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Abstract

Identifying and characterizing fractured cavities is essential for exploring carbonate
reservoirs. However, characterizing the development and distribution of fractured
cavities through post-stack seismic attribute analysis remains challenging. Recently,
convolutional neural networks (CNNs), such as UNet and its enhanced versions,
have enabled the quantitative identification of fractured cavities. Despite these
advancements, the local receptive field and weight-sharing mechanisms of these
CNNs limit their capability to capture long-range features within strike—slip fault
systems. In addition, neural networks are inherently affected by data uncertainty.
To address these challenges, a two-step methodology is proposed. The first step
utilizes a Swin-UNet transformer (UNETR) model, enhanced with an attention gate, to
interpret fractured cavities. The transformer in Swin-UNETR improves the detection of
fractured cavities in strike—slip fault zones, whereas the attention gate enhances the
recognition of smallfractured cavities by increasing their response in the feature maps.
This enhanced Swin-UNETR model overcomes the limitations in modeling long-range
features. In the second step, the fractured-cavity identification results are combined
with seismic attributes from conventional analysis. Principal component analysis is
employed both to increase the relative weight of the neural network recognition
results in the attribute fusion and to reduce the uncertainty associated with any
single identification method. The methodology was validated in the Shunbei area,
yielding horizontal segmentation and vertical zonation of fractured cavities, as well
as their characterization through fixed-grid modeling. By combining deep learning-
based feature extraction with seismic attributes, this approach improves the accuracy
of fractured cavity identification and characterization in carbonate reservoirs.

Keywords: Fractured cavity identification and characterization; Seismic attribute
compression fusion; Convolutional neural network
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1. Introduction

Fractured-cavity reservoirs are carbonate rock formations
that have developed along fault zones subjected to
multiphase tectonic stresses. The combined effects of these
tectonic movements, the development of karst features
over time, and the upwelling of hot fluids create complex
fractured cavities in the carbonate layers. These cavities
serve as primary reservoirs for oil and gas, playing a
critical role in both hydrocarbon storage and migration.
Therefore, accurately locating and characterizing these
reservoirs is critical for successful oil and gas exploration
and development.!

Domestic and international researchers primarily
utilize post-stack seismic attributes, including coherence,
curvature, and amplitude, to detect and characterize
fractured cavities. These traditional methods approximate
the locations of fractures and cavities but cannot precisely
delineate their size or shape. With the rapid advancements
in deep learning for visual and medical imaging, and
given the structural similarity between three-dimensional
(3D) post-stack seismic data and magnetic resonance
imaging scans, deep learning has seen increasing adoption
in seismic interpretation. For example, Wu et al.? used
a convolutional neural network (CNN) with the UNet
architecture to identify karst paleocaves from 3D seismic
datasets. They also developed a method to create synthetic
datasets that mimic the seismic reflections of paleocaves.
High-quality seismic data annotations are indispensable
for effective feature recognition using UNet. Building on
this, Li et al.* adopted an enhanced UNet CNN, using field-
annotated cavity contours and synthetic datasets of faults,
fractures, and karst caves to improve fractured cavity
identification in strike-slip fault zones. Despite these
advances, uncertainty persists in seismic interpretation
with deep learning. To address this, Gui et al.* combined
UNet++ with multiscale convolutional kernels and seismic
attributes to improve accuracy. Zhang et al.®> created a
Bayesian deep learning framework that identifies cave
shapes and measures uncertainty in the results. However,
the increased model complexity leads to prolonged training
and inference durations.

While the aforementioned methodologies have
exhibited promising results, they still suffer from inherent
limitations. In contrast to paleocaves that develop
independently, the formation of fractured cavities is
influenced by strike-slip fault zones that extend over
several kilometers. The intrinsic local receptive field and
weight-sharing mechanisms of CNNs fundamentally
constrain their capability to detect large-scale fractured
cavity systems. Early convolutional layers primarily focus
on localized regions of the input data, thus failing to capture

correlations across distant regions, which inherently limits
their efficacy in identifying long-range geological features
(strike-slip fault systems). Moreover, fractured cavities
exhibit considerable variability in size and morphology,
with smaller cavities often displaying complex geometries.
The application of neural network-based methods for
fractured cavity identification also introduces both data-
driven and model-induced uncertainties, warranting
effective mitigation strategies.

To address the inherent locality limitations of CNN,
the present study employs a Swin-UNet transformer
(UNETR) network augmented with an attention gate for
the identification of fractured cavities. The Swin-UNETR
architecture synergistically combines transformer models.®
with UNet frameworks, thereby enhancing the network’s
capability to recognize complex fractured cavities over long
spatial ranges. The encoder component utilizes a sliding
window operation to reduce computational complexity
during the processing of seismic input data. In addition,
to mitigate uncertainties arising from neural network
methodologies, conventional seismic attribute techniques
are incorporated to constrain the identification outcomes.
Specifically, principal component analysis is employed
to integrate the fractured-cavity segmentation results—
treated as a dominant attribute—with multiple seismic
attribute datasets.” This integrative approach combines
fractured-cavity information from all methods into a single
fused attribute volume, enhancing overlapping features
while suppressing inconsistent ones and thereby improving
the overall accuracy of fractured-cavity identification.

2. Methodology
2.1. Field seismic data and geological background

The post-stack seismic datasets used in this study, outlined
by the blue box in Figure 1, were obtained from the
Shunbei Oil and Gas Field. The field is primarily located in
the Shuntuoguole Low Uplift and extends southeastward
to the Guchengxu Uplift. Geographically, it is adjacent to
the Shaya Uplift to the north and the Katakunlun Uplift
to the south, with the Manjiaer Depression and Awati
Depression bounding it to the east and west, respectively.
The field lies in a structurally low “saddle” zone, generally
characterized by relatively higher elevations in the northern
and eastern parts and lower elevations in the southern
and western parts, forming an overall gently undulating
geomorphology.?

During the early Caledonian era, the Shunbei area
experienced stable tectonic subsidence in the craton,
characterized by a weak extensional tectonic regime.
Subsequently, from the mid- to late Caledonian era to the
early Hercynian era, the region experienced the formation
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and evolution of low uplifts under a regional compressional
tectonic regime. This was followed by further tectonic
adjustments and reworking during the mid-to-late
Hercynian period, culminating in the formation of the

present-day tectonic framework.

As shown in the comprehensive stratigraphic column
of Figure 2, the stratigraphic sequence in the Shunbei
area ranges from the Lower Paleozoic Cambrian to the

Cenozoic Quaternary, with a notable absence of the
Jurassic System. The Yuertusi formation of the Lower
Cambrian is extensively developed as a source rock,
distinguished by its high organic carbon content and

considerable hydrocarbon generation potential. The

focus of this study is the Ordovician carbonate strata,
which are buried at depths ranging from 7200 to 8800 m
below sea level. These Ordovician formations, arranged
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Figure 1. (A-D) Tectonic map and stratigraphic section of the central Tarim Basin, where the study area is located. Image modified with permission from
Wang et al.’ Copyright © 2024, IEEE.
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Figure 2. Tectonic map and stratigraphic section of the central Tarim Basin. Image modified from Zheng ef al."!
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stratigraphically in ascending order, include the Lower
Ordovician Penglaiba formation (O,p), the Middle-
Lower Ordovician Yingshan formation (O, y), the
Middle Ordovician Yijianfang formation (O,yj), the Upper
Ordovician Qiaerbake formation (O,q), the Lianglitage
formation (O,]), and the Santamu formation (O,s). Within
this sequence, the carbonate units in the upper portion
of the Yingshan formation and the Yijianfang formation
represent the principal targets for oil and gas exploration
in the study area.'

A northeast-trending strike-slip fault system has
developed in the study area, providing an effective conduit
for hydrocarbon migration and promoting hydrocarbon
accumulation. The reservoir space is primarily composed
of tectonically generated fractured cavities."” Seismic data
acquired along this fault zone during exploration are
shown in Figure 3. The target area shown in the figure
has dimensions of 2501 time slices x 1022 inlines x 865
crosslines. To better characterize the spatial distribution

1256 1L356 1456 1556 1L656 Iu:srs1 1856 1L956 11056 L1156 L1256

of multiscale carbonate fractured cavity reservoirs in the
Ordovician and Cambrian strata, strong reflection axes
were removed from the seismic data (Figure 4), thereby
preventing the reflection information of the underlying
fractured cavities from being masked by these strong
reflection axes. The data were then divided into six
segments, referred to as object area (OA)-cropl through
OA-crop6. These segments correspond to the southern,
central, and northern sections of the study area.

2.2. Fractured cavities identification using
Swin-UNETR

2.2.1. Training of datasets

As a data-driven supervised learning approach, deep
learning requires feature-rich training datasets for
effective model optimization. In carbonate fault-controlled
reservoirs, fractured cavities manifest as clusters of strong
reflections on a weak reflection background in seismic
datasets. As small-scale geological anomalies within
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Figure 3. Three-dimensional exploration of the seismic data in the study area

Abbreviation: OA: Object area.
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carbonate reservoirs, fracture cavities create diffraction
effects during seismic wave propagation. This phenomenon
arises from wave impedance contrasts, generating multiple
vertical strong energy anomalies. Figure 5 shows that
forward modeling reveals the beaded anomalous reflection
characteristics of fractured cavities on post-stack seismic
sections. These are typically shown by seismic attributes
such as strong amplitude anomalies, high amplitude
variation rates, weak to moderate coherence, low wave
impedance, and low velocity. As shown in Figure 6,
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inversion of the seismic profiles indicates that fractured
cavities in the OA exhibit nearly ellipsoidal outlines with
significant variation in scale, ranging from 10 to 150 m."”

Based on the relationship between the morphology and
size of fractured cavities and the beaded anomalous
reflections observed on seismic profiles, a convolutional
synthesis method using a seismic reflectivity model and
Ricker wavelets was employed to construct training
samples of fractured cavities. The process of establishing a
seismic reflectivity model involved three key steps. First,
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Figure 4. Object area data after strong axis removal processing. (A) Original seismic profile. (B) Seismic profile after removing the strong axis.

(C) Removed H_* strong axis.

A B
6000 8500 6,000 8500 6000
-3,500 ,
':’/ ; _;’l /
SN
-4,700 =75
Bugin.
m LI |

8,500 6,000

Cc

8,500 6,000 8500 6,000

8,500/m

4 500 m/s 595,600 m/s = 5,300 m/s = 5,800 m/s ==6,000 m/s =6,200 m/sE=6,100 my/s B 5,500 m/s =5,400 /s

Figure 5. Forward modeling of the beaded reflection characteristics of the fractured cavities. (A) Compression section. (B) Pull-apart segment.

(C) Translational segment.

Figure 6. Amplitude curvature seismic attribute profile of fractured cavities. (A) Raw seismic profile. (B) Amplitude curvature seismic attribute profile.
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building an initial 3D horizontal-layered reflectivity model
(X, Y, Z); second, incorporating formation dip and fold
structure models (X, Y, Z)into the horizontal layers; and
finally, integrating the fractured cavities components
( X, Y, Z ) into the composite model.

The geometric fold model (X, Y, Z) was generated by
applying a vertical offset to the initial model (X, Y, Z). This
vertical offset field was decomposed into large-scale fold
surfaces S; (X, Y, Z), small-scale local folds S, (X, Y, Z), and
multidirectional dip components S; (X, Y, Z).

SI(X’Y’Z)=A0+(1—|a(X_X )+b(Y-Y,) |]

X, +Y |

max

[knE(X,Y)]
A, cos| ——— |+
N A

k

pEs

A

cosgy (XX, )—sing, (Y-Y,) 2 n
[ Uxl, J M)
S e

The first large-scale displacement field, as shown in
Equation (I), was defined by a Fourier series. In this context,
the parameters X and Y, represent the central position of
the modified Foucault’s equation. The Fourier coeflicients
A, and B, define the amplitude of the folds. The attenuation
factors a and b control the amplitude variation of the folds in
the X and Y directions, respectively. The elliptic coefficients
L[x], and L[y], control the degree of fold curvature in the
X and Y directions, respectively, with L[x], corresponding
to the ellipse’s major axis. The parameter ¢, denotes the
clockwise rotation angle of the ellipse, and the parameter /4,
controls the compression ratio of the wavelength.

E(X,Y)=

S, (X,Y,Z)zCZLZZIZIDkexp

max

_[cosd)k (X—Ek )[— 3in¢k (Y_Fk)Jz _
20| x .
(sinq&k (X_f;)[;sjquk (Y—Fk)]Z (I1)

The second small-scale fold displacement field, as shown
in Equation (II), was defined by a Gaussian equation; the
Gaussian coefficients 6[x], and o[y], represent the major

and minor axis lengths of the ellipse, with 6[x], denoting
the major axis. The ¢, is the clockwise rotation angle of
the fold, whereas E, and F, specify the central position
of the Gaussian function. The fold amplitude is controlled
by a separate parameter D, whereas an attenuation factor
C adjusts its vertical variation. The vertical extent of the
folds in the Z direction can be controlled by specifying
appropriate lower and upper limits, for example, by setting
o[x], = o[x], + dZ and o[y], = o[y], + eZ.

S, (X,Y,Z)=Gx+Hy+1 Im)

Finally, the third displacement field, as shown in
Equation (III), used a linear equation to simulate the
dip of strata in various directions, with parameters G and
H controlling the dip angles in the X and Y directions,
respectively.

X X

s

Y |= Y av)

s

Z | | Z+S(X.Y,Z)+S,(X,Y,Z)+S,(X,Y,Z)

By superimposing the vertical displacement fields S,
(X,Y,2),S,(X,Y,Z),and S, (X, Y, Z), the spatial coordinates
(X, Y, Z)of the fold structure model were derived
(Equation [IV]).

X, X,
Y, |=|Y,+S,(X,Y.Z) V)
Z Z

s s

In addition, natural folds (X,, Y., Z.) are often
complex, allowing an arbitrary combination of S,
(X, Y, 2),S,(X, Y, Z), and S, (X, Y, Z). Vertical variation
of fold surfaces can be achieved by incorporating a lateral
displacement field (Equation V) or by systematically
adjusting the central coordinates of each fold equation."

After generating the formation dip and fold reflectivity
model, the next step simulated the structural characteristics
of a fault-controlled fractured-cavity system. Field outcrop
observations (Figure 2) show that the dominant features
are fault-related fractures and near-cylindrical caves, which
can be approximated as vertically elongated ellipsoids
with major axes perpendicular to the ground surface.
To effectively simulate the reflection characteristics of
fractured cavities, a 3D, vertically elongated ellipsoid was
first constructed, as shown in Equation (VI).

f(p) = (p—<)'R, TAR (p—c) (VD)

The 3D domain of the ellipsoid is defined by Equation
(VID):
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if f(p) <1:insidechimney cube
sz(p) >1: outside chimney cube

In the ellipsoid function (Equation VI), p = (X, Y, Z)
denotes the coordinates of a point in the 3D reflectivity
model, whereas ¢ = (c,, c,, ¢,)represents the center of the
ellipsoid, randomly sampled within the model domains.
Matrix A is a diagonal matrix specified by the ellipsoid’s
three radii, as shown in Equation (VIII):

o i}
— 0 0
rX
1
A=|0 = 0 (VIIT)
rY
1
0 0 =
L Iz |

Among these parameters, the values of r , r , and r, were
randomly selected from predefined ranges [1, 12], [1, 12],
and [10, 100], respectively, to construct cavities of varying
sizes. To ensure predominantly vertically elongated
ellipsoids, the range for r, was set wider. In addition,
constraints r_> 0.1r_and r, > 0.1r, were imposed to avoid
extremely elongated ellipsoids, which are geologically
uncommon. Matrix R, (Equation IX) is a rotation matrix
that rotates the ellipsoid around the X-axis and Y-axis.

1 0 0 cosp 0 sinf
R =|0 cosa —sino 0 1 0 (IX)
0 sinot  cosa || —sinB 0 cosfP

Among these, rotation angles o and B were randomly
sampled from a narrow range of [-10° 10°] to generate
ellipsoids that are either slightly inclined or nearly vertical.
By randomly sampling all parameters in Equation (X),
numerous ellipsoids with diverse shapes, sizes, orientations,
and positions can be created. Nevertheless, because natural
fractured cavities are not ideal ellipsoids, random smooth
perturbations were introduced to generate irregular
ellipsoids that better resemble real-world features.

X, +5,(X,Y,Z)

=Y, +5,(X,Y,Z) X)
Z +S,(X.Y,Z)

NI = |

After defining the 3D tubular region of the fracture
cave, the concave structure within the ellipsoid was further
characterized. Concave structures typically exhibit a
downward-bending morphology, so the reflection layer

within the channel body was vertically offset. The vertical
offset is defined in Equation (XI).

0, if f(X,Y,Z)>1
S.(X.v,2)={  y(f(XY.2)-1)+e(X,V,2), (XD
if f(X,Y,Z)<1

In Equation (XI), AX, Y, Z) represents the ellipsoid
function. y is a positive scalar randomly selected from the
range [10, 20], and €(X, Y, Z) is a random perturbation field
used to simulate fractures or faults within the fractured
cavity that may cause displacement of the reflection layer.
The perturbation field has a relatively small magnitude
compared to the first term y(f(X, Y, Z)-1). When the
perturbation field approaches zero, S, (X, Y, Z) = y(f(X,
Y, Z)-1, with its value being non-positive and decreasing
smoothly from 0 at the fracture-cave boundary to the
minimum at the center. At this point, the offset causes a
vertical shear of the reflection layer, resulting in a smoothly
downward-bending morphology. The resulting concave
structure produces distinct annular features on the
horizontal slice. If the perturbation is significant, the offset
S, (X,Y,Z) exhibits disordered characteristics, leading to
the formation of curved and displaced reflection layers
within the channel body, including features such as holes
or faults.?

After constructing a reflectivity model incorporating
fold and fractured cavity features, synthetic seismic data
were simulated by convolving the model with Ricker
wavelets in the vertical direction.”” The frequency of the
Ricker wavelets was randomly selected within the range
of 10-40 Hz. To enhance the realism of the synthetic data
and align it more closely with real-world data, random
noise was further introduced. Figure 7 presents the
corresponding label data, where fractured cavity regions
are marked as 1 and non-fractured cavity regions as 0.
Using this method, a total of 800 data samples (each with a
size of 128 x 128 x 128) were generated for model training.
Although the training set was substantially smaller than
the actual study area, it was sufficient to achieve accurate
identification of the main fractured-cavity features.

2.2.2. Network architecture

The algorithmic structure proposed in this paper
is illustrated in Figure 8. Overall, it adopts a fusion
architecture that combines CNN and transformer models.
The core of the encoder strikes a balance between feature
extraction capability and computational efficiency by
using the Swin transformer module'® as its fundamental
framework.
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Figure 8. Overview of the network architecture

The self-attention mechanism in the standard
transformer operates globally. This leads to a quadratic
increase in computational load and memory requirements
as the size of input seismic data grows, which limits its
application to high-resolution 3D seismic datasets. The Swin
transformer restricts attention calculations to local windows
of fixed size, significantly reducing computational demands.
In addition, it introduces a sliding window mechanism
that enables cross-boundary feature interactions between
windows, ensuring that the model can capture long-range
contextual information. This sliding window strategy
reduces the network’s processing complexity from cubic to
linear in relation to the input data size, greatly enhancing its
adaptability to large-scale seismic datasets.

For the decoder, inspired by the UNETR design,"”
multiple convolutional layers with residual connections
and transposed convolutional layers are used to upsample
the feature maps generated by the encoder.

In the encoder stage, the input seismic data (x€R™"*P)
passes through a patch partition layer, where each
dimension is divided by a factor (h x w x d) to form several

non-overlapping data blocks of size %xﬂxg. Each
w

sub-block corresponded to the seismic reflection
characteristics of a local underground region. Next, the
linear embedding layer in the Swin transformer stage maps
the 3D data into a one-dimensional sequence space of
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dimension C, where C = h x w x d. As illustrated in
Figure 9, the core of each Swin transformer module
consisted of a window-based multi-head self-attention
(W-MSA) module and a shifted W-MSA module. The
input features first underwent layer normalization and
then entered the W-MSA module to extract local intra-
window self-attention features. The output features, after
layer normalization, were passed through a multi-layer
perceptron with a ReLU activation function. Subsequently,
the features underwent layer normalization again and
entered the shifted W-MSA module, enabling information
transfer between local windows and extracting contextual
feature information. Residual connections were applied
between every two layers of normalization operations. The
self-attention mechanism used here was calculated using
Equation (XII):

Attention(Q,K,V) = Softmax[ QK ]V (XII)

Jd

Among them, Q, K, and V represent the query, key, and
value, respectively; d denotes the size of the query and key
vectors.

The calculation formula for the l-th layer of the Swin
transformer module is as follows (Equations XIII-XVI):

2 =W - MSA(LN((z}"))+ 25 (XI1I)
2= MLP(LN(2)}+2, (XIV)
2} = SW — MSA(LN(z})) + 2} (XV)

2" = MLP(LN (2" ))+ 2" (XVI)

To automatically focus on fracture bodies of various
shapes and sizes, an attention gate mechanism'® was
introduced, as shown in Figure 10. The feature map
xrepresents the features to be processed in the current
module, whereas the gating signal g is the high-level
feature from the previous layer. The attention gate module
takes both the feature map x' and the gating signal g as
inputs, applies 1x1x1 convolutions to each to unify their
dimensions, and then performs element-wise addition.
After activating the combined features, the weights
corresponding to areas of fractured cavity development
increased through iterative optimization, thereby
enhancing the model’s prediction accuracy.

The decoder is a CNN-based neural network that
connects to the encoder via multi-resolution features
through skip connections, forming a U-shaped
architecture. The decoder’s decision followed the Swin-
UNETR model,” as illustrated in Figure 8. At each
decoder stage, the input features first pass through a
residual module composed of two 3 x 3 x 3 convolutional
layers with instance normalization, which processes the
features. These processed features were then concatenated
with the upsampled features from the subsequent stage.
After concatenation, the features were reshaped. The
features processed at each stage were upsampled using a
deconvolution layer; when the spatial dimensions doubled,
they were concatenated with the corresponding features
from the encoder at the same stage. The concatenated
features were further processed through a residual module.

ZO Z})+1

p

Swin transformer block \

N

1_1/K rl/

Figure 9. The structure of the Swin transformer module

Zg Zg

Abbreviations: MLP: Multi-layer perceptron; SW-MSA: Shifted window-based multi-head self-attention; W-MSA: Window-based multi-head self-attention.
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Figure 10. The structure of the attention gate module

Finally, a residual module serves as the segmentation head;
after a 1x1x1 convolutional layer and a sigmoid activation
function, the fractured-cavity segmentation map is
produced.

2.3. Seismic attribute compression and fusion based
on principal component analysis

To use multi-attribute seismic data to constrain the
neural-network segmentation results, we preserved the
correlations between different attributes (i.e., overlapping
fractured-cavity information), eliminated redundant
information, and introduced new variables (principal
components) that comprehensively summarize fractured-
cavity features across all original attributes. To extract
the dominant features of fractured cavities via attribute
compression, this study utilized principal component
analysis. This algorithm independently assigns weights
to the calculation factors of various seismic attributes,
distributing weights according to the similarities and
differences among attributes, thus enabling effective fusion
of diverse seismic attributes.

For the analysis of a specific seismic attribute, a seismic
attribute observation data matrix was constructed based
on its characteristic features. Suppose the number of
samples of the seismic attribute data is n, and the number
of seismic attribute features is p, then the seismic attribute
observation data matrix is (Equation XVII):

X

11

XIP
X = - (XVII)

X X

nl nP

Since the numerical ranges and dimensions of different
seismicattribute data vary, itis necessary to convert multiple
seismic attribute datasets to a common observation
range; in other words, attribute standardization must be
performed, as shown in Equation (XVIII).

X,
X :X—J(i =1,2,..mj=12,...n,p) (XVIIT)

1j

The standardized seismic attribute data matrix X
was then analyzed, and its correlation matrix R, was
calculated. The matrix R, is symmetric, and the correlation
coefficient after standardization is simplified as follows
(Equation [XIX]):

" 1p
R =|: : (XIX)
rrll rnp

The seismic attribute features were obtained by

calculating the correlation coeflicient matrix R, where x,
and x; are the means of the i-th and j-th attributes and are

1 n - TN .
denoted as 7, =Ezi:1(xli —x,)(x, —xj)(z,] :1,2,...p),

J
respectively. The characteristic equation |R,~AI| = 0 was
considered, and k principal components were selected. The
variance contribution rate of the k-th principal component
is given by §,, and the proportion of total variance explained
by the first k principal components is expressed by the
cumulative contribution rate M (Equation XX):

-1
P .
1
i=1

In practice, the cumulative contribution rate M of the
features was chosen to exceed 90%.>°

ﬁk=( Li)ilM: ;Ak( (XX)

2.4. Experiments and analysis

Figure 11 illustrates the flowchart of the fractured-cavity
identification and characterization methodology adopted
in this study. All code utilized in this study was developed
using Python version 3.8. The computational environment
consisted of a Windows 10 operating system and an NVIDIA
GeForce RTX 4080 Ti GPU with 16 GB of memory.
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Model training was conducted on a dataset
composed of 800 input samples, each with dimensions of
128 x 128 x 128, processed in batches of four. The training
procedure spanned 25 epochs.

The key hyperparameters of Swin-UNETR were set
as follows: an initial learning rate of 0.0001 was adopted,
the Adam optimizer was selected for parameter updating,
and the optimization objective was defined as a weighted
combination of Dice loss and cross-entropy loss. The
evaluation metrics included loss, Dice coefficient, and
intersection over union, with the training and validation
results presented in Figure 12.

3. Results and discussion

A significant advantage of data-driven models lies in
their ability to generalize. In this study, we applied our
methodologytothe designated studyareaand systematically

characterized the segmental and hierarchical features of
the identified fractured cavities on both horizontal planes
and vertical profiles.

Within the study region, the Ordovician system
comprises approximately 2,000 m of mudstone and
sandstone, whereas the stratigraphic sequence from
the Middle Ordovician to the Cambrian encompasses
over 3,000 m of marine carbonate formations. Multiple
seismic reflection horizons have been delineated by
geologists within these strata. Notably, the Ordovician
carbonate reservoirs are regarded as the primary targets
for exploration in the central Tarim Basin.

Guided by the geometric and kinematic frameworks of
strike—slip faulting, which is predominantly characterized
by horizontal displacement, our analysis focuses on specific
horizons: H* (demarcating the boundary between the
Middle and Upper Ordovician), H %, H %, H/ (the interface

== cavities datasetE Q PCA
dl;zt‘:seelt i OAseismic data |
............................ ‘-._n(2501x11022x865).,,.‘
Swin-UNETR | Remove the strong axis H* < | Modeling
OA seismic V ' ’
data processing
PRt R Crop
R AT Rl e Prediction
- TWERT .
Weight i OA-cropl ., OA-crop2, | m"
Value | OA-crop3, OA-crop4, ————f

Figure 11. The flowchart of the fractured cavities identification and characterization method

Abbreviations: OA: Object area; PCA: Principal component analysis.
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Figure 12. Evaluation metric curves. (A) Training and (B) validation phases.
Abbreviation: IoU: Intersection over Union.
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between the Lower Ordovician and Upper Cambrian),
Hs' (separating the Upper and Lower Cambrian), and
H,’ (the basal Cambrian horizon). These horizons served
as the basis for presenting the identification outcomes of
fractured cavities within horizontal stratigraphic levels.

Within the study area, fractured cavities are primarily
controlled by the strike-slip fault zone (OA) rather than
dissolution processes. To clarify this control mechanism,
scanning coherence detection was first performed on the
post-stack seismic data of the studyarea to obtain the seismic
dip gather. Subsequently, elastic impedance inversion
was conducted based on this dip gather, generating key
petrophysical parameters including elastic modulus and
Poisson’s ratio. Finally, the maximum principal stress field

SITITX
SITTTIX

00LTX
00LTX

1L800
AHA

[
IL1,256 ZIL256

was derived through systematic calculations. Figure 13
presents the maximum principal stress field integrated
with geological data. The fault zone can be categorized into
three main structural segments: Compression segments,
pull-apart segments, and translation segments, which
alternate sequentially along the fault strike. Figures 14-19
illustrate that strata in compression segments are uplifted by
stress. In these areas, independent, fractured cavities with
circular outlines frequently develop at stress-concentrated
locations, often referred to as cave-like features. When
compressive and strike-slip stresses are superimposed,
such cave-like anomalies are widely distributed.

In pull-apart segments, pull-apart and strike-slip
stresses act synergistically. Regions subjected to strong

940,000

1L800
B.HJ

IL1,256[% -500,000

Figure 13. Maximum principal stress plane maps of the H,* and H,” horizons in the object area
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Figure 14. Original seismic data and fractured cavities identification results of the H_* horizon in the object area
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Figure 16. Original seismic data and fractured cavities identification results of the H.* horizon in the object area

pull-apart stress host elongated fractured cavities termed
fault-related bodies that are aligned with the fault trend.
Adjacent cave-like features near these fault-related bodies
may merge at their boundaries, forming larger and more
irregular cavity systems. In translation segments, only
strike-slip stress is present. Here, fractured cavities with
regular morphologies develop along the fault, whereas
cave-like features are scarce.

When the stress regime transitions from pull-apart to
compression, multiple fault-related bodies typically form.
Under compressive stress, these bodies converge toward

the central region. Cave-like features often develop at
the edges of compression zones, with their cores either
contacting fault-related bodies or lying between several
such bodies. When the stress regime shifts from translation
to compression, a single fault-related body generally
emerges within the uplifted strata. This body penetrates
the core of the cave-like feature but does not connect its
opposite sides.

Furthermore, the fractured cavities exhibited a
hierarchical structure in the vertical profile of the
study area. As shown in Figures 14-19 , the density and
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Figure 18. Original seismic data and fractured cavities identification results of the H,' horizon in the object area

complexity of fractured cavity development gradually
increased from stratigraphic levels H_ *-H. P whereas
transitioning from dense to sparse from H.* to H, . This
variation is presumably linked to differential dissolution
sensitivity caused by lithological heterogeneity in the
carbonate strata, such as the interbedding of dolomite
and limestone. Figure 20 further demonstrates that
fractured cavities developed between H.* and H.* can be
distinctly categorized from those between H_® and H,’,
based on differences in their structural characteristics and
abundance.

The first type of fractured cavities is characterized by
vertical elongation in the profile, manifesting as steep
and upright structures. Larger cavities tend to exhibit a
roughly funnel-shaped morphology, whereas smaller ones
display nearly circular outlines. Extensive fault-related
fractured cavities formed within the strike-slip fault zone
are almost continuous, extending from shallow to deep
intervals. In addition, smaller, cave-like fractures occur
on both sides of the fault, extending through the entire
target stratum. Conversely, the second type of fractured
cavities develops predominantly in a near-horizontal
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Figure 20. Fractured-cavity identification profile of the object area (OA)

orientation, exhibiting a flattened morphology. These
cavities are distributed at regular intervals, have smaller
sizes than the first type, and are less extensively developed.
Nonetheless, they also display significant vertical
connectivity within the fault zone.

To determine the outline of fault-controlled bodies, we
employed a method that fuses different seismic attribute
volumes after threshold truncation. The post-stack seismic
data OA-cropl is segmented into three parts: OA-cropl-1
(H*-H*), OA-cropl-2 (HS-H}), and OA-cropl-3
(H,*-H,°). Amplitude curvature and coherence detection
attributes were extracted from these segments. Following
outlier processing and standardization of the selected
dominant attributes, attribute compression was performed
using principal component analysis. Finally, the amplitude

curvature, coherence detection attributes, and image
segmentation results were merged.

Figures 21-23 show, from left to right, the network-based
segmentation results, the calculated amplitude curvature
and coherence attributes, and the fused attribute result.
The figures demonstrate that the fused attribute volume
integrates all the high-value features from the first three
attribute volumes. A color-based comparison reveals that
the fused attribute volume exhibits enhanced responses
at locations where fractured cavities are consistently
identified by all three attribute volumes. In regions where
discrepancies occurred among the three attribute volumes,
the fractured cavity features from the first volume were
assigned greater weight. This fusion procedure combined
the three attribute volumes into a single, integrated
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0 1

Figure 21. Seismic attribute fusion result map of the OA-crop1 H,*~H_*horizon in the object area
Abbreviations: OA: Object area; PCA: Principal component analysis.

Figure 22. Seismic attribute fusion result map of the OA-crop1 H_°~H_* horizon in the object area
Abbreviations: OA: Object area; PCA: Principal component analysis.

volume, effectively reducing the uncertainty associated area, where the color gradient from light to dark
with fractured cavities. represents an increasing probability of fractured-cavity

The fractured cavities were then modeled and occurrence.” Figures 24-26 show the final fractured cavity
characterized using a 4 x 4 x 1 grid in the local object body results.
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Figure 23. Seismic attribute fusion result map of the OA-crop1 H_*~H,’ horizon in the object area
Abbreviations: OA: Object area; PCA: Principal component analysis.
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Figure 24. Fractured-cavity body map for the H_*~H_¢ horizon in object area (OA)-crop1 of the OA

Figure 25. Fractured-cavity body map for the H *~H_* horizon in object area (OA)-crop1 of the OA
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Figure 26. Fractured-cavity body map for the H_*~H,” horizon in object area (OA)-crop1 of the OA

4, Conclusion

Fractured cavities in reservoirs within carbonate
formations have complex geological features. These
features make it hard to precisely locate and map fracture
caves using conventional methods. This study introduces
a novel two-step methodology to identify and delineate

fractured-cavity reservoirs in response to these challenges.

First, the Swin-UNETR architecture was employed
to automatically detect reflective signatures of fractured
cavity reservoir strata in the Shunbei field. An attention
gate mechanism was incorporated into the Swin-UNETR
model, enhancing its capability to interpret the dense
and complex features associated with fractured cavity
labels in 3D seismic data. Then, we applied a feature
extraction strategy that fuses multiple seismic attributes
using principal component analysis. This approach
reduced uncertainty, leading to more accurate and robust
identification results.

Application of this methodology to Shunbei field
data has demonstrated its accuracy in recognizing the
characteristic beaded reflections in seismic records. The
identified fractured-cavity reservoirs exhibit both planar
and vertical spatial attributes, revealing segmented
patterns in plain view. Fractured cavity development
varied significantly across different tectonic segments. In
compressional zones, stress-induced strata uplift resulted
in nearly circular, isolated fractured cavities in areas of
high stress concentration. In regions where compressive
and strike-slip stresses interact, extensive irregular cave-
like anomalies were developed. Pull-apart segments,
influenced by both pull-apart and strike-slip stresses,
hosted elongated fractured cavities that were aligned
with the strike-slip direction. These cavities often had
adjacent cave-like features whose edges interfaced with
fault-related bodies, resulting in irregularly expanded
fractured cavities. In translational segments that are

subjected solely to strike-slip stress, fault-related fractured
cavities exhibited regular edges aligned with the strike-slip
direction, accompanied by sparse surrounding cave-like
features.

Analysis of the OA profile revealed a stratified structural
framework. The first category of fractured cavities extends
vertically in profile and is characterized by steep, upright
morphologies. Large-volume fractured cavities display
roughly funnel-shaped geometries, whereas smaller cavities
tend to be nearly circular. Within the strike-slip fault zone,
substantial fault-related fracture caves demonstrated near-
continuity across both shallow and deep strata, flanked
by smaller cave-like features that penetrated the entire
target formation. The second category predominantly
developed in a near-horizontal direction, presenting flatter
morphologies with discrete intervals between individual
cavities. These features had smaller outlines and were more
spatially constrained than the first category. Nevertheless,
they exhibited strong vertical connectivity both within
and beneath the fault zone. Finally, fractured cavities were
delineated with a fixed grid size to standardize their spatial
representation.

This integrated methodological framework provides
a robust tool for the detailed characterization of
fractured cavity reservoirs, thereby facilitating a deeper
understanding of their spatial distribution and geological
evolution within complex carbonate strata.
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