ±85  m/s·g/cm3), resulting in 
noticeable “speckle” artifacts in the impedance profile. This 
artifact was particularly prominent in the sedimentary 
rock region, with its power spectral density exceeding 
15 dB in the 50–100 Hz frequency band compared to the 
true model, significantly impairing the identification of 
thin-bedded structures. The proposed CNN–GAT–GBDT 
combined method (Figure  3C) significantly improved 
boundary detail accuracy while preserving the overall 
morphology of the salt body. Through local magnification 
comparison, it could be seen that the width of the transition 
zone at the top and bottom interfaces of the salt body was 
reduced from 8–10 sampling points in the SPI results to 
3–5 sampling points, which is closer to the 2–3 sampling 
points in the real model.

Figure 3. Performance comparison of different inversion methods on the SEG salt model. (A) True wave impedance. (B) Sparse pulse inversion (high-
frequency oscillations). (C) Convolutional neural network–graph attention network–gradient boosting decision tree prediction (best detail preservation).
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3.3. Ablation experiment design

To analyze the contribution of each module, the following 
ablation experiments were designed:
(i) Removing CNN: Using only GAT+GBDT resulted in

a loss of local features (RMSE increased by 12%).
(ii) Removing GAT: Using only CNN+GBDT resulted in

blurred fault boundaries (SSIM decreased by 0.05).
(iii) Removing GBDT: Using linear regression instead

resulted in insufficient non-linear fitting capability (R2

decreased by 0.08).

Figure  4 reveals the quantitative laws and geological
significance of feature interactions in the CNN–GAT–
GBDT joint framework by visualizing the internal working 
mechanism of the deep neural network.

Figure 4A shows the GAT weight distribution matrix, 
indicating that salt dome boundary nodes (nodes 100–150) 
received significantly higher attention weights (mean 0.68 
± 0.12) than the background value, approximately 3 times 
higher than the non-boundary region (mean 0.23 ± 0.08). 

This phenomenon is highly consistent with the physical 
characteristics of the salt-sedimentary rock interface, 
where the wave impedance changes dramatically (gradient 
> 500  m/s·g/cm3/sample). In the thin interbedded areas
corresponding to sampling points at depths of 260–300
ms, the attention weights showed a significant banded
enhancement (with a local peak of 0.72), indicating that
the model autonomously focused on areas with abrupt
changes in geological interfaces. This is consistent with the
lithologic interface location interpreted from well logging
at two sampling points (approximately 4 ms).

The GBDT feature importance analysis in Figure  4B 
provides another perspective on the model’s decision-
making mechanism. Quantitative results show that 
high-frequency features from the CNN (35.2% ± 1.8%) 
and spatial correlation features extracted by the GAT 
(28.4% ± 2.1%) together contribute over 63% of the 
prediction weight, with waveform derivative features in 
the 45–60  Hz frequency range (labeled as CNN_HF1) 
exhibiting the strongest individual contribution (22.7%). 

Figure 4. Visualization of the feature interaction mechanism. (A) GAT attention weights. (B) Gradient boosting decision tree feature importance. 
Abbreviations: CNN: Convolutional neural network; GAT: Graph attention network; HF: High frequency; LF: Low frequency.

BA

Figure 5. Quantitative evaluation of synthetic and work area data. (A) Structural similarity index comparison. (B) Field R2 comparison. (C) Thin-bed resolution
Abbreviations: CNN: Convolutional neural network; GAT: Graph attention network; GBDT: Gradient boosting decision trees; SPI: Sparse pulse inversion.
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This feature combination pattern reveals the model’s multi-
scale learning capability: the CNN module captures subtle 
waveform variations in thin-layer reflections using local 
convolutional kernels (size 7 × 7), while the GAT module 
establishes geological continuity constraints across datasets 
through graph propagation with an average path length of 
8.3. Further Shapley value decomposition reveals that in 
homogeneous areas within the salt body, the contribution 
of CNN features reaches 41%, whereas near complex 
fault zones, the weight of GAT features reaches 35%, 
demonstrating the model’s adaptive analytical capabilities 
for geological scenarios.

4. Result analysis
The experimental results, summarized in Figure  5, 
demonstrate the effectiveness of the proposed framework. 
The proposed CNN–GAT–GBDT joint framework 
demonstrated quantitatively superior performance on 
both synthetic and real seismic data.

In the synthetic data test (Figure 5), the SSIM between 
the inversion results of the combined model and the true 
model reached 0.93 ± 0.02, significantly higher than that 
of traditional SPI (0.76 ± 0.05) and a single CNN model 
(0.85 ± 0.03). In actual field applications (Figure 5B), the 
R2 value between the inversion results of the combined 
model and the impedance values from 15 verification 
wells increased to 0.92 ± 0.03, significantly outperforming 
a single CNN (0.85) and the GAT–GBDT combination 
(0.88). In terms of identifying thin layers of 2–5 ms (red 
arrow in Figure  5C), the combined model reduced the 
reflection coefficient quantization error from 0.18 to 0.09, 
which was attributable to the multi-scale feature extraction 
capability of CNN, as evidenced by the reduction in 
reflection coefficient quantization error from 0.18 to 0.09 
for thin layers of 2–5 ms (Equation [XIV]).

multi scalc
d

D

d X�
�

��
1

DConv ( ) (XIV)

where DConvd represents the dilation rate of the 
dilation convolution d.

As summarized in Table 1, quantitative evaluation of 
the SEG salt model showed that the combined approach 
achieved an RMSE of 285 m/s·g/cm3, a 15.2% reduction 
(p = 0.003, two-sample t-test) compared to the optimal 
baseline model (XGBoost: 336 m/s·g/cm3). The reduction 
in error at the salt boundary is significant (22.7%). This 
improvement is primarily due to the GAT module’s ability 
to model non-Euclidean spatial relationships, with a 
correlation coefficient of 0.78 between its attention weight 
wij and the local impedance gradient ∇Zi (Equation 
[XV]).
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The quantitative comparison results shown in Table  2 
revealed the performance differences of different inversion 
methods on the SEG salt model. All deep learning 
experiments were conducted using NVIDIA RTX4090 
graphics processing units with 32 GB of memory, whereas 
traditional methods were executed on Intel I9-14900KF 
CPUs. The software framework used PyTorch 1.9.0 integrated 
with CUDA 11.1 for deep learning models, alongside Scikit-
learn 1.0.2 for traditional machine learning approaches. 
Training configurations included a batch size of 32 across all 
deep learning models, the Adam optimizer with parameters 
β1 = 0.9 and β2 = 0.999, and early stopping with a patience of 
20 epochs. Hyperparameter settings were tailored as follows: 
the CNN comprised five convolutional layers with kernel 
sizes [7,5,3,3,3] and channels [32,64,128,256,512]; the GAT 
featured three graph attention layers with [4,2,1] attention 
heads and a hidden dimension of 128; the GBDT was 
configured with nestimators= 150, a learning rate of 0.1, maxdepth 
= 5, and Huber loss incorporating δ = 10. For joint training, 
the parameters were set to λ1=0.4, λ2=0.3, λ3=0.3, λphy=0.01, 
and alignmentweight = 0.1.

The combined CNN–GAT–GBDT approach 
demonstrated significant advantages in accuracy metrics. 
Its overall RMSE (285 ± 20 m/s·g/cm3) is 32.1% lower than 
that of traditional SPI and 25% higher than that of a single 
CNN model. The error in salt boundary regions (317 ± 
25 m/s·g/cm3) was 22.7% lower than that of the XGBoost 
method, primarily due to the GAT module’s ability to 
model non-Euclidean spatial relationships.

Table 2. Quantitative comparison of different methods on 
the SEG salt model

Methods RMSE 
(m/s·g/cm3)

R2 Salt body 
boundary error

Training time 
(min)

SPI 420±38 0.76 520±45 2.1

1D CNN 380±32 0.81 450±40 28.0

GNN 350±28 0.84 420±38 35.0

XGBoost 336±25 0.87 410±35 41.0

Transformer‑ 
CNN

335±28 0.88 408±36 48.0

UB‑net 348±30 0.87 415±38 48.0

CNN–GAT– 
GBDT

285±20 0.93 317±25 52.0

Abbreviations: 1D: One‑dimensional; CNN: Convolutional neural 
network; GAT: Graph attention network; GBDT: Gradient boosting 
decision tree; GNN: Graph neural network; RMSE: Root mean square 
error; SEG: Society of Exploration Geophysicists; SPI: Sparse pulse 
inversion.
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Regarding interpretability, the combined approach 
achieved an R2 of 0.93, explaining 93% of the impedance 
variation and representing a 10.7% improvement over 
the GNN model (0.84). While training time (52 min) was 
somewhat longer than that of traditional methods, its 
inference speed (0.8  s/profile) still met the requirements 
of industrial applications. Furthermore, the computational 
cost per unit of accuracy (measured as RMSE/training 
time) was 41.3% lower than that of a 1D CNN.

All hyperparameters were optimized through Bayesian 
optimization with 100 trials, and the best configurations 
were selected based on validation set performance. The 
prediction uncertainty estimate provided by the GBDT 
module (Figure  6A) shows an 83% agreement with the 
actual drilling-derived lithologic abrupt change locations at 
fault intersections (Confidence interval > 200 m/s·g/cm3), 
providing a quantitative basis for risk-based decision-
making.

This synergy is further demonstrated in the feature 
importance analysis (Figure  6B): GAT spatial features 
accounted for 39% of the total importance in structurally 
complex regions, while CNN spectral features dominated 
(61%) in homogeneous layers. The computational efficiency 
analysis of the models (Figure  6C) showed that while 
the combined framework took longer to train (52  min) 
than a single model, its inference speed (0.8  s/profile) 
met real-time processing requirements. This is primarily 
due to the GBDT’s cascaded decision-making process 
(Equation [XVI]).

γ
=

=∑ joint
1

(F )ˆ
M

m m
m

Z T � (XVI)

where Tm is the m-th decision tree and γm is the learning 
rate.

Ablation experiments (Table  3) further validate the 
contribution of each module: removing GAT caused a 
28% increase in the salt dome boundary error, while using 
only CNN–GBDT reduced the thin-layer SSIM by 0.07, 
demonstrating a synergistic effect among the three.

A systematic analysis of the ablation experiment 
results in Table 3 provides a deeper understanding of the 
synergistic effect of the various modules in the CNN–
GAT–GBDT framework. The superior performance of the 
full model (RMSE = 298) was significantly compromised 
after component removal, with the loss of the GAT module 
resulting in the most significant performance decline 
(ΔRMSE = +28%). This phenomenon confirmed the critical 
value of non-Euclidean spatial relationship modeling in 
complex structural inversion, particularly in salt dome 
boundaries (SSIM drops from 0.91 to 0.82). Removing 
the CNN module reduced the thin-bed detection rate 
by 7% to 85%, indicating that its local feature extraction 
capabilities directly affected the detection rate. While 
the absence of the GBDT had a relatively minor impact 

Figure 6. Uncertainty and calculation characteristics analysis. (A) Prediction uncertainty estimation. (B) Feature importance analysis. (C) Computational 
efficiency.
Abbreviations: CNN: Convolutional neural network; GAT: Graph attention network; GBDT: Gradient boosting decision tree; HF: High frequency; 
LF: Low frequency; SPI: Sparse pulse inversion.
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Table 3. Ablation experiment performance changes 
(Marmousi model)

Model variants RMSE ΔRMSE 
(%)

Boundary 
SSIM

Thin‑layer 
detection rate (%)

Full model 298 ‑ 0.91 92

Removed GAT 382 +28 0.82 85

Removed CNN 356 +19 0.85 88

Removed GBDT 324 +8.7 0.88 90

Linear regression 
output

410 +37 0.76 78

Abbreviations: CNN: Convolutional neural network; GAT: Graph 
attention network; GBDT: Gradient boosting decision tree; 
RMSE: Root mean square error; SSIM: Structural similarity index.
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on overall accuracy (ΔRMSE = +8.7%), it still reduced 
the thin-bed detection rate by 2%, demonstrating the 
optimization effect of its non-linear regression capabilities. 
Notably, when linear regression was used instead of the 
GBDT, model performance plummeted (RMSE = 410), 
a 37.6% deterioration compared to the full model. This 

comparison highlights the irreplaceable role of ensemble 
learning in modeling complex geological features. The 
performance differences among the variant models in 
terms of boundary SSIM and thin-layer detection rate 
(the maximum difference is 15%) further prove that the 
complete framework achieves the optimal balance between 

Figure 7. Comparison of impedance inversion methods on a field seismic profile. (A) Original post-stack seismic profile. (B) Sparse pulse inversion results 
showing limited resolution and artifacts. (C) Convolutional neural network–graph attention network–gradient boosting decision tree inversion results 
showing improved boundary definition and thin-bed resolution.
Abbreviation: CDP: Common depth point.
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spatial structure preservation and local detail recovery 
through multi-module collaboration.

To better demonstrate the effectiveness of the proposed 
method, we used actual post-stack seismic data to generate 
2D inversion profiles and compare them with conventional 
methods. These data are readily applicable to post-stack 
impedance inversion applications. Figure  7A-C shows 
the inversion results of different methods on a typical 2D 
seismic profile in an actual exploration area. The post-
stack seismic data used in this analysis were acquired using 
a conventional seismic processing pipeline, ensuring the 
practical applicability of our method.

Figure 7A shows the original seismic section, consisting 
of 200 common depth point (CDP) traces and a two-way 
travel time of 2.0 s. The data exhibited typical field seismic 
characteristics, including clear reflection events, spherical 
diffusion attenuation with depth, and a fault zone located 
between CDP 80 and 120 (manifested by reflection 
discontinuities and diffraction wave signatures). Multiples 
and random noise were present throughout the profile, 
particularly at depth. Figure  7B shows the results of SPI, 
which successfully recovered the overall impedance trend 
from 2,000 to 5,800 m/s·g/cm3. However, this conventional 
method has several limitations: blocky features unique to 
sparse inversion; limited vertical resolution that cannot 

identify thin layers less than 10 ms thick; inversion artifacts 
manifested as ringing effects near strong reflectors; and poor 
lateral continuity in structurally complex areas, such as fault 
zones. Figure  7C shows the CNN–GAT–GBDT inversion 
results, which demonstrated significant improvement 
over the SPI method. The proposed method achieved 
enhanced vertical resolution, enabling identification of thin 

Figure 8. Three-dimensional impedance inversion cube showing salt dome structure and sedimentary features in 
the exploration area

Table 4. Quantitative comparison of different inversion 
methods using actual post‑stack seismic data

Method RMSE 
(m/s·g/cm3)

Detection 
rate (%)

SSIM Geological 
consistency (%)

SPI 520±45 78 0.76±0.05 65

XGBoost 410±35 85 0.82±0.04 72

Single CNN 
model

380±30 88 0.85±0.03 78

Transformer‑ 
CNN hybrid

335±28 90 0.88±0.03 80

UB‑net 348±30 89 0.87±0.04 79

Proposed CNN–
GAT–GBDT

317±25 92 0.91±0.03 83

Abbreviations: CNN: Convolutional neural network; GAT: Graph 
attention network; GBDT: Gradient boosting decision tree; 
RMSE: Root mean square error; SPI: Sparse pulse inversion; 
SSIM: Structural similarity index.
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Figure 9. Industrial application effect verification. (A) Interpretation time reduction. (B) Reservoir thickness prediction.
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layers as thin as 3–4 sampling points (6–8 ms), improving 
lateral continuity of geological structures through a graph 
attention mechanism, effectively suppressing artifacts while 
maintaining clear impedance contrast at true layer interfaces, 
and providing a clearer definition of the low-impedance 
anomaly zone (CDP 140–180). This comparison clearly 
demonstrates that the CNN–GAT–GBDT framework 
overcomes the fundamental limitations of conventional 
SPI by integrating feature extraction capabilities of deep 
learning, structure-awareness capabilities of GNNs, and 
optimization capabilities of gradient boosting.

Figure 8 shows the 3D inversion volume generated by 
our method for the entire survey area (200 lines × 500 
traces × 400 time samples).

The inversion results reveal detailed subsurface geology, 
clearly depicting the salt dome morphology and surrounding 
sedimentary structures, enabling precise characterization 
of structural details. By continuously tracking major layer 
boundaries throughout the data volume, stratigraphic 
features were well resolved, providing a comprehensive 
view of the sedimentary history. Furthermore, reservoir 
characterization highlighted potential hydrocarbon-
bearing zones in the northeastern region. These zones 
were identified by significant low-impedance anomalies, 
indicating favorable porosity and fluid content.

The 3D inversion results demonstrate the method’s 
ability to process large-scale seismic data while maintaining 
computational efficiency. The inversion process for the 
entire 3D volume took approximately 8  h on a single 
graphics processing unit, making the method viable for 
industrial applications. Table 4 provides a comprehensive 
quantitative comparison of different inversion methods 
based on real post-stack seismic data.

In complex salt dome areas, our method achieved 
an RMSE of 317 ± 25  m/s·g/cm3, representing a 22.7% 

improvement over XGBoost (410 ± 35 m/s·g/cm3), a 39.0% 
improvement over conventional SPI (520 ± 45 m/s·g/cm3), 
and a 5.4% improvement over the Transformer-CNN 
hybrid model (335 ± 28 m/s·g/cm3). Compared to UB-Net 
(348 ± 30  m/s·g/cm3), our method achieved an 8.9% 
reduction in RMSE.

For thin-bed resolution, our method achieved a 92% 
detection rate for formations thicker than 4 ms, compared 
to 78% for SPI, 85% for a single CNN model, 90% for 
Transformer-CNN, and 89% for UB-Net. The SSIM reached 
0.91 ± 0.03, significantly higher than conventional methods 
(SPI: 0.76 ± 0.05) and recent deep learning approaches 
(transformer-CNN: 0.88 ± 0.03; UB-Net: 0.87 ± 0.04).

In terms of geological consistency, the inversion results 
matched the lithologic boundaries obtained by drilling at 
fault intersections by up to 83%, demonstrating superior 
reliability in complex geological environments compared 
to transformer-CNN (80%) and UB-Net (79%). The 
improved performance can be attributed to the effective 
integration of local spatial features (CNN), global structural 
constraints (GAT), and robust non-linear regression 
(GBDT), which collectively enhance the method’s ability 
to capture complex geological patterns while maintaining 
computational efficiency.

The proposed framework demonstrated competitive 
computational performance despite its architectural 
complexity. The end-to-end training time for the complete 
model was 52 min, compared to 45 min for transformer-
CNN and 48  min for UB-Net. During inference, our 
method processed seismic data at 1.2 km2/min, comparable 
to transformer-CNN (1.3 km2/min) and significantly faster 
than UB-Net (0.9 km2/min) due to the latter’s Bayesian 
sampling requirements.

These results demonstrate that the proposed framework not 
only improves inversion accuracy but also provides practical 
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solutions for industrial-scale seismic impedance inversion 
applications. The method’s ability to generate high-quality 
2D profiles and 3D cubes from conventional post-stack data 
makes it particularly valuable for reservoir characterization 
and geological interpretation in exploration projects.

Actual deployment tests showed that in a 200 km2 3D 
work area, the combined approach reduced manual 
interpretation time by approximately 40%, while keeping 
the reservoir thickness prediction error within ± 3  m 
(Figure 9).

Figure  9A shows that the combined approach, by 
automatically generating high-precision impedance 
volumes, reduced geological interpretation time from 
an average of 1,200 man-hours to 720 man-hours (40% 
reduction). The efficiency improvement was particularly 
significant in fault interpretation (from 380 to 190 
man-hours). As shown in Figure  9B, for thin reservoir 
predictions of 6–8  m thick, the combined approach 
achieved a relative error of only 8.3 ± 2.7%, compared to 
22.5 ± 6.8% for traditional seismic inversion methods. 
Notably, this breakthrough was achieved while maintaining 
computational efficiency (processing time for a single work 
area was < 8 h), and its inference speed (1.2 km2/min) fully 
meets the requirements of industrial production.

5. Discussion
The combined CNN–GAT–GBDT framework proposed 
in this study improved the accuracy of seismic impedance 
inversion, as evidenced by a 15.2% reduction in RMSE 
of seismic impedance inversion, particularly in complex 
geological environments. Traditional seismic impedance 
inversion methods are often affected by noise and 
geological complexity, resulting in significant deviations 
in inversion results. By combining the strengths of deep 
learning and GNNs, the proposed combined framework 
can adaptively extract multi-scale features from seismic 
data and effectively capture spatial dependencies 
among seismic traces through a GAT. This framework 
demonstrated advantages over traditional methods, with a 
39.0% lower RMSE than SPI and a 22.7% lower RMSE than 
XGBoost in complex salt dome areas, particularly in areas 
with heterogeneity and complex structures.

However, despite the framework’s impressive 
performance, several challenges remain, and there is room 
for improvement. First, while the combined framework 
effectively mitigated the impact of noise and outliers, its 
robustness to extreme outliers and noise still requires 
improvement. In practical geological exploration, some 
areas may experience significant geological changes or 
poor data quality. Improving the model’s adaptability and 
reducing inversion errors under these extreme conditions 

remain urgent challenges. Second, although the framework 
utilized a joint loss function and end-to-end fine-tuning 
strategy during training, the computational and time costs 
of training also increase with larger geological dataset 
sizes. Therefore, further exploration is needed to optimize 
the model’s computational efficiency, improve training 
speed, and enhance inference performance, particularly in 
practical applications of large-scale 3D seismic data.

In practice, the proposed CNN–GAT–GBDT 
framework provides an efficient and accurate solution for 
seismic impedance inversion, demonstrating significant 
advantages in industrial applications. By automatically 
generating high-precision impedance volumes, the 
framework significantly reduces geological interpretation 
time and achieves precise error control in reservoir 
thickness prediction. This performance improvement, 
particularly in predicting complex faults and thin 
reservoirs, demonstrates the potential of the framework in 
seismic exploration and is expected to be widely applied 
to various geophysical inversion tasks, such as lithology 
identification and reservoir characterization. Although 
the current framework has achieved some results, with 
continued technological advancement and application 
across a wider range of geological scenarios, further 
optimization and expansion of the framework will bring 
even greater breakthroughs in seismic data processing.

Overall, the combined application of CNNs, GATs, 
and GBDTs provides an innovative approach to seismic 
impedance inversion and advances the development of 
geophysical inversion technology. With the continued 
advancement of deep learning, GNNs, and ensemble 
learning techniques, this framework is expected to 
demonstrate its powerful application value in a wider 
range of seismic exploration tasks in the future.

6. Conclusion
In this study, a combined CNN–GAT–GBDT framework 
provided a novel approach to seismic impedance inversion, 
achieving a lower prediction error (RMSE of 285 m/s·g/cm3) 
and higher structural similarity (SSIM of 0.93) compared 
to baseline models. By combining the strengths of deep 
learning and ensemble learning, this framework leverages 
the powerful spatial feature extraction capabilities of 
CNN, the unique strength of GAT in capturing non-
Euclidean spatial relationships in seismic data, and the 
robust performance of GBDT in high-precision regression. 
This framework not only accurately captures detailed 
information in seismic data but also effectively suppresses 
noise interference, improving inversion accuracy. The 
reduction in error was more pronounced (22.7%) in 
complex geological conditions.

https://dx.doi.org/10.36922/JSE025310051


Journal of Seismic Exploration Hybrid CNN–GAT–GBDT for impedance

Volume X Issue X (2025)	 16� doi: 10.36922/JSE025310051

From a theoretical perspective, the innovation of the 
CNN–GAT–GBDT framework lies in its interdisciplinary 
integration of deep learning and GNNs. CNNs effectively 
extract local spatial features from seismic data through 
multi-scale convolutional operations, while GATs capture 
global dependencies of geological structures by modeling 
non-Euclidean relationships between seismic traces. The 
GBDT module integrates these deep features through 
ensemble learning and optimizes model predictions 
through non-linear regression, further improving 
prediction accuracy and robustness. This approach not 
only extracts rich spatial and spectral features from seismic 
data but also adapts to diverse geological scenarios in 
practical applications, demonstrating its powerful adaptive 
learning capabilities.

In terms of practical value, the CNN–GAT–GBDT 
framework provides an efficient and accurate solution 
for seismic impedance inversion, significantly improving 
inversion accuracy and computational efficiency, especially 
in complex geological environments. Experimental results 
demonstrate that the proposed framework achieved 
high-precision impedance inversion in a shorter time 
compared to traditional SPI methods and single deep 
learning models, and demonstrated high robustness and 
reliability in real-world applications. Furthermore, the 
forecast uncertainty estimates provided by the framework 
offer a quantitative basis for decision-making in geological 
exploration, significantly reducing risk and improving 
decision-making efficiency.

The innovative interdisciplinary approach makes the 
application of this framework in geophysical inversion 
profoundly significant. By combining deep learning 
techniques from computer science with GNNs from 
geology, it not only advances the development of seismic 
data processing technology but also provides new solutions 
to geophysical problems, such as seismic impedance 
inversion. In the future, this framework will not be limited 
to impedance inversion but can also be extended to other 
geophysical inversion tasks, such as lithology prediction 
and reservoir identification, showing broad application 
prospects.

Acknowledgments
None.

Funding
This research was financially supported by the Scientific 
Research Fund of Institute of Seismology, China 
Earthquake Administration and National Institute of 
Natural Hazards, MEM, (No. IS202226322); 2025 Doctoral 
Special Support Program Project of Chengdu Jincheng 

College (NO.2025JCKY(B)0018); the Key Research Base 
of Humanities and Social Sciences of the Education 
Department of Sichuan Province, Panzhihua University, 
Resource based City Development Research Center Project 
(NO.ZYZX-YB-2404); Mahasarakham University; and the 
Open Fund of Sichuan Oil and Gas Development Research 
Center (NO.2024SY017).

Conflict of interest
The authors declare that they have no competing interests.

Author contributions
Conceptualization: Tianwen Zhao, Guoqing Chen, Cong 

Pang, Palakorn Seenoi, Yiru Du
Formal analysis: Tianwen Zhao, Guoqing Chen, Cong 

Pang, Palakorn Seenoi, Nipada Papukdee
Investigation: Tianwen Zhao, Cong Pang, Piyapatr 

Busababodhin, Palakorn Seenoi, Nipada Papukdee, 
Yiru Du

Methodology: Tianwen Zhao, Guoqing Chen, Piyapatr 
Busababodhin, Palakorn Seenoi, Nipada Papukdee, 
Yiru Du

Validation: Tianwen Zhao, Guoqing Chen, Yiru Du
Writing–original draft: Tianwen Zhao, Guoqing Chen, 

Piyapatr Busababodhin, Nipada Papukdee, Yiru Du
Writing–review & editing: Tianwen Zhao, Guoqing Chen, 

Cong Pang, Piyapatr Busababodhin, Palakorn Seenoi, 
Yiru Du

Availability of data
Some data used in this study cannot be shared publicly due 
to collaborative agreement restrictions, but are available 
from the corresponding author on reasonable request.

References
1.	 Falade AO, Amigun JO, Abiola O. Hydrocarbon prospective 

study using seismic inversion and rock physics in an offshore 
field, Niger Delta. Discov Geosci. 2024;2(1):24.

	 doi: 10.1007/s44288-024-00030-4

2.	 Zhang ZX, Gong F, Kozlovskaya E, Aladejare A. 
Characteristic impedance and its applications to rock and 
mining engineering. Rock Mech Rock Eng. 2023;56(4): 
3139-3158.

	 doi: 10.1007/s00603-023-03216-3

3.	 Su Y, Cao D, Liu S, Hou Z, Feng J. Seismic impedance 
inversion based on deep learning with geophysical 
constraints. Geoenergy Sci Eng. 2023;225:211671.

	 doi: 10.1016/j.geoen.2023.211671

4.	 Lin Y. Multi-scale seismic impedance inversion based on 
Transformer model and deep learning. Eng Res Express. 

https://dx.doi.org/10.36922/JSE025310051
http://dx.doi.org/10.1007/s44288-024-00030-4
http://dx.doi.org/10.1007/s00603-023-03216-3
http://dx.doi.org/10.1016/j.geoen.2023.211671


Journal of Seismic Exploration Hybrid CNN–GAT–GBDT for impedance

Volume X Issue X (2025)	 17� doi: 10.36922/JSE025310051

2025;7(1):015209.

	 doi: 10.1088/2631-8695/ada48d

5.	 Wu X, Yan S, Bi Z, Zhang S, Si H. Deep learning for 
multidimensional seismic impedance inversion. Geophysics. 
2021;86(5):R735-R745.

	 doi: 10.1190/geo2020-0564.1

6.	 Li M, Yan XS, Zhang MZ. A  comprehensive review of 
seismic inversion based on neural networks. Earth Sci 
Inform. 2023;16(4):2991-3021.

	 doi: 10.1007/s12145-023-01079-4

7.	 Akingboye AS. Electrical and seismic refraction methods: 
Fundamental concepts, current trends, and emerging 
machine learning prospects. Discov Geosci. 2025;3(1):87.

	 doi: 10.1007/s44288-025-00169-8

8.	 Leite EP, Vidal AC. 3D porosity prediction from 
seismic inversion and neural networks. Comput Geosci. 
2011;37(8):1174-1180.

	 doi: 10.1016/j.cageo.2010.08.001

9.	 Wallick BP, Giroldi L. Interpretation of full-azimuth 
broadband land data from Saudi Arabia and implications 
for improved inversion, reservoir characterization, and 
exploration. Interpretation. 2013;1(2):T167-T176.

	 doi: 10.1190/INT-2013-0065.1

10.	 Chen H, Innanen KA, Chen T. Estimating P-  and 
S-wave inverse quality factors from observed seismic 
data using an attenuative elastic impedance. Geophysics. 
2018;83(2):R173-R187.

	 doi: 10.1190/geo2017-0183.1

11.	 Okeugo CG, Onuoha KM, Ekwe CA, Anyiam OA, 
Dim CIP. Application of crossplot and prestack seismic-
based impedance inversion for discrimination of lithofacies 
and fluid prediction in an old producing field, Eastern Niger 
Delta Basin. J Pet Explor Prod Technol. 2019;9(1):97-110.

	 doi: 10.1007/s13202-018-0508-6

12.	 Azevedo L, Demyanov V. Multiscale uncertainty 
assessment in geostatistical seismic inversion. Geophysics. 
2019;84(3):R355-R369.

	 doi: 10.1190/geo2018-0329.1

13.	 Dai R, Yin C, Zaman N, Zhang F. Seismic inversion with 
adaptive edge-preserving smoothing preconditioning on 
impedance model. Geophysics. 2019;84(1):R11-R19.

	 doi: 10.1190/geo2016-0672.1

14.	 Thibodeaux B, Ramsay T, Segovia F, Hernandez L, Ibrahim M. 
Closed-Loop Integrated Time-Lapse Seismic Feasibility 
in Amberjack Field–Deepwater Offshore Gulf of Mexico. 
In: Paper Presented at: SPE Reservoir Characterization and 
Simulation Conference and Exhibition. Dayeh University, 
Delta, Syria. SPE-196670-MS; 2019.

	 doi: 10.2118/196670-MS

15.	 Zhang J, Li J, Chen X, Li Y. Geological structure-guided 
hybrid MCMC and Bayesian linearized inversion 
methodology. J Pet Sci Eng. 2021;199:108296.

	 doi: 10.1016/j.petrol.2020.108296

16.	 Ma Q, Wang Y, Ao Y, Wang Q, Lu W. UB-Net: Improved 
seismic inversion based on uncertainty backpropagation. 
IEEE Trans Geosci Remote Sens. 2022;60:1-11.

	 doi: 10.1109/TGRS.2022.3174911

17.	 Ning C, Wu B, Wu B. Transformer and convolutional hybrid 
neural network for seismic impedance inversion. IEEE J Sel 
Top Appl Earth Obs Remote Sens. 2024;17:4436-4449.

	 doi: 10.1109/JSTARS.2024.3358610

18.	 Xiong W, Ji X, Ma Y, et al. Seismic fault detection with 
convolutional neural network. Geophysics. 2018;83(5): 
O97-O103.

	 doi: 10.1190/geo2017-0666.1

19.	 An Y, Guo J, Ye Q, et al. Deep convolutional neural network 
for automatic fault recognition from 3D seismic datasets. 
Comput Geosci. 2021;153:104776.

	 doi: 10.1016/j.cageo.2021.104776

20.	 Cao C, Wang X, Yang F, et al. Attention-driven graph 
convolutional neural networks for mineral prospectivity 
mapping. Ore Geol Rev. 2025;106554.

	 doi: 10.1016/j.oregeorev.2025.106554

21.	 Yao G, Zhang Q, Zhang H, Li Y. Non-local self-similarity 
guided graph attention network for DAS-VSP noise and 
signal separation. J Appl Geophys. 2025;241:105835.

	 doi: 10.1016/j.jappgeo.2025.105835

22.	 Zhou J, Gao Y, Lu J, Yin C, Han H. An ensemble learning 
algorithm for machinery fault diagnosis based on 
convolutional neural network and gradient boosting 
decision tree. J Phys Conf Ser. 2021;2025(1):012041.

	 doi: 10.1088/1742-6596/2025/1/012041

23.	 Qian S, Peng T, Tao Z, et al. An evolutionary deep learning 
model based on XGBoost feature selection and Gaussian 
data augmentation for AQI prediction. Process Saf Environ 
Prot. 2024;191:836-851.

	 doi: 10.1016/j.psep.2024.08.119

24.	 Li Q, Luo Y. High-resolution Bayesian sequential impedance 
inversion. In: Paper Presented at: SEG International 
Exposition and Annual Meeting; 2020.

	 doi: 10.1093/jge/gxac035

25.	 Zhao T, Chen G, Suraphee S, Phoophiwfa T, Busababodhin P. 
A hybrid TCN-XGBoost model for agricultural product 
market price forecasting. PLoS One. 2025;20(5):e0322496.

	 doi: 10.1371/journal.pone.0322496

https://dx.doi.org/10.36922/JSE025310051
http://dx.doi.org/10.1088/2631-8695/ada48d
http://dx.doi.org/10.1190/geo2020-0564.1
http://dx.doi.org/10.1007/s12145-023-01079-4
http://dx.doi.org/10.1007/s44288-025-00169-8
http://dx.doi.org/10.1016/j.cageo.2010.08.001
http://dx.doi.org/10.1190/INT-2013-0065.1
http://dx.doi.org/10.1190/geo2017-0183.1
http://dx.doi.org/10.1007/s13202-018-0508-6
http://dx.doi.org/10.1190/geo2018-0329.1
http://dx.doi.org/10.1190/geo2016-0672.1
http://dx.doi.org/10.2118/196670-MS
http://dx.doi.org/10.1016/j.petrol.2020.108296
http://dx.doi.org/10.1109/TGRS.2022.3174911
http://dx.doi.org/10.1109/JSTARS.2024.3358610
http://dx.doi.org/10.1190/geo2017-0666.1
http://dx.doi.org/10.1016/j.cageo.2021.104776
http://dx.doi.org/10.1016/j.oregeorev.2025.106554
http://dx.doi.org/10.1016/j.jappgeo.2025.105835
http://dx.doi.org/10.1088/1742-6596/2025/1/012041
http://dx.doi.org/10.1016/j.psep.2024.08.119
http://dx.doi.org/10.1093/jge/gxac035
http://dx.doi.org/10.1371/journal.pone.0322496


Journal of Seismic Exploration Hybrid CNN–GAT–GBDT for impedance

Volume X Issue X (2025)	 18� doi: 10.36922/JSE025310051

26.	 Zhao T, Chen G, Pang C, Busababodhin P. Application and 
performance optimization of SLHS-TCN-XGBoost model 
in power demand forecasting. Comput Model Eng Sci. 
2025;143(3):2883-2917.

	 doi: 10.32604/cmes.2025.066442

27.	 Bakurov I, Buzzelli M, Schettini R, Castelli M, Vanneschi L. 
Structural similarity index (SSIM) revisited: A data-driven 

approach. Expert Syst Appl. 2022;189:116087.

	 doi: 10.1016/j.eswa.2021.116087

28.	 Brunet D, Vrscay ER, Wang Z. On the mathematical 
properties of the structural similarity index. IEEE Trans 
Image Process. 2011;21(4):1488-1499.

	 doi: 10.1109/TIP.2011.2173206

https://dx.doi.org/10.36922/JSE025310051
http://dx.doi.org/10.32604/cmes.2025.066442
http://dx.doi.org/10.1016/j.eswa.2021.116087
http://dx.doi.org/10.1109/TIP.2011.2173206



