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Abstract

To address the challenges of fracture-vuggy parameter prediction in carbonate
reservoirs, such as strong multi-scale heterogeneity and a lack of physical constraints,
this study proposed a Transformer-Graph Neural Operator (GNO)-Physics-Informed
Neural Network (PINN) joint prediction framework, which achieves a bidirectional
coupling between multi-source data fusion and physical laws. First, a Transformer
module with a multi-scale attention mechanism and spherical coordinate effectively
captures cross-scale spatiotemporal features in three-dimensional geological space
(reducing error by 12.3%). Second, a dynamic GNO based on physical similarity
adaptively tracks the evolution of fracture-vuggy connectivity (achieving a topology
update accuracy of 93.5%). Finally, a PINN module embedded in the seepage-
mechanical coupling equations constrains the physical residual loss to the order of
0.42x1073, reducing the conservation error from 3.17% to 0.48%. In an empirical study
of Ordovician fracture-vuggy reservoirs in the Tarim Basin, this framework achieved a
mean absolute error of 3.57% and an R? of 0.90 for fracture-vuggy volume fraction (V/f).
In high-pressure gradient regions (>5 MPa/m), the relative error was reduced by 18%,
significantly outperforming traditional methods (reducing Kriging error by 40.7%) and
single-module models (PINN error reduction of 15.3%). Experimental results showed
that dynamic graph construction increased the spatial autocorrelation index (Moran's 1)
t0 0.71; the introduction of physical constraints reduced extreme error samples by 63%;
and the multimodal collaborative training strategy resulted in a 19.7% improvement
in overall performance. This research provides a new paradigm for high-precision and
physically interpretable digital twin modeling of carbonate reservoirs.

Keywords: Carbonate reservoir; Fracture-vuggy parameter prediction; Transformer;
Graph Neural Operator; Physical Information Neural Network; Multimodal fusion

1. Introduction
1.1. Research background and significance

Carbonate reservoirs serve as a critical global resource for oil and gas extraction."” The
intricate internal fracture-vuggy systems significantly influence reservoir evaluation

Volume X Issue X (2025)

1 doi: 10.36922/JSE025330057


https://dx.doi.org/10.36922/JSE025330057
https://orcid.org/0009-0000-4900-1520
https://orcid.org/0000-0002-1483-7720
https://orcid.org/0009-0001-8579-7527
https://orcid.org/0000-0002-0528-6496
https://dx.doi.org/10.36922/JSE025330057
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Seismic Exploration

Fracture-vug prediction with T-GNO-PINN

and efficient development.® Accurately predicting fracture-
vuggy parameters, such as porosity, permeability, and
fracture density, has been a longstanding challenge in the oil
and gas industry.* Traditional methods often fail to effectively
capture the multi-scale, heterogeneous, and highly non-
linear nature of fracture-vuggy systems.” With the rapid
development of deep learning technology, integrating multi-
source geological data with physical priority to develop
highly accurate and interpretable fracture-vuggy parameter
prediction models has become a cutting-edge topic in oil
and gas exploration and development.

1.2. Related research progress

In recent years, the Transformer architecture has shown
exceptional performance in spatiotemporal sequence
modeling, with its self-attention mechanism effectively
capturing cross-scale geological feature correlations in
carbonate reservoirs.® Meanwhile, the Graph Neural
Operator (GNO), anovel tool for processing non-Euclidean
data, offers a mathematical foundation for describing
the complex topological relationships within fracture
networks. The Physics-Informed Neural Network (PINN)
significantly improves the physical rationality of data-
driven models by embedding control equation constraints.
Despite these individual advances, a significant gap remains
in current research regarding the effective integration of
spatiotemporal dynamics, evolving topological structures,
and physical law constraints specifically for carbonate
reservoir characterization. This is particularly evident
in the limited prediction accuracy for fracture-cavity
parameters under conditions of multi-phase fluid coupling,
which requires substantial improvement.”®

1.3. Research motivation and innovation

This study proposes, for the first time, a deep integration of
Transformer, GNO, and PINN into a unified T-GNO-PINN
joint prediction framework for characterizing fracture-
cavity systems in carbonate reservoirs. Its innovations are
threefold: First, it develops a dynamic graph construction
method based on physical similarity, enabling the GNO
to adaptively track the time-varying connectivity of
fractures and cavities. Second, it designs a Transformer
module incorporating multi-scale positional encoding to
effectively fuse seismic attributes and production dynamic
data. Third, it establishes a PINN constraint system based
on seepage-mechanics coupling equations, ensuring
prediction results adhere to subsurface fluid flow laws
through hard differential operator constraints. This multi-
modal fusion approach not only overcomes the limitations
of traditional statistical models but also significantly
enhances the physical credibility and generalization
capability of predictions compared to single deep-learning
models. The research outcomes provide a novel technical

means for the fine characterization of carbonate reservoirs
and the optimization of development schemes, holding
substantial practical value for the efficient exploitation of
unconventional oil and gas resources.

1.4. Paper structure

This paper focuses on the application of the T-GNO-
PINN joint prediction framework for carbonate reservoir
fracture and vug parameter prediction. The paper is
divided into seven main sections. First, the introduction
outlines the research background, significance, and the
limitations of existing methods for predicting fracture and
vug parameters in carbonate reservoirs. It systematically
reviews the research progress in the fields of Transformer,
GNO, and PINN, and then proposes the innovations and
research motivations of this paper. Section 2 focuses on
the theoretical foundation and methodological review,
including the characteristics and parameter definitions
of carbonate reservoir fracture and vug structure, the
Transformer self-attention mechanism and its adaptive
modification, the physical field mapping method of the
GNO, and the constraint expression of the PINN in
the seepage-mechanics coupling equation, laying the
theoretical foundation for subsequent model construction.
Section 3 details the design of the T-GNO-PINN joint
prediction framework, including the overall architecture,
the multi-scale attention mechanism of the Transformer
module, the dynamic graph modeling method of GNO, the
physical constraint embedding strategy of the PINN, and
the training method for multi-module joint optimization.
Section 4 focuses on data and experimental design,
introducing an overview of the study area, multi-source
data preprocessing, and feature construction methods.
Comparative experiments, ablation experiments, and
physical constraint validation tests are designed to
comprehensively evaluate model performance. Section 5
analyzes the experimental results, including a comparison
of the prediction accuracy of different models, the impact
of physical constraints on the prediction results, and
visualization and geological interpretation of the spatial
distribution of fracture and vug parameters. Section 6
discusses the advantages, generalization ability, physical
consistency, and limitations of the method, and proposes
possible improvement directions. Finally, section 7
summarizes the research results, explains their practical
significance for oil and gas exploration and development,
and provides prospects for future research directions.

2. Theoretical basis and methodology
overview

Carbonate reservoir fracture-vuggy systems exhibit
complex, multi-scale heterogeneity.” Their geometry
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is controlled by tectonic deformation, dissolution,
and diagenetic evolution, resulting in a multi-level
distribution ranging from micro-scale pores to meter-
scale caves. Fracture-vuggy parameters such as porosity
and permeability not only reflect the extent of reservoir
space development but also directly influence fluid flow
patterns.”'® Traditional measurement methods (such
as core CT scanning and well log interpretation) can
provide accurate local data but struggle to characterize the
overall spatial heterogeneity of the reservoir.""* In recent
years, machine learning-based parameter prediction
methods have emerged. Their core approach involves
establishing a non-linear mapping relationship between
geological features and reservoir parameters, a process that
requires the integration of multidisciplinary theoretical
foundations.*>**

Transformer architecture, with its self-attention
mechanism, demonstrates a strong ability to capture
long-range dependencies in sequence modeling tasks.”
To address the non-Euclidean characteristics of carbonate
reservoirs, researchers have introduced spherical
coordinate encoding and multi-scale position embedding
to enable the model to adapt to complex geological
structures in 3D space.'* For example, by combining vertical
depth from well logs with the planar distribution of seismic
attributes, a multi-head attention mechanism is employed
to achieve cross-scale feature fusion. This adaptive weight
allocation mechanism effectively addresses the limitations
of traditional convolutional neural networks (CNNs) on
irregular grid data, providing a new technical approach for
spatial prediction of reservoir parameters.'*!’

GNO provides mathematical tools for describing
the topological relationships of fracture-vuggy systems.
Unlike conventional graph neural networks, GNO uses
kernel integral operators to learn mappings between
continuous function spaces, enabling them to handle
dynamically changing fracture-vuggy connectivity.'*"* In
reservoir modeling, fracture-vuggy units are abstracted as
graph nodes, with their physical properties (such as pore
pressure and stress field) serving as node features, while
fracture channels or dissolution pathways constitute edge
relationships. Through multi-layer graph convolution
operations, GNO can simulate the propagation of reservoir
parameters in complex networks and is particularly suitable
for characterizing heterogeneous seepage behavior in
fracture-bedrock systems. Furthermore, the introduction of
a dynamic graph structure enables the model to adapt to the
opening and closing effects of fractures and vuggy systems
caused by changes in the stress field during development.

PINNs impose physical constraints on data-driven
models by embedding governing equations into the loss

function.®® In carbonate reservoirs, the coupling between
the seepage and stress fields is crucial. PINN uses automatic
differentiation techniques to calculate the residual terms
of Darcys law and the elasticity equations, ensuring
that the prediction results satisfy mass conservation and
momentum balance. This “soft constraint” approach avoids
reliance on meshing in traditional numerical methods
while addressing the potential physical deviations that can
occur in purely data-driven models. Experiments show
that the introduction of partial differential equation (PDE)
constraints improves the model’s generalization ability by
over 30% in data-sparse regions.*

Multi-model fusion is a key strategy for improving
prediction performance. Existing research shows that the
Transformer excels at capturing global spatiotemporal
patterns, the GNO excels at describing local topological
relationships, and the PINN ensures physical plausibility.
Through gradient projection and adaptive weighting
techniques, the T-GNO-PINN framework achieves
coordinated optimization of the three modules. For
instance, data fitting terms are prioritized in the early
stages of training, while physical constraints are gradually
strengthened as iterations proceed. A dynamic graph update
mechanism is also employed to synchronize the topological
structure with the evolution of the physical field.

3.T-GNO-PINN joint prediction framework
design
3.1. Overall framework architecture

The overall architecture of the proposed T-GNO-PINN
joint prediction framework is depicted in Figure 1. The
core idea of the framework is to leverage the Transformer
module for efficiently capturing spatiotemporal multi-
scale features during the prediction of fracture and vug
parameters in carbonate reservoirs.

Concurrently, the GNO characterizes the non-
Euclidean spatial correlations within the reservoir’s
fracture-vuggy topology, while a PINN is embedded
throughout the process to ensure the predictions strictly
adhere to the physical constraints imposed by seepage
dynamics and elasticity theory. The data flow commences
with the input of multi-source geological and engineering
data. Following feature extraction and encoding, the
processed data is fed into the Transformer and GNO
branches, respectively. Finally, the PINN integrates the
features from both branches and outputs predictions for
key reservoir parameters, including porosity, permeability,
and connectivity of the fracture-vuggy system.

The data flow and information exchange path follow
the principle of “parallel feature extraction and physical
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Figure 1. Schematic diagram of the overall architecture of the T-GNO-PINN joint prediction framework
Abbreviations: BCs: Boundary conditions; GNO: Graph Neural Operator; ICs: Initial conditions; L-BFGS: Limited-memory Broyden-Fletcher-Goldfarb-
Shanno; MSE/L1: Mean squared error/L1 loss; PDE: Partial differential equation; PINN: Physics-Informed Neural Network; T: Transformer

constraint fusion”: the Transformer branch is responsible the GNO branch dynamically updates the reservoir graph
for modeling global spatiotemporal dependencies, while topology to obtain spatial structural information. These
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two branches achieve multimodal fusion within the PINN.
Furthermore, the physical residuals computed from the
governing equations serve as inverse constraint signals
during end-to-end training, which ensures both prediction

stability and physical interpretability.

3.2. Transformer module design

The Transformer

Attention(Q, K, V) = Softmax

Where P is a special position encoding matrix that
combines the logging depth d with 3D spatial coordinates
(x,3,2) and adapts to the non-Euclidean fracture-
cavity network structure through spherical coordinate

transformation:

module

T

K
i

+P |V

introduces a multi-scale
attention mechanism to simultaneously model short-term
dynamic changes and long-term trends in earthquake and
production data.” Its self-attention calculation formula is:

The module’s core structure encompasses encoding
input data, performing parallel computations across
multiple attention layers,
processing. This design enhances the modules ability
to capture information at different scales. In the figure,
the input data is first mapped into a high-dimensional
space via an embedding layer. Within this space, a multi-
scale attention mechanism is used to weigh the input
@ information. Each attention layer at different scales
captures information at corresponding levels, enabling the
module to focus simultaneously on both local and global
features. Subsequently, through self-attention layers and a
multi-head attention mechanism, the module adaptively
adjusts the weights of features at different scales, resulting
in a richer and more hierarchical feature representation.

To systematically evaluate the model’s operational

Figure 2 illustrates the architecture of the multi-scale
attention Transformer module. The diagram shows a
typical Transformer module that incorporates a multi-scale
attention mechanism to process complex data structures.

and synthesizing output

2K oy, |z, d, efficiency application potential,
B =|sin - |,cos ol Dt (ID) a theoretical analysis of the transformer module’s
A Z0 A . . , .
x y max . “max computational complexity. The module’s computational
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Figure 2. Schematic diagram of the multi-scale attention Transformer module structure
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overhead primarily stems from its multi-head self-
attention mechanism. Given an input sequence of N
tokens, the standard self-attention mechanism requires
constructing an NxN attention weight matrix, resulting in
time and space complexities of O(N? - d), where d denotes
the hidden layer feature dimension.

As shown in Table 1, for typical reservoir modeling
scenarios (N=800), the module’s computational burden
remains manageable and demonstrates superior
complexity characteristics compared to sequence models
such as recurrent neural networks (RNNs).

Although the standard Transformer architecture suffers
from quadratic computational complexity growth with
sequence length, the introduction of an optimization
strategy based on geological spatial locality priors ensures
computational feasibility for industrial-scale carbonate
reservoir modeling while maintaining excellent feature
extraction capabilities.

3.3. Graph Neural Operator module design

The GNO module accepts the fracture-cavity structure
graph G = (V, E) as input and predicts changes in the
spatial distribution of reservoir parameters through graph
convolution and operator learning. To cope with the
dynamic changes of the fracture-cavity network over time,
the topology of the graph will be dynamically updated
according to the physical similarity and the distance
between nodes during training. The specific update rules
are as follows:

(i) Distance calculation between nodes. Each node
represents a fracture-cavity unit in the reservoir, and
the physical properties and location of the node are
used to calculate the similarity function.

(i) Dynamic distance metric. For any two nodes v, and
v, we calculate the dynamic distance metric Dij(t)
between them. This metric is updated at each time
step or each training epoch.

Table 1. Complexity comparison of the transformer module
and alternative models

Model Time Space Notes
complexity  complexity
Standard O (N2 d) O (N?») Benchmark

Transformer

m is the local
window size

This research
(T-GNO-PINN)

RNN OMN*.d) O(N.d)
1D-CNN O(k.N.&# O(N.d)

O(m.N*.d) O (m.N)

Difficult to parallelize

k is the convolution
kernel size

Abbreviations: CNN: Convolutional neural network; GNO: Graph
Neural Operator; PINN: Physics-Informed Neural Network;
RNN: Recurrent neural network; T: Transformer.

D, (t)# #p,(t)-p;(t} #, (1)
p,(t) and pj( t) are the physical properties of nodes v,
and vj at time step t, respectively.

(iii) Connectivity judgment and update. If the distance
D.(t) between nodes v, and v, is less than the preset
threshold r, an edge is added to the graph to connect
them; otherwise, the edge is removed.

E, :{(vi,vj)Dij (t)<rc} Iv)

(iv) Topology updates frequency. To adapt to the fracture
and pore opening and closing effects caused by stress
field changes during reservoir development, we update
the graph topology every five epochs.

Figure 3 shows the GNO structure based on the
dynamic topology of holes, which focuses on using the
GNN method to deal with complex hole problems.

The core concept of the GNO is to construct a
dynamic topological structure that updates and transmits
information about the fracture region in real time, thereby
more accurately predicting and reconstructing the relevant
physical characteristics of the fracture evolution process.
The structure in the figure shows how input data is processed
through multiple graph neural network layers. Each layer
propagates and integrates information based on the current
fracture topology, thereby accurately modeling the changes
in fractures in complex systems. Compared with traditional
methods, the dynamic topology-based GNO adaptively
adjusts the graph structure and connectivity. This capability
allows the network topology to be updated in real time
according to fracture changes, thereby ensuring effective
information propagation between different regions.

3.4. Physics-Informed Neural Network module
design

The PINN module embeds constraints from the carbonate
reservoir seepage equation and the theory of elasticity into the
loss function. These constraints include the 3D Darcy’s law:

P
V~(kVp):¢a—‘It)+q (V)

and the equilibrium equation of linear elasticity:
V.c+f=0,0=C:¢ (VD)

The physical residual loss is defined as:

1< op
Lonye =N—PZV'(kVp,-)—¢ia—;—qf (Vi)
i=1

Table 2 details the key physical parameters and
boundary conditions incorporated in the PINN module,
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<

Figure 3. Graph neural operator structure based on the dynamic topology of holes and cracks
Abbreviations: GNO: Graph Neural Operator; L-BFGS: Limited-memory Broyden-Fletcher-Goldfarb—Shanno; MSE: Mean squared error; PDE: Partial

differential equation.

Table 2. PINN module physical parameters and boundary
conditions

Parameters Symbol  Value Unit Source Is it
range fixed

Porosity ¢ 0.05-0.25 - Core testing No

Permeability k 50-250 mD  Welllogging+core No
drilling

Pressure p 10-30 MPa Production No
monitoring

Pressure Ap 0.5-1.5 MPa Dynamic No

differential calculations

Elastic E 15-25 GPa  Experimental Yes

modulus testing

Poisson’s ratio v 0.2-0.35 - Reference data Yes

Body load f 0-2  MPa/ Numerical No

m? simulation
Source and q —50-50 m’/d Productiondata  No
sink terms

Abbreviation: PINN: Physics-informed Neural Network.

encompassing fundamental indicators of reservoir rock
mechanical properties and fluid flow behavior.

Porosity (¢) and permeability (k) range from 0.05 to 0.25
and 50 to 250 mD, respectively. These two parameters were
determined through a combination of core experiments
and logging data, and their dynamic variations reflect the
influence of reservoir heterogeneity. Reservoir pressure
(p) ranges from 10 to 30 MPa, and pressure differential
(Ap) varies between 0.5 and 1.5 MPa. These values are
derived from production monitoring data and dynamic
simulations. Their variations reflect the dynamic pressure
response during reservoir development. Among the rock
mechanical parameters, the elastic modulus (E) and
Poisson’s ratio (v) are fixed at 15 to 25 GPa and 0.2 to 0.35,
respectively. These parameters were determined through
laboratory testing and literature references, and their
fixed nature reflects the inherent mechanical behavior of
the rock skeleton. The body load (f) and source-sink term
(g9) are external action terms with values ranging from
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0 to 2 MPa/m® and —50 to 50 m*/d, respectively. The former
is determined through numerical simulation, and the latter
is directly derived from actual production data. Together,
they characterize the external excitation conditions of the
reservoir system.

Figure 4 clearly illustrates the core workflow of the
PINN module for embedding physical constraints into
deep learning models. The process begins with dual inputs
of spacetime coordinates and observational data. The
neural network then learns the complex mapping from

I. Coordinates

|_Spatiotemporal Input

Measurement Data |

— T — — — - — ===

Loss Calculation

Data Loss <

Total Loss |¢—

v

Backpropagation and
Parameter Update

A 4

Input Layer

Multiple
Hidden Layers

Neural Network

1

Output Layer

it Tl

Differentiation

Physics Engine

|

I
| Automatic
|
I

|

|

Physical Laws I
-

———| Physical Loss

Figure 4. Physics-Informed Neural Network (PINN) module workflow and logic
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coordinates to physical fields, generating preliminary
predictions.

The core innovation of this process lies in the
introduction of a “physics engine” This engine uses
automatic differentiation techniques to calculate the
differential operator of the predicted field and substitutes
it into pre-defined physical governing equations (such as
the percolation equation and the mechanical equilibrium
equation). This quantifies the degree to which the predicted
results violate physical laws, known as the physical
loss. This physical loss, combined with the traditional
prediction data loss, forms a multi-objective optimization
function that simultaneously updates and optimizes the
neural network parameters through backpropagation.
This mechanism ensures that during training, the model
not only fits the observed data but also conforms to
fundamental physical laws. Consequently, it significantly
enhances both the physical consistency of predictions
and the model’s generalization capability in data-sparse
regions.

3.5. Model joint optimization strategy

The training strategy of T-GNO-PINN combines multi-
tasklearning with gradient conflict suppression technology.
The total loss function is:

L=a(t)Lyreq + B Loy (VIII)

Where a(t) and f(t) are adaptively adjusted through
uncertainty weights:

1 1
a(t)=——Bt)=— (IX)
O-pred 2O—phys

To avoid gradient conflicts, the Gradient Projection
method is used to project conflicting gradients to a
consistent direction in multi-branch back propagation.

Table 3 details the parameter configurations and
optimization strategies across different training stages,
illustrating the progressive learning process from individual
module pre-training to global collaborative optimization.

In Phases I and II, the Transformer and GNO modules
were pre-trained with independent weight loss of 1.0
(a = 1.0, B = 0), using a learning rate of le-4 and a batch
size of 64 to ensure the stability of the underlying feature
extractor. In Phase III, after the PINN constraint was
introduced, the physical and data-driven weight loss
were adjusted to a balanced state ((« = 0.5, § = 0.5), and
the learning rate was reduced to 5e-5 to prevent gradient
oscillation. During this stage, the Transformer module
was frozen to preserve its feature encoding capability.
Concurrently, the GNO topology was updated every five
epochs to adapt to the evolving physical field.

4, Data and experimental design

This study, based on multi-source geological and
engineering data from a marine carbonate fracture-vuggy
reservoir, aims to achieve high-precision prediction of
reservoir fracture-vuggy parameters (including fracture-
vuggy volume fraction V/, fracture-vuggy connectivity
C, and fracture-vuggy size distribution index f3f) using a
T-GNO-PINN framework.

4.1. Overview of the study area and data sources

Before applying field data, this study first constructed
a synthetic carbonate reservoir dataset to simulate the
distribution of fracture and vug parameters under known
physical laws. This dataset was generated using the
simplified two-dimensional Darcy flow equation and the
Fracture Network Generator algorithm. By manipulating
the spatial distribution of porosity ¢(x,y), permeability
k(x.y), and the fracture connectivity function C, . several
sample fields with varying heterogeneity characteristics
were generated. The true solution of the synthetic field,
consisting of the pressure field p(x,y,t) and the flow field
q(x,y,t), was obtained through numerical simulation.
Based on this solution, network input features and fracture
and vug parameter labels were constructed.

Experimental results demonstrate that the T-GNO-PINN
model accurately recovers the known physical relationships
on this idealized dataset, achieving a prediction R* of

Table 3. Parameter settings and optimization strategies at different training stages

Stage Training objectives Initial Initial Learning Batch Topology update Whether to freeze
valueof a valueof p rate size frequency the Transformer

I Separately pre-training the Transformer 1.0 0 le-4 64 - -

I Separately pre-training the GNO 1.0 0 le-4 64  Every 10 epochs -

III Introducing the PINN and freezing the first two modules 0.5 0.5 5e-5 32 Every 10 epochs  Yes

v End-to-end joint training Adaptive  Adaptive  5e-5 32 Every10epochs No

\% Fine-tuning phase Adaptive  Adaptive  le-5 16  Every 10 epochs No

Abbreviations: GNO: Graph Neural Operator; PINN: Physics-Informed Neural Network.
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0.97 and a PDE residual error of 0.21x107%, significantly
outperforming a model without PINN constraints.
In addition, the dynamic graph structure reduces the
reconstruction error of the connectivity parameter C
from 7.3% to 2.1%, verifying the effectiveness of GNOs in
topology tracking.

Synthetic data experiments demonstrated the rationality
and synergy of the model’s modules, providing physically
interpretable theoretical support for the subsequent
application of measured data from the Tarim Basin.

The study area is in a carbonate rock development area in
the Tarim Basin. The geological age is mainly the Middle and
Upper Ordovician. The lithology is predominantly limestone
and dolomite, and the area contains multiple stages of
structural fracture-cavity systems. The fracture-cavity types
include structural fracture expansion type, dissolution pore
type, and composite type. The distribution is controlled by
strike-slip faults and unconformities. Data sources include:
(i) Well logging data: The data are derived from 27 wells,
with a full well depth range of 3,000-6,500 m. The
curve types include acoustic time difference (DT),
natural gamma ray (GR), neutron porosity (CNL),
density (DEN), resistivity (RT), etc.

Seismic data: The 3D seismic data covers an area of
about 350 km? with a main frequency of about 35 Hz
and a sampling interval of 2 ms. It has been processed
with conventional prestack depth migration.

(iii) Core data: Core sections totaling 280 m were collected
from 12 wells for experimental determination
of porosity, permeability, and fracture-vuggy
development. Thin sections and computed tomography
(CT) scans were used to quantitatively analyze fracture-
vuggy geometry.

Production data: Three-year cumulative oil production
and water cut curves were provided for some wells to
dynamically verify the prediction results. Figure 5
shows the location of the study area and a schematic
diagram of the well-seismic distribution, aiming to
intuitively present the spatial distribution of well and
seismic data within the study area.

(iv)

The study area shown in Figure 5 is located within a
specific geographic coordinate range. The distribution
of wells and earthquakes effectively reflects the region’s
geological characteristics and their correlation with seismic
activity. The map clearly illustrates the distribution of well
locations within the study area, which typically represent
exploration or extraction sites for underground resources
and cover several key points in the region. Seismic events
are also plotted on the map, indicating the frequency and
intensity of seismic activity occurring near these wells or in
the immediate vicinity.

Tarim Basin
Core Wells (12)
Other Wells (15)

—/
®
[ ]
[l Seismic Survey

Tarim Basin Schemati

100 km

“—p

Figure 5. Schematic diagram of the study area location and well-
earthquake distribution

4.2, Data preprocessing and feature construction

To clarify the specificrole of seismic datain the T-GNO-PINN
framework, this study performed multi-level processing and
application. First, multi-attribute extraction was performed
on the 3D seismic data volume to comprehensively
characterize the spatial structure and physical properties of
the fracture-cavity system. Specifically, amplitude attributes
(such as root mean square amplitude) were primarily used
to identify fracture-cavity volumes with strong reflection
anomalies. These data volumes served as key inputs
to the Transformer module, capturing a wide range of
spatiotemporal characteristics. Geometric attributes (such
as coherence volumes and curvature attributes) were used
to characterize the boundaries of faults and fracture zones.
They were used in the GNO module to assist in defining the
initial connectivity relationships between nodes in the graph
structure, namely, the construction of the edge set E. Finally,
wave impedance attributes, as a proxy for lithology and
porosity variations, were incorporated into the node feature
vector f, of the GNO module, providing regional geophysical
background information for each fracture-cavity unit. To
address the scale differences between seismic, well logging,
and core data, this study adopted a hierarchical fusion
strategy: First, local features were learned using Transformer
at the well logging scale. These features were then integrated
with the wide-area attributes extracted from the seismic
data, with alignment achieved through interpolation.
Finally, information was transferred on the graph through
GNO, naturally fusing this “point-surface combination”
feature representation.

During the data preprocessing phase, seismic data
undergoes spectral decomposition and attribute extraction
to form a 3D spatiotemporal attribute volume S(x,y,t).
Well logging data L(d) undergo normalization and
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sampling synchronization. Core test data C, provide true
porosity and permeability calibration values. Production
data Q(f) contains information on dynamic changes in
pressure and production. After multi-source data fusion, a
fracture-vuggy identification algorithm is used to generate
a reservoir fracture-vuggy structure map G=(V,E), where
V is the set of fracture-vuggy nodes, and E is the set of
connected edges. Each node is assigned to a feature
vector f, = [¢,k,0,Ap]. A quantitative analysis of the node
characteristics after multi-source data fusion, as shown in
Table 4, reveals that the node parameters exhibit significant
heterogeneous distribution characteristics.

The coefficients of variation for porosity (¢) and
permeability (k) reached 0.21 and 0.31, respectively. Node
V3 exhibited the highest porosity (15.7%) and permeability
(210 mD), exceeding the mean values (12.3% + 2.5%)
and 145 + 42 mD) by 27.6% and 44.8%, respectively. The
corresponding values for node V2 were 27.6% and 34.5%
below the mean. This variability was strongly correlated
with seismic attribute values (0.48-0.73) (Pearson r = 0.82),
indicating that the degree of dissolution dominated
reservoir development.

The spatial variation of stress field (o) and pressure
difference (Ap) is more complex: high-stress nodes
(V2: 20.1 MPa, V6: 21.2 MPa) are mostly located on the
structural wings, where pressure differences (0.8-0.9 MPa)
are significantly lower than those at the structural axis nodes
(V3: 1.5 MPa), exhibiting a negative correlation (r = —0.67).
Notably, mud content (4.3%-8.7%) and acoustic transit time
(85.2-92.1 us/ft) exhibit a bimodal distribution, with high-
value clusters forming at nodes V2 and V6 (Mud content
>7.8%, acoustic transit time >91 us/ft), coinciding with
localized low values in daily liquid production (28.6-29.4
m?/d), suggesting that mud filling inhibits seepage capacity.

To ensure the temporal and spatial consistency and
quality of multi-source data, the following processing
workflow was established:

Table 4. Node characteristics after multi-source data fusion

(i) Denoising: Wavelet packet decomposition was used
to remove high-frequency noise from well logs, and
curvature-constrained structural noise suppression
was applied to seismic data. Experimental errors were
eliminated from core attributes using outlier detection
(box plot method).

(ii) Interpolation and alignment: Vertically, well log and
core data were linearly interpolated at a 0.125 m
sampling interval and aligned with seismic profiles
using time-depth conversion (based on velocity
spectra and calibrated seismic synthetic records).
Horizontally, inverse distance weighting (IDW) was
used to fill in sparse well attribute data.

(iii) Construction of fracture parameter label: The
calibration formula of fracture volume content Viis as

follows:
V. .
V_f _ _ totalvoid «100% (X)
sample
Where V, . is calculated by CT 3D modeling,

Veampie 18 the total volume of the sample. The fracture-

void connectivity C, is derived using the 3D pore network
extraction method and is defined as:

N .
Cf _ _ " connectedvoid (XI)

total void
The fracture size distribution index [, is obtained
by fitting the pore size distribution probability density
function with a power law:

P(d)ocd P (XI1)

Figure 6 shows the process of multi-source data
preprocessing and hole parameter label construction.
The flowchart in the figure clearly shows the steps from
acquiring data from multiple data sources, performing
data preprocessing, and then constructing hole parameter
labels.

Node Porosity ~ Permeability =~ Stress6  Pressure A Seismic Log sonic travel Core mud Daily liquid
number ¢ (%) k (mD) (MPa) p (MPa) attribute value time (us/ft) content (%) production (m*/d)
Vi 12.5 150 18.3 1.2 0.62 87.5 5.1 34.2

V2 8.9 95 20.1 0.9 0.48 92.1 8.7 28.6

V3 15.7 210 16.5 1.5 0.73 85.2 4.3 40.5

V4 11.3 130 19.0 1.1 0.59 89.6 6.4 33.0

V5 14.2 180 17.5 1.4 0.70 86.9 5.0 38.1

A% 9.8 110 21.2 0.8 0.52 91.3 7.8 29.4

v7 13.4 165 18.0 1.3 0.65 88.2 5.6 35.8

V8 10.7 120 20.5 0.9 0.55 90.5 6.9 31.2
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Well logging data
(DT, GR, CNL, DEN, RT)

Seismic data
(3D coverage, migrated)

A 4

Noise removal

Core data
(Porosity, permeability, Production data
CT, thin section)
| J
\ 4
Interpolation & alignment

(Wavelet, structural filtering)

A\ 4

(Depth-time conversion, IDW)

A

* Scale e;

Fracture—cavity parameter labeling
* Volume fraction
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Y

Cleaned, aligned dataset with
labeling fracture—cavity parameters

Figure 6. Multi-source data preprocessing and crack parameter label construction process
Abbreviations: CNL: Neutron porosity; CT: Computed tomography; DEN: Density; DT: Acoustic time difference; GR: Natural gamma ray; IDW: Inverse

distance weighting; RT: Resistivity.

Figure 6 illustrates the main data sources involved in
the research process, including downhole logging data
(such as DT, GR, CNL, DEN, and RT), seismic data (after
3D overlay and migration processing), core data (such
as porosity, permeability, CT scans, and thin sections),
and production data. These data provide fundamental
information for subsequent fractures and vug analysis.

During the data preprocessing phase, the figure
illustrates two key steps: Noise removal, and data
interpolation and alignment. Noise removal uses methods
such as wavelet transformation and structural filtering to
remove unnecessary noise signals, ensuring data accuracy
and stability. Next, the data are interpolated and aligned
using depth-time conversion and the inverse distance
weighting (IDW) method, enabling comparison and
analysis of various data types within a unified temporal
and spatial framework.

Furthermore, the figure illustrates the process of
constructing fracture and vug parameter labels. Through
comprehensive analysis of the processed multi-source data,
labels for key parameters such as volume fraction (Vf),
connectivity (C), and scale index () were constructed.
The volume fraction is calculated by measuring the volume
contribution of fractures and vugs by the ratio of void
volume to sample volume, while connectivity is measured
by the ratio of the number of connected fractures and vugs
to the total number of fractures and vugs. The scale index
further characterizes the distribution of fractures and vugs
by fitting the fracture opening distribution using the power
method.

Finally, the figure shows the final data output after
preprocessing and labeling. This data contains a complete
dataset that has been cleaned, aligned, and annotated with
fracture and vug parameters, providing accurate input for
subsequent geological model construction and resource
assessment.

4.3. Comparative experimental design

The experiments are divided into three categories:

(i) Method comparison: Using the same dataset and

labels, the performance of the following methods in

fracture parameter prediction is compared: traditional
geostatistics (Kriging, Co-Kriging); CNN and RNN;

Transformer alone; GNO alone; PINN alone; other

fusion methods (such as CNN+PINN, Transformer

PINN, efc.).

Ablation experiment: Remove the Transformer

module, GNO module, and PINN module from the

T-GNO-PINN framework, respectively, and analyze

the performance degradation.

(iii) Physical constraint validity test: Under the same
network structure, turn on and off the PDE physical
constraint terms, respectively, and compare the
changes in the predicted physical consistency index.

(ii)

Figure 7 shows a schematic diagram of the experimental
scheme, which includes three key parts: method comparison,
ablation experiment, and physical constraint test. The figure
provides a clear visual framework for the experimental
process by illustrating the data flow and key operational
steps at each stage, thereby highlighting the role of individual
modules in validating the model’s performance. The three
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A. Method comparison

B. Ablation study

C. Physical constraints check

datasets datasets (same as panel A) data or simulated scenes
r | Methods | | l_ | Model variants | | I | Apply constraints | |
| 1 i |
| | 2 y v | | |
i 5 Without Without Physical/domain constraints
I Sunmethod Ll Lo | I g bmodel module A module B | I (conservation, stability, monotonicity) |
7 ] ! |
[Ty P ——— e == = = = — — o —— — —_ —_ =
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Evaluation metrics
(MAE, RMSE, F1, mAP)

Same metrics as panel A

Model predictions
(from panel A/B)

A 4

y A\ 4

Quantitative & qualitative analysis
(leaderboard, plots, examples)

Contribution analysis
(A vs. full model, significance)

Constraint satisfaction & diagnostics
(rate, violation maps, case studies)

Figure 7. Schematic diagram of the experimental scheme

Abbreviations: MAE: Mean absolute error; mAP: Mean average precision; RMSE: Root mean square error.

panels in the figure correspond to different aspects of the
experiment, where panels A, B, and C show the details of
method comparison, ablation experiment, and physical
constraint verification, respectively.

In panel A, the experiment first presents a method
comparison, comparing our proposed approach with two
baseline methods. Using the same dataset, our model and two
baseline methods were trained and evaluated using metrics
such as mean absolute error (MAE), root mean square error
(RMSE), F1 score, and mean average precision (mAP). This
section provides both quantitative and qualitative analysis,
including leaderboards, data visualizations, and case studies.
This method comparison demonstrates the performance
advantages of our approach, particularly demonstrating
significant improvements in quantitative evaluation metrics.

Panel B presents the design of an ablation experiment,
designed to evaluate the contributions of various model
components. In this experiment, the performance of the
model is evaluated by removing certain modules (such as
module A or module B). By comparing the model with
the full model, the contribution of each module and its
importance in the final model performance are analyzed.
Ablation experiments not only help us quantify the
importance of each module but also provide a basis for
further model optimization.

Panel C focuses on physical constraint verification. In this
section, we apply physical constraints to model predictions to
ensure that they satisfy domain-specific constraints such as
conservation, stability, and monotonicity. Applying physical
constraints can significantly improve the reliability and
interpretability of models for real-world problems. Building

on this foundation, the figure further demonstrates how
model predictions are compared to the physical constraints,
assessing their satisfaction, and provides detailed diagnostic
results through violation graphs and case studies.

4.4. Evaluation index system

This research evaluation system considers three aspects:
numerical accuracy, spatial structure consistency, and
physical consistency:

(XIII)
N
MAE=—>"y, -] (XIV)
i=1
N
i )
RP=1- Z’:l (XV)

where y, is the measured value, ¥ is the predicted
value, N is the number of samples, and y is the measured
mean.”?

The spatial autocorrelation  characteristic  is
characterized by the Moran’s I index, which is calculated
as follows:

n n _ _
n Zi:lzj=lwij(xi _-x)(xj _x)
I= : (XVT)

S
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Where 7 is the number of spatial units, w, is the spatial
weight matrix, x; and x; are the observed values of adjacent
spatial units, and X is the mean. This index is within the
range of [—1,1]. Positive values indicate positive spatial
correlation, and larger absolute values indicate more
pronounced spatial clustering.

Structural similarity is measured using the structural
similarity index measure (SSIM) index, which can be
expressed in multidimensional form as follows:

(2,ux/,ty + Cl)(Zny +G,)

SSIM(X,Y) =—— —
(g + 1, +C))(o; +0), +G,)

(XVII)

Where X and Y represent the predicted and true fields,
p represents the mean, o represents the variance, and C,, C,
represent stability constants. This metric comprehensively
assesses the degree of similarity in spatial patterns across
three dimensions: brightness, contrast, and structure.

For physical consistency, the conservation error is
calculated using a relative error:

] sV =] 4V

€ = Xl(

cons J‘ ©qtme dV

Where Q is the computational domain and g is the
conserved quantity (such as mass or volume). The PDE
constraint satisfaction is quantified by the residual norm:

(XVIII)

1 N
R =§;|| N (g (x,)) = f(x) | (XIX)

Here, N is the differential operator, u, is the neural
network prediction solution, and f is the source term. The

residual term is directly embedded in the loss function for
joint optimization:

L=a-L,, +B-R (XX)

Where o, are adaptive weighting coeflicients.
Experiments show that when R <107, the physical
credibility of the predicted solution exceeds 95%, and the
spatial and physical indicators show a significant positive
correlation (Pearson coefficient > 0.82). This multi-
dimensional  quantitative framework provides a
comprehensive and reliable assessment of the model’s
performance.

5. Results
5.1. Comparative experimental results analysis

To wvalidate the advantages of the T-GNO-PINN
framework, we selected Ordinary Kriging (OK), CNN,
RNN, Transformer alone, GNO alone, and PINN alone
as baseline models for comparison. Table 5 compares
the performance of different models in the fracture-
vug volume fraction (Vf) prediction task, quantitatively
evaluating them across multiple dimensions, including
accuracy, structural similarity, spatial autocorrelation, and
physical consistency.

The traditional OK method performed poorly across
all metrics, with significantly higher RMSE (8.12%)
and MAE (6.54%) than deep learning models. Its high
conservation error (4.21%) demonstrates its limitations in
modeling complex non-linear relationships. The CNN and
RNN methods showed improvement over OK, reducing
the RMSE to 6.85% and 6.72% and increasing the R? to
0.78 and 0.79, respectively. R* increased to 0.78 and 0.79,
respectively. However, they still suffer from insufficient
physical constraints, with conservation errors remaining
in the 3.84%-3.97% range.

The Transformer and GNO models further improve
prediction accuracy, with RMSE reduced to 5.98% and
5.74%, respectively, and SSIM increased to 0.70 and
0.73, demonstrating their strengths in extracting high-
dimensional features and modeling spatial dependencies.
However, these pure deep learning methods still exhibit
limitations in physical consistency, as evidenced by

Table 5. Comparison of prediction accuracy of each model on the test set (fracture volume content V)

Model RMSE (%) MAE (%) R2 SSIM Moran’s Conservation error (%) PDE residual (x10?)
OK 8.12 6.54 0.71 0.58 0.42 4.21 -

CNN 6.85 5.12 0.78 0.64 0.55 3.97 -

RNN 6.72 5.04 0.79 0.66 0.56 3.84 -
Transformer 5.98 4.51 0.83 0.70 0.60 3.42 -

GNO 5.74 4.36 0.85 0.73 0.63 2.95 -

PINN 5.69 4.28 0.85 0.74 0.64 1.12 1.35
T-GNO-PINN 4.82 3.57 0.90 0.81 0.71 0.48 0.42

Abbreviations: CNN: Convolutional neural network; GNO: Graph Neural Operator; OK: Ordinary Kriging; PINN: Physics-Informed Neural Network;

RNN: Recurrent neural network; T: Transformer.
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considerable conservation errors (2.95%-3.42%) and
the absence of PDE constraints, indicating that their
predictions may violate physical laws. In contrast, the PINN
model, which introduced physical constraints, significantly
reduced the conservation error (1.12%) and PDE residual
(1.35x107°) while maintaining high prediction accuracy
(RMSE = 5.69%, R* = 0.85), validating the effectiveness of
physical embedding.

Finally, the T-GNO-PINN model, which integrates
the Transformer, GNO, and PINN, demonstrated the best
overall performance. Its RMSE (4.82%) and MAE (3.57%)
were further reduced by 15.3% and 16.6% compared to
the baseline PINN, while its R? increased to 0.90 and its
SSIM reached 0.81, demonstrating its superior capabilities
in high-precision fitting and structural fidelity. In
addition, the conservation error (0.48%) and PDE residual
(0.42x107?) of this model are reduced by 57.1% and 68.9%,
respectively, compared with pure PINN, and the Moran’s I
index (0.71) is also better than other models, demonstrating
its dual advantages in spatial autocorrelation modeling and
compliance with physical laws.

Table 6 quantitatively analyzes the contribution of
the Transformer, GNO, and PINN modules to the model
performance through ablation experiments, revealing the
differentiated role of each module in the prediction task.

Removing the Transformer module increased the
model's RMSE by 0.62%, decreased its R* by 0.03, and
decreased its SSIM by 0.05. Conservation error also
increased by 0.21%, demonstrating its crucial role in
modeling spatial distribution consistency. Its absence led
to significant degradation in both structural similarity
(Moran’s I decreased by approximately 8%) and local
feature fidelity. Removing the GNO module resulted in
an even more significant loss in global accuracy, with
an RMSE increase of 0.74% and a R* decrease of 0.04,
demonstrating its crucial role in capturing complex non-
linear relationships. Its absence increased the standard
deviation of the prediction error distribution by 12-15%,
with the relative error increasing by approximately 20% in
high-pressure gradient regions.

Table 6. Module ablation experiment results

Remove ARMSE AR? ASSIM A Conservation
module (%) error (%)
Transformer +0.62 —-0.03 -0.05 +0.21
GNO +0.74 -0.04 -0.06 +0.33
PINN +0.88 -0.05 -0.07 +1.25

Ablation of the PINN module had the most significant
impact on physical constraints, with a 1.25% surge
in conservation error, far exceeding the impact of
other modules (<0.35%). This was accompanied by a
0.88% increase in RMSE and a 0.07 decrease in SSIM,
demonstrating its ability to suppress non-physical
solutions through PDE constraints. Notably, removing
the PINN increases the PDE residual by 3.2 times that
of the full model (from 0.42x107 to 1.35x107%), and
the local error peak in the critical mass conservation
region increases by 40-60%. Experimental data further
demonstrates the synergistic effect of the three modules,
which has a non-linear enhancement effect: when
retaining both the Transformer and GNO, PINN’s
physical constraint efficiency improves by 22%, while the
combined optimization of the GNO and PINN improves
the Transformer’s spatial feature extraction efficiency by
15%. This inter-module coupling mechanism enables
the full model to maintain an SSIM >0.81 while keeping
the physical violation rate below 0.5%, resulting in a
19.7% improvement in overall performance compared
to the optimal single-module combination (Transformer
+ GNO), confirming the design superiority of the
multimodal fusion architecture.

5.2.The impact of physical constraints on prediction
results

The PINN module introduces PDE constraints into the
loss function:

N
1 P
L= Laga + App -—ZN (u; ); (XXI)
P j=1

Where N(u) is the partial differential operator
describing the fracture-hole flow and mechanical
equilibrium, N, is the number of physical sampling points,
and A, is the weighting coefficient.

Table 7 systematically quantifies the dual improvement
in prediction performance achieved by the physical
guidance mechanism by comparing model performance
with and without the PINN constraint enabled.

Table 7. Comparison of prediction performance with and
without PINN constraints

Constraint RMSE R? SSIM Conservation PDE residuals

status (%) error (%) (x1073)
off 5.21 0.86 0.75 3.17 3.84
On 4.82 090 0.81 0.48 0.42

Abbreviations: GNO: Graph Neural Operator; PINN: Physics-Informed
Neural Network; RMSE: RMSE: Root mean square error;
SSIM: Structural similarity index measure.

Abbreviations: PDE: Partial differential equation;
PINN: Physics-Informed Neural Network; RMSE: RMSE: Root mean
square error; SSIM: Structural similarity index measure.
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When the PINN constraint is disabled, the model
maintains high baseline accuracy (RMSE = 5.21%,
R? = 0.86), but the conservation error reaches 3.17%
and the PDE residual increases to 3.84x107, reflecting
the inevitable physical rule violations of purely data-
driven methods. However, after introducing the PINN
constraint, the conservation error plummets by 84.9%
(from 3.17% to 0.48%) and the PDE residual decreases
by 89.1% (from 3.84x107 to 0.42x107?), validating the
effectiveness of embedding the physical equations in
regularizing the solution space. Notably, the introduction
of the physical constraint not only improves model
compliance but also significantly enhances prediction
accuracy: the RMSE decreases by 7.5% (0.39 percentage
points), the R? increases by 0.04, and the SSIM increases
by 8% (0.06 units). This improvement occurs because
the PINN’s differential constraint guides the network
toward physically feasible solutions during training,
thereby helping it avoid local optima. Specifically, in
sensitive areas with pressure gradients greater than 5
MPa/m, PINN constraints reduced prediction errors by
12%-18%. Furthermore, for the key metric of material
conservation, the mass balance error was compressed
from 2.3% to below 0.7%. Experimental data showed
that the introduction of physical constraints reduced
the proportion of samples with extreme errors (>10%)
in the model’s test set by 63%, while also improving the
spatiotemporal continuity indicator (autocorrelation
coefficient) of the prediction results by 22%, confirming
the synergistic optimization effect of physical knowledge
and data-driven methods.

V;> 0.15
V;> 025
V> 035

Depth (m)

100 100

Figure 8. Visualization of the spatial distribution of three-
dimensional fracture-void volume content (V)

5.3. Spatial distribution of fracture and hole
parameters

Figure 8 reconstructs the 3D spatial distribution
of the fracture-cavity volume fraction, V, within a
100 m x 100 m x 50 m study volume at a grid resolution
of 30 m x 30 m x 15 m. The continuous field is discretized
using thresholds of 0.15, 0.25, and 0.35, and high-value
clusters are represented as scattered point clouds with
a transparency of 0.15. This approach preserves the
statistical distribution of field values while avoiding the
oversmoothing that occurs with traditional isosurface
rendering at the fracture-cavity scale.

From a spatial perspective, a deep red high-value
body with a V> 0.35 runs along a 45° northeast direction
throughout the model, with a major axis of approximately
80 m and a minor axis of 15-20 m. Its thickness is
concentrated in the 15-30 m depth range, accounting
for an average of 7.8% of the volume. This orientation is
highly consistent with the strike of regional strike-slip
faults, suggesting that the main fault surfaces serve as
the primary pathways for dissolution fluid migration.
A moderate V, range of 0.25-0.35 forms a “sheath” around
the high-value band, extending approximately 25 m
laterally and up to 40 m vertically. It accounts for 12.4%
of the volume, reflecting lateral permeability of the fault
zone and secondary dissolution in stress-shadowed areas.
In contrast, the blue low-value regions with V, < 0.15 are
primarily distributed in the secondary structural highs in
the northwest and southeast corners of the model. Their top
surfaces are buried at depths of 5-10 m and account for a
whopping 79.8% of the volume, indicating that these high-
value regions, far from the main faults, lack fluid supply and
are thus areas of poor fracture-vug development. Statistics
show that within the high-value regions, V averages
0.41 with a standard deviation of 0.05, indicating good
homogeneity. The low-value regions average 0.08 with a
standard deviation of 0.03, indicating high dispersion.

Figure 9 systematically demonstrates the spatial
distribution characteristics of the crack-hole volume
fraction under different information sources by comparing
four sets of 3D point clouds.

Figure 9A (true field), based on core-log data, shows
distinct northwest-southeast-trending bands of high-
value features at the 0.15, 0.25, and 0.35 thresholds, with
a vertical span of approximately 10-40 m, reflecting true
geological heterogeneity. Figure 9B (T-GNO-PINN) shows
a highly consistent overall morphology with Figure 9A,
but the high-value clusters are more compact, with more
continuous boundaries, and significantly reduced noise,
demonstrating that the physics-neural network fusion
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Figure 9. Comparison of the three-dimensional spatial distribution of fracture-pore volume fractions. (A) True field under core-log constraints;
(B) T-GNO-PINN hybrid physics-neural network predicted field; (C) Traditional Kriging interpolation estimated field; (D) Seismic attribute threshold

interpretation results.

method effectively suppresses random errors while
maintaining spatial structure. While Figure 9C (Kriging)
preserves macroscopic banding, the linearly weighted
smoothing effect increases the area of high-value volumes
and blurs their edges, resulting in localized overestimation
exceeding 30%. Vertical resolution decreases, and artifacts
of high values increase at depth (>35 m). Figure 9D
(seismic interpretation) uses a hard threshold of 0.25 to
produce a binary distribution. While the general locations
are consistent with those in Figure 9A and B, they only
provide a “presence/absence” distinction. Furthermore,
due to thelimited lateral resolution of the seismic frequency
band, details are strongly smoothed, making it impossible
to characterize weak response volumes in the 0.15-0.25
range. In summary, the T-GNO-PINN method effectively
integrates the strengths of the other approaches: It captures
the subtle heterogeneity of the true field, maintains the
spatial continuity of the Kriging result, and respects the
large-scale structural constraints from seismic data. This
synergy provides superior 3D volume fraction estimates
for high-resolution reservoir modeling.

6. Discussion

The T-GNO-PINN joint prediction framework demonstrates
significant advantages in predicting fracture-vuggy

parameters in carbonate reservoirs. Compared to traditional
geostatistical methods and single deep learning models, this
framework achieves both improved accuracy and physical
consistency through multimodal fusion. Experimental
results demonstratea 15.3% reduction in RMSE and an 89.1%
reduction in physical constraint violations compared to the
optimal baseline model. This performance improvement
stems from three key technological innovations: First, a
dynamic graph constructed based on physical similarity
enables the model to adaptively track changes in fracture-
vuggy topology during development, addressing the
limitations of static graph models in time-varying systems.
Second, a multi-scale Transformer module -effectively
captures long-range dependencies in the reservoirs 3D
space through spherical coordinate encoding, overcoming
the limitations of traditional CNNs in modeling irregular
geological volumes. Most importantly, the PINN module,
by hard-embedding the seepage-mechanical coupling
equations, not only constrains the solution space to be
physically reasonable but also significantly improves the
model’s generalization in data-sparse regions. This method
is particularly suitable for carbonate reservoirs with complex
fracture-vuggy systems, and its advantages have been fully
demonstrated in a case study of Ordovician fracture-vuggy
reservoirs in the Tarim Basin.
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In terms of model generalization, the T-GNO-PINN
framework demonstrates strong adaptability to reservoir
heterogeneity. Analysis of prediction results from various
structural locations reveals that the model maintains stable
prediction accuracy in both high-permeability zones near
fault zones (permeability >150 mD) and low-permeability
zones on the flanks (permeability <50 mD), with R’
fluctuations within +0.03. This robustness is primarily
due to two mechanisms: First, the GNO module learns a
continuous function space mapping using a kernel integral
operator, avoiding the distortion of complex fracture-
vuggy morphology caused by discretization; second,
the introduction of physical constraints ensures that the
model automatically adheres to conservation laws during
training, reducing the risk of overfitting. Notably, when
applied to a new work area, only 20%-30% of the model
parameters need to be adjusted to achieve optimal results,
demonstrating the cross-regional applicability of the
physical laws learned by the framework. However, under
extreme heterogeneity conditions (fracture-vuggy index
>0.4), the model prediction error fluctuates, suggesting
the need for further optimization of the dynamic graph
construction strategy.

The model's physical interpretability is enhanced
through three mechanisms. First, the differential operator
residual term in the PINN module provides a clear
physical interpretation of the prediction results. Such as
pressure field prediction errors can be directly traced to
the degree of violation of Darcy’s law. Second, attention
weight visualization shows that the Transformer module
automatically focuses on key geological locations such as
structural unconformities and fault zones, highly consistent
with expert knowledge. Third, the GNO graph topology
intuitively reflects the connectivity of fracture-vuggy units,
and its dynamic evolution is consistent with the water
breakthrough patterns observed in actual production data.
This interpretability not only enhances the confidence
of engineers but also provides a new research tool for
reservoir dynamic analysis. Such as by inversely analyzing
the spatiotemporal distribution of physical residuals, local
flow barriers that are difficult to detect using traditional
methods can be identified, providing a basis for adjusting
development plans.

Despite significant progress, the current framework
still has several areas for improvement. In terms of
computational efficiency, jointly training the three
modules requires approximately 3-5 times the training
time of conventional models. The main bottlenecks are
the real-time updating of the dynamic graph structure
and the global computation of the PDE residuals. Future
improvements can be achieved through the development
of sparse attention mechanisms and adaptive physical

sampling strategies. In terms of application, the models
accuracy in predicting fracture-cavity —parameters
under coupled multiphase flow conditions still needs
improvement. When water saturation exceeds 60%, the
prediction error increases by 10-15%. This suggests the
need to incorporate more comprehensive multiphase
flow equations within physical constraints. Furthermore,
existing frameworks still poorly handle the scale difference
between the vertical resolution of well logging data and
the horizontal resolution of seismic data. Developing
new mechanisms for cross-scale feature fusion will be
an important research direction. Finally, the effective
integration of engineering data—such as from drilling
and fracturing operations—into the model to achieve
integrated “geology-engineering” predictions represents a
crucial step toward enhancing its practical value.

7. Conclusion

The Transformer-Graph Neural Operator-Physics-
Informed Neural Network (T-GNO-PINN) joint prediction
framework proposed in this study provides an innovative
solution for predicting fracture-vuggy parameters in
carbonate reservoirs through multimodal information
fusion and embedded physical constraints. This approach
achieves, for the first time, a deep integration of deep
learning models with the principles of seepage flow and
rock mechanics, demonstrating significant superiority in an
empirical study of an Ordovician fracture-vuggy reservoir
in the Tarim Basin. The frameworK’s key breakthroughs
lie in three dimensions: In terms of feature extraction,
a multi-scale Transformer module, through innovative
spherical coordinate encoding, effectively addresses the
challenge of modeling long-range dependencies in 3D
geological space. In terms of graph structure modeling, a
dynamic graph construction mechanism based on physical
similarity enables adaptive tracking of fracture-vuggy
topology. In terms of physical constraints, hard-embedded
differential operators ensure that predictions strictly
adhere to the fundamental laws of subsurface fluid flow.
Experimental results demonstrate that this framework not
only improves the prediction accuracy of fracture-vuggy
volume content to MAE 3.57% and R? 0.90, but also keeps
the physical conservation error below 0.5%, significantly
outperforming existing prediction methods.

The research results have important guiding value
for oil and gas exploration and development practices.
Given the strong heterogeneity of carbonate reservoirs,
the parameter prediction results provided by the T-GNO-
PINN framework can support more accurate reserve
calculations and development plan design. Especially in
the early evaluation stage, this method requires only a small
amount of well-controlled data to generate a geologically
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consistent fracture-vuggy parameter field, significantly
reducing the risk of exploration decisions. Dynamic graph
modeling technology provides a new tool for tracking
the evolution of fracture-vuggy connectivity during
development, facilitating the optimization of injection-
production well pattern deployment. Furthermore, the
physical consistency indicators predicted by the model
can be directly used to identify potential flow barriers,
providing a quantitative basis for selecting fracturing
stimulation targets. These applications have achieved
significant single-well daily production prediction errors
of less than 8% in the study area, validating the method’s
engineering practicality.

Looking forward, this research has several promising
directions. First, optimizing computational efficiency
requires developing sparse attention ~mechanisms
and adaptive physical sampling algorithms to reduce
the overhead of dynamic graph updates and PDE
residual calculations. Second, improving the physical
constraint system. Under multiphase flow conditions, the
introduction of an extended flow equation that accounts
for capillary forces and phase permeability curves should
be considered. Improving cross-scale fusion mechanisms
is also crucial. This requires developing adaptive matching
methods for high-resolution vertical logging features and
seismic attributes. A more forward-looking approach is
to build an integrated geological-engineering intelligent
prediction system, incorporating engineering intervention
parameters such as drilling and fracturing into the
modeling system to achieve closed-loop optimization from
static description to dynamic control. These improvements
will further enhance the model’s applicability and practical
value in complex oil and gas reservoir development.
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