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Abstract

Facies are rock bodies that reflect specific depositional environments and play a
central role in reservoir characterization. Accurate facies modeling is a key challenge
in generating realistic geological scenarios that honor sparse well data while
capturing geological uncertainty. This study introduces FaciesGAN, a novel deep
learning framework based on conditional generative adversarial networks (cGANSs).
The method employs a hierarchical structure of generators and discriminators that
progressively refine coarse estimates into high-resolution facies models, ensuring
consistency with well data and depositional patterns at each stage. FaciesGAN was
validated using the limited Stanford Earth Science Data dataset, demonstrating
strong performance even under data scarcity. The quantitative evaluation employed
multidimensional scaling and yielded an intersection over union index of 99.96%
relative to the conditioning well data. These results confirmed the model’s ability to
generate diverse scenarios with high fidelity while preserving statistical distributions.
Compared with a traditional multiple-point statistics implementation, FaciesGAN
produced more realistic and varied geological realizations with significantly greater
computational efficiency. These results indicate that cGAN-based approaches, such
as FaciesGAN, represent a promising direction for subsurface modeling, offering
robust tools for data augmentation, improved uncertainty assessment, and enhanced
reservoir characterization.

Keywords: Conditional generative adversarial network; Facies; Hard data; Geostatistical
simulations; Seismic inversion

1. Introduction

In the context of reservoir characterization, facies are defined as rock units with
specific attributes that reflect the depositional environment and directly influence the
petrophysical properties and heterogeneity of the reservoir."” Facies are essential for
understanding depositional environments, as they enable geoscientists to correlate these
units with seismic and well data, thereby playing a crucial role in the seismic inversion
process.>* For example, since sandy facies generally exhibit higher porosity than shale
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facies, they help identify and distinguish productive
from non-productive zones.” From this perspective, the
integration of facies into seismic inversion algorithms
provides greater consistency between the models and the
petrophysical properties obtained, generating more robust
and reliable models.®®

The generation of multiple facies scenarios that
reproduce complex heterogeneous structures plays a key
role in the characterization and modeling of geological
reservoirs and the stochastic seismic inversion workflow.”"°
By enabling multiple plausible realizations of the
subsurface, facies scenario modeling provides a rigorous
framework to explicitly capture and quantify geological
uncertainty.'! This approach reduces biases arising from
single deterministic interpretations and ensures that the
resulting reservoir models remain consistent with both
geological knowledge and observed field data.>'? This ability
is particularly critical in seismic inversion workflows,
where the relationship between well log measurements,
core analysis, and seismic responses must be established in
a consistent and geologically meaningful way.'*!*

Facies scenario generation can be carried out using
classical and modern methodologies that combine
geology, statistics, and artificial intelligence.'®" Classical
methodologies include techniques used in geology and
geostatistics. For example, sequential indicator simulation
(SIS) uses binary indicators for each facies, generating
scenarios conditioned on available data.’® SIS is useful
for modeling facies, but has several limitations. It often
produces loosely connected patterns and oversimplified
geological structures,"” making it difficult to represent
features such as channels or faults. SIS is sensitive to
variogram fitting, complicating its use with sparse data.
It allows the quantification of uncertainty; however, if
not accurately calibrated, it can result in geologically
inconsistent models."®

Modern methodologies include techniques that have
revolutionized geological modeling by allowing the
representation of complex patterns and advanced spatial
relationships. Multiple-point statistics (MPS) represent
a significant advance in this area, enabling the capture of
spatial patterns in geological data and modeling of multi-
location relationships.'** These techniques are especially
useful for simulating facies distributions in regions with
limited information. They adhere to spatial distributions
observed in training data, such as geological maps and
previous simulations.”** MPS may face difficulties in
constructing representative training images, as it relies on
the analyst’s expertise. Furthermore, conditioning to real
data may be complex to implement without breaking the
continuity of the simulated patterns.'>*

In this context, generative adversarial networks
(GANs) emerge as an innovative methodology for the
generation of facies scenarios. GANs offer significant
advantages over traditional geostatistical methods and
MPS-based simulation. They can learn directly from
real data, preserving first-order statistical features (facies
proportions) and second-order statistical features (spatial
continuity and body geometry).”* GANs are capable of
capturing complex spatial patterns and facies relationships,
thereby producing more realistic realizations and reducing
the subjectivity inherent in model design.** Moreover,
they open the possibility of training networks as a
complement to stochastic facies simulation.?®*

There are two competing networks in GANs: A generator
network creates synthetic data, and a discriminator
network assesses the authenticity of the generated data in
relation to the real data.?>* In the context of facies, GANs
can be used to generate new synthetic records that preserve
the statistical characteristics of real data, for example,
facies distributions and the geophysical properties of wells.
On the other hand, conditional GANs (cGANSs) include
a conditional layer in the data generation process. This
conditional layer allows the generation of synthetic data
based on specific previous information, such as the type
of facies in a particular depth range, providing even more
control over the generation process.*®*' This characteristic
allows the assessment of large-scale geological scenarios
and the validation of hypotheses about reservoir
connectivity and quality.

In recent years, facies scenario generation has been
studied through several case studies, showcasing the
effectiveness of advanced technologies. For example,
Liu et al.** proposed an approach for generating 3D
subsurface facies map models based on GAN. Miele
et al.* proposed integrating a GAN with spatially-adaptive
denormalization (SPADE) to predict realistic facies map
patterns while adhering to local probabilities. It combines
with geostatistical methods of sequential simulation to
model facies-conditioned rock properties. Furthermore,
Feng et al.”?® proposed a GAN-based method in which
the network is trained on facies map images. Research
has demonstrated excellent results using facies map
data and statistical similarity. However, few studies have
incorporated known hard information from the GAN
training stage, such as observed facies sequences in wells
at specific locations. Specifically, no applications have been
published on facies data in 2D vertical sections.

Considering the current progress, this work aims
to explore advanced techniques for generating facies
scenarios, with a particular focus on cGANs. The objective
is to evaluate the effectiveness of this technique on 2D
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vertical section facies data conditioned on well data.
Using a public dataset with a limited number of samples,
this study aims to demonstrate that the proposed method
can effectively address one of the main challenges in
reservoir characterization: data scarcity. This approach
leverages synthetic training models to enhance the
integration of well logs, facies distributions, and seismic
information, producing scenarios that adhere to geological
conditions and maintain statistical and spatial consistency.
Accordingly, this study demonstrates that incorporating
conditioning information enables cGANs to generate more
accurate and robust models for reservoir characterization.
cGANs offer an innovative solution to overcome the
limitations of traditional techniques, contributing to a
more coherent and efficient reservoir modeling.

2. Methodology

This study followed the workflow provided in Figure 1. The
methodology comprises several interconnected stages.

2.1. Data collection and preprocessing

The Stanford Earth Science Data dataset was chosen and
downloaded from the GitHub repository (https://github.
com/SCRFpublic/Stanford-VI-E).* The database contains
data from oil well logs, with detailed samples of the
different facies found in the reservoirs. The facies data
are stored in.dat format, facilitating preprocessing and
analysis. From the dataset, the available facies classes
were floodplain (0), point bar (1), channel (2), boundary
(3), and deltaic system (Figure 2A). The dataset primarily
represented meandering channel systems, emphasizing
facies categories relevant to this study (reservoir and non-
reservoir types). The remaining facies were reclassified to
simplify the categories into “reservoir” (channel; 1) and
“non-reservoir” (floodplain, point bar, and boundary; 0),
as shown in Figure 2B.

2.2.Image generation and data labeling

A Python 3.12 environment was configured using image
processing and visualization libraries to generate visual
representations of the filtered and categorized facies. The
tabular data were subsequently converted into images. The
3D Stanford VI reservoir model was employed as training

Data collection

data for the deep-learning workflow. This reference
model was defined on a 150x200x200 cell grid, with cell
dimensions of 25 m in the horizontal (X and Y) directions
and 1 m in the vertical (Z) direction. This resulted in a
total physical size of 3,750 m (X-axis) x 5,000 m (Y-axis)
x 200 m (Z-axis/depth). The 200 m vertical thickness was
composed of three distinct layers (80 m, 40 m, and 80 m).
To generate the 2D training images, 200 vertical slices
(representing X-Z planes) were extracted, corresponding
to one slice for each of the 200 cell positions along the
Y-axis. Each slice represented the full horizontal (X-axis)
distance of 3,750 m and the top 80 m layer (Layer 1).
Subsequently, this physical section of 3,750 m x 80 m
was resampled to a 256 x 256-pixel matrix. This process
resulted in final images with a resolution of approximately
14.65 m/pixel in the horizontal direction and 0.31 m/pixel
in the vertical (depth) direction.

A total of 200 divisions in 2D vertical slices were
generated and extracted from the 3D facies model. These
were used as training images, with 256 x 256 pixels, and
categorized according to the corresponding facies class
(Figure 2C). Each image was annotated with the depth
condition and used as an external label to guide the
process. The annotations delineating vertical polygons
indicated the different facies represented, based on the 2D
section facies found in the Stanford Earth Science Data
dataset, and were used as conditioning data for the cGAN.

2.3. Facies scenario generation with the proposed
cGAN

The proposed cGAN, termed FaciesGAN, features a
multistage architecture designed to generate geologically
realistic facies realizations conditioned on well data.

The FaciesGAN model is an adaptation of SinGAN?*
and WGAN-GP** SinGAN is a generative model that
can learn from a single natural image.”® It consists of a
pyramid of fully convolutional GANs, each modeling the
distribution of image patches at a distinct spatial scale.
This allows for generating new samples of arbitrary size
and proportion. Although the generated samples exhibit
considerable variability, they retain the overall structure
and fine textures of the training image.

Pre-processing Data Dataset
data labeling training

Image generation

| Model Model
+| training inference

cGAN for generating facies scenarios

Figure 1. General proposed methodology
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The FaciesGAN model is structured as a hierarchy of
generators and discriminators operating at progressively
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Channel
Point bar

2500 v+

higher resolutions, as shown in Figure 3. The process
begins with a low-resolution generator that produces
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Figure 2. The Stanford Earth Science Data dataset. (A) Multiple sedimentary facies visualization. (B) Facies classification into reservoir (yellow) and
non-reservoir (gray). (C) 2D slices examples of projection along the depth, differentiating the reservoir (white) from the non-reservoir (black). Image
reproduced and adapted with permission from Lee and Mukerji.*

Training process

zy|Cy Gy

Figure 3. Schematic representation of the proposed cGAN for generating facies scenarios. The generator and discriminator are trained from coarse to fine
scale (0 to N).

Abbreviations: cGAN: Conditional generative adversarial network; U: Upsampling.
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an initial facies image conditioned on well information
(e.g., facies at well locations). Subsequent stages refine this
output by adding progressively finer geological details.
Each generator stage is paired with a corresponding
discriminator that evaluates the realism of the generated
facies at its specific resolution while enforcing consistency
with the conditioning data. Conditioning is maintained
throughout all stages of the generation pipeline, ensuring
that the final high-resolution outputs honor well
constraints. This progressive refinement strategy allows the
model to capture both large-scale geological structures and
small-scale heterogeneities, resulting in high-quality, data-
consistent facies simulations.

The pyramid of generators Gp..sGpe. Gy s @ multi-
scale, fully convolutional architecture, as shown in
Figure 4A. At each scale, the generator considers a resized
version of the previous output x°, |, and a condition z,
which are concatenated channel-wise. These are then
passed through a series of 2D convolutional layers with
leaky rectified linear unit (LeakyReLU) to produce a
residual output. This is added to the up-sampled input to
generate the new 2D section facies map x°, . Each generator
G, is trained to learn the internal structure of the training
images at different scales. G, finer details from the training
images are learned sequentially.?

The discriminators, D,...,D,,...,Dy, are implemented
as a convolutional PatchGAN classifier, which assesses the
realism of local image patches rather than making a single
global prediction (Figure 4B). The architecture consists
of a sequence of convolutional blocks, each comprising
a 2D convolutional layer followed by a LeakyReLU
activation function.”® The number of feature channels is
progressively reduced across layers (e.g., from 64 to 1),
enabling hierarchical feature extraction at multiple spatial
resolutions. Notably, normalization layers (e.g., batch
normalization) are applied to preserve the raw feature
dynamics and stabilize the training process. The final
output is a single-channel feature map in which each spatial
location corresponds to the discriminator’s assessment of
whether a specific image patch is real or synthetic.?*

A G, B
IR X'
Mmoo &
9000 g ¥
8888 g W
0ooo QF>u®
g Q Qg -
> > > = 2| T
EESE5E 5| - 7
O O O O .
OO0 O O Yf
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At the n™ scale level, an adversarial training process is
performed separately: the generator G, tries to generate fake
images x, to fool the discriminator D,. The discriminator
D, attempts to distinguish the real images x, from the fake
ones.” This multi-scale approach captures the large-scale
structures present in the geologic models of interest.*® The
formulation for generating an image sample at the n*™ level
is expressed as follows:

G, (zo), n=0
= (1)
G,(zU(¥,,)) 0<n<N

where U represents the upsampling based on
interpolators in the 2D and 3D cases.

The loss function at the n™ scale level for G, and D, is
formulated as:*®

rr(l;inn})?xﬁ(Gn,Dn)zﬁadV(Gn,Dn)+aﬁm(Gn) (2)
where £, is the adversarial loss for penalizing the

distribution distance between the down-sampled images x,,
and the generated images x,, « is a weighting factor to
balancethetwolossfunctions,and £, isthereconstruction

loss to ensure that x, can be reproduced given a specific set
of random noise maps.

The generator G, and discriminator D, at each pyramid
scale n are trained with a combined objective inspired by
WGAN-GP* and SinGAN.? The goal is to simultaneously
enforce adversarial learning and faithful reconstruction of
the image at multiple resolutions.

The discriminator D, is optimized using the Wasserstein
loss with gradient penalty, ensuring Lipschitz continuity.
The discriminator loss is formulated as:

o1
L(;) =-E,_, [Dn (xn )]+Ezn D,| G|z, Xs1

gl [(V&n D,(%,), —1)2} 3)

]

:

Conv2D 64 @ 3x3
Conv2D 32 @ 3x3
Conv2D 16 @ 3x3

Figure 4. Network architecture at the n™ scale level. (A) The generator. (B) The discriminator.
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A

Where x, denotes a real image at scale n, G, | z,,Xn11

is the generated image conditioned on noise z, and
the upsampled output from the next coarser scale,
and x, =¢&x, + (1 —g)x'n with € ~ u[0,1] is the interpolated
sample used for the gradient penalty.

The generator G, is trained with two complementary
objectives: (i) An adversarial loss that encourages generated
samples to be indistinguishable from real ones at scale n,
and (ii) a reconstruction loss that ensures faithful
reproduction of the reference image when a fixed noise
map z, is used. The generator loss is:

W

£(G") :_]Ez,1 Dn Gn Zn >Xn+1 ta ﬁ") (4)

n’"rec

With the reconstruction loss defined as:

n) __ At 2
‘C(rec =X, _Gn (Zn"xn+1 )2 (5)

Where «, is a scale-dependent weighting factor
balancing adversarial and reconstruction objectives, and
’A‘In denotes the generated sample from the scale n+l1,
upsampled to match the resolution of scale n.

This hierarchical optimization scheme allows the
generator to progressively capture global structure at coarse
scales and fine details at higher resolutions, while the
reconstruction term stabilizes training and preserves fidelity.

2.4. Algorithm and implementation

The FaciesGAN model is an architecture designed to
generate geologically consistent facies images from a
multi-scale noise pyramid. It uses an improved adversarial
training framework. FaciesGAN’s training loop comprises
two alternating main stages, which involve updating the
discriminator and generator parameters. The algorithm
incorporates additional mechanisms, such as gradient
penalty, reconstruction, and masking losses that contribute
to improving training stability and fidelity of the generated
images. The algorithm and the core procedure for training
the FaciesGAN model at a single resolution scale are
presented in Algorithm 1. FaciesGAN core training loop
(at a single scale).

The training hyperparameters were determined based
on the original WGAN-GP and SinGAN models, with
empirical adjustments for our specific application. The
gradient penalty weight A , (referred to as A in WGAN-GP)
was set to 0.115, a value that we found stabilized training

Algorithm 1. FaciesGAN core training loop (at a single scale)

Input:

X, < Real data

M « Mask

x,,, <« Reconstruction input
Models:

G < Generator

D <« Discriminator
Hyperparameters:

/\gp,ocm(, k,< Discriminator steps

k, < Generator steps

/*Step 1: Train Discriminator */

1: forj=1tok,do

2: Sample noise pyramid Z¢ GETNOISE( )

3:  Generate fake images x;,,<G (Z)//Forward pass-through Generator

real

4 L <«-E [D(x,m[ )} //Loss for real data

L. < E[D (x Jake )} //Loss for fake data

5

6 L,<\, CALCULATEGRADIENTPENALTY (D, X,,,5, X;..)
7: Ly« L,y + Ly, + Ly, //Total Discriminator loss

8 Update D’s parameters 0, by ascending the gradient of L,
9: end for

/* Step 2: Train Generator */

10: forj=1to k,do

11: Sample noise pyramid Z«GETNOISE( )
12: Generate fake images x;,, <G (Z)

13: L, «-E [D (xfake )} //Adversarial loss

14: Sample reconstruction noise Z,,. ¢ GETNOISE (rec=True)
15: X, < G(Z,,, in_facie = x,,, ) //Reconstruction pass

16: L, <a, MSE (x,, x,,) //Reconstruction loss

17: Ly € 100 - o, - MSE (X7, © M, X,,,© M) //Masked loss
18: L;¢ L+ L, +L,,//Total Generator Loss

19:  Update Gs parameters 6, by ascending the gradient of L

20: end for

effectively for the facies data (in contrast to the A =10 used
in the original WGAN-GP). The reconstruction weight «,,
(referred to as « in Equation [2] and «, in Equation [4])
was set to 10, a value commonly used in SinGAN-based
models that provided an optimal balance between
adherence to geological structure and training stability.

3. Results

This study evaluated the capability of generative models
to generate geological facies scenarios. For this purpose,
FaciesGAN was trained and validated through visual
inspection and multidimensional scaling (MDS) to
determine the consistency and representativeness of
the generated scenarios with the original facies. For
comparison purposes, the same data were modeled using
an MPS method, specifically, the single normal equation
simulation (SNESIM).” The scenarios generated using
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the two methodologies were compared through visual
inspection of the spatial continuity of the patterns and the
facies proportion histogram. This allowed for a qualitative
and quantitative analysis of the representativeness and
consistency of the simulated models.

Specifically, FaciesGAN was trained to generate facies
scenarios using the Stanford Earth Science dataset. The model
was developed with a limited training set of 200 samples.
During the inference stage, some samples were analyzed using
metrics such as visual inspection, average facies proportion,
and MDS to determine the consistency and representativeness
of the generated scenarios with the original facies.

For FaciesGAN training, appropriate labels were
required for each image. The labeling process is shown
in Figure 5. These labels are important because they
provide information about the characteristics of each
image, allowing the model to learn to generate coherent
and realistic images based on specific conditions. In this
context, the labels corresponded to hard data derived
from a simulated well, representing known subsurface
information used to condition the facies generation process.
The correctly labeled images were integrated into the
dataset and associated specifically with each corresponding
image. The model used the labels as conditioning input to
generate facies scenarios consistent with the characteristics
and structures defined by the labels.

The FaciesGAN model was trained for 100 epochs per
scale across 10 scales, with a gradient penalty weight A, of
0.1, using the Adam optimizer with a learning rate of 5~
and f3 of 0.5. The kernel size for 2D filters was 3 x 3, with a
stride step of 1 x 1. At the coarser scales, image resolution
ranged from 16 to 128 pixels. The model was trained on
the complete dataset using a workstation with an Intel
i7-8700K CPU (6 cores, 3.7 GHz), an NVIDIA GeForce
GTX 1080Ti GPU, and 64 GB of RAM.

3.1. Global model evaluation
In the first test, the model generated 1,000 facies scenarios

in 20 s; twenty randomly selected conditioned realizations

Image 1 Image 2

are shown in Figure 6. It was observed that the facies
configuration of the conditioning trace, highlighted in
green to simulate a real drilled and analyzed well, was
closely reproduced in the images generated by FaciesGAN.

The results are promising considering the limited
training set, highlighting the applicability of the proposed
approach in characterizing oil reservoirs, where well
log and facies data are often scarce, costly to obtain, and
subject to privacy restrictions. Nevertheless, the model
showed remarkable consistency in reproducing the facies
spatial distributions. These findings provide insight into
the model’s capability to produce images that consistently
reflect the expected facies proportions. Visual comparisons
with real distributions confirmed that the model captured
key features of the input data while generating consistent
variations. Furthermore, the time required to generate
facies scenarios was short, highlighting the computational
efficiency of the proposed approach. The short generation
time allows for practical integration into workflows that
require multiple simulations.

Next, MDS was applied to quantitatively evaluate
the trained model and to compare patterns of spatial
variability. MDS is a technique commonly used in data
analysis and visualization. It represents high-dimensional
data in a lower-dimensional space, usually 2D or 3D,
while preserving the relative distances (or dissimilarities)
between data points and the potential differences
between them.* The generated facies overlapped closely
with the training images in 2D space, demonstrating
excellent similarity, as shown in Figure 7. Regions where
blue and red overlap indicate highly agreement between
generated and real images, suggesting robust model
generalization.

The generated facies (red) effectively covered the
space of the real facies (blue), indicating the diversity and
quality of the generator. The real facies (blue) were closely
surrounded by the generated facies, suggesting that the
generator interpolates well within the known domain. This
indicates a high degree of spatial consistency.

Image 4 Image 5

Figure 5. Reservoir (in white) and non-reservoir (in black) with drilled-well conditioning. Conditional traces are highlighted in red (reservoir) and green
(non-reservoir). Note: Each image corresponds to a 2D crossline section represented in the pixel domain (256 x 256 pixels) to an 80 m (depth) x 3,750 m

(width) vertical section.
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Figure 6. Twenty randomly selected realizations generated by the proposed cGAN. The generated facies are shown in white, while the conditioning is in
red (reservoir) and green (non-reservoir). Note: Each image represents a 2D crossline section in the pixel domain (256 x 256 pixels), corresponding to a

vertical section 80 m deep and 3,750 m wide.
Abbreviation: cGAN: Conditional generative adversarial network.
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Figure 7. Multidimensional scaling plot of the training images with
conditional realizations

In addition, to validate how effectively the conditioning
well information was honored by the FaciesGAN model,

a procedure was designed that reformulates the problem
as a spatial classification task. Specifically, the generated
scenarios were compared with their respective original
images to evaluate how accurately the location and shape
of the facies were reproduced around the actual wells.
The intersection over union (IoU) index was used as
the evaluation metric. This index is defined as the ratio
between the intersection area and the union area of the
predicted and reference data:

IoU = GTﬂ (6)
GT\_PD

where PD is the prediction mask and GT is the ground
truth. In this evaluation, the prediction mask corresponded
to the pixels generated under hard conditioning by
FaciesGAN, while the hard-conditioning reference data
from the original facies image served as the ground truth.
A total of 1,000 images generated from a set of 200 original
images were analyzed. The IoU was calculated for each pair
of images, yielding an overall mean IoU of 99.96%. This
result indicates exceptionally high fidelity in preserving
the well-conditioning constraints and demonstrates
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that FaciesGAN generates stochastic images that almost
perfectly adhere to the geological information observed
in the well. These findings validate its effectiveness as a
geological conditioning tool.

The effectiveness of the FaciesGAN model was validated
by comparing its results with synthetic facies scenarios
generated using MPS. Specifically, SNESIM, an improved
and scalable extension of the extended normal equation
simulation (ENESIM) algorithm for multipoint simulation,
was used to generate 1,000 facies realizations based on
the 200 training images. The results of 20 representative
simulations are presented in Figure 8. These results were
generated in approximately 137 min.

The facies scenarios generated by FaciesGAN (Figure 6)
exhibited distributions consistent with the expected
geology. The scenarios accurately respected the conditions
(in green). These realizations reflect the remarkable ability
of the model to capture complex spatial patterns with
high diversity among simulations. In comparison, the
realizations generated by the MPS SNESIM method also
preserved the spatial continuity of the facies; however, they

exhibited less structural variability than those produced by
FaciesGAN. Visual comparison suggests that FaciesGAN
accurately reproduced the input conditioning and
provided greater structural diversity in its realizations. This
demonstrates that the proposed methodology is a robust
alternative for generating complex geological scenarios.

Next, we evaluated the overall distribution and class
balance within the dataset. The histogram of reservoir
facies proportions is shown in Figure 9. In addition to the
dataset distribution, the histogram also includes the facies
proportion results obtained from the FaciesGAN and MPS
SNESIM simulations. This enables a comparative analysis
of class balance between the original data and the synthetic
realizations produced by the two methods.

The distribution of the dataset (in red) showed a
primary peak near 0.16, representing the dominant facies
ratio in the real data. The dispersion is moderate, with
most realizations concentrated between 0.12 and 0.20.
The distribution generated by FaciesGAN (in green)
showed a similar behavior, with values concentrated in
the same range. However, a slight deviation was observed

Figure 8. Twenty randomly selected realizations generated by the MPS SNESIM algorithm. The generated facies are shown in black, while the conditioning
is in red (reservoir) and green (non-reservoir). Note: Each image represents a 2D crossline section in the pixel domain (256 x 256 pixels), corresponding

to a vertical section 80 m deep and 3,750 m wide.

Abbreviations: MPS: Multiple-point statistics; SNESIM: Single normal equation simulation.

Volume X Issue X (2025)

doi: 10.36922/JSE025370069


https://dx.doi.org/10.36922/JSE025370069

Journal of Seismic Exploration

FaciesGAN: a cGAN for Facies Generation

30 I

I s\ ESIM-generated
FaciesGAN-generated

2 | t Reference

- N
o o
T T

Frequency

o
T

0.35

0.1 0.15

0.2 0.25
Reservoir facies proportion

0.3

Figure 9. Comparative histogram of reservoir facies proportions
generated by FaciesGAN and SNESIM

Abbreviations: GAN: Generative adversarial network; SNESIM: Single
normal equation simulation.

toward higher values, indicating a minor overestimation
of the proportion in some simulations. In contrast,
the distribution generated by SNESIM (in blue) was
significantly dispersed, covering a broader range from 0.10
to 0.35. A clear trend toward higher proportions implies
lower statistical fidelity compared to the real data. In
addition, SNESIM-generated results demonstrated higher
variability than those by FaciesGAN and the reference, but
were in a controlled interval.

These results indicate that FaciesGAN provides a closer
approximation of the observed facies ratios in the reference
data compared to SNESIM. The higher variability of SNESIM
results in deviations from the true statistical behavior, which
can be a major limitation when accurate preservation of
facies proportions is required. In addition, the computational
efficiency of FaciesGAN is notably superior: while SNESIM
took approximately 137 min to generate 1,000 realizations,
FaciesGAN produced the same number in only 20 s. This
highlights that FaciesGAN has a greater ability to learn and
reproduce the distributions observed in real data, enabled
by its deep learning-based generative process.

3.2. Well-specific conditioning results

In the second test, five conditioning images distributed
in 2D space were selected. For each image, the trained
model generated 100 samples at approximately 6 s per
image. From each image, five generated facies scenarios are
presented in Figure 10. The figure presents the real facies
(left column, in green, with the depth condition shown in
black) and multiple random model-generated realizations
(five columns per well, in black and white) for five different
wells, with the depth condition highlighted in green.

The condition incorporated during FaciesGAN training
was held constant. The generated facies closely surround
or overlap with the real facies, indicating strong spatial
consistency between the model realizations and the true
data. Although variability was present among generated
facies, most realizations maintained structural patterns
consistent with the real facies, suggesting that the model
adequately learned the underlying spatial patterns.

The real facies were closely surrounded by the
generated facies, demonstrating the model’s capability to
preserve spatial structures across different realizations.
This consistency highlights the model’s reliability in
reproducing subsurface geologic patterns, even under
stochastic variability. In such cases, the generation of facies
scenarios was fast.

The percentages of pixels corresponding to each facies
were compared to evaluate statistical consistency between
the real images and those generated by FaciesGAN. The
comparison between the percentages observed in the real
images and the averages obtained from 100 generated
scenarios for the five wells shown in Figure 10 is presented
in Table 1. This comparison analyzed the model’s ability
to reproduce facies distributions realistically, ensuring
that the simulations preserve the original geologic
characteristics.

A strong correspondence was observed between
the facies percentages of the real and generated images.
Across all wells, differences between the real values
and the generated averages were <4%, indicating that
FaciesGAN maintains high fidelity in reproducing facies
proportions. For example, in well 181, facies 0 accounted
for 72.66% in the real image and 72.71% in the generated
average—a practically insignificant difference. Similar
cases were observed in the other wells, with the largest
deviation occurring in well 63, where facies 1 decreased
by approximately 3%. This minor underestimation remains
within acceptable ranges for stochastic simulations.

In addition, the IoU metric was calculated for each well
to further evaluate the fidelity of facies preservation within
the conditioned zones. Table 1 presents the average IoU
obtained from each case. The average IoU values ranged
from 99.37% to 99.66%, indicating an extremely high
agreement between the generated and original facies in
the hard-conditioned wells. The results suggest that the
FaciesGAN maintains near-identical facies proportions
and effectively reproduces the stratigraphic continuity
observed in the real data.

The generated scenarios were encouraging, as the model
demonstrated a high degree of consistency and realism
in reproducing the spatial distribution of facies from a
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Gen 4

Figure 10. Real and generated facies for five different wells. The first column shows the real 2D facies logs (in green) with the conditioning shown in
black. The five columns (Gen 1 to Gen 5) display different random realizations generated by the model, with facies shown in white. The conditioning is

highlighted in red (reservoir) and green (non-reservoir).

Note: Each image represents a 2D crossline section in the pixel domain (256 x 256 pixels), corresponding to a vertical section 80 m deep and 3,750 m wide.

Table 1. Averaged facies percentages in real and generated
scenarios across five selected wells

Well Real images Generated images ToU (%)
number Facies Facies Facies Facies

0 (%) 1(%) 0 (%) 1(%)
30 84.77 15.23 85.16 14.84 99.66
63 69.92 30.08 72.35 27.65 99.42
73 79.30 20.70 80.47 19.53 99.38
175 79.30 20.70 81.35 18.65 99.37
181 72.66 27.34 72.71 27.29 99.43

Abbreviation: IoU: Intersection over union.

limited dataset. Furthermore, visual and quantitative
comparisons with the actual facies distributions confirmed
the model’s ability to capture key features of the input data,
integrate conditional information, and generate significant
variability across realizations. These results suggest
that the FaciesGAN model generalizes effectively and
serves as a robust tool for generating 2D facies scenarios
in petroleum applications, even with limited training

datasets. This capability can significantly enhance reservoir
characterization and support operations planning.

4, Discussion

The results demonstrate that FaciesGAN produces
highly coherent and realistic geological facies scenarios,
even when trained on a limited dataset. The generated
realizations captured key geological patterns and spatial
continuity, showing high fidelity to the conditioning
information.

The stochastic simulation methodology employed does
not aim to identify a single, “optimal” scenario but rather
to quantify geological uncertainty by producing multiple
realistic representations of the subsurface that respect
the conditioning data. This approach is crucial for risk-
based decision-making, as the true facies distribution is
unknown. Accordingly, the workflow uses the full ensemble
(e.g., as inputs to flow models) to estimate outcome ranges
(e.g., P10, P50, and P90) rather than a single “best” result.
The statistical consistency of this ensemble with the
reference model was evaluated using MDS (Figure 7) and
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facies proportion histograms (Figure 9), ensuring that the
generated scenarios were statistically representative and
effectively explored the geological uncertainty space, as
detailed in Section 3.1.

Visual inspection confirmed that FaciesGAN
accurately reproduced facies structures and variability,
outperforming SNESIM in terms of structural diversity.
Quantitative metrics further reinforced this result: the
mean IoU (99.96%) indicates near-perfect preservation
of well conditioning, and facies-percentage distributions
closely aligned with the real data, with deviations generally
<4%.

The comparative histogram highlighted that FaciesGAN
better approximated the observed facies proportions than
SNESIM, which tended to generate realizations with
greater variability and statistical deviation. In addition,
FaciesGAN  demonstrated superior computational
efficiency, producing 1,000 scenarios in 20 s compared to
SNESIM’s 137 min.

These results suggest that deep generative approaches,
such as FaciesGAN, offer a robust alternative for simulating
geological facies. The model’s ability to learn spatial patterns
and accurately reproduce conditioning information
makes it promising for reservoir modeling workflows that
demand both accuracy and efliciency. The results also
demonstrate FaciesGAN’s potential for generalization, as
the model maintained high consistency across different
conditioning wells, with stochastic variability remaining
within acceptable geostatistical ranges.

The FaciesGAN model was trained and validated
exclusively on the Stanford Earth Science Data dataset,
which represents a particular meandering-channel system.
While the results are promising, especially under conditions
of scarce data, further research is necessary to confirm
the model’s applicability to various geological contexts,
including turbidite systems, deltaic environments, and
carbonate platforms, which exhibit distinct spatial patterns
and heterogeneities.

Furthermore, transfer learning is a promising area
for future research. A model pre-trained on a large and
diverse set of public geological models could be fine-
tuned using smaller, field-specific datasets. This approach
could enhance the practicality of FaciesGAN in real-world
reservoir characterization projects, where data availability
is always limited.

Overall, the tests confirm that FaciesGAN can
generate realistic, diverse, and conditionally consistent
facies realizations, offering advantages in terms of speed
and statistical performance compared with traditional
MPS methods. While this study primarily compared

FaciesGAN with the conventional MPS SNESIM method,
subsequent research should evaluate its performance
against additional deep generative models. For example,
variational autoencoders could be explored, although
c¢GANs have already demonstrated key advantages in
generating scenarios with sharper geological boundaries
and closer alignment to the true statistical distribution of
reservoir properties”’—key attributes for realistic facies
modeling.

5. Conclusion

The use of artificial intelligence-based techniques to
generate facies scenarios is an innovative area aimed
at improving the accuracy and robustness of machine
learning models in oil exploration and production.
c¢GANSs are gaining prominence due to their capacity
to generate high-quality synthetic data that preserves
known geological characteristics. FaciesGAN  was
successfully trained with a limited number of 2D facies
images, demonstrating strong performance in data-scarce
scenarios and offering an effective approach for data
augmentation with small datasets. The main advantage of
the model lies in its ability to generate synthetic 2D facies
scenarios while honoring known conditional information,
ensuring consistency with real conditions derived from
drilled and analyzed wells. MDS and facies-proportion
statistics produced favorable results, highlighting the
ability of this network to consistently reproduce the
conditioning data. The generated realizations preserve
the frequency distributions and spatial correlations
characteristic of the original images, ensuring visual
consistency and maintaining statistical and geological
integrity. Furthermore, a comparative analysis with
SNESIM demonstrated that FaciesGAN provides a
more accurate representation of facies proportions, with
reduced dispersion and skewness relative to the reference
data, while maintaining higher spatial and statistical
fidelity. Another significant advantage of FaciesGAN
is its computational efficiency, which enables the rapid
generation of multiple scenarios compared with sequential
simulation methods. These synthetic realizations can be
integrated into reservoir characterization workflows to
support uncertainty estimation and enhance the quality of
results. Finally, the proposed methodology can be extended
to subsequent workflow steps, such as incorporating
facies with acoustic and/or elastic properties, generating
synthetic seismic data, and evaluating consistency with
actual seismic observations. In particular, future work
will focus on applying the approach to real-world field
datasets—a logical and most important next step. This
extension will enable synthetic seismic generation to be
combined with seismic inversion. This integration will
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establish a direct and useful link among facies modeling,
seismic inversion, and reservoir characterization.
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