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Abstract
Identifying and characterizing fractured cavities is essential for exploring carbonate 
reservoirs. However, characterizing the development and distribution of fractured 
cavities through post-stack seismic attribute analysis remains challenging. Recently, 
convolutional neural networks (CNNs), such as UNet and its enhanced versions, 
have enabled the quantitative identification of fractured cavities. Despite these 
advancements, the local receptive field and weight-sharing mechanisms of these 
CNNs limit their capability to capture long-range features within strike–slip fault 
systems. In addition, neural networks are inherently affected by data uncertainty. 
To address these challenges, a two-step methodology is proposed. The first step 
utilizes a Swin-UNet transformer (UNETR) model, enhanced with an attention gate, to 
interpret fractured cavities. The transformer in Swin-UNETR improves the detection of 
fractured cavities in strike–slip fault zones, whereas the attention gate enhances the 
recognition of small fractured cavities by increasing their response in the feature maps. 
This enhanced Swin-UNETR model overcomes the limitations in modeling long-range 
features. In the second step, the fractured-cavity identification results are combined 
with seismic attributes from conventional analysis. Principal component analysis is 
employed both to increase the relative weight of the neural network recognition 
results in the attribute fusion and to reduce the uncertainty associated with any 
single identification method. The methodology was validated in the Shunbei area, 
yielding horizontal segmentation and vertical zonation of fractured cavities, as well 
as their characterization through fixed-grid modeling. By combining deep learning-
based feature extraction with seismic attributes, this approach improves the accuracy 
of fractured cavity identification and characterization in carbonate reservoirs.
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1. Introduction
Fractured-cavity reservoirs are carbonate rock formations 
that have developed along fault zones subjected to 
multiphase tectonic stresses. The combined effects of these 
tectonic movements, the development of karst features 
over time, and the upwelling of hot fluids create complex 
fractured cavities in the carbonate layers. These cavities 
serve as primary reservoirs for oil and gas, playing a 
critical role in both hydrocarbon storage and migration. 
Therefore, accurately locating and characterizing these 
reservoirs is critical for successful oil and gas exploration 
and development.1

Domestic and international researchers primarily 
utilize post-stack seismic attributes, including coherence, 
curvature, and amplitude, to detect and characterize 
fractured cavities. These traditional methods approximate 
the locations of fractures and cavities but cannot precisely 
delineate their size or shape. With the rapid advancements 
in deep learning for visual and medical imaging, and 
given the structural similarity between three-dimensional 
(3D) post-stack seismic data and magnetic resonance 
imaging scans, deep learning has seen increasing adoption 
in seismic interpretation. For example, Wu et al.2 used 
a convolutional neural network (CNN) with the UNet 
architecture to identify karst paleocaves from 3D seismic 
datasets. They also developed a method to create synthetic 
datasets that mimic the seismic reflections of paleocaves. 
High-quality seismic data annotations are indispensable 
for effective feature recognition using UNet. Building on 
this, Li et al.3 adopted an enhanced UNet CNN, using field-
annotated cavity contours and synthetic datasets of faults, 
fractures, and karst caves to improve fractured cavity 
identification in strike–slip fault zones. Despite these 
advances, uncertainty persists in seismic interpretation 
with deep learning. To address this, Gui et al.4 combined 
UNet++ with multiscale convolutional kernels and seismic 
attributes to improve accuracy. Zhang et al.5 created a 
Bayesian deep learning framework that identifies cave 
shapes and measures uncertainty in the results. However, 
the increased model complexity leads to prolonged training 
and inference durations.

While the aforementioned methodologies have 
exhibited promising results, they still suffer from inherent 
limitations. In contrast to paleocaves that develop 
independently, the formation of fractured cavities is 
influenced by strike–slip fault zones that extend over 
several kilometers. The intrinsic local receptive field and 
weight-sharing mechanisms of CNNs fundamentally 
constrain their capability to detect large-scale fractured 
cavity systems. Early convolutional layers primarily focus 
on localized regions of the input data, thus failing to capture 

correlations across distant regions, which inherently limits 
their efficacy in identifying long-range geological features 
(strike–slip fault systems). Moreover, fractured cavities 
exhibit considerable variability in size and morphology, 
with smaller cavities often displaying complex geometries. 
The application of neural network-based methods for 
fractured cavity identification also introduces both data-
driven and model-induced uncertainties, warranting 
effective mitigation strategies.

To address the inherent locality limitations of CNNs, 
the present study employs a Swin-UNet transformer 
(UNETR) network augmented with an attention gate for 
the identification of fractured cavities. The Swin-UNETR 
architecture synergistically combines transformer models.6 
with UNet frameworks, thereby enhancing the network’s 
capability to recognize complex fractured cavities over long 
spatial ranges. The encoder component utilizes a sliding 
window operation to reduce computational complexity 
during the processing of seismic input data. In addition, 
to mitigate uncertainties arising from neural network 
methodologies, conventional seismic attribute techniques 
are incorporated to constrain the identification outcomes. 
Specifically, principal component analysis is employed 
to integrate the fractured-cavity segmentation results—
treated as a dominant attribute—with multiple seismic 
attribute datasets.7 This integrative approach combines 
fractured-cavity information from all methods into a single 
fused attribute volume, enhancing overlapping features 
while suppressing inconsistent ones and thereby improving 
the overall accuracy of fractured-cavity identification.

2. Methodology
2.1. Field seismic data and geological background

The post-stack seismic datasets used in this study, outlined 
by the blue box in Figure  1, were obtained from the 
Shunbei Oil and Gas Field. The field is primarily located in 
the Shuntuoguole Low Uplift and extends southeastward 
to the Guchengxu Uplift. Geographically, it is adjacent to 
the Shaya Uplift to the north and the Katakunlun Uplift 
to the south, with the Manjiaer Depression and Awati 
Depression bounding it to the east and west, respectively. 
The field lies in a structurally low “saddle” zone, generally 
characterized by relatively higher elevations in the northern 
and eastern parts and lower elevations in the southern 
and western parts, forming an overall gently undulating 
geomorphology.8

During the early Caledonian era, the Shunbei area 
experienced stable tectonic subsidence in the craton, 
characterized by a weak extensional tectonic regime. 
Subsequently, from the mid- to late Caledonian era to the 
early Hercynian era, the region experienced the formation 

https://dx.doi.org/10.36922/JSE025420090


Journal of Seismic Exploration Fractured cavity identification in carbonates

Volume X Issue X (2026)	 3� doi: 10.36922/JSE025420090

and evolution of low uplifts under a regional compressional 
tectonic regime. This was followed by further tectonic 
adjustments and reworking during the mid-to-late 
Hercynian period, culminating in the formation of the 
present-day tectonic framework.

As shown in the comprehensive stratigraphic column 
of Figure  2, the stratigraphic sequence in the Shunbei 
area ranges from the Lower Paleozoic Cambrian to the 

Cenozoic Quaternary, with a notable absence of the 
Jurassic System. The Yuertusi formation of the Lower 
Cambrian is extensively developed as a source rock, 
distinguished by its high organic carbon content and 
considerable hydrocarbon generation potential. The 
focus of this study is the Ordovician carbonate strata, 
which are buried at depths ranging from 7200 to 8800 m 
below sea level. These Ordovician formations, arranged 

Figure 2. Tectonic map and stratigraphic section of the central Tarim Basin. Image modified from Zheng et al.11

Figure 1. (A-D) Tectonic map and stratigraphic section of the central Tarim Basin, where the study area is located. Image modified with permission from 
Wang et al.9 Copyright © 2024, IEEE.
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stratigraphically in ascending order, include the Lower 
Ordovician Penglaiba formation (O1p), the Middle-
Lower Ordovician Yingshan formation (O1–2y), the 
Middle Ordovician Yijianfang formation (O2yj), the Upper 
Ordovician Qiaerbake formation (O3q), the Lianglitage 
formation (O3l), and the Santamu formation (O3s). Within 
this sequence, the carbonate units in the upper portion 
of the Yingshan formation and the Yijianfang formation 
represent the principal targets for oil and gas exploration 
in the study area.10

A northeast-trending strike–slip fault system has 
developed in the study area, providing an effective conduit 
for hydrocarbon migration and promoting hydrocarbon 
accumulation. The reservoir space is primarily composed 
of tectonically generated fractured cavities.12 Seismic data 
acquired along this fault zone during exploration are 
shown in Figure  3. The target area shown in the figure 
has dimensions of 2501  time slices × 1022 inlines × 865 
crosslines. To better characterize the spatial distribution 

of multiscale carbonate fractured cavity reservoirs in the 
Ordovician and Cambrian strata, strong reflection axes 
were removed from the seismic data (Figure  4), thereby 
preventing the reflection information of the underlying 
fractured cavities from being masked by these strong 
reflection axes. The data were then divided into six 
segments, referred to as object area (OA)-crop1 through 
OA-crop6. These segments correspond to the southern, 
central, and northern sections of the study area.

2.2. Fractured cavities identification using 
Swin-UNETR

2.2.1. Training of datasets

As a data-driven supervised learning approach, deep 
learning requires feature-rich training datasets for 
effective model optimization. In carbonate fault-controlled 
reservoirs, fractured cavities manifest as clusters of strong 
reflections on a weak reflection background in seismic 
datasets. As small-scale geological anomalies within 

Figure 3. Three-dimensional exploration of the seismic data in the study area
Abbreviation: OA: Object area.
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carbonate reservoirs, fracture cavities create diffraction 
effects during seismic wave propagation. This phenomenon 
arises from wave impedance contrasts, generating multiple 
vertical strong energy anomalies. Figure  5 shows that 
forward modeling reveals the beaded anomalous reflection 
characteristics of fractured cavities on post-stack seismic 
sections. These are typically shown by seismic attributes 
such as strong amplitude anomalies, high amplitude 
variation rates, weak to moderate coherence, low wave 
impedance, and low velocity. As shown in Figure  6, 

inversion of the seismic profiles indicates that fractured 
cavities in the OA exhibit nearly ellipsoidal outlines with 
significant variation in scale, ranging from 10 to 150 m.13

Based on the relationship between the morphology and 
size of fractured cavities and the beaded anomalous 
reflections observed on seismic profiles, a convolutional 
synthesis method using a seismic reflectivity model and 
Ricker wavelets was employed to construct training 
samples of fractured cavities. The process of establishing a 
seismic reflectivity model involved three key steps. First, 

Figure 6. Amplitude curvature seismic attribute profile of fractured cavities. (A) Raw seismic profile. (B) Amplitude curvature seismic attribute profile.

BA

Figure  5. Forward modeling of the beaded reflection characteristics of the fractured cavities. (A) Compression section. (B) Pull-apart segment. 
(C) Translational segment.

CBA

Figure  4. Object area data after strong axis removal processing. (A) Original seismic profile. (B) Seismic profile after removing the strong axis. 
(C) Removed H7

4 strong axis.

CBA
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building an initial 3D horizontal-layered reflectivity model 
(X, Y, Z); second, incorporating formation dip and fold 
structure models (Xs, Ys, Zs)into the horizontal layers; and 
finally, integrating the fractured cavities components 
( X  Y  Z, , ) into the composite model.

The geometric fold model (Xs, Ys, Zs) was generated by 
applying a vertical offset to the initial model (X, Y, Z). This 
vertical offset field was decomposed into large-scale fold 
surfaces S₁ (X, Y, Z), small-scale local folds S₂ (X, Y, Z), and 
multidirectional dip components S₃ (X, Y, Z).
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The first large-scale displacement field, as shown in 
Equation (I), was defined by a Fourier series. In this context, 
the parameters X0 and Y0 represent the central position of 
the modified Foucault’s equation. The Fourier coefficients 
Ak and Bk define the amplitude of the folds. The attenuation 
factors a and b control the amplitude variation of the folds in 
the X and Y directions, respectively. The elliptic coefficients 
L[x]k and L[y]k control the degree of fold curvature in the 
X and Y directions, respectively, with L[x]k corresponding 
to the ellipse’s major axis. The parameter ϕk denotes the 
clockwise rotation angle of the ellipse, and the parameter λk 
controls the compression ratio of the wavelength.
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The second small-scale fold displacement field, as shown 
in Equation (II), was defined by a Gaussian equation; the 
Gaussian coefficients σ[x]k and σ[y]k represent the major 

and minor axis lengths of the ellipse, with σ[x]k denoting 
the major axis. The ϕk is the clockwise rotation angle of 
the fold, whereas Ek and Fk specify the central position 
of the Gaussian function. The fold amplitude is controlled 
by a separate parameter Dk, whereas an attenuation factor 
C adjusts its vertical variation. The vertical extent of the 
folds in the Z direction can be controlled by specifying 
appropriate lower and upper limits, for example, by setting 
σ[x]k = σ[x]0 + dZ and σ[y]k = σ[y]0 + eZ.

S3 (X,Y,Z) = Gx + Hy + I� (III)

Finally, the third displacement field, as shown in 
Equation (III), used a linear equation to simulate the 
dip of strata in various directions, with parameters G and 
H controlling the dip angles in the X and Y directions, 
respectively.
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By superimposing the vertical displacement fields S1 
(X, Y, Z), S2 (X, Y, Z), and S3 (X, Y, Z), the spatial coordinates 
(Xs, Ys, Zs)of the fold structure model were derived 
(Equation [IV]).
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In addition, natural folds ( ' ' ',  ,  s s sX Y Z ) are often 
complex, allowing an arbitrary combination of S1 
(X, Y, Z), S2 (X, Y, Z), and S3 (X, Y, Z). Vertical variation 
of fold surfaces can be achieved by incorporating a lateral 
displacement field (Equation V) or by systematically 
adjusting the central coordinates of each fold equation.14

After generating the formation dip and fold reflectivity 
model, the next step simulated the structural characteristics 
of a fault-controlled fractured-cavity system. Field outcrop 
observations (Figure  2) show that the dominant features 
are fault-related fractures and near-cylindrical caves, which 
can be approximated as vertically elongated ellipsoids 
with major axes perpendicular to the ground surface. 
To effectively simulate the reflection characteristics of 
fractured cavities, a 3D, vertically elongated ellipsoid was 
first constructed, as shown in Equation (VI).

f(p) = (p−c)ΤR1 
ΤAR1(p−c)� (VI)

The 3D domain of the ellipsoid is defined by Equation 
(VII):
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In the ellipsoid function (Equation VI), p = (X, Y, Z) 
denotes the coordinates of a point in the 3D reflectivity 
model, whereas c = (cX, cY, cZ)represents the center of the 
ellipsoid, randomly sampled within the model domains. 
Matrix A is a diagonal matrix specified by the ellipsoid’s 
three radii, as shown in Equation (VIII):

A �

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

1 0 0

0 1 0

0 0 1

2

2

2

r

r

r

X

Y

Z

� (VIII)

Among these parameters, the values of rx, ry, and rz were 
randomly selected from predefined ranges [1, 12], [1, 12], 
and [10, 100], respectively, to construct cavities of varying 
sizes. To ensure predominantly vertically elongated 
ellipsoids, the range for rz was set wider. In addition, 
constraints rx > 0.1rz and rY > 0.1rz were imposed to avoid 
extremely elongated ellipsoids, which are geologically 
uncommon. Matrix R1 (Equation IX) is a rotation matrix 
that rotates the ellipsoid around the X-axis and Y-axis.
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Among these, rotation angles α and β were randomly 
sampled from a narrow range of [−10°, 10°] to generate 
ellipsoids that are either slightly inclined or nearly vertical. 
By randomly sampling all parameters in Equation (X), 
numerous ellipsoids with diverse shapes, sizes, orientations, 
and positions can be created. Nevertheless, because natural 
fractured cavities are not ideal ellipsoids, random smooth 
perturbations were introduced to generate irregular 
ellipsoids that better resemble real-world features.
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After defining the 3D tubular region of the fracture 
cave, the concave structure within the ellipsoid was further 
characterized. Concave structures typically exhibit a 
downward-bending morphology, so the reflection layer 

within the channel body was vertically offset. The vertical 
offset is defined in Equation (XI).
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In Equation (XI), f(X, Y, Z) represents the ellipsoid 
function. γ is a positive scalar randomly selected from the 
range [10, 20], and ϵ(X, Y, Z) is a random perturbation field 
used to simulate fractures or faults within the fractured 
cavity that may cause displacement of the reflection layer. 
The perturbation field has a relatively small magnitude 
compared to the first term γ(f(X, Y, Z)−1). When the 
perturbation field approaches zero, SK (X, Y, Z) ≈ γ(f(X, 
Y, Z)−1, with its value being non-positive and decreasing 
smoothly from 0 at the fracture-cave boundary to the 
minimum at the center. At this point, the offset causes a 
vertical shear of the reflection layer, resulting in a smoothly 
downward-bending morphology. The resulting concave 
structure produces distinct annular features on the 
horizontal slice. If the perturbation is significant, the offset 
SK (X,Y,Z) exhibits disordered characteristics, leading to 
the formation of curved and displaced reflection layers 
within the channel body, including features such as holes 
or faults.2

After constructing a reflectivity model incorporating 
fold and fractured cavity features, synthetic seismic data 
were simulated by convolving the model with Ricker 
wavelets in the vertical direction.15 The frequency of the 
Ricker wavelets was randomly selected within the range 
of 10–40 Hz. To enhance the realism of the synthetic data 
and align it more closely with real-world data, random 
noise was further introduced. Figure  7 presents the 
corresponding label data, where fractured cavity regions 
are marked as 1 and non-fractured cavity regions as 0. 
Using this method, a total of 800 data samples (each with a 
size of 128 × 128 × 128) were generated for model training. 
Although the training set was substantially smaller than 
the actual study area, it was sufficient to achieve accurate 
identification of the main fractured-cavity features.

2.2.2. Network architecture

The algorithmic structure proposed in this paper 
is illustrated in Figure  8. Overall, it adopts a fusion 
architecture that combines CNN and transformer models. 
The core of the encoder strikes a balance between feature 
extraction capability and computational efficiency by 
using the Swin transformer module16 as its fundamental 
framework.

https://dx.doi.org/10.36922/JSE025420090
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The self-attention mechanism in the standard 
transformer operates globally. This leads to a quadratic 
increase in computational load and memory requirements 
as the size of input seismic data grows, which limits its 
application to high-resolution 3D seismic datasets. The Swin 
transformer restricts attention calculations to local windows 
of fixed size, significantly reducing computational demands. 
In addition, it introduces a sliding window mechanism 
that enables cross-boundary feature interactions between 
windows, ensuring that the model can capture long-range 
contextual information. This sliding window strategy 
reduces the network’s processing complexity from cubic to 
linear in relation to the input data size, greatly enhancing its 
adaptability to large-scale seismic datasets.

For the decoder, inspired by the UNETR design,17 
multiple convolutional layers with residual connections 
and transposed convolutional layers are used to upsample 
the feature maps generated by the encoder.

In the encoder stage, the input seismic data (x∈RH×W×D) 
passes through a patch partition layer, where each 
dimension is divided by a factor (h × w × d) to form several 

non-overlapping data blocks of size H
h

W
w

D
d

× × . Each 

sub-block corresponded to the seismic reflection 
characteristics of a local underground region. Next, the 
linear embedding layer in the Swin transformer stage maps 
the 3D data into a one-dimensional sequence space of 

Figure 8. Overview of the network architecture

Figure 7. Three-dimensional fractured cavity data were synthesized by convolving the reflection model with the Ricker wavelet

https://dx.doi.org/10.36922/JSE025420090
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dimension C, where C = h × w × d. As illustrated in 
Figure  9, the core of each Swin transformer module 
consisted of a window-based multi-head self-attention 
(W-MSA) module and a shifted W-MSA module. The 
input features first underwent layer normalization and 
then entered the W-MSA module to extract local intra-
window self-attention features. The output features, after 
layer normalization, were passed through a multi-layer 
perceptron with a ReLU activation function. Subsequently, 
the features underwent layer normalization again and 
entered the shifted W-MSA module, enabling information 
transfer between local windows and extracting contextual 
feature information. Residual connections were applied 
between every two layers of normalization operations. The 
self-attention mechanism used here was calculated using 
Equation (XII):

Attention Q K V Softmax QK
d

V
T

, ,� � � �

�
�

�

�
� � (XII)

Among them, Q, K, and V represent the query, key, and 
value, respectively; d denotes the size of the query and key 
vectors.

The calculation formula for the l-th layer of the Swin 
transformer module is as follows (Equations XIII-XVI):

z W MSA LN z zl l l
1 0

1
0

1� � � �� � �� �( � (XIII)

z MLP LN z zl l
0
1

1 1� � �� � � � (XIV)

z SW MSA LN z zl l
1

1
0
1

0
� � � � �� � � � (XV)

z MLP LN z zl l l
0

1
1

1
1

1� � �� � �� � � � (XVI)

To automatically focus on fracture bodies of various 
shapes and sizes, an attention gate mechanism18 was 
introduced, as shown in Figure  10. The feature map 
xlrepresents the features to be processed in the current 
module, whereas the gating signal g is the high-level 
feature from the previous layer. The attention gate module 
takes both the feature map xl and the gating signal g as 
inputs, applies 1×1×1 convolutions to each to unify their 
dimensions, and then performs element-wise addition. 
After activating the combined features, the weights 
corresponding to areas of fractured cavity development 
increased through iterative optimization, thereby 
enhancing the model’s prediction accuracy.

The decoder is a CNN-based neural network that 
connects to the encoder via multi-resolution features 
through skip connections, forming a U-shaped 
architecture. The decoder’s decision followed the Swin-
UNETR model,19 as illustrated in Figure  8. At each 
decoder stage, the input features first pass through a 
residual module composed of two 3 × 3 × 3 convolutional 
layers with instance normalization, which processes the 
features. These processed features were then concatenated 
with the upsampled features from the subsequent stage. 
After concatenation, the features were reshaped. The 
features processed at each stage were upsampled using a 
deconvolution layer; when the spatial dimensions doubled, 
they were concatenated with the corresponding features 
from the encoder at the same stage. The concatenated 
features were further processed through a residual module. 

Figure 9. The structure of the Swin transformer module 
Abbreviations: MLP: Multi-layer perceptron; SW-MSA: Shifted window-based multi-head self-attention; W-MSA: Window-based multi-head self-attention.
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Finally, a residual module serves as the segmentation head; 
after a 1×1×1 convolutional layer and a sigmoid activation 
function, the fractured-cavity segmentation map is 
produced.

2.3. Seismic attribute compression and fusion based 
on principal component analysis

To use multi-attribute seismic data to constrain the 
neural-network segmentation results, we preserved the 
correlations between different attributes (i.e., overlapping 
fractured-cavity information), eliminated redundant 
information, and introduced new variables (principal 
components) that comprehensively summarize fractured-
cavity features across all original attributes. To extract 
the dominant features of fractured cavities via attribute 
compression, this study utilized principal component 
analysis. This algorithm independently assigns weights 
to the calculation factors of various seismic attributes, 
distributing weights according to the similarities and 
differences among attributes, thus enabling effective fusion 
of diverse seismic attributes.

For the analysis of a specific seismic attribute, a seismic 
attribute observation data matrix was constructed based 
on its characteristic features. Suppose the number of 
samples of the seismic attribute data is n, and the number 
of seismic attribute features is p, then the seismic attribute 
observation data matrix is (Equation XVII):

X
X X

X X

P

n nP

�
�

�

�

�

�
�
�

�

�

�
�
�

11 1

1

� � � � (XVII)

Since the numerical ranges and dimensions of different 
seismic attribute data vary, it is necessary to convert multiple 
seismic attribute datasets to a common observation 
range; in other words, attribute standardization must be 
performed, as shown in Equation (XVIII).

X
X
X

i n j n pij

j

� � � � �� �
1

1 2 1 2, , ; , , , � (XVIII)

The standardized seismic attribute data matrix X 
was then analyzed, and its correlation matrix R2 was 
calculated. The matrix R2 is symmetric, and the correlation 
coefficient after standardization is simplified as follows 
(Equation [XIX]):

R
r r

r r

p

n np

2
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1
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�
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�
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�

�
�
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The seismic attribute features were obtained by 
calculating the correlation coefficient matrix R2, where xi  
and x j  are the means of the i-th and j-th attributes and are 

denoted as r
n

x x x x i j pij li i li ji

n
�

�
� � � �� ���1

1
1 2

1
( )( ) , , , ,  

respectively. The characteristic equation |R2−λI| = 0 was 
considered, and k principal components were selected. The 
variance contribution rate of the k-th principal component 
is given by βk, and the proportion of total variance explained 
by the first k principal components is expressed by the 
cumulative contribution rate M (Equation XX):
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In practice, the cumulative contribution rate M of the 
features was chosen to exceed 90%.20

2.4. Experiments and analysis

Figure  11 illustrates the flowchart of the fractured-cavity 
identification and characterization methodology adopted 
in this study. All code utilized in this study was developed 
using Python version 3.8. The computational environment 
consisted of a Windows 10 operating system and an NVIDIA 
GeForce RTX 4080 Ti GPU with 16 GB of memory.

Figure 10. The structure of the attention gate module

https://dx.doi.org/10.36922/JSE025420090


Journal of Seismic Exploration Fractured cavity identification in carbonates

Volume X Issue X (2026)	 11� doi: 10.36922/JSE025420090

Model training was conducted on a dataset 
composed of 800 input samples, each with dimensions of 
128 × 128 × 128, processed in batches of four. The training 
procedure spanned 25 epochs.

The key hyperparameters of Swin-UNETR were set 
as follows: an initial learning rate of 0.0001 was adopted, 
the Adam optimizer was selected for parameter updating, 
and the optimization objective was defined as a weighted 
combination of Dice loss and cross-entropy loss. The 
evaluation metrics included loss, Dice coefficient, and 
intersection over union, with the training and validation 
results presented in Figure 12.

3. Results and discussion
A significant advantage of data-driven models lies in 
their ability to generalize. In this study, we applied our 
methodology to the designated study area and systematically 

characterized the segmental and hierarchical features of 
the identified fractured cavities on both horizontal planes 
and vertical profiles.

Within the study region, the Ordovician system 
comprises approximately 2,000  m of mudstone and 
sandstone, whereas the stratigraphic sequence from 
the Middle Ordovician to the Cambrian encompasses 
over 3,000  m of marine carbonate formations. Multiple 
seismic reflection horizons have been delineated by 
geologists within these strata. Notably, the Ordovician 
carbonate reservoirs are regarded as the primary targets 
for exploration in the central Tarim Basin.

Guided by the geometric and kinematic frameworks of 
strike–slip faulting, which is predominantly characterized 
by horizontal displacement, our analysis focuses on specific 
horizons: H7

4 (demarcating the boundary between the 
Middle and Upper Ordovician), H7

6, H7
8, H8

0 (the interface 

Figure 11. The flowchart of the fractured cavities identification and characterization method
Abbreviations: OA: Object area; PCA: Principal component analysis.

Figure 12. Evaluation metric curves. (A) Training and (B) validation phases.
Abbreviation: IoU: Intersection over Union.

BA
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between the Lower Ordovician and Upper Cambrian), 
H₈¹ (separating the Upper and Lower Cambrian), and 
H9

0 (the basal Cambrian horizon). These horizons served 
as the basis for presenting the identification outcomes of 
fractured cavities within horizontal stratigraphic levels.

Within the study area, fractured cavities are primarily 
controlled by the strike–slip fault zone (OA) rather than 
dissolution processes. To clarify this control mechanism, 
scanning coherence detection was first performed on the 
post-stack seismic data of the study area to obtain the seismic 
dip gather. Subsequently, elastic impedance inversion 
was conducted based on this dip gather, generating key 
petrophysical parameters including elastic modulus and 
Poisson’s ratio. Finally, the maximum principal stress field 

was derived through systematic calculations. Figure  13 
presents the maximum principal stress field integrated 
with geological data. The fault zone can be categorized into 
three main structural segments: Compression segments, 
pull-apart segments, and translation segments, which 
alternate sequentially along the fault strike. Figures 14-19 
illustrate that strata in compression segments are uplifted by 
stress. In these areas, independent, fractured cavities with 
circular outlines frequently develop at stress-concentrated 
locations, often referred to as cave-like features. When 
compressive and strike–slip stresses are superimposed, 
such cave-like anomalies are widely distributed.

In pull-apart segments, pull-apart and strike–slip 
stresses act synergistically. Regions subjected to strong 

Figure 13. Maximum principal stress plane maps of the H7
4 and H9

0 horizons in the object area

Figure 14. Original seismic data and fractured cavities identification results of the H7
4 horizon in the object area
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pull-apart stress host elongated fractured cavities termed 
fault-related bodies that are aligned with the fault trend. 
Adjacent cave-like features near these fault-related bodies 
may merge at their boundaries, forming larger and more 
irregular cavity systems. In translation segments, only 
strike–slip stress is present. Here, fractured cavities with 
regular morphologies develop along the fault, whereas 
cave-like features are scarce.

When the stress regime transitions from pull-apart to 
compression, multiple fault-related bodies typically form. 
Under compressive stress, these bodies converge toward 

the central region. Cave-like features often develop at 
the edges of compression zones, with their cores either 
contacting fault-related bodies or lying between several 
such bodies. When the stress regime shifts from translation 
to compression, a single fault-related body generally 
emerges within the uplifted strata. This body penetrates 
the core of the cave-like feature but does not connect its 
opposite sides.

Furthermore, the fractured cavities exhibited a 
hierarchical structure in the vertical profile of the 
study area. As shown in Figures  14-19 , the density and 

Figure 15. Original seismic data and fractured cavities identification results of the H7
6 horizon in the object area

Figure 16. Original seismic data and fractured cavities identification results of the H7
8 horizon in the object area
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Figure 18. Original seismic data and fractured cavities identification results of the H8
1 horizon in the object area

Figure 17. Original seismic data and fractured cavities identification results of the H8
0 horizon in the object area

complexity of fractured cavity development gradually 
increased from stratigraphic levels H7

4–H7
8, whereas 

transitioning from dense to sparse from H7
8 to H9

0. This 
variation is presumably linked to differential dissolution 
sensitivity caused by lithological heterogeneity in the 
carbonate strata, such as the interbedding of dolomite 
and limestone. Figure  20 further demonstrates that 
fractured cavities developed between H7

4 and H7
8 can be 

distinctly categorized from those between H7
8 and H9

0, 
based on differences in their structural characteristics and 
abundance.

The first type of fractured cavities is characterized by 
vertical elongation in the profile, manifesting as steep 
and upright structures. Larger cavities tend to exhibit a 
roughly funnel-shaped morphology, whereas smaller ones 
display nearly circular outlines. Extensive fault-related 
fractured cavities formed within the strike–slip fault zone 
are almost continuous, extending from shallow to deep 
intervals. In addition, smaller, cave-like fractures occur 
on both sides of the fault, extending through the entire 
target stratum. Conversely, the second type of fractured 
cavities develops predominantly in a near-horizontal 
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Figure 19. Original seismic data and fractured cavities identification results of the H9
0 horizon in the object area

Figure 20. Fractured-cavity identification profile of the object area (OA)

orientation, exhibiting a flattened morphology. These 
cavities are distributed at regular intervals, have smaller 
sizes than the first type, and are less extensively developed. 
Nonetheless, they also display significant vertical 
connectivity within the fault zone.

To determine the outline of fault-controlled bodies, we 
employed a method that fuses different seismic attribute 
volumes after threshold truncation. The post-stack seismic 
data OA-crop1 is segmented into three parts: OA-crop1-1 
(H7

4–H7
6), OA-crop1-2 (H7

6–H7
8), and OA-crop1-3 

(H7
8–H8

0). Amplitude curvature and coherence detection 
attributes were extracted from these segments. Following 
outlier processing and standardization of the selected 
dominant attributes, attribute compression was performed 
using principal component analysis. Finally, the amplitude 

curvature, coherence detection attributes, and image 
segmentation results were merged.

Figures 21-23 show, from left to right, the network-based 
segmentation results, the calculated amplitude curvature 
and coherence attributes, and the fused attribute result. 
The figures demonstrate that the fused attribute volume 
integrates all the high-value features from the first three 
attribute volumes. A color-based comparison reveals that 
the fused attribute volume exhibits enhanced responses 
at locations where fractured cavities are consistently 
identified by all three attribute volumes. In regions where 
discrepancies occurred among the three attribute volumes, 
the fractured cavity features from the first volume were 
assigned greater weight. This fusion procedure combined 
the three attribute volumes into a single, integrated 
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Figure 22. Seismic attribute fusion result map of the OA-crop1 H7
6–H7

8 horizon in the object area
Abbreviations: OA: Object area; PCA: Principal component analysis.

Figure 21. Seismic attribute fusion result map of the OA-crop1 H7
4–H7

6 horizon in the object area
Abbreviations: OA: Object area; PCA: Principal component analysis.

volume, effectively reducing the uncertainty associated 
with fractured cavities.

The fractured cavities were then modeled and 
characterized using a 4 × 4 × 1 grid in the local object 

area, where the color gradient from light to dark 
represents an increasing probability of fractured-cavity 
occurrence.21 Figures 24-26 show the final fractured cavity 
body results.

https://dx.doi.org/10.36922/JSE025420090


Journal of Seismic Exploration Fractured cavity identification in carbonates

Volume X Issue X (2026)	 17� doi: 10.36922/JSE025420090

Figure 25. Fractured-cavity body map for the H7
6–H7

8 horizon in object area (OA)-crop1 of the OA

Figure 23. Seismic attribute fusion result map of the OA-crop1 H7
8–H8

0 horizon in the object area
Abbreviations: OA: Object area; PCA: Principal component analysis.

Figure 24. Fractured-cavity body map for the H7
4–H7

6 horizon in object area (OA)-crop1 of the OA
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Figure 26. Fractured-cavity body map for the H7
8–H8

0 horizon in object area (OA)-crop1 of the OA

4. Conclusion
Fractured cavities in reservoirs within carbonate 
formations have complex geological features. These 
features make it hard to precisely locate and map fracture 
caves using conventional methods. This study introduces 
a novel two-step methodology to identify and delineate 
fractured-cavity reservoirs in response to these challenges.

First, the Swin-UNETR architecture was employed 
to automatically detect reflective signatures of fractured 
cavity reservoir strata in the Shunbei field. An attention 
gate mechanism was incorporated into the Swin-UNETR 
model, enhancing its capability to interpret the dense 
and complex features associated with fractured cavity 
labels in 3D seismic data. Then, we applied a feature 
extraction strategy that fuses multiple seismic attributes 
using principal component analysis. This approach 
reduced uncertainty, leading to more accurate and robust 
identification results.

Application of this methodology to Shunbei field 
data has demonstrated its accuracy in recognizing the 
characteristic beaded reflections in seismic records. The 
identified fractured-cavity reservoirs exhibit both planar 
and vertical spatial attributes, revealing segmented 
patterns in plain view. Fractured cavity development 
varied significantly across different tectonic segments. In 
compressional zones, stress-induced strata uplift resulted 
in nearly circular, isolated fractured cavities in areas of 
high stress concentration. In regions where compressive 
and strike–slip stresses interact, extensive irregular cave-
like anomalies were developed. Pull-apart segments, 
influenced by both pull-apart and strike–slip stresses, 
hosted elongated fractured cavities that were aligned 
with the strike–slip direction. These cavities often had 
adjacent cave-like features whose edges interfaced with 
fault-related bodies, resulting in irregularly expanded 
fractured cavities. In translational segments that are 

subjected solely to strike–slip stress, fault-related fractured 
cavities exhibited regular edges aligned with the strike–slip 
direction, accompanied by sparse surrounding cave-like 
features.

Analysis of the OA profile revealed a stratified structural 
framework. The first category of fractured cavities extends 
vertically in profile and is characterized by steep, upright 
morphologies. Large-volume fractured cavities display 
roughly funnel-shaped geometries, whereas smaller cavities 
tend to be nearly circular. Within the strike–slip fault zone, 
substantial fault-related fracture caves demonstrated near-
continuity across both shallow and deep strata, flanked 
by smaller cave-like features that penetrated the entire 
target formation. The second category predominantly 
developed in a near-horizontal direction, presenting flatter 
morphologies with discrete intervals between individual 
cavities. These features had smaller outlines and were more 
spatially constrained than the first category. Nevertheless, 
they exhibited strong vertical connectivity both within 
and beneath the fault zone. Finally, fractured cavities were 
delineated with a fixed grid size to standardize their spatial 
representation.

This integrated methodological framework provides 
a robust tool for the detailed characterization of 
fractured cavity reservoirs, thereby facilitating a deeper 
understanding of their spatial distribution and geological 
evolution within complex carbonate strata.
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