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Abstract
To address the challenges of fracture-vuggy parameter prediction in carbonate 
reservoirs, such as strong multi-scale heterogeneity and a lack of physical constraints, 
this study proposed a Transformer–Graph Neural Operator (GNO)–Physics-Informed 
Neural Network (PINN) joint prediction framework, which achieves a bidirectional 
coupling between multi-source data fusion and physical laws. First, a Transformer 
module with a multi-scale attention mechanism and spherical coordinate effectively 
captures cross-scale spatiotemporal features in three-dimensional geological space 
(reducing error by 12.3%). Second, a dynamic GNO based on physical similarity 
adaptively tracks the evolution of fracture-vuggy connectivity (achieving a topology 
update accuracy of 93.5%). Finally, a PINN module embedded in the seepage-
mechanical coupling equations constrains the physical residual loss to the order of 
0.42×10⁻3, reducing the conservation error from 3.17% to 0.48%. In an empirical study 
of Ordovician fracture-vuggy reservoirs in the Tarim Basin, this framework achieved a 
mean absolute error of 3.57% and an R2 of 0.90 for fracture-vuggy volume fraction (Vf). 
In high-pressure gradient regions (>5 MPa/m), the relative error was reduced by 18%, 
significantly outperforming traditional methods (reducing Kriging error by 40.7%) and 
single-module models (PINN error reduction of 15.3%). Experimental results showed 
that dynamic graph construction increased the spatial autocorrelation index (Moran’s I) 
to 0.71; the introduction of physical constraints reduced extreme error samples by 63%; 
and the multimodal collaborative training strategy resulted in a 19.7% improvement 
in overall performance. This research provides a new paradigm for high-precision and 
physically interpretable digital twin modeling of carbonate reservoirs.

Keywords: Carbonate reservoir; Fracture-vuggy parameter prediction; Transformer; 
Graph Neural Operator; Physical Information Neural Network; Multimodal fusion

1. Introduction
1.1. Research background and significance

Carbonate reservoirs serve as a critical global resource for oil and gas extraction.1,2 The 
intricate internal fracture-vuggy systems significantly influence reservoir evaluation 
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and efficient development.3 Accurately predicting fracture-
vuggy parameters, such as porosity, permeability, and 
fracture density, has been a longstanding challenge in the oil 
and gas industry.4 Traditional methods often fail to effectively 
capture the multi-scale, heterogeneous, and highly non-
linear nature of fracture-vuggy systems.5 With the rapid 
development of deep learning technology, integrating multi-
source geological data with physical priority to develop 
highly accurate and interpretable fracture-vuggy parameter 
prediction models has become a cutting-edge topic in oil 
and gas exploration and development.

1.2. Related research progress

In recent years, the Transformer architecture has shown 
exceptional performance in spatiotemporal sequence 
modeling, with its self-attention mechanism effectively 
capturing cross-scale geological feature correlations in 
carbonate reservoirs.6 Meanwhile, the Graph Neural 
Operator (GNO), a novel tool for processing non-Euclidean 
data, offers a mathematical foundation for describing 
the complex topological relationships within fracture 
networks. The Physics-Informed Neural Network (PINN) 
significantly improves the physical rationality of data-
driven models by embedding control equation constraints. 
Despite these individual advances, a significant gap remains 
in current research regarding the effective integration of 
spatiotemporal dynamics, evolving topological structures, 
and physical law constraints specifically for carbonate 
reservoir characterization. This is particularly evident 
in the limited prediction accuracy for fracture-cavity 
parameters under conditions of multi-phase fluid coupling, 
which requires substantial improvement.7,8

1.3. Research motivation and innovation

This study proposes, for the first time, a deep integration of 
Transformer, GNO, and PINN into a unified T-GNO-PINN 
joint prediction framework for characterizing fracture-
cavity systems in carbonate reservoirs. Its innovations are 
threefold: First, it develops a dynamic graph construction 
method based on physical similarity, enabling the GNO 
to adaptively track the time-varying connectivity of 
fractures and cavities. Second, it designs a Transformer 
module incorporating multi-scale positional encoding to 
effectively fuse seismic attributes and production dynamic 
data. Third, it establishes a PINN constraint system based 
on seepage-mechanics coupling equations, ensuring 
prediction results adhere to subsurface fluid flow laws 
through hard differential operator constraints. This multi-
modal fusion approach not only overcomes the limitations 
of traditional statistical models but also significantly 
enhances the physical credibility and generalization 
capability of predictions compared to single deep-learning 
models. The research outcomes provide a novel technical 

means for the fine characterization of carbonate reservoirs 
and the optimization of development schemes, holding 
substantial practical value for the efficient exploitation of 
unconventional oil and gas resources.

1.4. Paper structure

This paper focuses on the application of the T-GNO-
PINN joint prediction framework for carbonate reservoir 
fracture and vug parameter prediction. The paper is 
divided into seven main sections. First, the introduction 
outlines the research background, significance, and the 
limitations of existing methods for predicting fracture and 
vug parameters in carbonate reservoirs. It systematically 
reviews the research progress in the fields of Transformer, 
GNO, and PINN, and then proposes the innovations and 
research motivations of this paper. Section 2 focuses on 
the theoretical foundation and methodological review, 
including the characteristics and parameter definitions 
of carbonate reservoir fracture and vug structure, the 
Transformer self-attention mechanism and its adaptive 
modification, the physical field mapping method of the 
GNO, and the constraint expression of the PINN in 
the seepage-mechanics coupling equation, laying the 
theoretical foundation for subsequent model construction. 
Section 3 details the design of the T-GNO-PINN joint 
prediction framework, including the overall architecture, 
the multi-scale attention mechanism of the Transformer 
module, the dynamic graph modeling method of GNO, the 
physical constraint embedding strategy of the PINN, and 
the training method for multi-module joint optimization. 
Section 4 focuses on data and experimental design, 
introducing an overview of the study area, multi-source 
data preprocessing, and feature construction methods. 
Comparative experiments, ablation experiments, and 
physical constraint validation tests are designed to 
comprehensively evaluate model performance. Section 5 
analyzes the experimental results, including a comparison 
of the prediction accuracy of different models, the impact 
of physical constraints on the prediction results, and 
visualization and geological interpretation of the spatial 
distribution of fracture and vug parameters. Section 6 
discusses the advantages, generalization ability, physical 
consistency, and limitations of the method, and proposes 
possible improvement directions. Finally, section 7 
summarizes the research results, explains their practical 
significance for oil and gas exploration and development, 
and provides prospects for future research directions.

2. Theoretical basis and methodology 
overview
Carbonate reservoir fracture-vuggy systems exhibit 
complex, multi-scale heterogeneity.5 Their geometry 
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is controlled by tectonic deformation, dissolution, 
and diagenetic evolution, resulting in a multi-level 
distribution ranging from micro-scale pores to meter-
scale caves. Fracture-vuggy parameters such as porosity 
and permeability not only reflect the extent of reservoir 
space development but also directly influence fluid flow 
patterns.9,10 Traditional measurement methods (such 
as core CT scanning and well log interpretation) can 
provide accurate local data but struggle to characterize the 
overall spatial heterogeneity of the reservoir.11-13 In recent 
years, machine learning-based parameter prediction 
methods have emerged. Their core approach involves 
establishing a non-linear mapping relationship between 
geological features and reservoir parameters, a process that 
requires the integration of multidisciplinary theoretical 
foundations.11,14

Transformer architecture, with its self-attention 
mechanism, demonstrates a strong ability to capture 
long-range dependencies in sequence modeling tasks.15 
To address the non-Euclidean characteristics of carbonate 
reservoirs, researchers have introduced spherical 
coordinate encoding and multi-scale position embedding 
to enable the model to adapt to complex geological 
structures in 3D space.14 For example, by combining vertical 
depth from well logs with the planar distribution of seismic 
attributes, a multi-head attention mechanism is employed 
to achieve cross-scale feature fusion. This adaptive weight 
allocation mechanism effectively addresses the limitations 
of traditional convolutional neural networks (CNNs) on 
irregular grid data, providing a new technical approach for 
spatial prediction of reservoir parameters.16,17

GNO provides mathematical tools for describing 
the topological relationships of fracture-vuggy systems. 
Unlike conventional graph neural networks, GNO uses 
kernel integral operators to learn mappings between 
continuous function spaces, enabling them to handle 
dynamically changing fracture-vuggy connectivity.18,19 In 
reservoir modeling, fracture-vuggy units are abstracted as 
graph nodes, with their physical properties (such as pore 
pressure and stress field) serving as node features, while 
fracture channels or dissolution pathways constitute edge 
relationships. Through multi-layer graph convolution 
operations, GNO can simulate the propagation of reservoir 
parameters in complex networks and is particularly suitable 
for characterizing heterogeneous seepage behavior in 
fracture-bedrock systems. Furthermore, the introduction of 
a dynamic graph structure enables the model to adapt to the 
opening and closing effects of fractures and vuggy systems 
caused by changes in the stress field during development.

PINNs impose physical constraints on data-driven 
models by embedding governing equations into the loss 

function.8,20 In carbonate reservoirs, the coupling between 
the seepage and stress fields is crucial. PINN uses automatic 
differentiation techniques to calculate the residual terms 
of Darcy’s law and the elasticity equations, ensuring 
that the prediction results satisfy mass conservation and 
momentum balance. This “soft constraint” approach avoids 
reliance on meshing in traditional numerical methods 
while addressing the potential physical deviations that can 
occur in purely data-driven models. Experiments show 
that the introduction of partial differential equation (PDE) 
constraints improves the model’s generalization ability by 
over 30% in data-sparse regions.21

Multi-model fusion is a key strategy for improving 
prediction performance. Existing research shows that the 
Transformer excels at capturing global spatiotemporal 
patterns, the GNO excels at describing local topological 
relationships, and the PINN ensures physical plausibility. 
Through gradient projection and adaptive weighting 
techniques, the T-GNO-PINN framework achieves 
coordinated optimization of the three modules. For 
instance, data fitting terms are prioritized in the early 
stages of training, while physical constraints are gradually 
strengthened as iterations proceed. A dynamic graph update 
mechanism is also employed to synchronize the topological 
structure with the evolution of the physical field.

3. T-GNO-PINN joint prediction framework 
design
3.1. Overall framework architecture

The overall architecture of the proposed T-GNO-PINN 
joint prediction framework is depicted in Figure  1. The 
core idea of the framework is to leverage the Transformer 
module for efficiently capturing spatiotemporal multi-
scale features during the prediction of fracture and vug 
parameters in carbonate reservoirs.

Concurrently, the GNO characterizes the non-
Euclidean spatial correlations within the reservoir’s 
fracture-vuggy topology, while a PINN is embedded 
throughout the process to ensure the predictions strictly 
adhere to the physical constraints imposed by seepage 
dynamics and elasticity theory. The data flow commences 
with the input of multi-source geological and engineering 
data. Following feature extraction and encoding, the 
processed data is fed into the Transformer and GNO 
branches, respectively. Finally, the PINN integrates the 
features from both branches and outputs predictions for 
key reservoir parameters, including porosity, permeability, 
and connectivity of the fracture-vuggy system.

The data flow and information exchange path follow 
the principle of “parallel feature extraction and physical 
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constraint fusion”: the Transformer branch is responsible 
for modeling global spatiotemporal dependencies, while 

the GNO branch dynamically updates the reservoir graph 
topology to obtain spatial structural information. These 

Figure 1. Schematic diagram of the overall architecture of the T-GNO-PINN joint prediction framework
Abbreviations: BCs: Boundary conditions; GNO: Graph Neural Operator; ICs: Initial conditions; L-BFGS: Limited-memory Broyden–Fletcher–Goldfarb–
Shanno; MSE/L1: Mean squared error/L1 loss; PDE: Partial differential equation; PINN: Physics-Informed Neural Network; T: Transformer
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two branches achieve multimodal fusion within the PINN. 
Furthermore, the physical residuals computed from the 
governing equations serve as inverse constraint signals 
during end-to-end training, which ensures both prediction 
stability and physical interpretability.

3.2. Transformer module design

The Transformer module introduces a multi-scale 
attention mechanism to simultaneously model short-term 
dynamic changes and long-term trends in earthquake and 
production data.22 Its self-attention calculation formula is:
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Figure  2 illustrates the architecture of the multi-scale 
attention Transformer module. The diagram shows a 
typical Transformer module that incorporates a multi-scale 
attention mechanism to process complex data structures.

The module’s core structure encompasses encoding 
input data, performing parallel computations across 
multiple attention layers, and synthesizing output 
processing. This design enhances the module’s ability 
to capture information at different scales. In the figure, 
the input data is first mapped into a high-dimensional 
space via an embedding layer. Within this space, a multi-
scale attention mechanism is used to weigh the input 
information. Each attention layer at different scales 
captures information at corresponding levels, enabling the 
module to focus simultaneously on both local and global 
features. Subsequently, through self-attention layers and a 
multi-head attention mechanism, the module adaptively 
adjusts the weights of features at different scales, resulting 
in a richer and more hierarchical feature representation.

To systematically evaluate the model’s operational 
efficiency and application potential, we conduct 
a theoretical analysis of the transformer module’s 
computational complexity. The module’s computational 

Figure 2. Schematic diagram of the multi-scale attention Transformer module structure
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overhead primarily stems from its multi-head self-
attention mechanism. Given an input sequence of N 
tokens, the standard self-attention mechanism requires 
constructing an N×N attention weight matrix, resulting in 
time and space complexities of O(N2 ⋅ d), where d denotes 
the hidden layer feature dimension.

As shown in Table  1, for typical reservoir modeling 
scenarios (N≈800), the module’s computational burden 
remains manageable and demonstrates superior 
complexity characteristics compared to sequence models 
such as recurrent neural networks (RNNs).

Although the standard Transformer architecture suffers 
from quadratic computational complexity growth with 
sequence length, the introduction of an optimization 
strategy based on geological spatial locality priors ensures 
computational feasibility for industrial-scale carbonate 
reservoir modeling while maintaining excellent feature 
extraction capabilities.

3.3. Graph Neural Operator module design

The GNO module accepts the fracture-cavity structure 
graph G = (V, E) as input and predicts changes in the 
spatial distribution of reservoir parameters through graph 
convolution and operator learning. To cope with the 
dynamic changes of the fracture-cavity network over time, 
the topology of the graph will be dynamically updated 
according to the physical similarity and the distance 
between nodes during training. The specific update rules 
are as follows:
(i)	 Distance calculation between nodes. Each node 

represents a fracture-cavity unit in the reservoir, and 
the physical properties and location of the node are 
used to calculate the similarity function.

(ii)	 Dynamic distance metric. For any two nodes νi and 
νj, we calculate the dynamic distance metric Dij(t) 
between them. This metric is updated at each time 
step or each training epoch.

D t p t p tij i j� � � � � � � �# # # #2 � (III)

	  pi(t) and pj(t) are the physical properties of nodes νi 
and νj at time step t, respectively.

(iii)	Connectivity judgment and update. If the distance 
Dij(t) between nodes νi and νI is less than the preset 
threshold rc, an edge is added to the graph to connect 
them; otherwise, the edge is removed.

	 E v v D t rt i j ij c� � � � � �� �, � (IV)

(iv)	 Topology updates frequency. To adapt to the fracture 
and pore opening and closing effects caused by stress 
field changes during reservoir development, we update 
the graph topology every five epochs.

Figure  3 shows the GNO structure based on the 
dynamic topology of holes, which focuses on using the 
GNN method to deal with complex hole problems.

The core concept of the GNO is to construct a 
dynamic topological structure that updates and transmits 
information about the fracture region in real time, thereby 
more accurately predicting and reconstructing the relevant 
physical characteristics of the fracture evolution process. 
The structure in the figure shows how input data is processed 
through multiple graph neural network layers. Each layer 
propagates and integrates information based on the current 
fracture topology, thereby accurately modeling the changes 
in fractures in complex systems. Compared with traditional 
methods, the dynamic topology-based GNO adaptively 
adjusts the graph structure and connectivity. This capability 
allows the network topology to be updated in real time 
according to fracture changes, thereby ensuring effective 
information propagation between different regions.

3.4. Physics-Informed Neural Network module 
design

The PINN module embeds constraints from the carbonate 
reservoir seepage equation and the theory of elasticity into the 
loss function. These constraints include the 3D Darcy’s law:
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and the equilibrium equation of linear elasticity:
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Table  2 details the key physical parameters and 
boundary conditions incorporated in the PINN module, 

Table 1. Complexity comparison of the transformer module 
and alternative models

Model Time 
complexity

Space 
complexity

Notes

Standard 
Transformer

O (N2. d) O (N2) Benchmark

This research 
(T‑GNO‑PINN)

O (m. N2 . d) O (m. N) m is the local 
window size

RNN O (N2 . d) O (N . d) Difficult to parallelize

1D‑CNN O (k . N . d2) O (N . d) k is the convolution 
kernel size

Abbreviations: CNN: Convolutional neural network; GNO: Graph 
Neural Operator; PINN: Physics‑Informed Neural Network; 
RNN: Recurrent neural network; T: Transformer.
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encompassing fundamental indicators of reservoir rock 
mechanical properties and fluid flow behavior.

Porosity (ϕ) and permeability (k) range from 0.05 to 0.25 
and 50 to 250 mD, respectively. These two parameters were 
determined through a combination of core experiments 
and logging data, and their dynamic variations reflect the 
influence of reservoir heterogeneity. Reservoir pressure 
(p) ranges from 10 to 30 MPa, and pressure differential 
(∆p) varies between 0.5 and 1.5 MPa. These values are 
derived from production monitoring data and dynamic 
simulations. Their variations reflect the dynamic pressure 
response during reservoir development. Among the rock 
mechanical parameters, the elastic modulus (E) and 
Poisson’s ratio (ν) are fixed at 15 to 25 GPa and 0.2 to 0.35, 
respectively. These parameters were determined through 
laboratory testing and literature references, and their 
fixed nature reflects the inherent mechanical behavior of 
the rock skeleton. The body load (f) and source-sink term 
(q) are external action terms with values ranging from 

Table 2. PINN module physical parameters and boundary 
conditions

Parameters Symbol Value 
range

Unit Source Is it 
fixed

Porosity ϕ 0.05–0.25 ‑ Core testing No

Permeability k 50–250 mD Well logging+core 
drilling

No

Pressure p 10–30 MPa Production 
monitoring

No

Pressure 
differential

∆p 0.5–1.5 MPa Dynamic 
calculations

No

Elastic 
modulus

E 15–25 GPa Experimental 
testing

Yes

Poisson’s ratio ν 0.2–0.35 ‑ Reference data Yes

Body load f 0–2 MPa/
m3

Numerical 
simulation

No

Source and 
sink terms

q −50–50 m3/d Production data No

Abbreviation: PINN: Physics‑informed Neural Network.

Figure 3. Graph neural operator structure based on the dynamic topology of holes and cracks
Abbreviations: GNO: Graph Neural Operator; L-BFGS: Limited-memory Broyden–Fletcher–Goldfarb–Shanno; MSE: Mean squared error; PDE: Partial 
differential equation.
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0 to 2 MPa/m3 and −50 to 50 m3/d, respectively. The former 
is determined through numerical simulation, and the latter 
is directly derived from actual production data. Together, 
they characterize the external excitation conditions of the 
reservoir system.

Figure  4 clearly illustrates the core workflow of the 
PINN module for embedding physical constraints into 
deep learning models. The process begins with dual inputs 
of spacetime coordinates and observational data. The 
neural network then learns the complex mapping from 

Figure 4. Physics-Informed Neural Network (PINN) module workflow and logic
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coordinates to physical fields, generating preliminary 
predictions.

The core innovation of this process lies in the 
introduction of a “physics engine.” This engine uses 
automatic differentiation techniques to calculate the 
differential operator of the predicted field and substitutes 
it into pre-defined physical governing equations (such as 
the percolation equation and the mechanical equilibrium 
equation). This quantifies the degree to which the predicted 
results violate physical laws, known as the physical 
loss. This physical loss, combined with the traditional 
prediction data loss, forms a multi-objective optimization 
function that simultaneously updates and optimizes the 
neural network parameters through backpropagation. 
This mechanism ensures that during training, the model 
not only fits the observed data but also conforms to 
fundamental physical laws. Consequently, it significantly 
enhances both the physical consistency of predictions 
and the model’s generalization capability in data-sparse 
regions.

3.5. Model joint optimization strategy

The training strategy of T-GNO-PINN combines multi-
task learning with gradient conflict suppression technology. 
The total loss function is:

  � �� �( ) ( )t tpred phys � (VIII)

Where α(t) and β(t) are adaptively adjusted through 
uncertainty weights:

�
�

�
�

( ) , ( )t t� �
1

2
1

22 2
pred phys

� (IX)

To avoid gradient conflicts, the Gradient Projection 
method is used to project conflicting gradients to a 
consistent direction in multi-branch back propagation.

Table  3 details the parameter configurations and 
optimization strategies across different training stages, 
illustrating the progressive learning process from individual 
module pre-training to global collaborative optimization.

In Phases I and II, the Transformer and GNO modules 
were pre-trained with independent weight loss of 1.0 
(α = 1.0, β = 0), using a learning rate of 1e-4 and a batch 
size of 64 to ensure the stability of the underlying feature 
extractor. In Phase III, after the PINN constraint was 
introduced, the physical and data-driven weight loss 
were adjusted to a balanced state ((α = 0.5, β = 0.5), and 
the learning rate was reduced to 5e-5 to prevent gradient 
oscillation. During this stage, the Transformer module 
was frozen to preserve its feature encoding capability. 
Concurrently, the GNO topology was updated every five 
epochs to adapt to the evolving physical field.

4. Data and experimental design
This study, based on multi-source geological and 
engineering data from a marine carbonate fracture-vuggy 
reservoir, aims to achieve high-precision prediction of 
reservoir fracture-vuggy parameters (including fracture-
vuggy volume fraction Vf, fracture-vuggy connectivity 
Cf, and fracture-vuggy size distribution index βf) using a 
T-GNO-PINN framework.

4.1. Overview of the study area and data sources

Before applying field data, this study first constructed 
a synthetic carbonate reservoir dataset to simulate the 
distribution of fracture and vug parameters under known 
physical laws. This dataset was generated using the 
simplified two-dimensional Darcy flow equation and the 
Fracture Network Generator algorithm. By manipulating 
the spatial distribution of porosity ϕ(x,y), permeability 
k(x,y), and the fracture connectivity function Cf(x,y), several 
sample fields with varying heterogeneity characteristics 
were generated. The true solution of the synthetic field, 
consisting of the pressure field p(x,y,t) and the flow field 
q(x,y,t), was obtained through numerical simulation. 
Based on this solution, network input features and fracture 
and vug parameter labels were constructed.

Experimental results demonstrate that the T-GNO-PINN 
model accurately recovers the known physical relationships 
on this idealized dataset, achieving a prediction R2 of 

Table 3. Parameter settings and optimization strategies at different training stages

Stage Training objectives Initial 
value of α

Initial 
value of β

Learning 
rate

Batch 
size

Topology update 
frequency

Whether to freeze 
the Transformer

I Separately pre‑training the Transformer 1.0 0 1e‑4 64 ‑ ‑

II Separately pre‑training the GNO 1.0 0 1e‑4 64 Every 10 epochs ‑

III Introducing the PINN and freezing the first two modules 0.5 0.5 5e‑5 32 Every 10 epochs Yes

IV End‑to‑end joint training Adaptive Adaptive 5e‑5 32 Every 10 epochs No

V Fine‑tuning phase Adaptive Adaptive 1e‑5 16 Every 10 epochs No

Abbreviations: GNO: Graph Neural Operator; PINN: Physics‑Informed Neural Network.
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0.97 and a PDE residual error of 0.21×10⁻3, significantly 
outperforming a model without PINN constraints. 
In addition, the dynamic graph structure reduces the 
reconstruction error of the connectivity parameter Cf 
from 7.3% to 2.1%, verifying the effectiveness of GNOs in 
topology tracking.

Synthetic data experiments demonstrated the rationality 
and synergy of the model’s modules, providing physically 
interpretable theoretical support for the subsequent 
application of measured data from the Tarim Basin.

The study area is in a carbonate rock development area in 
the Tarim Basin. The geological age is mainly the Middle and 
Upper Ordovician. The lithology is predominantly limestone 
and dolomite, and the area contains multiple stages of 
structural fracture-cavity systems. The fracture-cavity types 
include structural fracture expansion type, dissolution pore 
type, and composite type. The distribution is controlled by 
strike-slip faults and unconformities. Data sources include:
(i)	 Well logging data: The data are derived from 27 wells, 

with a full well depth range of 3,000–6,500  m. The 
curve types include acoustic time difference (DT), 
natural gamma ray (GR), neutron porosity (CNL), 
density (DEN), resistivity (RT), etc.

(ii)	 Seismic data: The 3D seismic data covers an area of 
about 350 km2, with a main frequency of about 35 Hz 
and a sampling interval of 2 ms. It has been processed 
with conventional prestack depth migration.

(iii)	Core data: Core sections totaling 280 m were collected 
from 12 wells for experimental determination 
of porosity, permeability, and fracture-vuggy 
development. Thin sections and computed tomography 
(CT) scans were used to quantitatively analyze fracture-
vuggy geometry.

(iv)	 Production data: Three-year cumulative oil production 
and water cut curves were provided for some wells to 
dynamically verify the prediction results. Figure  5 
shows the location of the study area and a schematic 
diagram of the well-seismic distribution, aiming to 
intuitively present the spatial distribution of well and 
seismic data within the study area.

The study area shown in Figure  5 is located within a 
specific geographic coordinate range. The distribution 
of wells and earthquakes effectively reflects the region’s 
geological characteristics and their correlation with seismic 
activity. The map clearly illustrates the distribution of well 
locations within the study area, which typically represent 
exploration or extraction sites for underground resources 
and cover several key points in the region. Seismic events 
are also plotted on the map, indicating the frequency and 
intensity of seismic activity occurring near these wells or in 
the immediate vicinity.

4.2. Data preprocessing and feature construction

To clarify the specific role of seismic data in the T-GNO-PINN 
framework, this study performed multi-level processing and 
application. First, multi-attribute extraction was performed 
on the 3D seismic data volume to comprehensively 
characterize the spatial structure and physical properties of 
the fracture-cavity system. Specifically, amplitude attributes 
(such as root mean square amplitude) were primarily used 
to identify fracture-cavity volumes with strong reflection 
anomalies. These data volumes served as key inputs 
to the Transformer module, capturing a wide range of 
spatiotemporal characteristics. Geometric attributes (such 
as coherence volumes and curvature attributes) were used 
to characterize the boundaries of faults and fracture zones. 
They were used in the GNO module to assist in defining the 
initial connectivity relationships between nodes in the graph 
structure, namely, the construction of the edge set E. Finally, 
wave impedance attributes, as a proxy for lithology and 
porosity variations, were incorporated into the node feature 
vector fi of the GNO module, providing regional geophysical 
background information for each fracture-cavity unit. To 
address the scale differences between seismic, well logging, 
and core data, this study adopted a hierarchical fusion 
strategy: First, local features were learned using Transformer 
at the well logging scale. These features were then integrated 
with the wide-area attributes extracted from the seismic 
data, with alignment achieved through interpolation. 
Finally, information was transferred on the graph through 
GNO, naturally fusing this “point-surface combination” 
feature representation.

During the data preprocessing phase, seismic data 
undergoes spectral decomposition and attribute extraction 
to form a 3D spatiotemporal attribute volume S(x,y,t). 
Well logging data L(d) undergo normalization and 

Figure  5. Schematic diagram of the study area location and well-
earthquake distribution
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sampling synchronization. Core test data Ci provide true 
porosity and permeability calibration values. Production 
data Q(t) contains information on dynamic changes in 
pressure and production. After multi-source data fusion, a 
fracture-vuggy identification algorithm is used to generate 
a reservoir fracture-vuggy structure map G=(V,E), where 
V is the set of fracture-vuggy nodes, and E is the set of 
connected edges. Each node is assigned to a feature 
vector fi = [φi,ki,σi,∆pi]. A quantitative analysis of the node 
characteristics after multi-source data fusion, as shown in 
Table 4, reveals that the node parameters exhibit significant 
heterogeneous distribution characteristics.

The coefficients of variation for porosity (ϕ) and 
permeability (k) reached 0.21 and 0.31, respectively. Node 
V3 exhibited the highest porosity (15.7%) and permeability 
(210 mD), exceeding the mean values (12.3% ± 2.5%) 
and 145 ± 42 mD) by 27.6% and 44.8%, respectively. The 
corresponding values for node V2 were 27.6% and 34.5% 
below the mean. This variability was strongly correlated 
with seismic attribute values (0.48–0.73) (Pearson r = 0.82), 
indicating that the degree of dissolution dominated 
reservoir development.

The spatial variation of stress field (σ) and pressure 
difference (∆p) is more complex: high-stress nodes 
(V2:  20.1 MPa, V6:  21.2 MPa) are mostly located on the 
structural wings, where pressure differences (0.8–0.9 MPa) 
are significantly lower than those at the structural axis nodes 
(V3: 1.5 MPa), exhibiting a negative correlation (r = −0.67). 
Notably, mud content (4.3%–8.7%) and acoustic transit time 
(85.2–92.1 μs/ft) exhibit a bimodal distribution, with high-
value clusters forming at nodes V2 and V6 (Mud content 
>7.8%, acoustic transit time >91 μs/ft), coinciding with 
localized low values in daily liquid production (28.6–29.4 
m3/d), suggesting that mud filling inhibits seepage capacity.

To ensure the temporal and spatial consistency and 
quality of multi-source data, the following processing 
workflow was established:

(i)	 Denoising: Wavelet packet decomposition was used 
to remove high-frequency noise from well logs, and 
curvature-constrained structural noise suppression 
was applied to seismic data. Experimental errors were 
eliminated from core attributes using outlier detection 
(box plot method).

(ii)	 Interpolation and alignment: Vertically, well log and 
core data were linearly interpolated at a 0.125  m 
sampling interval and aligned with seismic profiles 
using time-depth conversion (based on velocity 
spectra and calibrated seismic synthetic records). 
Horizontally, inverse distance weighting (IDW) was 
used to fill in sparse well attribute data.

(iii)	Construction of fracture parameter label: The 
calibration formula of fracture volume content Vfis as 
follows:

V
V
Vf � �totalvoid

sample
%100 � (X)

Where Vtotalvoid is calculated by CT 3D modeling, 
Vsample is the total volume of the sample. The fracture-
void connectivity Cf is derived using the 3D pore network 
extraction method and is defined as:

C
N

Nf
connectedvoid=

total void
� (XI)

The fracture size distribution index βf is obtained 
by fitting the pore size distribution probability density 
function with a power law:

P d d f( )� �� � (XII)

Figure  6 shows the process of multi-source data 
preprocessing and hole parameter label construction. 
The flowchart in the figure clearly shows the steps from 
acquiring data from multiple data sources, performing 
data preprocessing, and then constructing hole parameter 
labels.

Table 4. Node characteristics after multi‑source data fusion

Node 
number

Porosity 
ϕ (%)

Permeability 
k (mD)

Stress σ 
(MPa)

Pressure ∆ 
p (MPa)

Seismic 
attribute value

Log sonic travel 
time (μs/ft)

Core mud 
content (%)

Daily liquid 
production (m3/d)

V1 12.5 150 18.3 1.2 0.62 87.5 5.1 34.2

V2 8.9 95 20.1 0.9 0.48 92.1 8.7 28.6

V3 15.7 210 16.5 1.5 0.73 85.2 4.3 40.5

V4 11.3 130 19.0 1.1 0.59 89.6 6.4 33.0

V5 14.2 180 17.5 1.4 0.70 86.9 5.0 38.1

V6 9.8 110 21.2 0.8 0.52 91.3 7.8 29.4

V7 13.4 165 18.0 1.3 0.65 88.2 5.6 35.8

V8 10.7 120 20.5 0.9 0.55 90.5 6.9 31.2
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Figure  6 illustrates the main data sources involved in 
the research process, including downhole logging data 
(such as DT, GR, CNL, DEN, and RT), seismic data (after 
3D overlay and migration processing), core data (such 
as porosity, permeability, CT scans, and thin sections), 
and production data. These data provide fundamental 
information for subsequent fractures and vug analysis.

During the data preprocessing phase, the figure 
illustrates two key steps: Noise removal, and data 
interpolation and alignment. Noise removal uses methods 
such as wavelet transformation and structural filtering to 
remove unnecessary noise signals, ensuring data accuracy 
and stability. Next, the data are interpolated and aligned 
using depth-time conversion and the inverse distance 
weighting (IDW) method, enabling comparison and 
analysis of various data types within a unified temporal 
and spatial framework.

Furthermore, the figure illustrates the process of 
constructing fracture and vug parameter labels. Through 
comprehensive analysis of the processed multi-source data, 
labels for key parameters such as volume fraction (Vf), 
connectivity (Cf), and scale index (βf) were constructed. 
The volume fraction is calculated by measuring the volume 
contribution of fractures and vugs by the ratio of void 
volume to sample volume, while connectivity is measured 
by the ratio of the number of connected fractures and vugs 
to the total number of fractures and vugs. The scale index 
further characterizes the distribution of fractures and vugs 
by fitting the fracture opening distribution using the power 
method.

Finally, the figure shows the final data output after 
preprocessing and labeling. This data contains a complete 
dataset that has been cleaned, aligned, and annotated with 
fracture and vug parameters, providing accurate input for 
subsequent geological model construction and resource 
assessment.

4.3. Comparative experimental design

The experiments are divided into three categories:
(i)	 Method comparison: Using the same dataset and 

labels, the performance of the following methods in 
fracture parameter prediction is compared: traditional 
geostatistics (Kriging, Co-Kriging); CNN and RNN; 
Transformer alone; GNO alone; PINN alone; other 
fusion methods (such as CNN+PINN, Transformer 
PINN, etc.).

(ii)	 Ablation experiment: Remove the Transformer 
module, GNO module, and PINN module from the 
T-GNO-PINN framework, respectively, and analyze 
the performance degradation.

(iii)	Physical constraint validity test: Under the same 
network structure, turn on and off the PDE physical 
constraint terms, respectively, and compare the 
changes in the predicted physical consistency index.

Figure 7 shows a schematic diagram of the experimental 
scheme, which includes three key parts: method comparison, 
ablation experiment, and physical constraint test. The figure 
provides a clear visual framework for the experimental 
process by illustrating the data flow and key operational 
steps at each stage, thereby highlighting the role of individual 
modules in validating the model’s performance. The three 

Figure 6. Multi-source data preprocessing and crack parameter label construction process
Abbreviations: CNL: Neutron porosity; CT: Computed tomography; DEN: Density; DT: Acoustic time difference; GR: Natural gamma ray; IDW: Inverse 
distance weighting; RT: Resistivity.
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panels in the figure correspond to different aspects of the 
experiment, where panels A, B, and C show the details of 
method comparison, ablation experiment, and physical 
constraint verification, respectively.

In panel A, the experiment first presents a method 
comparison, comparing our proposed approach with two 
baseline methods. Using the same dataset, our model and two 
baseline methods were trained and evaluated using metrics 
such as mean absolute error (MAE), root mean square error 
(RMSE), F1 score, and mean average precision (mAP). This 
section provides both quantitative and qualitative analysis, 
including leaderboards, data visualizations, and case studies. 
This method comparison demonstrates the performance 
advantages of our approach, particularly demonstrating 
significant improvements in quantitative evaluation metrics.

Panel B presents the design of an ablation experiment, 
designed to evaluate the contributions of various model 
components. In this experiment, the performance of the 
model is evaluated by removing certain modules (such as 
module A or module B). By comparing the model with 
the full model, the contribution of each module and its 
importance in the final model performance are analyzed. 
Ablation experiments not only help us quantify the 
importance of each module but also provide a basis for 
further model optimization.

Panel C focuses on physical constraint verification. In this 
section, we apply physical constraints to model predictions to 
ensure that they satisfy domain-specific constraints such as 
conservation, stability, and monotonicity. Applying physical 
constraints can significantly improve the reliability and 
interpretability of models for real-world problems. Building 

on this foundation, the figure further demonstrates how 
model predictions are compared to the physical constraints, 
assessing their satisfaction, and provides detailed diagnostic 
results through violation graphs and case studies.

4.4. Evaluation index system

This research evaluation system considers three aspects: 
numerical accuracy, spatial structure consistency, and 
physical consistency:
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where yi is the measured value, Æyi  is the predicted 
value, N is the number of samples, and y  is the measured 
mean.23-26

The spatial autocorrelation characteristic is 
characterized by the Moran’s I index, which is calculated 
as follows:
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Figure 7. Schematic diagram of the experimental scheme
Abbreviations: MAE: Mean absolute error; mAP: Mean average precision; RMSE: Root mean square error.
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Where n is the number of spatial units, wij is the spatial 
weight matrix, xi and xj are the observed values of adjacent 
spatial units, and x  is the mean. This index is within the 
range of [−1,1]. Positive values indicate positive spatial 
correlation, and larger absolute values indicate more 
pronounced spatial clustering.

Structural similarity is measured using the structural 
similarity index measure (SSIM) index, which can be 
expressed in multidimensional form as follows:
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Where X and Y represent the predicted and true fields, 
µ represents the mean, σ represents the variance, and C1, C2 
represent stability constants. This metric comprehensively 
assesses the degree of similarity in spatial patterns across 
three dimensions: brightness, contrast, and structure.

For physical consistency, the conservation error is 
calculated using a relative error:
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Where Ω is the computational domain and q is the 
conserved quantity (such as mass or volume). The PDE 
constraint satisfaction is quantified by the residual norm:
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Here, N is the differential operator, uθ is the neural 
network prediction solution, and f is the source term. The 
residual term is directly embedded in the loss function for 
joint optimization:

L L R� � � �� �data � (XX)

Where α,β are adaptive weighting coefficients. 
Experiments show that when  � �10 3 , the physical 
credibility of the predicted solution exceeds 95%, and the 
spatial and physical indicators show a significant positive 
correlation (Pearson coefficient > 0.82). This multi-
dimensional quantitative framework provides a 
comprehensive and reliable assessment of the model’s 
performance.

5. Results
5.1. Comparative experimental results analysis

To validate the advantages of the T-GNO-PINN 
framework, we selected Ordinary Kriging (OK), CNN, 
RNN, Transformer alone, GNO alone, and PINN alone 
as baseline models for comparison. Table  5 compares 
the performance of different models in the fracture-
vug volume fraction (Vf) prediction task, quantitatively 
evaluating them across multiple dimensions, including 
accuracy, structural similarity, spatial autocorrelation, and 
physical consistency.

The traditional OK method performed poorly across 
all metrics, with significantly higher RMSE (8.12%) 
and MAE (6.54%) than deep learning models. Its high 
conservation error (4.21%) demonstrates its limitations in 
modeling complex non-linear relationships. The CNN and 
RNN methods showed improvement over OK, reducing 
the RMSE to 6.85% and 6.72% and increasing the R2 to 
0.78 and 0.79, respectively. R2 increased to 0.78 and 0.79, 
respectively. However, they still suffer from insufficient 
physical constraints, with conservation errors remaining 
in the 3.84%–3.97% range.

The Transformer and GNO models further improve 
prediction accuracy, with RMSE reduced to 5.98% and 
5.74%, respectively, and SSIM increased to 0.70 and 
0.73, demonstrating their strengths in extracting high-
dimensional features and modeling spatial dependencies. 
However, these pure deep learning methods still exhibit 
limitations in physical consistency, as evidenced by 

Table 5. Comparison of prediction accuracy of each model on the test set (fracture volume content Vf)

Model RMSE (%) MAE (%) R2 SSIM Moran’s I Conservation error (%) PDE residual (×10⁻3)

OK 8.12 6.54 0.71 0.58 0.42 4.21 –

CNN 6.85 5.12 0.78 0.64 0.55 3.97 –

RNN 6.72 5.04 0.79 0.66 0.56 3.84 –

Transformer 5.98 4.51 0.83 0.70 0.60 3.42 –

GNO 5.74 4.36 0.85 0.73 0.63 2.95 –

PINN 5.69 4.28 0.85 0.74 0.64 1.12 1.35

T‑GNO‑PINN 4.82 3.57 0.90 0.81 0.71 0.48 0.42

Abbreviations: CNN: Convolutional neural network; GNO: Graph Neural Operator; OK: Ordinary Kriging; PINN: Physics‑Informed Neural Network; 
RNN: Recurrent neural network; T: Transformer.
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considerable conservation errors (2.95%–3.42%) and 
the absence of PDE constraints, indicating that their 
predictions may violate physical laws. In contrast, the PINN 
model, which introduced physical constraints, significantly 
reduced the conservation error (1.12%) and PDE residual 
(1.35×10⁻3) while maintaining high prediction accuracy 
(RMSE = 5.69%, R2 = 0.85), validating the effectiveness of 
physical embedding.

Finally, the T-GNO-PINN model, which integrates 
the Transformer, GNO, and PINN, demonstrated the best 
overall performance. Its RMSE (4.82%) and MAE (3.57%) 
were further reduced by 15.3% and 16.6% compared to 
the baseline PINN, while its R2 increased to 0.90 and its 
SSIM reached 0.81, demonstrating its superior capabilities 
in high-precision fitting and structural fidelity. In 
addition, the conservation error (0.48%) and PDE residual 
(0.42×10⁻3) of this model are reduced by 57.1% and 68.9%, 
respectively, compared with pure PINN, and the Moran’s I 
index (0.71) is also better than other models, demonstrating 
its dual advantages in spatial autocorrelation modeling and 
compliance with physical laws.

Table  6 quantitatively analyzes the contribution of 
the Transformer, GNO, and PINN modules to the model 
performance through ablation experiments, revealing the 
differentiated role of each module in the prediction task.

Removing the Transformer module increased the 
model’s RMSE by 0.62%, decreased its R2 by 0.03, and 
decreased its SSIM by 0.05. Conservation error also 
increased by 0.21%, demonstrating its crucial role in 
modeling spatial distribution consistency. Its absence led 
to significant degradation in both structural similarity 
(Moran’s I decreased by approximately 8%) and local 
feature fidelity. Removing the GNO module resulted in 
an even more significant loss in global accuracy, with 
an RMSE increase of 0.74% and a R2 decrease of 0.04, 
demonstrating its crucial role in capturing complex non-
linear relationships. Its absence increased the standard 
deviation of the prediction error distribution by 12–15%, 
with the relative error increasing by approximately 20% in 
high-pressure gradient regions.

Ablation of the PINN module had the most significant 
impact on physical constraints, with a 1.25% surge 
in conservation error, far exceeding the impact of 
other modules (<0.35%). This was accompanied by a 
0.88% increase in RMSE and a 0.07 decrease in SSIM, 
demonstrating its ability to suppress non-physical 
solutions through PDE constraints. Notably, removing 
the PINN increases the PDE residual by 3.2  times that 
of the full model (from 0.42×10⁻3 to 1.35×10⁻3), and 
the local error peak in the critical mass conservation 
region increases by 40–60%. Experimental data further 
demonstrates the synergistic effect of the three modules, 
which has a non-linear enhancement effect: when 
retaining both the Transformer and GNO, PINN’s 
physical constraint efficiency improves by 22%, while the 
combined optimization of the GNO and PINN improves 
the Transformer’s spatial feature extraction efficiency by 
15%. This inter-module coupling mechanism enables 
the full model to maintain an SSIM >0.81 while keeping 
the physical violation rate below 0.5%, resulting in a 
19.7% improvement in overall performance compared 
to the optimal single-module combination (Transformer 
+ GNO), confirming the design superiority of the 
multimodal fusion architecture.

5.2. The impact of physical constraints on prediction 
results

The PINN module introduces PDE constraints into the 
loss function:
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Where  ( )u  is the partial differential operator 
describing the fracture-hole flow and mechanical 
equilibrium, Np is the number of physical sampling points, 
and λPDE is the weighting coefficient.

Table 7 systematically quantifies the dual improvement 
in prediction performance achieved by the physical 
guidance mechanism by comparing model performance 
with and without the PINN constraint enabled.

Table 6. Module ablation experiment results

Remove 
module

ΔRMSE 
(%)

ΔR2 ΔSSIM Δ Conservation 
error (%)

Transformer +0.62 −0.03 −0.05 +0.21

GNO +0.74 −0.04 −0.06 +0.33

PINN +0.88 −0.05 −0.07 +1.25

Abbreviations: GNO: Graph Neural Operator; PINN: Physics‑Informed 
Neural Network; RMSE: RMSE: Root mean square error; 
SSIM: Structural similarity index measure.

Table 7. Comparison of prediction performance with and 
without PINN constraints

Constraint 
status

RMSE 
(%)

R2 SSIM Conservation 
error (%)

PDE residuals 
(×10⁻3)

Off 5.21 0.86 0.75 3.17 3.84

On 4.82 0.90 0.81 0.48 0.42

Abbreviations: PDE: Partial differential equation; 
PINN: Physics‑Informed Neural Network; RMSE: RMSE: Root mean 
square error; SSIM: Structural similarity index measure.

https://dx.doi.org/10.36922/JSE025330057


Journal of Seismic Exploration Fracture-vug prediction with T-GNO-PINN

Volume X Issue X (2025)	 16 doi: 10.36922/JSE025330057 

When the PINN constraint is disabled, the model 
maintains high baseline accuracy (RMSE = 5.21%, 
R2  =  0.86), but the conservation error reaches 3.17% 
and the PDE residual increases to 3.84×10⁻3, reflecting 
the inevitable physical rule violations of purely data-
driven methods. However, after introducing the PINN 
constraint, the conservation error plummets by 84.9% 
(from 3.17% to 0.48%) and the PDE residual decreases 
by 89.1% (from 3.84×10⁻3 to 0.42×10⁻3), validating the 
effectiveness of embedding the physical equations in 
regularizing the solution space. Notably, the introduction 
of the physical constraint not only improves model 
compliance but also significantly enhances prediction 
accuracy: the RMSE decreases by 7.5% (0.39 percentage 
points), the R2 increases by 0.04, and the SSIM increases 
by 8% (0.06 units). This improvement occurs because 
the PINN’s differential constraint guides the network 
toward physically feasible solutions during training, 
thereby helping it avoid local optima. Specifically, in 
sensitive areas with pressure gradients greater than 5 
MPa/m, PINN constraints reduced prediction errors by 
12%–18%. Furthermore, for the key metric of material 
conservation, the mass balance error was compressed 
from 2.3% to below 0.7%. Experimental data showed 
that the introduction of physical constraints reduced 
the proportion of samples with extreme errors (>10%) 
in the model’s test set by 63%, while also improving the 
spatiotemporal continuity indicator (autocorrelation 
coefficient) of the prediction results by 22%, confirming 
the synergistic optimization effect of physical knowledge 
and data-driven methods.

5.3. Spatial distribution of fracture and hole 
parameters

Figure  8 reconstructs the 3D spatial distribution 
of the fracture-cavity volume fraction, Vf, within a 
100 m × 100 m × 50 m study volume at a grid resolution 
of 30 m × 30 m × 15 m. The continuous field is discretized 
using thresholds of 0.15, 0.25, and 0.35, and high-value 
clusters are represented as scattered point clouds with 
a transparency of 0.15. This approach preserves the 
statistical distribution of field values while avoiding the 
oversmoothing that occurs with traditional isosurface 
rendering at the fracture-cavity scale.

From a spatial perspective, a deep red high-value 
body with a Vf ≥ 0.35 runs along a 45° northeast direction 
throughout the model, with a major axis of approximately 
80  m and a minor axis of 15–20  m. Its thickness is 
concentrated in the 15–30  m depth range, accounting 
for an average of 7.8% of the volume. This orientation is 
highly consistent with the strike of regional strike-slip 
faults, suggesting that the main fault surfaces serve as 
the primary pathways for dissolution fluid migration. 
A moderate Vf range of 0.25–0.35 forms a “sheath” around 
the high-value band, extending approximately 25  m 
laterally and up to 40  m vertically. It accounts for 12.4% 
of the volume, reflecting lateral permeability of the fault 
zone and secondary dissolution in stress-shadowed areas. 
In contrast, the blue low-value regions with Vf < 0.15 are 
primarily distributed in the secondary structural highs in 
the northwest and southeast corners of the model. Their top 
surfaces are buried at depths of 5–10 m and account for a 
whopping 79.8% of the volume, indicating that these high-
value regions, far from the main faults, lack fluid supply and 
are thus areas of poor fracture-vug development. Statistics 
show that within the high-value regions, Vf averages 
0.41 with a standard deviation of 0.05, indicating good 
homogeneity. The low-value regions average 0.08 with a 
standard deviation of 0.03, indicating high dispersion.

Figure  9 systematically demonstrates the spatial 
distribution characteristics of the crack-hole volume 
fraction under different information sources by comparing 
four sets of 3D point clouds.

Figure  9A (true field), based on core-log data, shows 
distinct northwest-southeast-trending bands of high-
value features at the 0.15, 0.25, and 0.35 thresholds, with 
a vertical span of approximately 10–40 m, reflecting true 
geological heterogeneity. Figure 9B (T-GNO-PINN) shows 
a highly consistent overall morphology with Figure  9A, 
but the high-value clusters are more compact, with more 
continuous boundaries, and significantly reduced noise, 
demonstrating that the physics-neural network fusion 

Figure 8. Visualization of the spatial distribution of three-
dimensional fracture-void volume content (Vf)
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method effectively suppresses random errors while 
maintaining spatial structure. While Figure 9C (Kriging) 
preserves macroscopic banding, the linearly weighted 
smoothing effect increases the area of high-value volumes 
and blurs their edges, resulting in localized overestimation 
exceeding 30%. Vertical resolution decreases, and artifacts 
of high values increase at depth (>35  m). Figure  9D 
(seismic interpretation) uses a hard threshold of 0.25 to 
produce a binary distribution. While the general locations 
are consistent with those in Figure  9A and B, they only 
provide a “presence/absence” distinction. Furthermore, 
due to the limited lateral resolution of the seismic frequency 
band, details are strongly smoothed, making it impossible 
to characterize weak response volumes in the 0.15–0.25 
range. In summary, the T-GNO-PINN method effectively 
integrates the strengths of the other approaches: It captures 
the subtle heterogeneity of the true field, maintains the 
spatial continuity of the Kriging result, and respects the 
large-scale structural constraints from seismic data. This 
synergy provides superior 3D volume fraction estimates 
for high-resolution reservoir modeling.

6. Discussion
The T-GNO-PINN joint prediction framework demonstrates 
significant advantages in predicting fracture-vuggy 

parameters in carbonate reservoirs. Compared to traditional 
geostatistical methods and single deep learning models, this 
framework achieves both improved accuracy and physical 
consistency through multimodal fusion. Experimental 
results demonstrate a 15.3% reduction in RMSE and an 89.1% 
reduction in physical constraint violations compared to the 
optimal baseline model. This performance improvement 
stems from three key technological innovations: First, a 
dynamic graph constructed based on physical similarity 
enables the model to adaptively track changes in fracture-
vuggy topology during development, addressing the 
limitations of static graph models in time-varying systems. 
Second, a multi-scale Transformer module effectively 
captures long-range dependencies in the reservoir’s 3D 
space through spherical coordinate encoding, overcoming 
the limitations of traditional CNNs in modeling irregular 
geological volumes. Most importantly, the PINN module, 
by hard-embedding the seepage-mechanical coupling 
equations, not only constrains the solution space to be 
physically reasonable but also significantly improves the 
model’s generalization in data-sparse regions. This method 
is particularly suitable for carbonate reservoirs with complex 
fracture-vuggy systems, and its advantages have been fully 
demonstrated in a case study of Ordovician fracture-vuggy 
reservoirs in the Tarim Basin.

Figure  9. Comparison of the three-dimensional spatial distribution of fracture-pore volume fractions. (A) True field under core-log constraints; 
(B) T-GNO-PINN hybrid physics-neural network predicted field; (C) Traditional Kriging interpolation estimated field; (D) Seismic attribute threshold 
interpretation results.
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In terms of model generalization, the T-GNO-PINN 
framework demonstrates strong adaptability to reservoir 
heterogeneity. Analysis of prediction results from various 
structural locations reveals that the model maintains stable 
prediction accuracy in both high-permeability zones near 
fault zones (permeability >150 mD) and low-permeability 
zones on the flanks (permeability <50 mD), with R2 
fluctuations within ±0.03. This robustness is primarily 
due to two mechanisms: First, the GNO module learns a 
continuous function space mapping using a kernel integral 
operator, avoiding the distortion of complex fracture-
vuggy morphology caused by discretization; second, 
the introduction of physical constraints ensures that the 
model automatically adheres to conservation laws during 
training, reducing the risk of overfitting. Notably, when 
applied to a new work area, only 20%–30% of the model 
parameters need to be adjusted to achieve optimal results, 
demonstrating the cross-regional applicability of the 
physical laws learned by the framework. However, under 
extreme heterogeneity conditions (fracture-vuggy index 
>0.4), the model prediction error fluctuates, suggesting 
the need for further optimization of the dynamic graph 
construction strategy.

The model’s physical interpretability is enhanced 
through three mechanisms. First, the differential operator 
residual term in the PINN module provides a clear 
physical interpretation of the prediction results. Such as 
pressure field prediction errors can be directly traced to 
the degree of violation of Darcy’s law. Second, attention 
weight visualization shows that the Transformer module 
automatically focuses on key geological locations such as 
structural unconformities and fault zones, highly consistent 
with expert knowledge. Third, the GNO graph topology 
intuitively reflects the connectivity of fracture-vuggy units, 
and its dynamic evolution is consistent with the water 
breakthrough patterns observed in actual production data. 
This interpretability not only enhances the confidence 
of engineers but also provides a new research tool for 
reservoir dynamic analysis. Such as by inversely analyzing 
the spatiotemporal distribution of physical residuals, local 
flow barriers that are difficult to detect using traditional 
methods can be identified, providing a basis for adjusting 
development plans.

Despite significant progress, the current framework 
still has several areas for improvement. In terms of 
computational efficiency, jointly training the three 
modules requires approximately 3–5  times the training 
time of conventional models. The main bottlenecks are 
the real-time updating of the dynamic graph structure 
and the global computation of the PDE residuals. Future 
improvements can be achieved through the development 
of sparse attention mechanisms and adaptive physical 

sampling strategies. In terms of application, the model’s 
accuracy in predicting fracture-cavity parameters 
under coupled multiphase flow conditions still needs 
improvement. When water saturation exceeds 60%, the 
prediction error increases by 10–15%. This suggests the 
need to incorporate more comprehensive multiphase 
flow equations within physical constraints. Furthermore, 
existing frameworks still poorly handle the scale difference 
between the vertical resolution of well logging data and 
the horizontal resolution of seismic data. Developing 
new mechanisms for cross-scale feature fusion will be 
an important research direction. Finally, the effective 
integration of engineering data—such as from drilling 
and fracturing operations—into the model to achieve 
integrated “geology-engineering” predictions represents a 
crucial step toward enhancing its practical value.

7. Conclusion
The Transformer–Graph Neural Operator–Physics-
Informed Neural Network (T-GNO-PINN) joint prediction 
framework proposed in this study provides an innovative 
solution for predicting fracture-vuggy parameters in 
carbonate reservoirs through multimodal information 
fusion and embedded physical constraints. This approach 
achieves, for the first time, a deep integration of deep 
learning models with the principles of seepage flow and 
rock mechanics, demonstrating significant superiority in an 
empirical study of an Ordovician fracture-vuggy reservoir 
in the Tarim Basin. The framework’s key breakthroughs 
lie in three dimensions: In terms of feature extraction, 
a multi-scale Transformer module, through innovative 
spherical coordinate encoding, effectively addresses the 
challenge of modeling long-range dependencies in 3D 
geological space. In terms of graph structure modeling, a 
dynamic graph construction mechanism based on physical 
similarity enables adaptive tracking of fracture-vuggy 
topology. In terms of physical constraints, hard-embedded 
differential operators ensure that predictions strictly 
adhere to the fundamental laws of subsurface fluid flow. 
Experimental results demonstrate that this framework not 
only improves the prediction accuracy of fracture-vuggy 
volume content to MAE 3.57% and R2 0.90, but also keeps 
the physical conservation error below 0.5%, significantly 
outperforming existing prediction methods.

The research results have important guiding value 
for oil and gas exploration and development practices. 
Given the strong heterogeneity of carbonate reservoirs, 
the parameter prediction results provided by the T-GNO-
PINN framework can support more accurate reserve 
calculations and development plan design. Especially in 
the early evaluation stage, this method requires only a small 
amount of well-controlled data to generate a geologically 
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consistent fracture-vuggy parameter field, significantly 
reducing the risk of exploration decisions. Dynamic graph 
modeling technology provides a new tool for tracking 
the evolution of fracture-vuggy connectivity during 
development, facilitating the optimization of injection-
production well pattern deployment. Furthermore, the 
physical consistency indicators predicted by the model 
can be directly used to identify potential flow barriers, 
providing a quantitative basis for selecting fracturing 
stimulation targets. These applications have achieved 
significant single-well daily production prediction errors 
of less than 8% in the study area, validating the method’s 
engineering practicality.

Looking forward, this research has several promising 
directions. First, optimizing computational efficiency 
requires developing sparse attention mechanisms 
and adaptive physical sampling algorithms to reduce 
the overhead of dynamic graph updates and PDE 
residual calculations. Second, improving the physical 
constraint system. Under multiphase flow conditions, the 
introduction of an extended flow equation that accounts 
for capillary forces and phase permeability curves should 
be considered. Improving cross-scale fusion mechanisms 
is also crucial. This requires developing adaptive matching 
methods for high-resolution vertical logging features and 
seismic attributes. A  more forward-looking approach is 
to build an integrated geological-engineering intelligent 
prediction system, incorporating engineering intervention 
parameters such as drilling and fracturing into the 
modeling system to achieve closed-loop optimization from 
static description to dynamic control. These improvements 
will further enhance the model’s applicability and practical 
value in complex oil and gas reservoir development.

Acknowledgments
None.

Funding
This research was financially supported by 2025 Doctoral 
Special Support Program Project of Chengdu Jincheng 
College (NO.2025JCKY(B)0018); the Key Research Base 
of Humanities and Social Sciences of the Education 
Department of Sichuan Province, Panzhihua University, 
Resource based City Development Research Center Project 
(NO.ZYZX-YB-2404); Mahasarakham University; and the 
Open Fund of Sichuan Oil and Gas Development Research 
Center (NO.2024SY017).

Conflict of interest
The authors declare that they have no competing interests.

Author contributions
Conceptualization: Tianwen Zhao, Guoqing Chen, Cong 

Pang, Yiru Du
Formal analysis: Tianwen Zhao, Guoqing Chen, Cong Pang
Funding acquisition: Tianwen Zhao, Guoqing Chen, Cong 

Pang
Investigation: Tianwen Zhao, Cong Pang, Yiru Du
Methodology: Tianwen Zhao, Guoqing Chen, Yiru Du
Validation: Tianwen Zhao, Cong Pang, Yiru Du
Visualization: Tianwen Zhao, Cong Pang, Yiru Du
Writing–original draft: Tianwen Zhao, Guoqing Chen, 

Yiru Du
Writing–review & editing: Tianwen Zhao, Guoqing Chen, 

Cong Pang, Yiru Du

Availability of data
Some data used in this study cannot be shared publicly due 
to collaborative agreement restrictions, but are available 
from the corresponding author upon reasonable request.

References
1.	 Xia LW, Cao J, Wang M, Mi JL, Wang TT. A  review of 

carbonates as hydrocarbon source rocks: Basic geochemistry 
and oil-gas generation. Petrol Sci. 2019;16(4):713-728.

	 doi: 10.1007/s12182-019-0343-5

2.	 Jia C. Petroleum geology of carbonate reservoir. In: 
Characteristics of Chinese Petroleum Geology: Geological 
Features and Exploration Cases of Stratigraphic, Foreland and 
Deep Formation Traps. Berlin, Heidelberg: Springer Berlin 
Heidelberg; 2012. p. 495-532.

	 doi: 10.1007/978-3-642-23872-7

3.	 Geng T, Yanping L, Bo W, Xiao B, Huan W. Reservoir 
evaluation method and development countermeasures 
for Fracture-Vuggy reservoir. Spec Oil Gas Reserv. 
2021;28(6):129-136.

	 doi: 10.3390/pr12040640

4.	 Deng Z, Zhou D, Dong H, Huang X, Wei S, Kang Z. Deep 
learning for predicting porosity in ultra-deep fractured 
vuggy reservoirs from the Shunbei oilfield in Tarim Basin, 
China. Sci Rep. 2024;14(1):29605.

	 doi: 10.1038/s41598-024-81051-4

5.	 Wang Y, Xie P, Zhang H, Liu Y, Yang A. Fracture-
vuggy carbonate reservoir characterization based on 
multiple geological information fusion. Front Earth Sci. 
2024;11:1345028.

	 doi: 10.3389/feart.2023.1345028

6.	 Lin K, Wei N, Zhang Y, et al. Advances in machine-learning-
driven CO2 geological storage: A comprehensive review and 
outlook. Energy Fuels. 2025;39:13315-13343.

https://dx.doi.org/10.36922/JSE025330057
http://dx.doi.org/10.1007/s12182-019-0343-5
http://dx.doi.org/10.1007/978-3-642-23872-7
http://dx.doi.org/10.3390/pr12040640
http://dx.doi.org/10.1038/s41598-024-81051-4
http://dx.doi.org/10.3389/feart.2023.1345028


Journal of Seismic Exploration Fracture-vug prediction with T-GNO-PINN

Volume X Issue X (2025)	 20� doi: 10.36922/JSE025330057 

	 doi: 10.1021/acs.energyfuels.5c02370

7.	 Huang B, Wang J. Applications of physics-informed neural 
networks in power systems-a review. IEEE Trans Power Syst. 
2022;38(1):572-588.

	 doi: 10.1109/TPWRS.2022.3162477

8.	 Rao C, Sun H, Liu Y. Physics-informed deep learning for 
computational elastodynamics without labeled data. J  Eng 
Mech. 2021;147(8):04021043.

	 doi: 10.48550/arXiv.2006.08472

9.	 Li M, Wang Q, Yao C, Chen F, Wang Q, Zhang J. Optimization 
of development strategies and injection-production 
parameters in a fractured-vuggy carbonate reservoir by 
considering the effect of karst patterns: Taking c oilfield in 
the tarim basin as an example. Energies. 2025;18(2):319.

	 doi: 10.3390/en18020319

10.	 Su X, Ren B, Huang Z. Permeability analysis of fractured-
vuggy carbonate reservoirs based on fractal theory. Fractals. 
2022;30(07):2250144.

	 doi: 10.1142/S0218348X22501444

11.	 Ganguli SS, Dimri VP. Reservoir characterization: State-of-
the-art, key challenges and ways forward. In: Developments 
in Structural Geology and Tectonics. Vol.  6. Amsterdam: 
Elsevier; 2023. p. 1-35.

	 doi: 10.1016/B978-0-323-99593-1.00015-X

12.	 Li W, Duan J, Zhu D, Wu J. The research progress on 
carbonate reservoir evaluation: Technical applications, 
challenges, and future development directions. Adv Resour 
Res. 2025;5(3):1177-1198.

	 doi: 10.50908/arr.5.3_1177

13.	 Refaat A, Eltom HA, El-Husseiny A. On the limitations 
of spot permeability measurements to quantify bulk 
permeability of bioturbated reservoirs: Insights from digital 
rock physics modeling. Mar Petrol Geol. 2025;182:107577.

	 doi: 10.1016/j.marpetgeo.2025.107577

14.	 Cao X, Liu Z, Hu C, Song X, Quaye JA, Lu N. Three-
dimensional geological modelling in earth science research: 
An in-depth review and perspective analysis. Minerals. 
2024;14(7):686.

	 doi: 10.3390/min14070686

15.	 Luo Q, Zeng W, Chen M, Peng G, Yuan X, Yin Q. Self-
attention and transformers: Driving the evolution of large 
language models. In: 2023 IEEE 6th International Conference 
on Electronic Information and Communication Technology 
(ICEICT). IEEE; 2023. p. 401-405.

	 doi: 10.1109/ICEICT57916.2023.10245906

16.	 Li S, Chen J, Xiang J. Applications of deep convolutional 
neural networks in prospecting prediction based on two-
dimensional geological big data. Neural Comput Appl. 
2020;32(7):2037-2053.

	 doi: 10.1007/s00521-019-04341-3

17.	 Pan J, Liu W, Liu C, Wang J. Convolutional neural network-
based spatiotemporal prediction for deformation behavior 
of arch dams. Expert Syst Appl. 2023;232:120835.

	 doi: 10.1016/j.eswa.2023.120835

18.	 Kovachki N, Li Z, Liu B, et al. Neural operator: Learning 
maps between function spaces with applications to pdes. 
J Mach Learn Res. 2023;24(89):1-97.

	 doi: 10.48550/arXiv.2108.08481

19.	 Anandkumar A, Azizzadenesheli K, Bhattacharya K, 
et  al. Neural operator: Graph kernel network for partial 
differential equations. In: Paper Presented at: ICLR 2020 
Workshop on Integration of Deep Neural Models and 
Differential Equations; 2020.

	 doi: 10.48550/arXiv.2003.03485

20.	 de la Mata FF, Gijón A, Molina-Solana M, Gómez-Romero J. 
Physics-informed neural networks for data-driven 
simulation: Advantages, limitations, and opportunities. 
Physica A. 2023;610:128415.

	 doi: 10.1016/j.physa.2022.128415

21.	 Xu H, Zhang D, Zeng J. Deep-learning of parametric partial 
differential equations from sparse and noisy data. Phys 
Fluids. 2021;33(3):037132.

	 doi: 10.1063/5.0042868

22.	 Huang T, Qian H, Huang Z, et al. A  time patch dynamic 
attention transformer for enhanced well production 
forecasting in complex oilfield operations. Energy. 
2024;309:133186.

	 doi: 10.1016/j.energy.2024.133186

23.	 Zhao T, Chen G, Pang C, Busababodhin P. Application 
and performance optimization of SLHS-TCN-XGBoost 
model in power demand forecasting. Comp Model Eng Sci. 
2025;143(3):2883-2917.

	 doi: 10.32604/cmes.2025.066442

24.	 Zhao T, Chen G, Suraphee S, Phoophiwfa T, Busababodhin P. 
A  hybrid TCN-XGBoost model for agricultural product 
market price forecasting. PLoS One. 2025;20(5):e0322496.

	 doi: 10.1371/journal.pone.0322496

25.	 Zhao T, Chen G, Gatewongsa T, Busababodhin P. Forecasting 
agricultural trade based on TCN-LightGBM models: A data-
driven decision. Res World Agric Econ. 2025;6(1):207-221.

	 doi: 10.36956/rwae.v6i1.1429

26.	 Zhao T, Chen G, Pang C, Seenoi P, Papukdee N, 
Busababodhin P. Time-lapse earthquake difference 
prediction based on physics-informed long short-term 
memory coupled with interpretability boosting. J Seismic 
Explor. 2025;34(3):25-48.

	 doi: 10.36922/JSE025310049

https://dx.doi.org/10.36922/JSE025330057
http://dx.doi.org/10.1021/acs.energyfuels.5c02370
http://dx.doi.org/10.1109/TPWRS.2022.3162477
http://dx.doi.org/10.48550/arXiv.2006.08472
http://dx.doi.org/10.3390/en18020319
http://dx.doi.org/10.1142/S0218348X22501444
http://dx.doi.org/10.1016/B978-0-323-99593-1.00015-X
http://dx.doi.org/10.50908/arr.5.3_1177
http://dx.doi.org/10.1016/j.marpetgeo.2025.107577
http://dx.doi.org/10.3390/min14070686
http://dx.doi.org/10.1109/ICEICT57916.2023.10245906
http://dx.doi.org/10.1007/s00521-019-04341-3
http://dx.doi.org/10.1016/j.eswa.2023.120835
http://dx.doi.org/10.48550/arXiv.2108.08481
http://dx.doi.org/10.48550/arXiv.2003.03485
http://dx.doi.org/10.1016/j.physa.2022.128415
http://dx.doi.org/10.1063/5.0042868
http://dx.doi.org/10.1016/j.energy.2024.133186
http://dx.doi.org/10.32604/cmes.2025.066442
http://dx.doi.org/10.1371/journal.pone.0322496
http://dx.doi.org/10.36956/rwae.v6i1.1429
http://dx.doi.org/10.36 922/JSE025310049



