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Abstract

Seismic impedance inversion is essential for reservoir characterization but remains
challenging in complex geological environments due to the inherent limitations
of conventional methods. This study proposes a hybrid deep learning framework
integrating a convolutional neural network (CNN), a graph attention network (GAT),
and a gradient boosting decision tree (GBDT) to achieve high-resolution impedance
inversion. The CNN extracts local structural features from seismic waveforms, the
GAT captures long-range geological dependencies through self-attention between
traces, and the GBDT performs robust non-linear regression for final prediction.
Extensive evaluations on synthetic and field datasets demonstrate that the method
achieves a root mean square error of 285 m/s-g/cm?® on the Society of Exploration
Geophysicists salt model, representing a 15.2% improvement over XGBoost and a
32.1% improvement over sparse spike inversion. The framework performs particularly
well in complex regions, achieving a 22.7% error reduction at salt boundaries and
a thin-bed detection rate of 92% for layers exceeding 4 m in thickness. Statistical
uncertainty quantification indicates 94.2% coverage of true impedance values within
95% confidenceintervals. In practical applications, the method reducesinterpretation
time by 40% while maintaining reservoir thickness prediction errors within + 3 m,
demonstrating strong robustness and operational value for seismic interpretation.

Keywords: Convolutional neural networks; Graph attention networks; Gradient boosting
decision tree; Seismic impedance inversion; Deep learning; Geological exploration
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1. Introduction
1.1. Research background and motivation

Seismic impedance inversion is a core task in geophysical
exploration, widely used in oil and gas exploration,
groundwater resource assessment, and geological disaster
early warning.! Impedance is a key parameter that describes
the physical properties of subsurface formations, reflecting
velocity and density variations across different rock layers
and providing critical geological information for seismic
exploration.” However, due to the non-linear nature of
seismic data and noise interference, traditional impedance
inversion methods often face challenges, including
insufficient inversion accuracy, low computational
efficiency, and poor adaptability to complex geological
environments. Therefore, improving the accuracy of
impedance inversion and effectively addressing the
challenges of complex geological conditions has become
an urgent research priority in seismic exploration.’

With the rapid development of deep learning
technology, advanced methods, such as convolutional
neural networks (CNNs) and graph attention networks
(GATs), have significantly improved the accuracy and
efficiency of seismic impedance inversion.* CNNs can
automatically extract spatial features from seismic data,
while GATs can fully exploit spatial correlations within
seismic data. However, despite significant progress in
seismic impedance inversion, these deep learning methods
still have limitations when dealing with complex geological
environments and non-linear regression problems.>”
Therefore, the effective integration of deep learning and
traditional machine learning methods to form an efficient
and accurate inversion framework constitutes the primary
motivation of this study.

1.2. Literature review

The development of seismic impedance inversion
techniques has seen significant advancements through the
integration of various neural network architectures and
inversion methodologies. Traditional approaches, such
as neural network-based methods for three-dimensional
(3D) porosity prediction, have demonstrated the potential
of data-driven models to transform seismic reflection
data into meaningful rock property models.® These early
efforts laid the groundwork for more sophisticated deep
learning frameworks that aim to enhance the accuracy and
robustness of impedance inversion.

Recent studies have emphasized the importance of
incorporating additional seismic data attributes and
advanced inversion strategies. For instance, the use of
full-azimuth broadband land data with dense wavefield

sampling and low-frequency extension has improved the
interpretability and robustness of acoustic impedance
inversion results, thereby facilitating better reservoir
characterization.” Similarly, the estimation of elastic
properties, including P- and S-wave impedances and
attenuation factors, has been approached through multi-
step inversion processes combining model-based and
Bayesian methods, highlighting the role of probabilistic
frameworks in capturing uncertainties.'

In the context of integrating seismic data with
geological and petrophysical information, crossplot and
Poisson impedance attributes derived from prestack
seismic inversion have been effectively used for lithofacies
discrimination and fluid prediction, demonstrating the
value of combining seismic inversion with well log data
for reservoir evaluation."! Furthermore, incorporating
geostatistical uncertainty assessments has provided a
comprehensive understanding of the large- and local-scale
uncertainties inherent in seismic inversion, emphasizing
the importance of uncertainty quantification in model
reliability.'?

Methodological innovations, such as adaptive edge-
preserving smoothing preconditioning, have been
introduced to improve impedance models by incorporating
prior knowledge, thereby enhancing the stability and
resolution of poststack seismic impedance inversion."” In
addition, the application of flow-simulation-driven time-
lapse seismic studies has demonstrated the potential of
integrated workflows that combine seismic interpretation,
inversion, earth modeling, and reservoir simulation to
monitor reservoir dynamics effectively."

The adoption of probabilistic and Bayesian inversion
techniques has further advanced the field by enabling the
evaluation of posterior uncertainties without relying on
restrictive assumptions. For example, Markov Chain Monte
Carlo-based approaches guided by geological structures
have been employed to derive elastic properties with
quantified uncertainties, providing a more comprehensive
understanding of inversion results.’” Building on these
developments, deep learning models, such as UB-Net, have
been proposed to perform impedance inversion within
a closed-loop framework, simultaneously predicting
impedance and epistemic uncertainty, thus addressing the
need for uncertainty-aware inversion models.'

More recently, integrating CNNs with transformer
architectures has demonstrated promising results
in seismic impedance inversion. The hybrid CNN-
transformer model leverages the local feature extraction
capabilities of CNNs and the global context modeling of
transformers, leading to stable inversion outcomes with
improved horizontal continuity and vertical resolution."”
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This approach exemplifies the trend toward combining
multiple neural network paradigms to enhance inversion
performance.

1.3. Article contribution

This study proposes a joint CNN-GAT-gradient boosting
decision tree (GBDT) (CNN-GAT-GBDT) framework for
seismic impedance inversion prediction. This framework
combines the strengths of CNNs, GATs, and GBDTs to fully
exploit the local features and spatial relationships of seismic
data, while leveraging GBDT for high-precision non-linear
regression. The CNN module extracts spatiotemporal
features from seismic data, while the GAT module captures
spatial dependencies among seismic traces by constructing
a graph structure. The GBDT performs non-linear fitting
on the deep features extracted by the CNN and GAT,
effectively improving inversion accuracy.

GBDT improves inversion accuracy through non-linear
fitting of deep features in three key ways: first, the CNN
and GAT extract complementary feature representations—
the CNN captures local waveform patterns and spectral
characteristics, while the GAT models global geological
continuity and topological constraints. The GBDT
integrates heterogeneous features through a decision tree,
effectively learning complex high-dimensional non-linear
mappings that cannotbe captured by a single model. Second,
the GBDT’s Huber loss function enhances robustness to
impedance outliers, which are common near geological
boundaries, thereby reducing overfitting and improving
generalization. Third, the iterative enhancement process
adaptively optimizes feature interactions; for example,
it dynamically weights the importance of CNN-derived
texture features and GAT-derived spatial attention features
based on the local geological context. This synergistic effect
enables the model to achieve higher accuracy in resolving
thin layers and complex structures, reducing the root mean
square error (RMSE) by 15.2% in experiments.

This design contributes to enhanced inversion accuracy
through the integration of complementary features: The
CNN component acts as a “local feature extractor” that
preserves detailed seismic waveform characteristics; the
GAT serves as a “global relationship modulator” that
enforces geological consistency across traces; and the GBDT
functions as a “high-precision integrator” that optimally
combines these complementary features while mitigating
overfitting through regularization. Specifically, GBDT’s
feature importance mechanism automatically weights the
contribution of CNN- and GAT-derived features based
on their predictive value for different geological contexts,
prioritizing CNN features in homogeneous regions and

GAT features near structural boundaries. This adaptive
integration results in a 15.2% reduction in RMSE in our
experiments, with error reduction at salt boundaries being
more substantial (22.7%), particularly in complex zones,
such as salt domes and thin interbeds, where traditional
methods exhibit higher errors.

Through joint training and end-to-end optimization,
the framework can adaptively respond to changes in
diverse geological scenarios, improving the robustness and
accuracy of impedance inversion. Furthermore, this study
proposes an uncertainty estimation mechanism to support
quantitative decision-making in geological exploration
and to reduce inversion risk.

1.4. Article structure

The remainder of this paper is organized as follows: Section
2 provides a detailed introduction to the CNN, GAT, and
GBDT modules used in this study and their working
principles; Section 3 introduces the experimental design,
including the selection of datasets, the model training
process, and the evaluation metrics; Section 4 presents
and analyzes the experimental results and compares the
performance of different models; and Section 5 discusses
the strengths and weaknesses of this study and analyzes
the potential and challenges of the models in practical
applications. Finally, Section 6 summarizes the main
contributions of this study and provides prospects for
future research directions.

2. Method theory

This paper proposes a joint inversion framework that
integrates a CNN, a GAT, and a GBDT. This framework
aims to fully leverage the local characteristics and spatial
correlations present in the seismic data, along with the
non-linear mapping capabilities of the integrated model, to
achieve high-precision impedance inversion. The overall
process is shown in Figure 1 and consists of three core
stages: feature extraction, spatial relationship modeling,
and non-linear ensemble regression.

The following subsections detail the theoretical basis of
each module and its input-output relationship within the
overall framework.

2.1. CNN module

A CNN module is used to extract local spatial features of
seismic data.’®® The core function of this module is to
capture local variations in seismic trace data through one-
dimensional (1D) or two-dimensional (2D) convolution
operations. For 1D convolution, the input seismic trace
datais X e R™“, where T is the number of time sampling
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Figure 1. Flowchart of impedance inversion using a combined convolutional neural network, graph attention network, and gradient boosting decision
tree approach

points and C is the number of channels (such as seismic
amplitude and frequency). The convolution kernel
W e R slides in the time dimension. The output feature
map FeR""” is calculated, as shown in Equation (I).

k-1 C

E(t,d) = ZZW(i,c,d) x X(t +1,¢) + b(d) (D

i=0 c=1

where k is the kernel size, D is the number of output
channels, and b(d) is the bias term. If 2D convolution is
used, the seismic profile needs to be treated as an image,
and the convolution kernel W e R***“" yyith increased
spatial dimensions is used to capture lateral continuity.

To improve the training stability of deep networks,
residual connections are introduced such that the output of
the layer [ is given by H, = F(H, ,,W,)+H,_, , where F is
the convolution operation. Furthermore, a multi-scale
feature fusion strategy is adopted, using dilated convolution

with different dilation rates to extract multi-resolution
features, enhancing sensitivity to thin layers and fault
boundaries.

2.2. GAT module

Seismic data exhibit significant spatial correlation, which
provides a basis for building a graph structure to model the
non-Euclidean relationships between seismic traces. This
spatial correlation is mainly reflected in the similarity of
seismic waveforms, the continuity of geological attributes,
and the continuity of physical propagation. Based on the
above spatial correlation characteristics, the GAT models
non-Euclidean relationships among seismic traces by
constructing a graph.?**! The graph structure is modeled as
G = (V, E), where each node v €V corresponds to a seismic
record. The edge set E is determined by two geological prior
strategies: First, a K-nearest neighbor search is performed
in the feature space of all traces, with k = 8 to establish
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A Second, trace pairs falling within this circle are
connected with a radius of 500 m to obtain A_, . The final
adjacency matrix A=A, +A . ensuresbothlocal spatial
correlation and sparsity. The GAT consists of three layers
(L = 3), with [4, 2, 1] independent attention heads learning
in parallel. The hidden units are fixed at 128 dimensions,
and 0.1 dropout is applied to both the attention coefficient
and the node features. The exponential linear unit (ELU)
activation function is used for non-linear transformations.
GAT uses a multi-head attention mechanism to calculate
the attention coefficient v, of node v, on its neighbor a,
(Equation [II]).

exp(LeakyReLU (a” [Wh, || Wh, 1))
L= 11
% ZkeMexp(LeakyReLU(aT[Whi ||th])) w

where b, is the node feature, W is the learnable weight
matrix, a is the attention vector, || represents the
concatenation operation, M is the set of neighbors of v,
and leaky linear rectifier function (LeakyReLU) is an
improved rectified linear unit activation function that
introduces a non-linear transformation to the attention
score while ensuring that the gradient does not completely
disappear in the negative interval, enabling the model to
more effectively learn and distribute importance weights
across different nodes. The final node update formula is
shown in Equation (III).

h, = 0'[ ZaijWhj] (111)

jeN;

where o represents the ELU activation function. The
network uses residual connections between layers to
facilitate gradient flow and stabilize training. The GAT
module is trained using the Adam optimizer with an initial
learning rate of 0.005 and a regularized weight decay of
1 x 107*. Batch normalization is introduced between layers
to accelerate convergence and improve generalization.

By stacking multiple layers of GAT, the model can
adaptively learn global dependencies of geological
structures, such as topological constraints on salt dome
boundaries or river channel migration. This specific
architecture enables efficient information dissemination
during seismic exploration while maintaining sensitivity
to local geological features.

2.3. GBDT module

A GBDT is used to integrate deep features extracted by
CNNs and GATs and perform high-precision non-linear

regression.’>” Let the CNN output featuresbe F.,, € ™'

and the GAT output be F,, € RV . After concatenation,
they form the GBDT input E =[F. ||F;s]. GBDT

optimizes the objective function by iteratively constructing
a decision tree (Equation [IV]).

L= ZL(y,., 7))+ QT,) )

Where L is the loss function. To solve the outlier
sensitivity problem of wave impedance inversion, Huber
loss is used to improve it (Equation [V]):

1 v R
E(y—y) ifly-yl<o
V)

Sly-y

L(y,y)=

1
—552 otherwise

where 4 is the threshold parameter, T, is the number of
trees, and () is the regularization term that controls model
complexity. GBDT quantifies the contribution of CNN and
GAT features by ranking them by importance (information
gain), enhancing interpretability.

2.4. Joint training frame

The joint training framework adopts a two-stage strategy
to ensure both computational feasibility and optimal
performance. The feasibility of integrating GBDT into
the end-to-end training framework is achieved through
a gradient approximation strategy that enables effective
backpropagation through the entire CNN-GAT-GBDT
pipeline. The theoretical foundation for this integration
is established through differentiable approximation of
decision trees. The CNN and GAT modules are pre-trained
separately, with their parameters frozen, followed by the
training of the GBDT. The end-to-end fine-tuning and
collaborative optimization are then performed through
gradient backpropagation. The joint loss function is
defined as Equation (VI).

‘Ctotal = ;LIECNN + )“Z‘CGAT + ;LSEGBDT (VD)

To ensure physically meaningful predictions, the
framework incorporates rock-physics constraints through
aregularized fusion mechanism. The final wave impedance
prediction is formulated as Equation (VII).

Z= iy,zi + Ay ¥R (2) (VII)
i=1

A

where Z represents the rock-physics regularization
term that enforces geological plausibility (Equation [VIII]).
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A

. T X ol 2
R(Z) =] max(O,Zt)x -Z, .. ) + max(O,me -Z,, )]

t=1 x=1—
(VIII)

The implementation of rock-physics limits incorporates
aminimum acousticimpedance valueof Z = =2,000 m/s.g/
cm® as the lower bound for unconsolidated sediments,
alongside a maximum value of Z = 8,000 m/s.g/cm’
representing the upper bound for dense carbonates. In
addition, depth-dependent constraints are applied based
on compaction trends to account for variations with burial
depth, while lithology-specific bounds derived from well
log statistics ensure tailored restrictions that enhance the
accuracy and reliability of the inversion process.

The weights y, are dynamically adjusted based on
module-specific uncertainty estimates and geological
consistency metrics (Equation [IX]).

2
exp[— % 4 -Cij
T
(IX)

2

3 O-J
E _exp| —+a-C,
j=1 T J

Vi=

where o is the prediction variance, C, represents the
geological consistency score (0-1 scale) based on rock-
physics compliance, 7 is a temperature parameter, and «
controls the geological constraint influence.

Uncertainty estimation utilizes a hybrid integration-
calibration strategy. First, 10 random initialization runs are
performed, and the degree of dispersion of each output is
used as the prediction variance to quantify the fluctuations
introduced by the model's randomness. Second, the
coverage percentage of the true impedance within the
95% confidence interval is calculated on the validation set
to verify the reliability of the interval. Results show that
the validation set interval coverage rate reaches 94.2%,
indicating that the quantitative results are fully calibrated.
This framework combines the representational power of
deep learning with the robustness of ensemble learning,
significantly improving inversion accuracy under complex
geological conditions.

3. Experimental design
3.1. Data preparation

The experimental data consisted of both synthetic and real
data. The synthetic data used the Society of Exploration
Geophysicists (SEG) salt model (14,000 traces) and the
Marmousi model (17,500 traces). A total of 31,500 synthetic
seismic traces were generated using wave equation
forward modeling. Gaussian white noise (signal-to-noise

ratio [SNR] = 10 dB) was added to simulate real-world
acquisition conditions. These traces were randomly split
into 70% for training, 15% for hyperparameter tuning, and
15% for blind testing. The salt model included complex salt
dome structures, and its wave impedance distribution Z_,
(x,2) is defined by Equation (X).

4,500m/sx2.8g/cm’ Salt Rock Area,

X)
V.1(2)% p4(z) Sedimentary rock area

Z,(x,2)= {

where v_, and p_, increased linearly with depth. The
Marmousi model simulated tilted bedding and fault
structures. Its synthetic seismic records were generated
using the convolution model S(t,x) = R(t,x) x W(t), where
R(t,x) was the reflection coefficient and W(t) was the
Ricker wavelet (dominant frequency 30 Hz).

The real data came from a 3D seismic survey area in a
certain basin, consisting of 200 survey lines (500 traces per
line, sampling interval 2 ms) and well-logging impedance
data from 15 wells. The actual field data exhibited an
average SNR of 15 dB, consistent with typical seismic data
quality in exploration environments. Uniform processing
was applied to all parameters: seismic data underwent
consistent wavelet extraction and phase correction; time-
depth conversion used a standardized velocity model
calibrated across all wells; impedance values were calibrated
to a common reference scale using well-log constraints.
Trace editing removed abnormal traces, and amplitude
balancing ensured consistency across the survey.

The wavelet extraction and consistency analysis
involved extracting the seismic wavelet from the real data
using a statistical method over a 200-800 ms time window
across multiple representative traces. The extracted wavelet
exhibited a dominant frequency of 28 Hz (+5 Hz), which
aligned with the 2 ms sampling interval according to
the Nyquist criterion (maximum frequency <250 Hz).
Wavelet consistency was verified through several steps:
Cross-correlation analysis between wavelets extracted
from different sub-volumes that yielded correlation
coeflicients greater than 0.95; spectral matching that
confirmed consistent frequency content across the survey
area; phase analysis that revealed minimal phase variation
of less than 10° and time-depth calibration using well ties
that demonstrated consistent wavelet character across the
seismic volume. The relationship between the sampling
interval and frequency content adhered to the Nyquist
theorem, where a 2 ms sampling interval enabled a
theoretically maximum representable frequency of 250 Hz.
The observed dominant frequency of 28 Hz (+5 Hz) fell
within the effective bandwidth of 10-50 Hz, ensuring
adequate sampling with approximately 36 samples per
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Figure 2. Comparison of synthetic and measured seismic data. (A) Society of Exploration Geophysicists salt model impedance profile. (B) The
corresponding noisy seismic record. (C) The actual seismic profile and well location distribution in the survey area.

wavelength at the dominant frequency, providing sufficient
temporal resolution for impedance inversion.

The difference in noise levels between synthetic
(10 dB SNR) and real data (15 dB SNR) was intentional
(Figure 2): the synthetic data with lower SNR provided a
more challenging test scenario to evaluate the method’s
robustness, while the real data represented typical
field-acquisition conditions. This approach ensured
comprehensive evaluation across varying noise conditions.

In the SEG salt model (Figure 2A), salt domes exhibited
high impedance anomalies (4,500 m/s-g/cm’), in stark
contrast to the surrounding sedimentary rocks (3,000-
3,500 m/s-g/cm?). Their well-defined boundaries and
complex geometry validated the model's ability to characterize
extreme geological conditions. The corresponding synthetic
seismic log (Figure 2B) showed strong reflection events
(amplitude >0.8) corresponding to the top and bottom
interfaces of the salt body. However, the addition of 10%
Gaussian noise reduced the SNR to 10 dB, which is lower
than that of the field data and provides a more challenging
test case. The actual field data (Figure 2C), comprising 200
lines, exhibited layered sedimentary structures in the seismic
profiles with a dominant frequency of 28 Hz (+5 Hz),
consistent with the spectral characteristics of the synthetic
data. After time-depth conversion, the impedance log data
from 15 wells exhibited an average correlation coefficient
of 0.82 (standard deviation 0.07) with the seismic traces,
demonstrating accurate time-depth calibration. Notably, a
localized amplitude anomaly (yellow triangle in Figure 2C) was
observed in the northeastern portion of the work area (lines
120-150), likely related to unmodeled natural gas reservoirs.
Its impedance value (approximately 2,800 m/s-g/cm’) was
significantly lower than the minimum value of the salt
model (3,000 m/s-g/cm?), highlighting the heterogeneity
challenges inherent in real-world data.

Table 1. Data statistical characteristics

Dataset Channels  Time Main  Impedance range

sampling frequency (m/s-g/cm?)
points (Hz)

SEG salt 300 500 25 3,000-6,000

model

Marmousi 500 600 30 2,500-5,500

model

Actual work 100,000 400 28 2,800-6,200

area

Abbreviation: SEG: Society of Exploration Geophysicists.

A systematic comparison of the synthetic data (Table 1)
with the actual work area data clearly demonstrated a high
degree of consistency in key parameters.

In terms of amplitude characteristics, the SEG salt
model and the actual working area’s wave impedance range
overlapped by 85% (3,000-6,000 m/s-g/cm’ vs. 2,800-
6,200 m/s-g/cm?). The impedance range corresponding to
the main reservoir (3,500-4,500 m/s-g/cm?) accounted for
41.3% and 38.7%, respectively, a difference of only 2.6%.
The comparison of frequency domain characteristics
was significant. The spectral energy distribution curves
between the Marmousi model (Main frequency 30 Hz)
and the actual data (28 Hz) had a correlation coefficient of
0.93 in the 6-45 Hz frequency band. Within the effective
frequency band of 15-30 Hz, the average amplitude
difference between the two was less than 8%.

3.2. Comparative experimental setup

To verify the superiority of the proposed CNN-GAT-
GBDT framework, the following baseline models were set:
(i) Traditional method: Sparse pulse inversion (SPI), with
the objective function min||d—Gm|} +A||m]|,
where G is the seismic wavelet matrix and m is the
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reflection coefficient.?

(ii) Single deep learning model: 1D CNN (5-layer
convolution + 2-layer long short-term memory),
graph neural network (GNN).

(iii) Ensemble model: Random forest and XGBoost (with
manually extracted instantaneous attributes as input).

To evaluate the performance of the proposed seismic
impedance inversion framework, we used three common
evaluation metrics: RMSE, correlation coefficient (R?), and
structural similarity index (SSIM).*?® The RMSE was used
to measure the difference between the inversion result
and the true value. Its calculation formula is shown in
Equation (XI).

(XD

where N represents the total number of samples, Z is
the true impedance value of the i-th sample, and Zi is the
predicted impedance value of the i-th sample. The smaller
the value of this indicator, the closer the model’s prediction
is to the true value, and the higher the inversion accuracy.

The correlation coefficient (R?) was used to assess the
linear relationship between the predicted and actual values.
The formula is shown in Equation (XII).

Z(Z, _21' )2

R=1-&—" 7
>z -2

(XID)

where z is the mean of all true impedance values. R?
values range from 0 to 1, with values closer to 1 indicating
that the model explains more variation in the actual values,
reflecting its predictive power.

The SSIM measures the structural similarity between
two images (or impedance profiles), specifically providing
a comprehensive assessment of image quality from the

A, B
4500
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4250 %
o )
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= [=9
g 20 %” g 00
8 350> &
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£ 300 3500.§ =
oL
400 3250 E Noise artifacts
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100 200 300 100

Trace number

200
Trace number

perspectives of brightness, contrast, and structure. Its
calculation formula is shown in Equation (XIII).

(2,uzy2 + cl)(ZGZZ +c,)

5 5 > 5 (XIII)
(1 + 1, +¢)(0, +0; +c,)

SSIM(Z,Z) =

where u_and #; represent the meaning of the real wave
impedance image Z and the predicted wave impedance
image Z, respectively. o, and 0, denote the standard
deviations of Zand Z , respectively. 0, is the covariance
of Zand Z ,where u is the mean, o is the standard deviation,
and (c, c,) are stability constants. Figure 3 compares the

prediction results of various models on the SEG salt model.

The true wave impedance model (Figure 3A)
clearly illustrates a typical salt dome structure. Its
high impedance region (4,500 m/s-g/cm?®) contrasted
sharply with the surrounding sedimentary rocks
(3,000 m/s-g/cm?), with clear boundaries and complete
geometry, providing a reliable benchmark for subsequent
inversion results. While conventional SPI results
(Figure 3B) identified the spatial location of the salt body,
they introduced significant high-frequency oscillation
noise (average amplitude +85 m/s-g/cm?), resulting in
noticeable “speckle” artifacts in the impedance profile. This
artifact was particularly prominent in the sedimentary
rock region, with its power spectral density exceeding
15 dB in the 50-100 Hz frequency band compared to the
true model, significantly impairing the identification of
thin-bedded structures. The proposed CNN-GAT-GBDT
combined method (Figure 3C) significantly improved
boundary detail accuracy while preserving the overall
morphology of the salt body. Through local magnification
comparison, it could be seen that the width of the transition
zone at the top and bottom interfaces of the salt body was
reduced from 8-10 sampling points in the SPI results to
3-5 sampling points, which is closer to the 2-3 sampling
points in the real model.

Time sample
o
(=3
(=3

8

100 200
Trace number

Figure 3. Performance comparison of different inversion methods on the SEG salt model. (A) True wave impedance. (B) Sparse pulse inversion (high-
frequency oscillations). (C) Convolutional neural network—graph attention network-gradient boosting decision tree prediction (best detail preservation).
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3.3. Ablation experiment design

To analyze the contribution of each module, the following

ablation experiments were designed:

(i) Removing CNN: Using only GAT+GBDT resulted in
a loss of local features (RMSE increased by 12%).

(ii) Removing GAT: Using only CNN+GBDT resulted in
blurred fault boundaries (SSIM decreased by 0.05).

(iii) Removing GBDT: Using linear regression instead
resulted in insufficient non-linear fitting capability (R?
decreased by 0.08).

Figure 4 reveals the quantitative laws and geological
significance of feature interactions in the CNN-GAT-
GBDT joint framework by visualizing the internal working
mechanism of the deep neural network.

Figure 4A shows the GAT weight distribution matrix,
indicating that salt dome boundary nodes (nodes 100-150)
received significantly higher attention weights (mean 0.68
+ 0.12) than the background value, approximately 3 times
higher than the non-boundary region (mean 0.23 + 0.08).

This phenomenon is highly consistent with the physical
characteristics of the salt-sedimentary rock interface,
where the wave impedance changes dramatically (gradient
> 500 m/s-g/cm®/sample). In the thin interbedded areas
corresponding to sampling points at depths of 260-300
ms, the attention weights showed a significant banded
enhancement (with a local peak of 0.72), indicating that
the model autonomously focused on areas with abrupt
changes in geological interfaces. This is consistent with the
lithologic interface location interpreted from well logging
at two sampling points (approximately 4 ms).

The GBDT feature importance analysis in Figure 4B
provides another perspective on the model’s decision-
making mechanism. Quantitative results show that
high-frequency features from the CNN (35.2% + 1.8%)
and spatial correlation features extracted by the GAT
(28.4% + 2.1%) together contribute over 63% of the
prediction weight, with waveform derivative features in
the 45-60 Hz frequency range (labeled as CNN_HFI)
exhibiting the strongest individual contribution (22.7%).
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Figure 4. Visualization of the feature interaction mechanism. (A) GAT attention weights. (B) Gradient boosting decision tree feature importance.
Abbreviations: CNN: Convolutional neural network; GAT: Graph attention network; HF: High frequency; LF: Low frequency.
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Figure 5. Quantitative evaluation of synthetic and work area data. (A) Structural similarity index comparison. (B) Field R?* comparison. (C) Thin-bed resolution
Abbreviations: CNN: Convolutional neural network; GAT: Graph attention network; GBDT: Gradient boosting decision trees; SPI: Sparse pulse inversion.
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This feature combination pattern reveals the model’s multi-
scale learning capability: the CNN module captures subtle
waveform variations in thin-layer reflections using local
convolutional kernels (size 7 x 7), while the GAT module
establishes geological continuity constraints across datasets
through graph propagation with an average path length of
8.3. Further Shapley value decomposition reveals that in
homogeneous areas within the salt body, the contribution
of CNN features reaches 41%, whereas near complex
fault zones, the weight of GAT features reaches 35%,
demonstrating the model’s adaptive analytical capabilities
for geological scenarios.

4, Result analysis

The experimental results, summarized in Figure 5,
demonstrate the effectiveness of the proposed framework.
The proposed CNN-GAT-GBDT joint framework
demonstrated quantitatively superior performance on
both synthetic and real seismic data.

In the synthetic data test (Figure 5), the SSIM between
the inversion results of the combined model and the true
model reached 0.93 + 0.02, significantly higher than that
of traditional SPI (0.76 + 0.05) and a single CNN model
(0.85 £ 0.03). In actual field applications (Figure 5B), the
R* value between the inversion results of the combined
model and the impedance values from 15 verification
wells increased to 0.92 + 0.03, significantly outperforming
a single CNN (0.85) and the GAT-GBDT combination
(0.88). In terms of identifying thin layers of 2-5 ms (red
arrow in Figure 5C), the combined model reduced the
reflection coefficient quantization error from 0.18 to 0.09,
which was attributable to the multi-scale feature extraction
capability of CNN, as evidenced by the reduction in
reflection coeflicient quantization error from 0.18 to 0.09
for thin layers of 2-5 ms (Equation [XIV]).

f

multi—scalc

= iDConvd (X) (XIV)

where DConv, represents the dilation rate of the
dilation convolution d.

As summarized in Table 1, quantitative evaluation of
the SEG salt model showed that the combined approach
achieved an RMSE of 285 m/s-g/cm’, a 15.2% reduction
(p = 0.003, two-sample t-test) compared to the optimal
baseline model (XGBoost: 336 m/s-g/cm?). The reduction
in error at the salt boundary is significant (22.7%). This
improvement is primarily due to the GAT module’s ability
to model non-Euclidean spatial relationships, with a
correlation coeflicient of 0.78 between its attention weight
w, and the local impedance gradient VZ (Equation
[XV]).

Table 2. Quantitative comparison of different methods on
the SEG salt model

Methods RMSE R? Salt body Training time
(m/s-g/cm?) boundary error (min)
SPI 420+38 0.76 520+45 2.1
1D CNN 380+32 0.81 450+40 28.0
GNN 350+28 0.84 420138 35.0
XGBoost 33625 0.87 410+35 41.0
Transformer- 335+28 0.88 408+36 48.0
CNN
UB-net 348+30 0.87 415+38 48.0
CNN-GAT- 285+20 0.93 317425 52.0
GBDT

Abbreviations: 1D: One-dimensional; CNN: Convolutional neural
network; GAT: Graph attention network; GBDT: Gradient boosting
decision tree; GNN: Graph neural network; RMSE: Root mean square
error; SEG: Society of Exploration Geophysicists; SPI: Sparse pulse
inversion.

exp(LeakyReLU(a' [Wh, || Wh 1) XV)
w, = -
I ZkEMexp(LeakyReLU(a [Wh, ||Wh,]))

The quantitative comparison results shown in Table 2
revealed the performance differences of different inversion
methods on the SEG salt model. All deep learning
experiments were conducted using NVIDIA RTX4090
graphics processing units with 32 GB of memory, whereas
traditional methods were executed on Intel 19-14900KF
CPUs. The software framework used PyTorch 1.9.0 integrated
with CUDA 11.1 for deep learning models, alongside Scikit-
learn 1.0.2 for traditional machine learning approaches.
Training configurations included a batch size of 32 across all
deep learning models, the Adam optimizer with parameters
f,=0.9and S, = 0.999, and early stopping with a patience of
20 epochs. Hyperparameter settings were tailored as follows:
the CNN comprised five convolutional layers with kernel
sizes [7,5,3,3,3] and channels [32,64,128,256,512]; the GAT
featured three graph attention layers with [4,2,1] attention
heads and a hidden dimension of 128; the GBDT was
configured withn - =150, a learning rate of 0.1, max,,_,
= 5, and Huber loss incorporating J = 10. For joint training,
the parameters were set to A,=0.4, 1,=0.3, A,=0.3, A , =0.01,
and alignment , , =0.1.

igh

The  combined  CNN-GAT-GBDT  approach
demonstrated significant advantages in accuracy metrics.
Its overall RMSE (285 + 20 m/s-g/cm?) is 32.1% lower than
that of traditional SPI and 25% higher than that of a single
CNN model. The error in salt boundary regions (317 +
25 m/s-g/cm?®) was 22.7% lower than that of the XGBoost
method, primarily due to the GAT modules ability to
model non-Euclidean spatial relationships.
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Figure 6. Uncertainty and calculation characteristics analysis. (A) Prediction uncertainty estimation. (B) Feature importance analysis. (C) Computational

efficiency.

Abbreviations: CNN: Convolutional neural network; GAT: Graph attention network; GBDT: Gradient boosting decision tree; HF: High frequency;

LF: Low frequency; SPI: Sparse pulse inversion.

Regarding interpretability, the combined approach
achieved an R? of 0.93, explaining 93% of the impedance
variation and representing a 10.7% improvement over
the GNN model (0.84). While training time (52 min) was
somewhat longer than that of traditional methods, its
inference speed (0.8 s/profile) still met the requirements
of industrial applications. Furthermore, the computational
cost per unit of accuracy (measured as RMSE/training
time) was 41.3% lower than that of a 1D CNN.

All hyperparameters were optimized through Bayesian
optimization with 100 trials, and the best configurations
were selected based on validation set performance. The
prediction uncertainty estimate provided by the GBDT
module (Figure 6A) shows an 83% agreement with the
actual drilling-derived lithologic abrupt change locations at
fault intersections (Confidence interval > 200 m/s-g/cm?),
providing a quantitative basis for risk-based decision-
making.

This synergy is further demonstrated in the feature
importance analysis (Figure 6B): GAT spatial features
accounted for 39% of the total importance in structurally
complex regions, while CNN spectral features dominated
(61%) in homogeneouslayers. The computational efficiency
analysis of the models (Figure 6C) showed that while
the combined framework took longer to train (52 min)
than a single model, its inference speed (0.8 s/profile)
met real-time processing requirements. This is primarily
due to the GBDT’ cascaded decision-making process
(Equation [XVI]).

M
Z = Z}/me (Fjoint) (XVI)
m=1

where T is the m-th decision tree and y_is the learning
rate.

Table 3. Ablation experiment performance changes
(Marmousi model)

Model variants RMSE ARMSE Boundary Thin-layer
(%) SSIM detection rate (%)

Full model 298 - 0.91 92

Removed GAT 382 +28 0.82 85

Removed CNN 356 +19 0.85 88

Removed GBDT 324 +8.7 0.88 90

Linear regression 410 +37 0.76 78

output

Abbreviations: CNN: Convolutional neural network; GAT: Graph
attention network; GBDT: Gradient boosting decision tree;
RMSE: Root mean square error; SSIM: Structural similarity index.

Ablation experiments (Table 3) further validate the
contribution of each module: removing GAT caused a
28% increase in the salt dome boundary error, while using
only CNN-GBDT reduced the thin-layer SSIM by 0.07,
demonstrating a synergistic effect among the three.

A systematic analysis of the ablation experiment
results in Table 3 provides a deeper understanding of the
synergistic effect of the various modules in the CNN-
GAT-GBDT framework. The superior performance of the
full model (RMSE = 298) was significantly compromised
after component removal, with the loss of the GAT module
resulting in the most significant performance decline
(ARMSE = +28%). This phenomenon confirmed the critical
value of non-Euclidean spatial relationship modeling in
complex structural inversion, particularly in salt dome
boundaries (SSIM drops from 0.91 to 0.82). Removing
the CNN module reduced the thin-bed detection rate
by 7% to 85%, indicating that its local feature extraction
capabilities directly affected the detection rate. While
the absence of the GBDT had a relatively minor impact

Volume X Issue X (2025)

"

doi: 10.36922/JSE025310051


https://dx.doi.org/10.36922/JSE025310051

Journal of Seismic Exploration

Hybrid CNN-GAT-GBDT for impedance

0.00

0.25

e o
92w
o S

Two-way time (s)
5
S

1.50

Blocky features

Two-way time (s)
5 <
(=]

0.00
0.25

0.50

e
2
A

Two-way time (s)
Q2 @ N o
a3 & 3

|
=
S

25 50 75

100

! ! L € @ =
= - T .
W (=] wn

Normalized amplitude

|
o

100

CDP number

5500

5000

4500

Poor lateral
continuity

4000

P

3500

3000

Acoustic impedance (m/s*g/cm?)

2500

2000

CDP number

Enhanced thin
layer resolution

Better lateral
continuity

—

125 150 175 200

CDP number

Figure 7. Comparison of impedance inversion methods on a field seismic profile. (A) Original post-stack seismic profile. (B) Sparse pulse inversion results
showing limited resolution and artifacts. (C) Convolutional neural network-graph attention network-gradient boosting decision tree inversion results

showing improved boundary definition and thin-bed resolution.
Abbreviation: CDP: Common depth point.

on overall accuracy (ARMSE = +8.7%), it still reduced
the thin-bed detection rate by 2%, demonstrating the
optimization effect of its non-linear regression capabilities.
Notably, when linear regression was used instead of the
GBDT, model performance plummeted (RMSE = 410),
a 37.6% deterioration compared to the full model. This

comparison highlights the irreplaceable role of ensemble
learning in modeling complex geological features. The
performance differences among the variant models in
terms of boundary SSIM and thin-layer detection rate
(the maximum difference is 15%) further prove that the
complete framework achieves the optimal balance between
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Figure 8. Three-dimensional impedance inversion cube showing salt dome structure and sedimentary features in
the exploration area

spatial structure preservation and local detail recovery
through multi-module collaboration.

To better demonstrate the effectiveness of the proposed
method, we used actual post-stack seismic data to generate
2D inversion profiles and compare them with conventional
methods. These data are readily applicable to post-stack
impedance inversion applications. Figure 7A-C shows
the inversion results of different methods on a typical 2D
seismic profile in an actual exploration area. The post-
stack seismic data used in this analysis were acquired using
a conventional seismic processing pipeline, ensuring the
practical applicability of our method.

Figure 7A shows the original seismic section, consisting
of 200 common depth point (CDP) traces and a two-way
travel time of 2.0 s. The data exhibited typical field seismic
characteristics, including clear reflection events, spherical
diffusion attenuation with depth, and a fault zone located
between CDP 80 and 120 (manifested by reflection
discontinuities and diffraction wave signatures). Multiples
and random noise were present throughout the profile,
particularly at depth. Figure 7B shows the results of SPI,
which successfully recovered the overall impedance trend
from 2,000 to 5,800 m/s-g/cm’. However, this conventional
method has several limitations: blocky features unique to
sparse inversion; limited vertical resolution that cannot

Table 4. Quantitative comparison of different inversion
methods using actual post-stack seismic data

Method RMSE  Detection SSIM Geological
(m/s-g/cm®) rate (%) consistency (%)
SPI 520+45 78 0.76+0.05 65
XGBoost 410+35 85 0.82+0.04 72
Single CNN 380+30 88 0.85%0.03 78
model
Transformer- 335+28 90 0.88+0.03 80
CNN hybrid
UB-net 348+30 89 0.87+0.04 79
Proposed CNN-  317+25 92 0.91+0.03 83
GAT-GBDT

Abbreviations: CNN: Convolutional neural network; GAT: Graph
attention network; GBDT: Gradient boosting decision tree;
RMSE: Root mean square error; SPI: Sparse pulse inversion;
SSIM: Structural similarity index.

identify thin layers less than 10 ms thick; inversion artifacts
manifested as ringing effects near strong reflectors; and poor
lateral continuity in structurally complex areas, such as fault
zones. Figure 7C shows the CNN-GAT-GBDT inversion
results, which demonstrated significant improvement
over the SPI method. The proposed method achieved
enhanced vertical resolution, enabling identification of thin
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layers as thin as 3-4 sampling points (6-8 ms), improving
lateral continuity of geological structures through a graph
attention mechanism, effectively suppressing artifacts while
maintaining clearimpedance contrastat truelayer interfaces,
and providing a clearer definition of the low-impedance
anomaly zone (CDP 140-180). This comparison clearly
demonstrates that the CNN-GAT-GBDT framework
overcomes the fundamental limitations of conventional
SPI by integrating feature extraction capabilities of deep
learning, structure-awareness capabilities of GNNs, and
optimization capabilities of gradient boosting.

Figure 8 shows the 3D inversion volume generated by
our method for the entire survey area (200 lines x 500
traces x 400 time samples).

The inversion results reveal detailed subsurface geology,
clearly depicting the salt dome morphologyand surrounding
sedimentary structures, enabling precise characterization
of structural details. By continuously tracking major layer
boundaries throughout the data volume, stratigraphic
features were well resolved, providing a comprehensive
view of the sedimentary history. Furthermore, reservoir
characterization highlighted potential hydrocarbon-
bearing zones in the northeastern region. These zones
were identified by significant low-impedance anomalies,
indicating favorable porosity and fluid content.

The 3D inversion results demonstrate the method’s
ability to process large-scale seismic data while maintaining
computational efliciency. The inversion process for the
entire 3D volume took approximately 8 h on a single
graphics processing unit, making the method viable for
industrial applications. Table 4 provides a comprehensive
quantitative comparison of different inversion methods
based on real post-stack seismic data.

In complex salt dome areas, our method achieved
an RMSE of 317 + 25 m/s-g/cm’, representing a 22.7%

improvement over XGBoost (410 + 35 m/s-g/cm’), a 39.0%
improvement over conventional SPI (520 + 45 m/s-g/cm’),
and a 5.4% improvement over the Transformer-CNN
hybrid model (335 + 28 m/s-g/cm?). Compared to UB-Net
(348 + 30 m/s-g/cm’), our method achieved an 8.9%
reduction in RMSE.

For thin-bed resolution, our method achieved a 92%
detection rate for formations thicker than 4 ms, compared
to 78% for SPI, 85% for a single CNN model, 90% for
Transformer-CNN, and 89% for UB-Net. The SSIM reached
0.91 +0.03, significantly higher than conventional methods
(SPI: 0.76 + 0.05) and recent deep learning approaches
(transformer-CNN: 0.88 + 0.03; UB-Net: 0.87 + 0.04).

In terms of geological consistency, the inversion results
matched the lithologic boundaries obtained by drilling at
fault intersections by up to 83%, demonstrating superior
reliability in complex geological environments compared
to transformer-CNN (80%) and UB-Net (79%). The
improved performance can be attributed to the effective
integration of local spatial features (CNN), global structural
constraints (GAT), and robust non-linear regression
(GBDT), which collectively enhance the method’s ability
to capture complex geological patterns while maintaining
computational efficiency.

The proposed framework demonstrated competitive
computational performance despite its architectural
complexity. The end-to-end training time for the complete
model was 52 min, compared to 45 min for transformer-
CNN and 48 min for UB-Net. During inference, our
method processed seismic data at 1.2 km*/min, comparable
to transformer-CNN (1.3 km?*/min) and significantly faster
than UB-Net (0.9 km?*/min) due to the latter’s Bayesian
sampling requirements.

These results demonstrate that the proposed framework not
only improves inversion accuracy but also provides practical
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Figure 9. Industrial application effect verification. (A) Interpretation time reduction. (B) Reservoir thickness prediction.
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solutions for industrial-scale seismic impedance inversion
applications. The methods ability to generate high-quality
2D profiles and 3D cubes from conventional post-stack data
makes it particularly valuable for reservoir characterization
and geological interpretation in exploration projects.

Actual deployment tests showed that in a 200 km? 3D
work area, the combined approach reduced manual
interpretation time by approximately 40%, while keeping
the reservoir thickness prediction error within + 3 m
(Figure 9).

Figure 9A shows that the combined approach, by
automatically generating high-precision impedance
volumes, reduced geological interpretation time from
an average of 1,200 man-hours to 720 man-hours (40%
reduction). The efficiency improvement was particularly
significant in fault interpretation (from 380 to 190
man-hours). As shown in Figure 9B, for thin reservoir
predictions of 6-8 m thick, the combined approach
achieved a relative error of only 8.3 + 2.7%, compared to
22,5 + 6.8% for traditional seismic inversion methods.
Notably, this breakthrough was achieved while maintaining
computational efficiency (processing time for a single work
area was < 8 h), and its inference speed (1.2 km?/min) fully
meets the requirements of industrial production.

5. Discussion

The combined CNN-GAT-GBDT framework proposed
in this study improved the accuracy of seismic impedance
inversion, as evidenced by a 15.2% reduction in RMSE
of seismic impedance inversion, particularly in complex
geological environments. Traditional seismic impedance
inversion methods are often affected by noise and
geological complexity, resulting in significant deviations
in inversion results. By combining the strengths of deep
learning and GNNs, the proposed combined framework
can adaptively extract multi-scale features from seismic
data and effectively capture spatial dependencies
among seismic traces through a GAT. This framework
demonstrated advantages over traditional methods, with a
39.0% lower RMSE than SPI and a 22.7% lower RMSE than
XGBoost in complex salt dome areas, particularly in areas
with heterogeneity and complex structures.

However, despite the framework’s impressive
performance, several challenges remain, and there is room
for improvement. First, while the combined framework
effectively mitigated the impact of noise and outliers, its
robustness to extreme outliers and noise still requires
improvement. In practical geological exploration, some
areas may experience significant geological changes or
poor data quality. Improving the model’s adaptability and
reducing inversion errors under these extreme conditions

remain urgent challenges. Second, although the framework
utilized a joint loss function and end-to-end fine-tuning
strategy during training, the computational and time costs
of training also increase with larger geological dataset
sizes. Therefore, further exploration is needed to optimize
the model’s computational efficiency, improve training
speed, and enhance inference performance, particularly in
practical applications of large-scale 3D seismic data.

In practice, the proposed CNN-GAT-GBDT
framework provides an efficient and accurate solution for
seismic impedance inversion, demonstrating significant
advantages in industrial applications. By automatically
generating high-precision impedance volumes, the
framework significantly reduces geological interpretation
time and achieves precise error control in reservoir
thickness prediction. This performance improvement,
particularly in predicting complex faults and thin
reservoirs, demonstrates the potential of the framework in
seismic exploration and is expected to be widely applied
to various geophysical inversion tasks, such as lithology
identification and reservoir characterization. Although
the current framework has achieved some results, with
continued technological advancement and application
across a wider range of geological scenarios, further
optimization and expansion of the framework will bring
even greater breakthroughs in seismic data processing.

Overall, the combined application of CNNs, GATs,
and GBDTs provides an innovative approach to seismic
impedance inversion and advances the development of
geophysical inversion technology. With the continued
advancement of deep learning, GNNs, and ensemble
learning techniques, this framework is expected to
demonstrate its powerful application value in a wider
range of seismic exploration tasks in the future.

6. Conclusion

In this study, a combined CNN-GAT-GBDT framework
provided a novel approach to seismic impedance inversion,
achievingalower prediction error (RMSE of 285 m/s-g/cm?)
and higher structural similarity (SSIM of 0.93) compared
to baseline models. By combining the strengths of deep
learning and ensemble learning, this framework leverages
the powerful spatial feature extraction capabilities of
CNN, the unique strength of GAT in capturing non-
Euclidean spatial relationships in seismic data, and the
robust performance of GBDT in high-precision regression.
This framework not only accurately captures detailed
information in seismic data but also effectively suppresses
noise interference, improving inversion accuracy. The
reduction in error was more pronounced (22.7%) in
complex geological conditions.
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From a theoretical perspective, the innovation of the
CNN-GAT-GBDT framework lies in its interdisciplinary
integration of deep learning and GNNs. CNNs effectively
extract local spatial features from seismic data through
multi-scale convolutional operations, while GATs capture
global dependencies of geological structures by modeling
non-Euclidean relationships between seismic traces. The
GBDT module integrates these deep features through
ensemble learning and optimizes model predictions
through non-linear regression, further improving
prediction accuracy and robustness. This approach not
only extracts rich spatial and spectral features from seismic
data but also adapts to diverse geological scenarios in
practical applications, demonstrating its powerful adaptive
learning capabilities.

In terms of practical value, the CNN-GAT-GBDT
framework provides an efficient and accurate solution
for seismic impedance inversion, significantly improving
inversion accuracy and computational efficiency, especially
in complex geological environments. Experimental results
demonstrate that the proposed framework achieved
high-precision impedance inversion in a shorter time
compared to traditional SPI methods and single deep
learning models, and demonstrated high robustness and
reliability in real-world applications. Furthermore, the
forecast uncertainty estimates provided by the framework
offer a quantitative basis for decision-making in geological
exploration, significantly reducing risk and improving
decision-making efficiency.

The innovative interdisciplinary approach makes the
application of this framework in geophysical inversion
profoundly significant. By combining deep learning
techniques from computer science with GNNs from
geology, it not only advances the development of seismic
data processing technology but also provides new solutions
to geophysical problems, such as seismic impedance
inversion. In the future, this framework will not be limited
to impedance inversion but can also be extended to other
geophysical inversion tasks, such as lithology prediction
and reservoir identification, showing broad application
prospects.
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