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Abstract
Facies are rock bodies that reflect specific depositional environments and play a 
central role in reservoir characterization. Accurate facies modeling is a key challenge 
in generating realistic geological scenarios that honor sparse well data while 
capturing geological uncertainty. This study introduces FaciesGAN, a novel deep 
learning framework based on conditional generative adversarial networks (cGANs). 
The method employs a hierarchical structure of generators and discriminators that 
progressively refine coarse estimates into high-resolution facies models, ensuring 
consistency with well data and depositional patterns at each stage. FaciesGAN was 
validated using the limited Stanford Earth Science Data dataset, demonstrating 
strong performance even under data scarcity. The quantitative evaluation employed 
multidimensional scaling and yielded an intersection over union index of 99.96% 
relative to the conditioning well data. These results confirmed the model’s ability to 
generate diverse scenarios with high fidelity while preserving statistical distributions. 
Compared with a traditional multiple-point statistics implementation, FaciesGAN 
produced more realistic and varied geological realizations with significantly greater 
computational efficiency. These results indicate that cGAN-based approaches, such 
as FaciesGAN, represent a promising direction for subsurface modeling, offering 
robust tools for data augmentation, improved uncertainty assessment, and enhanced 
reservoir characterization.

Keywords: Conditional generative adversarial network; Facies; Hard data; Geostatistical 
simulations; Seismic inversion

1. Introduction
In the context of reservoir characterization, facies are defined as rock units with 
specific attributes that reflect the depositional environment and directly influence the 
petrophysical properties and heterogeneity of the reservoir.1,2 Facies are essential for 
understanding depositional environments, as they enable geoscientists to correlate these 
units with seismic and well data, thereby playing a crucial role in the seismic inversion 
process.3,4 For example, since sandy facies generally exhibit higher porosity than shale 
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facies, they help identify and distinguish productive 
from non-productive zones.5 From this perspective, the 
integration of facies into seismic inversion algorithms 
provides greater consistency between the models and the 
petrophysical properties obtained, generating more robust 
and reliable models.6-8

The generation of multiple facies scenarios that 
reproduce complex heterogeneous structures plays a key 
role in the characterization and modeling of geological 
reservoirs and the stochastic seismic inversion workflow.9,10 
By enabling multiple plausible realizations of the 
subsurface, facies scenario modeling provides a rigorous 
framework to explicitly capture and quantify geological 
uncertainty.11 This approach reduces biases arising from 
single deterministic interpretations and ensures that the 
resulting reservoir models remain consistent with both 
geological knowledge and observed field data.2,12 This ability 
is particularly critical in seismic inversion workflows, 
where the relationship between well log measurements, 
core analysis, and seismic responses must be established in 
a consistent and geologically meaningful way.13,14

Facies scenario generation can be carried out using 
classical and modern methodologies that combine 
geology, statistics, and artificial intelligence.10,15 Classical 
methodologies include techniques used in geology and 
geostatistics. For example, sequential indicator simulation 
(SIS) uses binary indicators for each facies, generating 
scenarios conditioned on available data.16 SIS is useful 
for modeling facies, but has several limitations. It often 
produces loosely connected patterns and oversimplified 
geological structures,17 making it difficult to represent 
features such as channels or faults. SIS is sensitive to 
variogram fitting, complicating its use with sparse data. 
It allows the quantification of uncertainty; however, if 
not accurately calibrated, it can result in geologically 
inconsistent models.18

Modern methodologies include techniques that have 
revolutionized geological modeling by allowing the 
representation of complex patterns and advanced spatial 
relationships. Multiple-point statistics (MPS) represent 
a significant advance in this area, enabling the capture of 
spatial patterns in geological data and modeling of multi-
location relationships.19,20 These techniques are especially 
useful for simulating facies distributions in regions with 
limited information. They adhere to spatial distributions 
observed in training data, such as geological maps and 
previous simulations.13,21 MPS may face difficulties in 
constructing representative training images, as it relies on 
the analyst’s expertise. Furthermore, conditioning to real 
data may be complex to implement without breaking the 
continuity of the simulated patterns.13,22

In this context, generative adversarial networks 
(GANs) emerge as an innovative methodology for the 
generation of facies scenarios. GANs offer significant 
advantages over traditional geostatistical methods and 
MPS-based simulation. They can learn directly from 
real data, preserving first-order statistical features (facies 
proportions) and second-order statistical features (spatial 
continuity and body geometry).23,24 GANs are capable of 
capturing complex spatial patterns and facies relationships, 
thereby producing more realistic realizations and reducing 
the subjectivity inherent in model design.25-27 Moreover, 
they open the possibility of training networks as a 
complement to stochastic facies simulation.28,29

There are two competing networks in GANs: A generator 
network creates synthetic data, and a discriminator 
network assesses the authenticity of the generated data in 
relation to the real data.22,25 In the context of facies, GANs 
can be used to generate new synthetic records that preserve 
the statistical characteristics of real data, for example, 
facies distributions and the geophysical properties of wells. 
On the other hand, conditional GANs (cGANs) include 
a conditional layer in the data generation process. This 
conditional layer allows the generation of synthetic data 
based on specific previous information, such as the type 
of facies in a particular depth range, providing even more 
control over the generation process.30,31 This characteristic 
allows the assessment of large-scale geological scenarios 
and the validation of hypotheses about reservoir 
connectivity and quality.

In recent years, facies scenario generation has been 
studied through several case studies, showcasing the 
effectiveness of advanced technologies. For example, 
Liu et al.32 proposed an approach for generating 3D 
subsurface facies map models based on GAN. Miele 
et al.33 proposed integrating a GAN with spatially-adaptive 
denormalization (SPADE) to predict realistic facies map 
patterns while adhering to local probabilities. It combines 
with geostatistical methods of sequential simulation to 
model facies-conditioned rock properties. Furthermore, 
Feng et al.23 proposed a GAN-based method in which 
the network is trained on facies map images. Research 
has demonstrated excellent results using facies map 
data and statistical similarity. However, few studies have 
incorporated known hard information from the GAN 
training stage, such as observed facies sequences in wells 
at specific locations. Specifically, no applications have been 
published on facies data in 2D vertical sections.

Considering the current progress, this work aims 
to explore advanced techniques for generating facies 
scenarios, with a particular focus on cGANs. The objective 
is to evaluate the effectiveness of this technique on 2D 
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vertical section facies data conditioned on well data. 
Using a public dataset with a limited number of samples, 
this study aims to demonstrate that the proposed method 
can effectively address one of the main challenges in 
reservoir characterization: data scarcity. This approach 
leverages synthetic training models to enhance the 
integration of well logs, facies distributions, and seismic 
information, producing scenarios that adhere to geological 
conditions and maintain statistical and spatial consistency. 
Accordingly, this study demonstrates that incorporating 
conditioning information enables cGANs to generate more 
accurate and robust models for reservoir characterization. 
cGANs offer an innovative solution to overcome the 
limitations of traditional techniques, contributing to a 
more coherent and efficient reservoir modeling.

2. Methodology
This study followed the workflow provided in Figure 1. The 
methodology comprises several interconnected stages.

2.1. Data collection and preprocessing

The Stanford Earth Science Data dataset was chosen and 
downloaded from the GitHub repository (https://github.
com/SCRFpublic/Stanford-VI-E).4 The database contains 
data from oil well logs, with detailed samples of the 
different facies found in the reservoirs. The facies data 
are stored in.dat format, facilitating preprocessing and 
analysis. From the dataset, the available facies classes 
were floodplain (0), point bar (1), channel (2), boundary 
(3), and deltaic system (Figure 2A). The dataset primarily 
represented meandering channel systems, emphasizing 
facies categories relevant to this study (reservoir and non-
reservoir types). The remaining facies were reclassified to 
simplify the categories into “reservoir” (channel; 1) and 
“non-reservoir” (floodplain, point bar, and boundary; 0), 
as shown in Figure 2B.

2.2. Image generation and data labeling

A Python 3.12 environment was configured using image 
processing and visualization libraries to generate visual 
representations of the filtered and categorized facies. The 
tabular data were subsequently converted into images. The 
3D Stanford VI reservoir model was employed as training 

data for the deep-learning workflow. This reference 
model was defined on a 150×200×200 cell grid, with cell 
dimensions of 25 m in the horizontal (X and Y) directions 
and 1  m in the vertical (Z) direction. This resulted in a 
total physical size of 3,750 m (X-axis) × 5,000 m (Y-axis) 
× 200 m (Z-axis/depth). The 200 m vertical thickness was 
composed of three distinct layers (80 m, 40 m, and 80 m). 
To generate the 2D training images, 200 vertical slices 
(representing X–Z planes) were extracted, corresponding 
to one slice for each of the 200 cell positions along the 
Y-axis. Each slice represented the full horizontal (X-axis) 
distance of 3,750  m and the top 80  m layer (Layer 1). 
Subsequently, this physical section of 3,750  m × 80  m 
was resampled to a 256 × 256-pixel matrix. This process 
resulted in final images with a resolution of approximately 
14.65 m/pixel in the horizontal direction and 0.31 m/pixel 
in the vertical (depth) direction.

A total of 200 divisions in 2D vertical slices were 
generated and extracted from the 3D facies model. These 
were used as training images, with 256 × 256 pixels, and 
categorized according to the corresponding facies class 
(Figure  2C). Each image was annotated with the depth 
condition and used as an external label to guide the 
process. The annotations delineating vertical polygons 
indicated the different facies represented, based on the 2D 
section facies found in the Stanford Earth Science Data 
dataset, and were used as conditioning data for the cGAN.

2.3. Facies scenario generation with the proposed 
cGAN

The proposed cGAN, termed FaciesGAN, features a 
multistage architecture designed to generate geologically 
realistic facies realizations conditioned on well data.

The FaciesGAN model is an adaptation of SinGAN28 
and WGAN-GP.34 SinGAN is a generative model that 
can learn from a single natural image.28 It consists of a 
pyramid of fully convolutional GANs, each modeling the 
distribution of image patches at a distinct spatial scale. 
This allows for generating new samples of arbitrary size 
and proportion. Although the generated samples exhibit 
considerable variability, they retain the overall structure 
and fine textures of the training image.

Figure 1. General proposed methodology
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The FaciesGAN model is structured as a hierarchy of 
generators and discriminators operating at progressively 

higher resolutions, as shown in Figure  3. The process 
begins with a low-resolution generator that produces 

Figure 3. Schematic representation of the proposed cGAN for generating facies scenarios. The generator and discriminator are trained from coarse to fine 
scale (0 to N).
Abbreviations: cGAN: Conditional generative adversarial network; U: Upsampling.

Figure 2. The Stanford Earth Science Data dataset. (A) Multiple sedimentary facies visualization. (B) Facies classification into reservoir (yellow) and 
non-reservoir (gray). (C) 2D slices examples of projection along the depth, differentiating the reservoir (white) from the non-reservoir (black). Image 
reproduced and adapted with permission from Lee and Mukerji.4
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an initial facies image conditioned on well information 
(e.g., facies at well locations). Subsequent stages refine this 
output by adding progressively finer geological details. 
Each generator stage is paired with a corresponding 
discriminator that evaluates the realism of the generated 
facies at its specific resolution while enforcing consistency 
with the conditioning data. Conditioning is maintained 
throughout all stages of the generation pipeline, ensuring 
that the final high-resolution outputs honor well 
constraints. This progressive refinement strategy allows the 
model to capture both large-scale geological structures and 
small-scale heterogeneities, resulting in high-quality, data-
consistent facies simulations.

The pyramid of generators G0,…,Gn,…,GN is a multi-
scale, fully convolutional architecture, as shown in 
Figure 4A. At each scale, the generator considers a resized 
version of the previous output x n’ −1  and a condition zn, 
which are concatenated channel-wise. These are then 
passed through a series of 2D convolutional layers with 
leaky rectified linear unit (LeakyReLU) to produce a 
residual output. This is added to the up-sampled input to 
generate the new 2D section facies map x n’ . Each generator 
Gn is trained to learn the internal structure of the training 
images at different scales. Gn finer details from the training 
images are learned sequentially.23

The discriminators, D0,…,Dn,…,DN, are implemented 
as a convolutional PatchGAN classifier, which assesses the 
realism of local image patches rather than making a single 
global prediction (Figure  4B). The architecture consists 
of a sequence of convolutional blocks, each comprising 
a 2D convolutional layer followed by a LeakyReLU 
activation function.28 The number of feature channels is 
progressively reduced across layers (e.g., from 64 to 1), 
enabling hierarchical feature extraction at multiple spatial 
resolutions. Notably, normalization layers (e.g., batch 
normalization) are applied to preserve the raw feature 
dynamics and stabilize the training process. The final 
output is a single-channel feature map in which each spatial 
location corresponds to the discriminator’s assessment of 
whether a specific image patch is real or synthetic.23,34

At the nth scale level, an adversarial training process is 
performed separately: the generator Gn tries to generate fake 
images xn to fool the discriminator Dn. The discriminator 
Dn attempts to distinguish the real images xn from the fake 
ones.23 This multi-scale approach captures the large-scale 
structures present in the geologic models of interest.35 The 
formulation for generating an image sample at the nth level 
is expressed as follows:
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where ∪ represents the upsampling based on 
interpolators in the 2D and 3D cases.

The loss function at the nth scale level for Gn and Dn is 
formulated as:28

minmax , ,
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n n
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where adv  is the adversarial loss for penalizing the 
distribution distance between the down-sampled images xn 
and the generated images xn

’ , α is a weighting factor to 
balance the two loss functions, and rec  is the reconstruction 
loss to ensure that xn can be reproduced given a specific set 
of random noise maps.

The generator Gn and discriminator Dn at each pyramid 
scale n are trained with a combined objective inspired by 
WGAN-GP34 and SinGAN.28 The goal is to simultaneously 
enforce adversarial learning and faithful reconstruction of 
the image at multiple resolutions.

The discriminator Dn is optimized using the Wasserstein 
loss with gradient penalty, ensuring Lipschitz continuity. 
The discriminator loss is formulated as:
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Figure 4. Network architecture at the nth scale level. (A) The generator. (B) The discriminator.

BA

https://dx.doi.org/10.36922/JSE025370069


Journal of Seismic Exploration FaciesGAN: a cGAN for Facies Generation

Volume X Issue X (2025)	 6� doi: 10.36922/JSE025370069 

Where xn denotes a real image at scale n, 
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is the generated image conditioned on noise zn and 
the upsampled output from the next coarser scale, 
and ( )ε ε= + −1 'ˆ

n n nx x x  with ε ~ u[0,1] is the interpolated 
sample used for the gradient penalty.

The generator Gn is trained with two complementary 
objectives: (i) An adversarial loss that encourages generated 
samples to be indistinguishable from real ones at scale n, 
and (ii) a reconstruction loss that ensures faithful 
reproduction of the reference image when a fixed noise 
map zn

*  is used. The generator loss is:
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With the reconstruction loss defined as:
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Where αn is a scale-dependent weighting factor 
balancing adversarial and reconstruction objectives, and 

↑
+1

ˆ
nx  denotes the generated sample from the scale n+1, 

upsampled to match the resolution of scale n.

This hierarchical optimization scheme allows the 
generator to progressively capture global structure at coarse 
scales and fine details at higher resolutions, while the 
reconstruction term stabilizes training and preserves fidelity.

2.4. Algorithm and implementation

The FaciesGAN model is an architecture designed to 
generate geologically consistent facies images from a 
multi-scale noise pyramid. It uses an improved adversarial 
training framework. FaciesGAN’s training loop comprises 
two alternating main stages, which involve updating the 
discriminator and generator parameters. The algorithm 
incorporates additional mechanisms, such as gradient 
penalty, reconstruction, and masking losses that contribute 
to improving training stability and fidelity of the generated 
images. The algorithm and the core procedure for training 
the FaciesGAN model at a single resolution scale are 
presented in Algorithm 1. FaciesGAN core training loop 
(at a single scale).

The training hyperparameters were determined based 
on the original WGAN-GP and SinGAN models, with 
empirical adjustments for our specific application. The 
gradient penalty weight λgp (referred to as λ in WGAN-GP) 
was set to 0.115, a value that we found stabilized training 

effectively for the facies data (in contrast to the λ =10 used 
in the original WGAN-GP). The reconstruction weight αrec 
(referred to as α in Equation [2] and αn in Equation [4]) 
was set to 10, a value commonly used in SinGAN-based 
models that provided an optimal balance between 
adherence to geological structure and training stability.

3. Results
This study evaluated the capability of generative models 
to generate geological facies scenarios. For this purpose, 
FaciesGAN was trained and validated through visual 
inspection and multidimensional scaling (MDS) to 
determine the consistency and representativeness of 
the generated scenarios with the original facies. For 
comparison purposes, the same data were modeled using 
an MPS method, specifically, the single normal equation 
simulation (SNESIM).13 The scenarios generated using 

Algorithm 1. FaciesGAN core training loop (at a single scale)

Input:
xreal ← Real data
M ← Mask
xrecin

←Reconstruction input

Models:
G ← Generator
D ← Discriminator

Hyperparameters:
λgp,αrec, kd ← Discriminator steps
kg ← Generator steps

/*Step 1: Train Discriminator */
1:  for j = 1 to kd do
2:        Sample noise pyramid Z←GETNOISE( )
3:        �Generate fake images xfake←G (Z)//Forward pass‑through Generator

4:        L D xreal real�� � ��� �� //Loss for real data

5:        L D xfake fake� � ��
�

�
� //Loss for fake data

6:        Lgp ← λgp CALCULATEGRADIENTPENALTY (D, xreal, xfake)
7:        LD ← Lreal + Lfake + Lgp //Total Discriminator loss
8:        Update D’s parameters θd by ascending the gradient of LD

9:  end for

/* Step 2: Train Generator */
10:  for j = 1 to kd do
11:        Sample noise pyramid Z←GETNOISE( )
12:        Generate fake images xfake←G (Z)

13:        L D xadv fake�� � ��
�

�
� //Adversarial loss

14:        Sample reconstruction noise Zrec ← GETNOISE (rec=True)
15:        xrec ← G (Zrec, in_facie = xrec_in) //Reconstruction pass
16:        Lrec ←αrec⋅MSE (xrec, xreal) //Reconstruction loss
17:        Lmask ← 100 ⋅ αrec⋅ MSE (xfake ⨀ M, xreal ⨀ M) //Masked loss
18:        LG ← Ladv + Lrec + Lmask //Total Generator Loss
19:        Update G’s parameters θg by ascending the gradient of LG

20: end for
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the two methodologies were compared through visual 
inspection of the spatial continuity of the patterns and the 
facies proportion histogram. This allowed for a qualitative 
and quantitative analysis of the representativeness and 
consistency of the simulated models.

Specifically, FaciesGAN was trained to generate facies 
scenarios using the Stanford Earth Science dataset. The model 
was developed with a limited training set of 200  samples. 
During the inference stage, some samples were analyzed using 
metrics such as visual inspection, average facies proportion, 
and MDS to determine the consistency and representativeness 
of the generated scenarios with the original facies.

For FaciesGAN training, appropriate labels were 
required for each image. The labeling process is shown 
in Figure  5. These labels are important because they 
provide information about the characteristics of each 
image, allowing the model to learn to generate coherent 
and realistic images based on specific conditions. In this 
context, the labels corresponded to hard data derived 
from a simulated well, representing known subsurface 
information used to condition the facies generation process. 
The correctly labeled images were integrated into the 
dataset and associated specifically with each corresponding 
image. The model used the labels as conditioning input to 
generate facies scenarios consistent with the characteristics 
and structures defined by the labels.

The FaciesGAN model was trained for 100 epochs per 
scale across 10 scales, with a gradient penalty weight λgp of 
0.1, using the Adam optimizer with a learning rate of 5e−5 
and β of 0.5. The kernel size for 2D filters was 3 × 3, with a 
stride step of 1 × 1. At the coarser scales, image resolution 
ranged from 16 to 128 pixels. The model was trained on 
the complete dataset using a workstation with an Intel 
i7-8700K CPU (6 cores, 3.7 GHz), an NVIDIA GeForce 
GTX 1080Ti GPU, and 64 GB of RAM.

3.1. Global model evaluation

In the first test, the model generated 1,000 facies scenarios 
in 20 s; twenty randomly selected conditioned realizations 

are shown in Figure  6. It was observed that the facies 
configuration of the conditioning trace, highlighted in 
green to simulate a real drilled and analyzed well, was 
closely reproduced in the images generated by FaciesGAN.

The results are promising considering the limited 
training set, highlighting the applicability of the proposed 
approach in characterizing oil reservoirs, where well 
log and facies data are often scarce, costly to obtain, and 
subject to privacy restrictions. Nevertheless, the model 
showed remarkable consistency in reproducing the facies 
spatial distributions. These findings provide insight into 
the model’s capability to produce images that consistently 
reflect the expected facies proportions. Visual comparisons 
with real distributions confirmed that the model captured 
key features of the input data while generating consistent 
variations. Furthermore, the time required to generate 
facies scenarios was short, highlighting the computational 
efficiency of the proposed approach. The short generation 
time allows for practical integration into workflows that 
require multiple simulations.

Next, MDS was applied to quantitatively evaluate 
the trained model and to compare patterns of spatial 
variability. MDS is a technique commonly used in data 
analysis and visualization. It represents high-dimensional 
data in a lower-dimensional space, usually 2D or 3D, 
while preserving the relative distances (or dissimilarities) 
between data points and the potential differences 
between them.36 The generated facies overlapped closely 
with the training images in 2D space, demonstrating 
excellent similarity, as shown in Figure 7. Regions where 
blue and red overlap indicate highly agreement between 
generated and real images, suggesting robust model 
generalization.

The generated facies (red) effectively covered the 
space of the real facies (blue), indicating the diversity and 
quality of the generator. The real facies (blue) were closely 
surrounded by the generated facies, suggesting that the 
generator interpolates well within the known domain. This 
indicates a high degree of spatial consistency.

Figure 5. Reservoir (in white) and non-reservoir (in black) with drilled-well conditioning. Conditional traces are highlighted in red (reservoir) and green 
(non-reservoir). Note: Each image corresponds to a 2D crossline section represented in the pixel domain (256 × 256 pixels) to an 80 m (depth) × 3,750 m 
(width) vertical section.
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In addition, to validate how effectively the conditioning 
well information was honored by the FaciesGAN model, 

a procedure was designed that reformulates the problem 
as a spatial classification task. Specifically, the generated 
scenarios were compared with their respective original 
images to evaluate how accurately the location and shape 
of the facies were reproduced around the actual wells. 
The intersection over union (IoU) index was used as 
the evaluation metric. This index is defined as the ratio 
between the intersection area and the union area of the 
predicted and reference data:

IoU
GT PD
GT PD

� �
�

� (6)

where PD is the prediction mask and GT is the ground 
truth. In this evaluation, the prediction mask corresponded 
to the pixels generated under hard conditioning by 
FaciesGAN, while the hard-conditioning reference data 
from the original facies image served as the ground truth. 
A total of 1,000 images generated from a set of 200 original 
images were analyzed. The IoU was calculated for each pair 
of images, yielding an overall mean IoU of 99.96%. This 
result indicates exceptionally high fidelity in preserving 
the well-conditioning constraints and demonstrates 

Figure 7. Multidimensional scaling plot of the training images with 
conditional realizations

Figure 6. Twenty randomly selected realizations generated by the proposed cGAN. The generated facies are shown in white, while the conditioning is in 
red (reservoir) and green (non-reservoir). Note: Each image represents a 2D crossline section in the pixel domain (256 × 256 pixels), corresponding to a 
vertical section 80 m deep and 3,750 m wide.
Abbreviation: cGAN: Conditional generative adversarial network.
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that FaciesGAN generates stochastic images that almost 
perfectly adhere to the geological information observed 
in the well. These findings validate its effectiveness as a 
geological conditioning tool.

The effectiveness of the FaciesGAN model was validated 
by comparing its results with synthetic facies scenarios 
generated using MPS. Specifically, SNESIM, an improved 
and scalable extension of the extended normal equation 
simulation (ENESIM) algorithm for multipoint simulation, 
was used to generate 1,000 facies realizations based on 
the 200 training images. The results of 20 representative 
simulations are presented in Figure 8. These results were 
generated in approximately 137 min.

The facies scenarios generated by FaciesGAN (Figure 6) 
exhibited distributions consistent with the expected 
geology. The scenarios accurately respected the conditions 
(in green). These realizations reflect the remarkable ability 
of the model to capture complex spatial patterns with 
high diversity among simulations. In comparison, the 
realizations generated by the MPS SNESIM method also 
preserved the spatial continuity of the facies; however, they 

exhibited less structural variability than those produced by 
FaciesGAN. Visual comparison suggests that FaciesGAN 
accurately reproduced the input conditioning and 
provided greater structural diversity in its realizations. This 
demonstrates that the proposed methodology is a robust 
alternative for generating complex geological scenarios.

Next, we evaluated the overall distribution and class 
balance within the dataset. The histogram of reservoir 
facies proportions is shown in Figure 9. In addition to the 
dataset distribution, the histogram also includes the facies 
proportion results obtained from the FaciesGAN and MPS 
SNESIM simulations. This enables a comparative analysis 
of class balance between the original data and the synthetic 
realizations produced by the two methods.

The distribution of the dataset (in red) showed a 
primary peak near 0.16, representing the dominant facies 
ratio in the real data. The dispersion is moderate, with 
most realizations concentrated between 0.12 and 0.20. 
The distribution generated by FaciesGAN (in green) 
showed a similar behavior, with values concentrated in 
the same range. However, a slight deviation was observed 

Figure 8. Twenty randomly selected realizations generated by the MPS SNESIM algorithm. The generated facies are shown in black, while the conditioning 
is in red (reservoir) and green (non-reservoir). Note: Each image represents a 2D crossline section in the pixel domain (256 × 256 pixels), corresponding 
to a vertical section 80 m deep and 3,750 m wide.
Abbreviations: MPS: Multiple-point statistics; SNESIM: Single normal equation simulation.
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toward higher values, indicating a minor overestimation 
of the proportion in some simulations. In contrast, 
the distribution generated by SNESIM (in blue) was 
significantly dispersed, covering a broader range from 0.10 
to 0.35. A clear trend toward higher proportions implies 
lower statistical fidelity compared to the real data. In 
addition, SNESIM-generated results demonstrated higher 
variability than those by FaciesGAN and the reference, but 
were in a controlled interval.

These results indicate that FaciesGAN provides a closer 
approximation of the observed facies ratios in the reference 
data compared to SNESIM. The higher variability of SNESIM 
results in deviations from the true statistical behavior, which 
can be a major limitation when accurate preservation of 
facies proportions is required. In addition, the computational 
efficiency of FaciesGAN is notably superior: while SNESIM 
took approximately 137 min to generate 1,000 realizations, 
FaciesGAN produced the same number in only 20 s. This 
highlights that FaciesGAN has a greater ability to learn and 
reproduce the distributions observed in real data, enabled 
by its deep learning-based generative process.

3.2. Well-specific conditioning results

In the second test, five conditioning images distributed 
in 2D space were selected. For each image, the trained 
model generated 100  samples at approximately 6 s per 
image. From each image, five generated facies scenarios are 
presented in Figure 10. The figure presents the real facies 
(left column, in green, with the depth condition shown in 
black) and multiple random model-generated realizations 
(five columns per well, in black and white) for five different 
wells, with the depth condition highlighted in green.

The condition incorporated during FaciesGAN training 
was held constant. The generated facies closely surround 
or overlap with the real facies, indicating strong spatial 
consistency between the model realizations and the true 
data. Although variability was present among generated 
facies, most realizations maintained structural patterns 
consistent with the real facies, suggesting that the model 
adequately learned the underlying spatial patterns.

The real facies were closely surrounded by the 
generated facies, demonstrating the model’s capability to 
preserve spatial structures across different realizations. 
This consistency highlights the model’s reliability in 
reproducing subsurface geologic patterns, even under 
stochastic variability. In such cases, the generation of facies 
scenarios was fast.

The percentages of pixels corresponding to each facies 
were compared to evaluate statistical consistency between 
the real images and those generated by FaciesGAN. The 
comparison between the percentages observed in the real 
images and the averages obtained from 100 generated 
scenarios for the five wells shown in Figure 10 is presented 
in Table 1. This comparison analyzed the model’s ability 
to reproduce facies distributions realistically, ensuring 
that the simulations preserve the original geologic 
characteristics.

A strong correspondence was observed between 
the facies percentages of the real and generated images. 
Across all wells, differences between the real values 
and the generated averages were <4%, indicating that 
FaciesGAN maintains high fidelity in reproducing facies 
proportions. For example, in well 181, facies 0 accounted 
for 72.66% in the real image and 72.71% in the generated 
average—a practically insignificant difference. Similar 
cases were observed in the other wells, with the largest 
deviation occurring in well 63, where facies 1 decreased 
by approximately 3%. This minor underestimation remains 
within acceptable ranges for stochastic simulations.

In addition, the IoU metric was calculated for each well 
to further evaluate the fidelity of facies preservation within 
the conditioned zones. Table  1 presents the average IoU 
obtained from each case. The average IoU values ranged 
from 99.37% to 99.66%, indicating an extremely high 
agreement between the generated and original facies in 
the hard-conditioned wells. The results suggest that the 
FaciesGAN maintains near-identical facies proportions 
and effectively reproduces the stratigraphic continuity 
observed in the real data.

The generated scenarios were encouraging, as the model 
demonstrated a high degree of consistency and realism 
in reproducing the spatial distribution of facies from a 

Figure  9. Comparative histogram of reservoir facies proportions 
generated by FaciesGAN and SNESIM
Abbreviations: GAN: Generative adversarial network; SNESIM: Single 
normal equation simulation.
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limited dataset. Furthermore, visual and quantitative 
comparisons with the actual facies distributions confirmed 
the model’s ability to capture key features of the input data, 
integrate conditional information, and generate significant 
variability across realizations. These results suggest 
that the FaciesGAN model generalizes effectively and 
serves as a robust tool for generating 2D facies scenarios 
in petroleum applications, even with limited training 

datasets. This capability can significantly enhance reservoir 
characterization and support operations planning.

4. Discussion
The results demonstrate that FaciesGAN produces 
highly coherent and realistic geological facies scenarios, 
even when trained on a limited dataset. The generated 
realizations captured key geological patterns and spatial 
continuity, showing high fidelity to the conditioning 
information.

The stochastic simulation methodology employed does 
not aim to identify a single, “optimal” scenario but rather 
to quantify geological uncertainty by producing multiple 
realistic representations of the subsurface that respect 
the conditioning data. This approach is crucial for risk-
based decision-making, as the true facies distribution is 
unknown. Accordingly, the workflow uses the full ensemble 
(e.g., as inputs to flow models) to estimate outcome ranges 
(e.g., P10, P50, and P90) rather than a single “best” result. 
The statistical consistency of this ensemble with the 
reference model was evaluated using MDS (Figure 7) and 

Figure 10. Real and generated facies for five different wells. The first column shows the real 2D facies logs (in green) with the conditioning shown in 
black. The five columns (Gen 1 to Gen 5) display different random realizations generated by the model, with facies shown in white. The conditioning is 
highlighted in red (reservoir) and green (non-reservoir).
Note: Each image represents a 2D crossline section in the pixel domain (256 × 256 pixels), corresponding to a vertical section 80 m deep and 3,750 m wide.

Table 1. Averaged facies percentages in real and generated 
scenarios across five selected wells

Well 
number

Real images Generated images IoU (%)

Facies 
0 (%)

Facies 
1 (%)

Facies 
0 (%)

Facies 
1 (%)

30 84.77 15.23 85.16 14.84 99.66

63 69.92 30.08 72.35 27.65 99.42

73 79.30 20.70 80.47 19.53 99.38

175 79.30 20.70 81.35 18.65 99.37

181 72.66 27.34 72.71 27.29 99.43

Abbreviation: IoU: Intersection over union.
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facies proportion histograms (Figure 9), ensuring that the 
generated scenarios were statistically representative and 
effectively explored the geological uncertainty space, as 
detailed in Section 3.1.

Visual inspection confirmed that FaciesGAN 
accurately reproduced facies structures and variability, 
outperforming SNESIM in terms of structural diversity. 
Quantitative metrics further reinforced this result: the 
mean IoU (99.96%) indicates near-perfect preservation 
of well conditioning, and facies-percentage distributions 
closely aligned with the real data, with deviations generally 
<4%.

The comparative histogram highlighted that FaciesGAN 
better approximated the observed facies proportions than 
SNESIM, which tended to generate realizations with 
greater variability and statistical deviation. In addition, 
FaciesGAN demonstrated superior computational 
efficiency, producing 1,000 scenarios in 20 s compared to 
SNESIM’s 137 min.

These results suggest that deep generative approaches, 
such as FaciesGAN, offer a robust alternative for simulating 
geological facies. The model’s ability to learn spatial patterns 
and accurately reproduce conditioning information 
makes it promising for reservoir modeling workflows that 
demand both accuracy and efficiency. The results also 
demonstrate FaciesGAN’s potential for generalization, as 
the model maintained high consistency across different 
conditioning wells, with stochastic variability remaining 
within acceptable geostatistical ranges.

The FaciesGAN model was trained and validated 
exclusively on the Stanford Earth Science Data dataset, 
which represents a particular meandering-channel system. 
While the results are promising, especially under conditions 
of scarce data, further research is necessary to confirm 
the model’s applicability to various geological contexts, 
including turbidite systems, deltaic environments, and 
carbonate platforms, which exhibit distinct spatial patterns 
and heterogeneities.

Furthermore, transfer learning is a promising area 
for future research. A  model pre-trained on a large and 
diverse set of public geological models could be fine-
tuned using smaller, field-specific datasets. This approach 
could enhance the practicality of FaciesGAN in real-world 
reservoir characterization projects, where data availability 
is always limited.

Overall, the tests confirm that FaciesGAN can 
generate realistic, diverse, and conditionally consistent 
facies realizations, offering advantages in terms of speed 
and statistical performance compared with traditional 
MPS methods. While this study primarily compared 

FaciesGAN with the conventional MPS SNESIM method, 
subsequent research should evaluate its performance 
against additional deep generative models. For example, 
variational autoencoders could be explored, although 
cGANs have already demonstrated key advantages in 
generating scenarios with sharper geological boundaries 
and closer alignment to the true statistical distribution of 
reservoir properties37—key attributes for realistic facies 
modeling.

5. Conclusion
The use of artificial intelligence-based techniques to 
generate facies scenarios is an innovative area aimed 
at improving the accuracy and robustness of machine 
learning models in oil exploration and production. 
cGANs are gaining prominence due to their capacity 
to generate high-quality synthetic data that preserves 
known geological characteristics. FaciesGAN was 
successfully trained with a limited number of 2D facies 
images, demonstrating strong performance in data-scarce 
scenarios and offering an effective approach for data 
augmentation with small datasets. The main advantage of 
the model lies in its ability to generate synthetic 2D facies 
scenarios while honoring known conditional information, 
ensuring consistency with real conditions derived from 
drilled and analyzed wells. MDS and facies-proportion 
statistics produced favorable results, highlighting the 
ability of this network to consistently reproduce the 
conditioning data. The generated realizations preserve 
the frequency distributions and spatial correlations 
characteristic of the original images, ensuring visual 
consistency and maintaining statistical and geological 
integrity. Furthermore, a comparative analysis with 
SNESIM demonstrated that FaciesGAN provides a 
more accurate representation of facies proportions, with 
reduced dispersion and skewness relative to the reference 
data, while maintaining higher spatial and statistical 
fidelity. Another significant advantage of FaciesGAN 
is its computational efficiency, which enables the rapid 
generation of multiple scenarios compared with sequential 
simulation methods. These synthetic realizations can be 
integrated into reservoir characterization workflows to 
support uncertainty estimation and enhance the quality of 
results. Finally, the proposed methodology can be extended 
to subsequent workflow steps, such as incorporating 
facies with acoustic and/or elastic properties, generating 
synthetic seismic data, and evaluating consistency with 
actual seismic observations. In particular, future work 
will focus on applying the approach to real-world field 
datasets—a logical and most important next step. This 
extension will enable synthetic seismic generation to be 
combined with seismic inversion. This integration will 
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establish a direct and useful link among facies modeling, 
seismic inversion, and reservoir characterization.
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