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Abstract
The precise determination of microseismic source locations is one of the core 
components of theoretical research in microseismic monitoring technology. 
Multi-objective intelligent optimization is an effective approach for microseismic 
source positioning, but it faces challenges such as unclear rationality of model 
combinations, susceptibility to local optima, and significant variability in positioning 
results. To address these issues, four distinct mathematical models for microseismic 
source positioning were designed based on the arrival time difference model and 
the arrival time difference quotient model. These models were then combined in 
pairs to form six different microseismic source positioning model combinations, 
which were used as the optimization objective functions for the multi-objective 
computational algorithm. A  set of microseismic source forward modeling 
experiments based on three-dimensional polyhedral array shapes, two sets of 
engineering microseismic data validation experiments, and one set of multi-objective 
computational method comparison experiments were designed. the multi-objective 
grasshopper optimization algorithm (MOGOA) was introduced to solve the six 
model combinations and employed in four sets of microseismic source positioning 
experiments. Multiple statistical metrics were applied to evaluate the performance 
of each model combination. The experimental results indicate that the microseismic 
inversion mathematical model combination (TDA, TDA-P1), combined with the 
MOGOA algorithm’s multi-objective optimization positioning strategy, can achieve 
high microseismic source positioning accuracy under relatively reliable microseismic 
event data, and the model calculations are relatively robust. Under microseismic 
blasting data, the average positioning error over 100 rounds reached 27.6035 m, with 
standard deviation and interquartile range averages of only 3.2114 m and 5.5896 m, 
respectively, outperforming other inversion model combinations and similar 
multi-objective positioning methods. For microseismic event data with significant 
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1. Introduction
Microseismic source positioning is a core component 
of microseismic monitoring technology, crucial for 
geological disaster early warning, mine safety monitoring, 
and structural stability assessment. Inverse mathematical 
models and their solution methods are key components 
of microseismic source location research. The rational 
selection and combination of mathematical models is an 
effective approach to improving positioning accuracy and 
stability.1-9 Traditional mathematical models for positioning 
primarily include travel time (TT) models, time difference of 
arrival (TDA) models, distance difference models, and time 
difference quotient models. Such as the TDA model, derived 
from the TT functions of two different points in the same 
array, eliminates the P-wave first arrival time parameter and 
can represent the deviation between observed and theoretical 
arrival time differences. While offering advantages such as 
physical intuition and rapid convergence, these methods 
and their direct variants are extremely sensitive to 
velocity model anomalies, resulting in potentially sudden 
increases in location errors and instability. To overcome 
this limitation, researchers have developed models such 
as the time difference quotient of arrival (TDQA). These 
mathematically eliminate two physical parameters, wave 
velocity and first wave arrival time, and can represent the 
consistency of wave velocity factors within a region. This 
theoretical advantage eliminates the need for prior velocity 
measurements, thus reducing the complexity of solving the 
inversion model. However, this can also be affected by errors 
in microseismic event arrival time data.10,11 Combining 
multiple inversion mathematical models or balancing their 
characteristics can effectively circumvent the drawbacks of 
a single model—TDA relies on precise wave velocity, while 
TDQA requires no prior velocity measurements (suitable for 
homogeneous media). Optimizing multiple fitness functions 
to find the optimal location is a worthy microseismic source 
positioning strategy. To enrich our sample of inversion 
mathematical models, this paper adds constant offset terms 
(such as addition and subtraction of 1) to the TDA and 
TDQA models. This approach, by amplifying the arrival 

time difference constants, avoids premature iteration 
termination. This approach offers a promising avenue for 
inversion model improvement, ultimately resulting in the 
development of multiple inversion mathematical model 
examples.

Multi-objective optimization is an important method 
for simultaneously optimizing multiple inversion 
mathematical models. Evolving primarily from single-
objective optimization algorithms, it can simultaneously 
handle two or more multivariable objective functions.12-14 
With the continuous advancement of heuristic algorithms, 
swarm intelligence optimization algorithms, due to their 
global search capabilities and advantages in nonlinear 
processing, have gradually become the mainstream 
method for optimizing earthquake source positioning 
models. New biomimetic optimization algorithms, such 
as the Grey Wolf Optimizer,15,16 the Whale Optimization 
Algorithm,17,18 and the Ant Lion Optimization,19,20 have 
demonstrated significant potential in solving high-
dimensional non-convex optimization problems by 
simulating the behavior of biological swarms in nature. 
Compared with traditional linear model solving methods 
(such as Geiger iteration method), these algorithms have 
three major advantages: (i) Strong robustness: insensitive 
to initial value selection and noise interference; (ii) high 
convergence: avoid premature convergence and effectively 
jump out of local extreme values; (iii) parallel mechanism: 
adapt to the needs of multi-parameter joint inversion. 
Multi-objective optimization provides a new idea for 
earthquake source positioning by integrating multiple 
complementary objective functions. Its core lies in 
constructing a Pareto optimal solution set and balancing 
the constraints of different mathematical models. Based 
on the new single-objective group optimization algorithm, 
a multi-objective optimization algorithm is formed, 
which can further improve the accuracy and stability of 
microseismic source positioning.

To address the above challenges, this paper proposes 
an innovative research framework of multi-objective 

systematic errors, the microseismic inversion mathematical model combination 
(TDA-P1, TDQA-P1) demonstrates superior positioning performance, with an average 
positioning error of 151.1915 m over 100 iterations, significantly outperforming other 
model combinations. These model combination positioning performance studies 
hold practical application value in the field of microseismic monitoring.

Keywords: Microseismic source positioning; Multi-objective optimization; Combination 
of inversion mathematical models; Time difference quotient of arrival; Time difference of 
arrival; Multi-Objective Grasshopper Optimization Algorithm

https://dx.doi.org/10.36922/JSE025240016


Journal of Seismic Exploration MOGOA for microseismic positioning

Volume X Issue X (2025)	 3� doi: 10.36922/JSE025420089

grasshopper optimization algorithm (MOGOA)21-26 and 
inversion mathematical model combination (TDA, TDQA, 
and its variants). Its theoretical breakthroughs are reflected 
in three aspects: (i) Multi-objective collaborative mechanism: 
constructing six groups of dual-objective optimization models 
consisting of any two inversion mathematical models of 
TDA, TDQA and its variants to form optimization objectives 
with complementary physical meanings. (ii) Algorithm-
model coupling design: The multi-objective extension of 
the grasshopper optimization algorithm (MOGOA) is 
introduced to give full play to its advantages in global search 
mechanism and adaptive step size adjustment, overcoming the 
shortcomings of other similar algorithms in the uniformity 
of Pareto front distribution. (iii) Multi-group positioning 
experiment design: Combining a set of simulated cube sensor 
array microseismic event forward data and two sets of 
engineering microseismic event data, a microseismic source 
positioning comparison experiment based on the MOGOA 
model and six sets of mathematical models is designed; finally, 
the Second-Generation Non-Dominated Sorting Genetic 
Algorithm (NSGA-II)27-29 and the multi-objective particle 
swarm optimization algorithm (MOPSO)28-30 are introduced 
as the comparison algorithms for solving the multi-objective 
optimization model of MOGOA.

In summary, the microseismic source positioning 
method proposed in this study, which combines multi-
objective optimization with inversion models, offers a 
systematic and robust framework to address the two 
major challenges faced by traditional approaches: model 
uncertainty and data error. First, unlike traditional 
methods that rely on a single physical model, this study 
employs a multi-model fusion strategy to leverage the 
complementary nature of different objective functions 
in physical terms. When velocity models contain errors, 
objective functions sensitive to absolute TTs may conflict 
with those sensitive to geometric relationships. Our 
approach automatically achieves an optimal trade-off 
between these competing objectives by seeking Pareto 
optimal solutions, significantly enhancing the robustness 
of positioning results against model mismatches. When 
confronted with noisy initial-arrival data, this framework 
adaptively balances the susceptibility of different objective 
functions to errors without requiring predefined complex 
weighting schemes. This demonstrates greater intelligence 
and adaptability compared to traditional weighted least 
squares methods. Finally, although intelligent optimization 
algorithms are computationally more complex than least 
squares, their robust global search capability is essential 
for handling complex objective function spaces with 
multiple local minima caused by real-world errors. As 
demonstrated by parameter analysis, our method exhibits 
insensitivity to parameter variations after reaching 

performance thresholds, proving its convenience and 
stability in practical applications. Therefore, the value of 
this research lies not in negating traditional methods, but 
in providing a new and effective technical pathway for 
high-reliability microseismic positioning in complex, non-
ideal engineering environments.

2. Combination of mathematical models for 
microseismic source positioning
The accurate selection of mathematical models is a key factor 
in implementing multi-target high-precision positioning. 
Classical mathematical models for microseismic source 
positioning can be divided into TT models, arrival time 
difference models, arrival time difference quotient models, 
or arrival distance difference models. There are many 
cases of research on single models. Here, we will combine 
the time difference model and the arrival time difference 
quotient model to study the combined model and 
formulate a mathematical model combination plan based 
on this. The basic mathematical formula for microseismic 
source positioning is:
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where li is the spatial distance from the i-th seismic 
pickup (xi, yi, zi) to the microseismic source (x0, y0, z0), 
i = 1,2,…,m; m is the number of seismic pickups receiving 
valid seismic wave signals; v is the seismic wave velocity, 
in this case the P-wave velocity; and t0 is the time of the 
artificial explosion or microseismic event.

Tk is defined as the difference in arrival time of the 
seismic waves recorded by two seismic pickups, Tk = ti−tj, 
with i ≠ j; Lk is defined as the difference in spatial distance 
between the two seismic pickups and the microseismic 
source, Lk = li − lj = v.Tk Based on the definitions of the 
above key parameters, the following four mathematical 
models for microseismic source positioning with different 
meanings are established:
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In the above formulas, f1 is the classic arrival time 
difference model, which reflects the degree of deviation 
between the observed arrival time difference and the 
theoretical arrival time difference, denoted as TDA; f2 is 
based on f1, adding 1 to the arithmetic square method and 
then subtracting 1 from the square method as a whole to 
obtain the absolute value. This deformation can amplify 
the amplitude of the time difference deviation value, 
avoiding the premature termination of the iteration in the 
model solution, and is also conducive to the algorithm to 
find a more appropriate local optimal solution, making 
the calculation result more credible, denoted as TDA-P1; 
f3 is the classic arrival time difference quotient model The 
inverse form of the model takes the observed time difference 
as the numerator of the sub-item and the theoretical arrival 
distance as the denominator. It contains the seismic wave 
arrival time information of 3 or 4 seismic pickups, reflecting 
the degree of difference between the two observed wave 
velocity factors (p = 1/vp and q = 1/vq) calculated using 
different seismic pickup combinations, denoted as TDQA. 
This model does not require advanced velocity measurement 
and is suitable for homogeneous medium environment; f4 is 
a new model that is deformed based on f3. The principle is 
the same as f2, denoted as TDQA-P1.

3. Multi-Objective Grasshopper 
Optimization Algorithm
3.1. Standard grasshopper optimization algorithm

The grasshopper optimization algorithm (GOA) proposed 
in 2017 is a new bionic optimization algorithm that 
mimics the cohabitation and migration of grasshopper 
larvae and adults. It takes advantage of the differentiated 
biological characteristics of grasshopper larvae, which 
are slow to move, and adults, which are fast to move. That 
is, grasshoppers move slowly in the larval stage and only 
move within a small range, while adults have strong hind 
legs and are good at long-distance jumping and moving 
quickly. This biological learning ability helps to carry out 
local search and global optimization at the same time. The 
change of grasshopper position is subject to the interaction 
force, gravity and wind force in the natural environment. 
Therefore, the GOA model calculates the position of the 
i-th grasshopper at the t+1th iteration as follows:

X S G Ai i i� � �i � (IX)

In Formula IX, Xi is the position of the i-th grasshopper, 
Si is the interaction between the i-th grasshopper and 
other grasshoppers, Gi is the gravity acting on the i-th 
grasshopper, and Ai is the wind force acting on the i-th 
grasshopper.
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In Formula X, N is the number of grasshopper 
populations, dij is the absolute distance between 
grasshopper i and grasshopper j; d̆ij  is the unit vector of 
the distance between grasshopper i and grasshopper j.
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In Formula XI, f is the attraction strength; l is the 
attraction range; and S(.) represents the interaction 
force function between grasshopper i and grasshopper 
j. Grasshopper experience both repulsive and attractive 
forces. When they are too close, repulsion occurs, whereas 
when they are too far, attraction arises. The area where 
reLocust’s and attraction are balanced is called the comfort 
zone. Repulsion can prevent the algorithm from converging 
prematurely, ensuring effective exploration.
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In Formula XII, g is the gravitational acceleration 
constant; ĕg  is the unit vector pointing to the center of the 
Earth.
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In Formula XIII, u is the drift constant; and ĕW  is the 
unit vector of the wind direction. Because this will cause 
the grasshoppers to quickly reach their comfort zone and 
the swarm will not converge to a specific location, this 
mathematical model cannot be directly used to solve the 
optimization problem. Ultimately, it is necessary to ignore 
the influence of gravity and ensure that the direction of the 
wind force is always toward the optimal grasshopper 
position. The final formula for updating the grasshopper 
position using the GOA model is:
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In Formula XIV, xi,d(t) is the coordinate value of the 
grasshopper individual in the d-th dimension of the 
position vector at the t-th iteration; c is the linear dynamic 
attenuation coefficient related to the maximum number of 
iterations, which affects the grasshopper’s global 
optimization or local search ability; ubd and lbd are the 
upper and lower limit thresholds on the d-th dimension of 
the grasshopper individual position, respectively; S(.) 
represents the interaction force function of grasshopper i 
affected by grasshopper j; dij is the absolute distance 
between grasshopper i and grasshopper j; and Td

’  is the 
coordinate value of the d-th dimension of the optimal 
position vector previously obtained by the grasshopper 
colony.

3.2. MOGOA

MOGOA is a multi-objective intelligent bionic algorithm 
that simulates the differentiated behavioral activities of 
locusts across different life stages. Its core concept involves 
utilizing long-distance migrating adult locusts to search 
the global space, while crawling, feeding nymphs explore 
the local space. The hunting actions of individual locusts 
depend on the combined effects of intra-population 
forces, gravity, and wind force. Optimal solutions are 
selected through Pareto dominance and crowding distance 
mechanisms. Key differences between MOGOA and 
standard GOA include:
(i)	 Pareto dominance mechanism: Unlike single-objective 

methods that directly compare fitness values, in 
multi-objective optimization we employ the concept 
of “Pareto dominance” to evaluate solutions. After 
population initialization and during each iteration, we 
assess the quality of all locusts (solutions) using Pareto 
dominance relations. A  solution not dominated by 
any other solution in the population is termed a non-
dominated solution. The collective set of all non-
dominated solutions forms the Pareto frontier for that 
iteration.

(ii)	 External archive maintenance: Since multi-objective 
optimization yields a set of solutions (the Pareto 
optimal solution set), a dedicated container is 
required to store high-quality non-dominated 
solutions discovered during iterations. This container 
is termed the external archive. During algorithm 
execution, newly discovered non-dominated 
solutions are continuously compared against 
existing solutions in the archive. Based on the Pareto 
dominance relationship, old solutions dominated by 
new ones are removed from the archive, while new 
solutions not dominated by any existing solution are 
added.

(iii)	Diversity preservation strategy (archive maintenance 
and leader selection): This constitutes the most critical 

component of MOGOA, ensuring that the final 
Pareto solution set not only approximates the true 
frontier but also uniformly covers the entire frontier 
with excellent distribution. First, when the external 
archive is full and solutions must be removed, 
we employ “crowding distance” as the metric. 
This distance measures how densely a solution is 
surrounded by neighboring solutions in the objective 
space. A  solution with a larger crowding distance 
indicates sparser surrounding solutions, making 
it more crucial for maintaining frontier diversity. 
Second, MOGOA avoids a single global optimum 
by selecting a “leader” from the external archive. We 
employ a roulette wheel selection method where the 
selection probability is proportional to the solution’s 
crowding distance—solutions with higher crowding 
distances have a greater chance of being chosen as 
leaders. This mechanism encourages the locust 
population to migrate toward the sparsest and least 
explored regions of the current Pareto frontier. It 
effectively balances exploitation (searching within 
known high-quality regions) and exploration 
(seeking new potential solutions), serving as the core 
driver for maintaining diversity within the solution 
set.

Multi-objective positioning calculations generally use 
two or more inversion mathematical models to construct 
different fitness functions. The dependent variable of each 
function has zero as its theoretical minimum value, and 
the independent variables are the parameters to be solved 
in the inversion model, which can be P-wave velocity, 
approximate three-dimensional coordinates, or the time 
of microseismic occurrence. The known parameters are 
the three-dimensional coordinates of the microseismic 
array measurement points, the true microseismic source 
location, and the first arrival time of the seismic wave. The 
solution model for multi-objective optimization problems 
is generally as follows:

minF f fm n�� �, � (XV)

In Formula XV, m=1,2,3,4, n=1,2,3,4,m ≠ n.

Different sources of model combinations directly impact 
the effectiveness of microseismic source positioning. For 
instance, the TDA model is sensitive to absolute timing 
errors but provides better distance constraints; conversely, 
the TDQA model is insensitive to absolute timing errors 
and wave velocity because it represents a ratio, yet offers 
superior directional constraints. Therefore, combining 
these two distinct model types theoretically achieves 
complementary distance and direction constraints. This 
enables more robust solutions than single models or 
same-type combinations when initial arrival picking 
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errors (affecting TDA) or inaccurate velocity models 
(impacting both) occur. To test the actual positioning 
effectiveness of different model combinations, the four 
standalone inversion mathematical models mentioned in 
section 1 were paired to construct six combination models 
with significantly different physical meanings:
(i)	 MO-1: Combines the TDA Model f1 with the TDA-P1 

model f2. This pair exhibits smoothing effects on 
pure random noise but may “disagree” under strong 
systematic errors, as one minimizes residuals while the 
other biases them, leading to Pareto frontier divergence 
or convergence failure. Its performance typically falls 
short of combinations with complementary models.

(ii)	 MO-2: Combines the TDA model f1 with the TDQA 
model f3. When velocity models exhibit global scaling 
errors or systematic bias in first-arrival picking, f1 may 
fail while f3 maintains stable geometric constraints. 
Together, even with minor absolute positional 
shifts, their relative geometric shapes can “pull” the 
source back into the correct region, demonstrating 
exceptional robustness.

(iii)	MO-3: Combines the TDA model f1 with the 
TDQA-P1 model f4. Building upon the advantages of 
the f1& f3 combination, it further enhances resistance 
to complex error patterns where “the theoretical TTs 
at all stations are systematically overestimated or 
underestimated.” This is theoretically a more robust 
combination, though it may require additional 
iterations to balance the two objectives.

(iv)	 MO-4: Combines the TDA-P1 model f2 with the 
TDQA model f3. This combination is highly suitable 
for addressing scenarios with overall first-arrival time 
shifts (constant delays caused by picker algorithms). 
f2 compensates for this overall shift, while f3 ensures 
correct geometry. It may perform exceptionally well 
when processing noisy data with constant bias.

(v)	 MO-5: Combination of the TDA-P1 model f2 and 
the TDQA-P1 model f4. This is theoretically the 
most “aggressive” compensation combination. It 
may demonstrate unique advantages when complex 
absolute and relative systematic errors coexist in the 
data; however, it may also introduce instability due 
to over-compensation, with its performance highly 
dependent on the actual error distribution.

(vi)	 MO-6: Combines the TDQA model f3 with the 
TDQA-P1 model f4. Similar to the f1& f2 combination, 
this pair primarily smooths random noise in the 
relative residual domain. Both are highly insensitive 
to overall scaling errors in the velocity model but 
may sacrifice absolute positioning accuracy. Their 
combination allows fine-tuning within the constraints 
of relative geometry.

4. Forward and inversion simulation 
experiments of microseismic sources
To verify the theoretical effectiveness of the six positioning 
mathematical model combinations and the MOGOA 
for microseismic source positioning, a set of forward 
and inversion simulation experiments were designed. 
Three-dimensional polyhedron array data simulation 
and first-wave arrival time calculations were performed 
on MATLAB 2024b and Windows 10 64-bit systems. The 
MOGOA algorithm uses the following preset parameters: 
20 search agents (populations), 200 maximum iterations, 
3 search target dimensions, 40 grasshopper populations, 
a lower search limit of (0  0 0), an upper search limit of 
(5000 5000 5000), and 100 positioning experiment cycles. 
In this experiment, the seismic wave (P-wave) propagation 
speed in the medium is set to 2500 m/s. The earthquake 
took place on August 10, 2025, at 14:19:00. The earthquake 
location coordinates are uniformly set to (655.1, 349.7, 
187.2). The microseismic monitoring array is a three-
dimensional polyhedron (approximately spherical), with 
12 detectors evenly distributed on its boundary. The 
relevant simulation data are shown in Figure 1 and Table 1.

Figure  1 presents simulated data from a microseismic 
monitoring network based on a polyhedral array, 
comprising 12 three-dimensional monitoring points (blue 
markers) and one real seismic source (red marker). Based 
on the coordinates of the monitoring points, wave velocities, 
and the location of the seismic source, the first-arrival times 
of seismic waves from the real source to each monitoring 
point can be calculated in seconds, as detailed in Table 1.

Table 1 presents the three coordinate values and first-
arrival times for 12 monitoring stations. It is evident that 

Figure 1. Sensor’s network layout for simulation experiment
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each coordinate value possesses four distinct significant 
digits after the decimal point. This feature enhances the 
model’s physical realism and generalization capability, 
prevents numerical computation from exhibiting linear 
correlation, and consequently improves the performance 
and robustness of the optimization algorithm.

Figure 2 shows a box plot of the microseismic source 
positioning results based on MOGOA and different 
inversion model combinations. The upper and lower 
boundary lines of the box in the figure indicate the upper 
quartile (Q3) and lower quartile (Q1) of the positioning 
results, respectively. The solid line inside the box represents 
the median of the positioning result. The red triangle marks 
the data identified as outliers by the box plot. The upper 
and lower solid horizontal lines outside the box represent 
the maximum and minimum values, respectively. Table 2 
shows the statistics of the microseismic source positioning 
results based on different inversion model combinations 
based on three-dimensional polyhedron array simulation 
and the MOGOA model. The indicators Mean, IQR, STD, 
Best, Worst, Duration, Fit-1, and Fit-2 represent the mean, 
interquartile range (IQR), standard deviation (STD), 
minimum and maximum of the location error dataset, the 
average calculated time for positioning, the final fitness 
function mean of Model 1 (the first submodel from the left 
in the combination model), and the final fitness function 
mean of Model 2, respectively.

From Figure 2 and Table 2, we can see that:
(i)	 The overall positioning accuracy and robustness of 

the MO-6 combination model are far inferior to those 
of other inversion mathematical models. The order 
of positioning accuracy is MO-1 > MO-3 > MO-5 > 

MO-4 > MO-2 > MO-6. The positioning means value 
of the 100-round combination of models TDA-P1 and 
TDA reached 0.0041 m, with the highest positioning 
accuracy. Its performance in the indicators IQR 
(0.0014  m) and STD (0.0082  m) was also the most 
significant, proving that the solution process of the 
MO-1 combination is not only more accurate but also 
relatively more robust. The positioning results do not 
have a large error in the source approximate solution.

(ii)	 The positioning effects of the combinations MO-2, 
MO-3, MO-4, and MO-5 are generally comparable. 
The meaning of their 100-round positioning errors is 
all between 0.12 and 0.19m, and the STD values are all 
within 0.30 m or less, indicating that the positioning 
effect of the above four model combinations is also 
high, and they can be used as alternatives or substitutes 
for the MO-1 combination model. The specific actual 
positioning reliability and accuracy differences need 
to be further explored in combination with other 
experiments.

(iii)	From the fitness function value indicators (Fit  1, 
Fit-2), the main reason for the poor statistical 

Table 1. Simulation data of microseismic source 
forward modeling

Serial 
number

Vibration pickup coordinates (m) By 
then (s)x y z

1 1003.213 6 1003.551 3 0.074 2 0.3056

2 1003.153 4 −1003.716 0 0.016 4 0.5639

3 −1003.345 8 1003.234 8 0.305 5 0.7169

4 −1003.168 9 −1003.190 5 0.215 3 0.8593

5 0.156 3 1003.142 1 1003.410 8 0.4934

6 0.138 7 1003.035 6 −1003.307 7 0.6030

7 0.069 8 −1003.018 7 1003.053 9 0.6840

8 0.043 2 −1003.062 9 −1003.071 2 0.7668

9 1003.356 7 0.110 2 1003.158 1 0.3814

10 1003.154 7 0.085 6 −1003.104 6 0.5153

11 −1003.286 5 0.041 7 1003.093 5 0.7524

12 −1003.137 4 0.017 4 −1003.410 7 0.8285

Figure 2. Box plot of microseismic source positioning results based on 
Multi-Objective Grasshopper Optimization Algorithm (MOGOA) and 
different inversion model combinations
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positioning accuracy and insufficient robustness of 
the combination MO-6 in 100 rounds of experiments 
is that the optimization effect of the TDQA-P1 model 
is not ideal (its Fit-2 value is 0.0001, which is more 
than 100 times different from the Fit-2 values of other 
combination models, while Fit-1 is not much different 
from other combination models). This is related to its 
theoretical design of eliminating wave speed as one 
of the independent variables of the fitness function, 
which makes it lose sufficient physical constraints in 
the process of determining the approximate solution 
and fall into the local optimum. At the same time, 
the design method of adding 1 in the TDQA-P1 
mathematical model exacerbates this phenomenon.

After reviewing the statistical data from 100 rounds of 
microseismic source positioning results, we proceeded to 
present and analyze the specific variations in each round’s 
positioning outcomes. This enables a dissection of the 
oscillation patterns of the error curves for each combined 
model. Figure 3 is a graph showing the microseismic source 
positioning results of 100 rounds and six combination 
models based on polyhedron array simulation. Figure  4 
shows the local approximate dissolution points of six 
microseismic source positioning combination models 
based on polyhedron array simulation and the MOGOA 
model.

From Figures 3 and 4, we can see that:
(i)	 For a single combination model, the number 

of abnormal approximate solutions with large 
positioning errors is small compared to the total 
approximate solution samples. Many sources’ 
approximate solutions are mainly concentrated near 
the true source location (655.1, 349.7, 187.2). Among 
them, the approximate solution set of MO-1 is more 
concentrated, almost coinciding with the true source 
location and being covered by many scattered points.

(ii)	 As shown in Figure  4, the number of approximate 
solutions between the lower limit (654, 349, 186.5) 
and the upper limit (656, 350, 187.5) of the spatial 
coordinates of the MO-6 combination is very small 
and presents a divergent distribution phenomenon. 
Many approximate solutions have positioning errors 
distributed between 0 and 50  m. The positioning 
errors of most source approximate solutions of other 
combination models are below 0.5 m.

The successful execution of microseismic source 
forward modeling simulations alone is insufficient to 
demonstrate the reliability of multi-objective positioning 
models. Further validation using microseismic event data 
from real-world engineering cases is necessary to achieve 
a closed-loop verification process integrating simulation 
with empirical testing.

5. Engineering verification
5.1. Microseismic experiment of a deep mining mine

The validation was conducted using microseismic 
experimental data from a deep mining mine in China. 
A total of 12 microseismic monitoring units were installed 
in the mine. The artificial blasting locations were (3500.0, 
3520.5, 102.0), the detonation time was 00:00, and the 
explosive charge was 2.25  kg. After the successful blast, 
nine P-wave arrival times were observed, denoted as T1 
to T12, as shown in Table 3. The experimental simulation 
used MATLAB 2024B data processing tools and the 
corresponding standard function toolbox. The MOGOA 
algorithm uses the following preset parameters: 40 swarm 
search agents, 200 maximum iterations, 3 search target 
dimensions, a lower search limit of (0, 0, 0), an upper 
search limit of (5000, 5000, 5000), and 100 positioning 
experiment cycles.

Table 4 shows the statistical results of the calculation of 
six combined models for microseismic source positioning 

Table 2. Statistics results of microseismic source positioning based on different inversion model combinations using 
three‑dimensional polyhedral array simulation and the MOGOA model

Combination Model 1 Model 2 Statistical values of microseismic source positioning results

Mean (m) STD (m) IQR (m) Best (m) Worst (m) Duration (s) Fit‑1 Fit‑2

MO‑1 TDA TDA‑P1 0.0041 0.0082 0.0014 8.0419e‑05 0.0443 2.8347 4.8969e‑10 0.0001

MO‑2 TDA TDQA 0.1834 0.2758 0.1898 0.0002 1.3571 3.6136 6.1683e‑07 4.6337e‑11

MO‑3 TDA TDQA‑P1 0.1236 0.1626 0.1427 0.0003 0.8512 3.5736 2.3508e‑07 0.0001

MO‑4 TDA‑P1 TDQA 0.1706 0.2806 0.1775 0.0004 1.8587 3.6350 0.0054 3.5629e‑11

MO‑5 TDA‑P1 TDQA‑P1 0.1432 0.2118 0.1666 0.0004 1.0701 3.6471 0.0045 0.0001

MO‑6 TDQA TDQA‑P1 34.5344 53.0555 34.5673 0.0238 278.98099 4.5234 7.0563e‑08 0.0110

Abbreviations: IQR: Interquartile range; MOGOA: Multi‑Objective Grasshopper Optimization Algorithm; STD: Standard deviation; TDA: Time 
difference of arrival; TDQA: Time difference quotient of arrival.
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based on the MOGOA model and deep mining 
microseismic events. The indicators Mean, IQR, STD, Best, 
Worst, Duration, Fit-1, and Fit-2 represent the mean, IQR, 
STD, minimum and maximum values of the positioning 
error dataset, the average positioning calculation time, the 
final fitness function mean of Model 1 (the first submodel 

from the left in the combined model), and the final fitness 
function mean of Model 2, respectively. Figure  5 shows 
a box plot of the calculation results of six combined 
models for microseismic source positioning based on the 
MOGOA model and deep mining microseismic events. 
The upper and lower boundary lines of the boxes in the 

Figure 3. Position-error curves for six microseismic source positioning combination models (MO-1 to MO-6), obtained from 100 rounds of polyhedral-
array simulations

https://dx.doi.org/10.36922/JSE025240016


Journal of Seismic Exploration MOGOA for microseismic positioning

Volume X Issue X (2025)	 10� doi: 10.36922/JSE025420089

figure represent the upper quartile (Q3) and lower quartile 
(Q1) of the positioning results, respectively. The solid line 
inside the box represents the median of the positioning 
result. Red triangles mark data identified as outliers by 
the box plot. The upper and lower solid horizontal lines 
outside the box represent the maximum and minimum 
values, respectively.

From Figure 5 and Table 4, we can see that:
(i)	 The overall positioning accuracy and robustness of 

the MO-6, MO-2, and MO-3 combination models are 
far inferior to those of other inversion mathematical 
models. They are more sensitive to the noise or error of 
microseismic data, which seriously restricts the global 
search ability of the optimization model. The order 
of positioning accuracy is MO-5 > MO-4 > MO-1 > 
MO-3 > MO-2 > MO-6. The 100-round combination 
positioning mean value of the model TDA-P1 and 

TDQA-P1 combination reached 151.1915 m, which is 
the highest positioning accuracy. It also performs best 
in terms of the indicators IQR (121.9566 m) and STD 
(66.5852 m). This proves that the MO-5 combination 
is not only more accurate but also more robust in 
solving real engineering blasting data. The positioning 
results do not have excessive errors or are judged as 
abnormal values by the box plot.

(ii)	 The positioning effects of the MO-1 and MO-4 
combinations are similar overall. The mean values of 
their 100-round positioning errors are both between 
700 and 800 m, and the STD values are also around 
1000 m. However, the IQR index of MO-4 (139.1974 m) 
is significantly better than that of MO-1 (981.4611 m), 
indicating that the comprehensive positioning effect 
of the MO-4 combination over 100 rounds is only 

Table 3. Microseismic experimental data from SBKC mine

Detector Vibration pickup 
coordinates (m)

By then (ms)

x y z

T1 4088.2 3548.6 61.6 1093.1

T2 4413.1 3057.4 −2.2 1419.0

T3 4798.0 2904.0 −52.4 1304.1

T4 4280.9 2834.0 −83.9 1224.8

T5 4569.8 2183.0 −199.3 1392.1

T6 3978.4 3774.3 151.4 1086.5

T7 4501.0 2442.5 −147.5 1315.1

T8 3874.6 3352.6 67.1 1013.8

T9 5447.6 3138.9 18.0 1445.7

T10 3656.9 3494.6 97.8 988.5

T11 4970.4 3086.4 −1.2 1341.4

T12 5181.3 2942.3 −21.2 1396.3

Table 4. Statistical table of calculation results of six microseismic source positioning combination models based on the MOGOA 
model and deep mining microseismic events

Combination Model 1 Model 2 Statistical values of microseismic source positioning results

Mean (m) STD (m) IQR (m) Best (m) Worst (m) Duration (s) Fit‑1 Fit‑2

MO‑1 TDA TDA‑P1 768.4059 844.7945 981.4611 43.8738 3113.6014 4.8336 0.5187 6.3290

MO‑2 TDA TDQA 2815.2962 890.1189 152.6145 257.4626 3516.8166 8.4982 0.5766 0.0589

MO‑3 TDA TDQA‑P1 1584.3049 1228.5779 2828.5199 42.3584 3102.2167 7.3851 0.5280 3.1257

MO‑4 TDA‑P1 TDQA 726.4571 1262.5554 139.1974 40.4096 3515.7592 7.9982 7.0129 0.0011

MO‑5 TDA‑P1 TDQA‑P1 151.1915 66.5852 121.9566 41.0199 247.2754 7.5293 6.3129 1.3319

MO‑6 TDQA TDQA‑P1 3509.2749 4.1603 7.9288 3503.0247 3516.7911 11.7089 0.0004 1.4036

Abbreviations: IQR: Interquartile range; MOGOA: Multi‑Objective Grasshopper Optimization Algorithm; STD: Standard deviation; TDA: Time 
difference of arrival; TDQA: Time difference quotient of arrival.

Figure 4. Local approximate dissolution point diagram of six microseismic 
source positioning combination models based on polyhedral array 
simulation and Multi-Objective Grasshopper Optimization Algorithm 
(MOGOA) model
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limited by the large number of outliers identified by 
the box plot. The median and mean of its approximate 
solution set are second only to those of the MO-5 
combination. It can be used as an alternative or 
substitute for the MO-5 combination model. The 
specific practical application effect needs to be further 
verified in combination with the second engineering 
blasting experiment.

(iii)	From the perspective of fitness function value 
indicators (Fit-1, Fit-2), the statistical positioning 
effect of the combination MO-5 in the 100-round 
experiment is still possible to be improved. Its Fit-1 
and Fit-2 values are 6.3129 and 1.3319, respectively. If 
the maximum number of iterations and the population 
size of the MOGOA algorithm are increased (such as 
500 and 100), the positioning accuracy and robustness 
index values of the MO-5 combination model can 
be further improved. However, this will reduce the 
computational efficiency of the model and greatly 
increase the complexity of the process of finding the 
optimal approximate solution for the model. This is a 

practical problem that needs to be balanced in specific 
applications.

(iv)	 If the outliers (red triangles in Figure 5) divided by the 
box plot are ignored, the median and the 100-round 
positioning errors of the combination models MO-4 
and MO-5 are very close. This shows that the MOGOA 
model, based on the MO-4 combination model, needs 
to add an outlier removal module to further improve 
the positioning accuracy and robustness of the results.

Figure  6 shows the curves of the calculation results 
of the six microseismic source positioning combination 
models based on the MOGOA model and deep 
mining microseismic events. Figure  7 shows the three-
dimensional scatter plot of the calculation results of the 
MO-5 combination model based on the MOGOA model 
and deep mining microseismic events.

From Figures 6 and 7, we can see that:
(i)	 For a single combination model, the positioning 

result curves of the combination models MO-1 and 
MO-4 have a small number of sudden jumps, and are 
disturbed by a small number of large error positioning 
results and abnormal approximate solutions, resulting 
in a large overall positioning mean; while the 100-round 
positioning error curves of the other four combination 
models show a general oscillation phenomenon, 
which indicates that the original data of deep mining 
microseismic events used in this section may have 
large systematic errors from the first wave arrival time 
or the measurement point position coordinates, which 
makes the MOGOA optimization process unstable and 
prone to falling into local optimality.

(ii)	 As shown in Figure  7, the true source coordinates 
(3500.0, 3520.5, 102.0) are located outside the spatial 
coverage of the monitoring network. To a certain extent, 
this increases the difficulty of MOGOA in solving the 
source approximation solution. The positioning results 
of most model combinations all have high-frequency 
oscillation phenomena, which is consistent with the 
conclusion found by some researchers that the location 
effect of the internal source of the monitoring network 
is better than that of the external source.

Experiments on locating microseismic events in deep 
mining shafts analyzed the performance differences 
between MOGOA and multi-group multi-objective 
inversion models. However, varying microseismic event 
data quality and array configurations also impacted 
actual positioning effectiveness. We further incorporated 
microseismic events from the Shizhuyuan Mine for a 
second engineering case study, thereby strengthening the 
evaluation conclusions regarding the applicability of the 
core methodology presented herein.

Figure  5. Box plot of calculation results based on Multi-Objective 
Grasshopper Optimization Algorithm (MOGOA) model and six 
combination models for microseismic source positioning under deep 
mining microseismic events
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5.2. Microseismic experiments at Shizhuyuan Mine 
in Hunan, China

To further verify the comprehensive positioning 
performance and application differences between the 
six microseismic source combination models and the 

MOGOA algorithm, we used microseismic data from the 
Shizhuyuan Mine in Hunan, China. The P-wave velocity 
was 2500  m/s, and the actual earthquake locations were 
(8732.70, 6570.60, 511.30). Eight seismic wave arrival 
times were recorded (Table 5). The results of 100 rounds 

Figure 6. Position-error variations across 100 experimental cycles for six microseismic source positioning combination models (MO-1 to MO-6). All 
models are constructed using the Multi-Objective Grasshopper Optimization Algorithm (MOGOA) approach and tested with microseismic events from 
deep-mining environments.
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of microseismic source positioning experiments are shown 
in Figures 8–10 and Table 6. The MOGOA algorithm uses 
the following preset parameters: 40 search agents, 200 

maximum iterations, 3 search target dimensions, a lower 
search limit of (5000, 5000, 0), an upper search limit of 
(10000, 10000, 1000), and 100 positioning experiment 
cycles.

Table 6 shows the statistical results of the six combined 
models for microseismic source positioning based on the 
MOGOA model and the microseismic event occurring at 
Shizhuyuan Mine. The indicators Mean, IQR, STD, Best, 
Worst, Duration, Fit-1, and Fit-2 represent the mean, IQR, 
STD, minimum and maximum values of the location error 
dataset, the average calculated time for positioning, the 
final fitness function mean of Model 1 (the first submodel 
from the left in the combined model), and the final fitness 
function mean of Model 2, respectively. Figure  8 shows 
a box plot of the calculation results of six combined 
models for microseismic source positioning based on the 
MOGOA model and the microseismic event occurring at 
Shizhuyuan Mine. The upper and lower boundary lines 
of the boxes in the figure represent the upper quartile 
(Q3) and lower quartile (Q1) of the positioning results, 
respectively. The solid line inside the box represents the 
median of the positioning results. Red triangles mark data 
identified as outliers by boxplot. The upper and lower solid 
horizontal lines outside the box represent the maximum 
and minimum values, respectively.

From Figure 8 and Table 6, we can see that:
(i)	 In terms of positioning accuracy, the order is: 

MO-1 > MO-2 > MO-3 > MO-5 > MO-4 > MO-6. 
The positioning Mean value of the 100-round 
combination of the TDA and TDA-P1 models reached 
27.6035  m, with the highest positioning accuracy. It 
also performed best in terms of the indicators IQR 
(5.5896 m) and STD (3.2114 m). This proves that the 
MO-1 combination has higher accuracy and a more 
robust model in the microseismic event occurring 
at Shizhuyuan Mine. The positioning results did not 
show excessive errors or were judged as outliers by the 
boxplot. Combined with the simulation experiments 

Table 5. Microseismic event data from a polymetallic 
mine in Shizhuyuan

Serial 
number

Detector Vibration pickup 
coordinates (m)

By 
then (ms)

x y z

T1 9# 8761.00 6614.00 522.00 34.90

T2 21# 8737.00 6609.00 565.00 36.60

T3 5# 8666.00 6600.00 520.00 39.30

T4 17# 8668.00 6599.00 565.00 41.10

T5 4# 8641.00 6515.00 520.00 42.30

T6 8# 8691.00 6684.00 520.00 44.50

T7 2# 8721.00 6449.00 520.00 47.80

T8 26# 8702.00 6604.00 647.00 50.00

Table 6. Calculation results of the six microseismic source positioning combination models based on the MOGOA model and 
microseismic event occurring at Shizhuyuan mine

Combination Model 1 Model 2 Statistical values of microseismic source positioning results

Mean (m) STD (m) IQR (m) Best (m) Worst (m) Duration (s) Fit‑1 Fit‑2

MO‑1 TDA TDA‑P1 27.6035 3.2114 5.5896 22.6275 34.8697 2.7545 0.0007 0.2166

MO‑2 TDA TDQA 67.8941 79.3381 80.4866 18.8058 571.4571 3.1671 0.0022 0.0098

MO‑3 TDA TDQA‑P1 71.5070 89.5438 56.4096 15.2813 612.5145 3.1717 0.0025 0.4310

MO‑4 TDA‑P1 TDQA 261.6697 763.8916 100.3935 31.6485 3743.8654 3.2125 0.3539 0.0197

MO‑5 TDA‑P1 TDQA‑P1 135.1657 347.8769 75.8264 29.9978 2547.7277 3.1662 0.3541 0.2354

MO‑6 TDQA TDQA‑P1 2286.3621 1662.9977 3195.2378 146.7279 3743.2557 3.4758 3.2518e‑05 0.1746

Abbreviation: MOGOA: Multi‑Objective Grasshopper Optimization Algorithm.

Figure 7. Three-dimensional scatter plot of calculation results based on 
Multi-Objective Grasshopper Optimization Algorithm (MOGOA) model 
and MO-5 combined model under microseismic events in deep mining
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in Section 3 and the engineering experiments in 
Section 4.1, we believe that the MO-1 combination 
is suitable for processing microseismic data with 
small errors in the position of microseismic array 
measurement points and small errors in the first wave 
arrival time.

(ii)	 The overall positioning accuracy and robustness of the 
MO-6 combination model are far inferior to those of 
other inversion mathematical models. In almost all 
evaluation indicators, it shows an abnormal state that is 
inconsistent with other combination models. Further 
analysis of the single mathematical model structure 
of the combination shows that since the combination 
does not use wave velocity as a parameter value of any 
fitness function of MOGOA, and the mathematical 
model in the form of quotient can only represent the 
relative positioning error, the combination model is 
more sensitive to the systematic error of the original 
data of microseismic events and is prone to fall into 
local optimality, which seriously restricts the global 
search ability of the optimization model.

(iii)	As shown in Figure  8, if all the outliers filtered out 
by the box plot (marked as red triangles in Figure 8) 
are ignored, the median and mean of the 100-round 
positioning errors of MO-2, MO-3, MO-4, and MO-5 
are almost the same. This provides us with an idea: 
based on MOGOA positioning, combining outlier 
elimination methods (such as the 3σ criterion, IQR 
method, and median absolute deviation method) will 
obtain a reliable approximate solution set.

Figure 9 shows the graphs of calculation results of the 
six microseismic source positioning combination models 
based on the MOGOA model and the microseismic 
event occurring at Shizhuyuan Mine. Figure  10 presents 
a three-dimensional scatter plot showing some of the 
calculation results of five microseismic source positioning 
combination models based on the MOGOA model and the 
microseismic event occurring at Shizhuyuan Mine.

From Figures 9 and 10, we can see that:
(i)	 For a single combination model, the positioning 

result curves of the MO-2, MO-3, MO-4, and MO-5 
combination models only have a small number of 
curve jumps and some scattered points far away from 
the true source distribution, while the 100-round 
positioning error curve of MO-1 is relatively flat (all 
between 20 and 40 m). Combined with the statistical 
results in Section 4.1, it further shows that the 
microseismic data from the Shizhuyuan Mine used 
in this section contains less systematic errors and has 
little impact on the multi-round positioning effect.

(ii)	 MO-6 continues to have a large-scale curve jump 
phenomenon and a divergent distribution behavior far 
away from the true source, indicating that this model 
is not suitable for microseismic activity monitoring 
and related algorithm theory research.

To further elucidate positioning discrepancies among 
different combinations, we conducted nonparametric 
statistical tests on positioning error results (from 100 trials) 
across various model configurations. Given potential non-
normal data distribution, we employed the Kruskal–Wallis H 
test, Dunn’s post-hoc test (for multiple group comparisons), 
and Mann–Whitney U test (for two-group comparisons) to 
comprehensively assess statistically significant differences 
among combinations. Specific experimental details include:
(i)	 Kruskal–Wallis H test (multiple comparisons)

•	 Null hypothesis H0: The median positioning 
error is the same across all model combinations.

•	 Alternative hypothesis H1: At least one model 
combination has a different median positioning 
error.

(ii)	 Dunn’s test (post-hoc multiple comparisons): 
Conducted only when the Kruskal–Wallis test is 

Figure  8. Box plot of calculation results based on Multi-Objective 
Grasshopper Optimization Algorithm (MOGOA) model and the 
six microseismic source positioning combination models for the 
microseismic event occurring at Shizhuyuan Mine, Hunan
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significant, enabling pairwise comparisons among all 
combinations.

(iii)	Mann–Whitney U test (key combination 
comparisons): Performed for pairwise comparisons 
of strongly complementary combinations expected to 
exhibit optimal performance. Selection criteria include 

comparisons between strongly complementary pairs 
and between strongly complementary and weakly 
complementary combinations.

The results of the nonparametric statistical test indicate 
the following: (i) The Kruskal–Wallis test yielded a p-value 
of 8.0472 × 10-68 and a mean of 323.6900. Since p < 0.05, 

Figure 9. Graphs of calculation results based on Multi-Objective Grasshopper Optimization Algorithm (MOGOA) model and the six microseismic source 
positioning combination models for the microseismic event occurring at Shizhuyuan Mine, Hunan
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the null hypothesis is rejected, confirming that at least one 
combination exhibits a significant performance difference 
compared to the others. (ii) Post-hoc multiple comparisons 
(Dunn’s test) results (as shown in Table  7): The p-values 
for MO-1  vs. MO-2, MO-1  vs. MO-3, MO-2  vs. MO-3, 
and MO-4  vs. MO-5 were 0.8120, 0.0783, 0.9853, and 
1.0000, respectively, indicating no significant differences 
between the aforementioned paired combinations. (iii) In 
Mann–Whitney U test, comparisons of key combinations 
yielded p-values of 0.1039, 0.1045, 0, 0, and 0 for MO-2 vs. 
MO-3, MO-1 vs. MO-2, MO-2 vs. MO-6, MO-2 vs. MO-5, 
and MO-3 vs. MO-4, respectively. These indicate that no 
significant differences exist between MO-2 and MO-3 or 
MO-1, while MO-2 significantly outperformed MO-6 and 
MO-5, and MO-3 significantly outperformed MO-4. (iv) 
In summary, based on parameters such as the smallest 
coefficient of variation (0.1163) and the smallest mean 
positioning error (27.6035), the MO-1 combination 
demonstrates the best overall positioning performance.

5.3. Comparative experiment on microseismic 
source positioning using MOGOA and similar multi-
objective optimization algorithms

To verify the actual effect of MOGOA among similar multi-
objective calculation methods, the microseismic event data 
of the Shizhuyuan Mine, which has a small systematic error 
in microseismic data, and the MO-1 combination with 
excellent positioning performance were uniformly used 
as experimental data and multi-objective optimization 
mathematical models for comparison of multi-objective 
optimization methods. The NSGA-II and the Multi-
Objective Particle Swarm Optimization (MOPSO) were 
applied to compare and verify their positioning effects. 
Table  8 and Figure  11 show the microseismic source 
positioning results under the three multi-objective 
optimization models. The other experimental conditions 
were the same as the previous experiments: the number 
of swarm search agents was 40, the maximum number 
of iterations was 200, the search target dimension was 
3, the search lower limit was (5000, 5000, 0), the search 
upper limit was (10000, 10000, 1000), and the number of 
positioning experiment cycles was 100.

Table  8 presents statistical results of microseismic 
source positioning after 100 iterations, compared with 
similar multi-objective optimization algorithms. Figure 11 
shows a boxplot of microseismic source positioning 
results from three multi-objective optimization models 
based on the microseismic event occurring at Shizhuyuan 
Mine. Overall, the MOGOA method, compared to similar 
multi-objective calculation methods such as the NSGA-II 
method and the MOPSO method, exhibits significantly 
superior high-precision positioning (mean = 27.6035  m) 
and robust computational performance (STD = 3.2114 m), 
despite being inferior to the NSGA-II model in terms 
of algorithm computational efficiency (duration = 
2.7545 s). It also balances the optimization processes of the 
two objective functions in the multi-objective optimization 
(Fit-1 and Fit-2 reach 0.0007 and 0.2166, respectively) and 
does not exhibit significant outliers that could severely 
restrict the practical application of the positioning 
algorithm. Therefore, it is a relatively reliable and effective 
microseismic source positioning method.

All experiments employed a population size of 40 and a 
maximum iteration count of 200 as the primary algorithmic 
parameters for MOGOA. The relationship between these 
parameter values and positioning performance has not 
been clearly elucidated. Therefore, in Section 4.4, we 
designed experiments specifically to analyze the impact 
of varying multi-objective algorithm parameters on 
positioning accuracy.

Table 7. Experimental results of Dunn’s test based on 
microseismic source positioning results from Shizhuyuan Mine

Dunn’s test MO‑1 MO‑2 MO‑3 MO‑4 MO‑5 MO‑6

MO‑1 1 0.8120 0.0783 0 0 0

MO‑2 0.8120 1 0.9853 0 0 0

MO‑3 0.0783 0.9853 1 0 0 0

MO‑4 0 0 0 1 1.0000 0

MO‑5 0 0 0 1.0000 1 0

MO‑6 0 0 0 0 0 1

Figure  10. Three-dimensional scatter plot of partial results calculated 
based on Multi-Objective Grasshopper Optimization Algorithm 
(MOGOA) model and five types of microseismic source positioning 
combination models for the microseismic event occurring at Shizhuyuan 
Mine, Hunan
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5.4. Sensitivity analysis of MOGOA parameters

Parameter sensitivity analysis is crucial for evaluating the 
robustness of positioning algorithms and guiding practical 
applications. To validate the sensitivity of MOGOA 
parameters (such as population size and maximum 
iteration count) on positioning performance, nine sets 
of microseismic source positioning experiments were 
designed with varying parameters. The Shizhuyuan Mine 
microseismic event data and the MO-1 ensemble were 
uniformly adopted as experimental data and the multi-
objective optimization mathematical model for sensitivity 
analysis. Table 9 presents the statistical results of MOGOA 
microseismic source positioning under varying parameters. 
Other experimental conditions included: setting the 
number of agents in the population search to five levels 
(10, 20, 40, 80, 120); setting the maximum iteration count 
to five levels (20, 100, 200, 500, 1000); defining the lower 
search bound as (5000, 5000, 0) while the upper search 

bound as (10000, 10000, 1000); and setting the positioning 
experiment loop count to 20.

Our interpretations based on Table  9 are as follows: 
(i) With the maximum iteration count fixed at 200, parameter 
configurations exhibit distinct performance thresholds. 
When the population size is too small (population size = 10), 
the positioning error reaches as high as 859.6488 m, attributed 
to premature convergence caused by insufficient population 
diversity. However, when the population size exceeds 20, 
the positioning error stabilizes around 31  m, indicating 
that a critical level of diversity has been achieved to ensure 
algorithmic performance. (ii) Similarly, with the population 
size fixed at 40, when the maximum iterations were below 
100 (maximum iterations = 50), the algorithm performed 
poorly (error 134.3802 m) due to insufficient convergence 
time; performance stabilized when iterations exceeded 100. 
(iii) These findings demonstrate the proposed method’s 
robust parameter tolerance. Stable and accurate positioning 

Table 8. Statistics of 100 rounds of microseismic source positioning results compared with similar multi‑objective optimization 
algorithms

Multi‑objective 
optimization methods

Model 
Portfolio

Statistical values of microseismic source positioning results

Mean (m) STD (m) IQR (m) Best (m) Worst (m) Duration (s) Fit‑1 Fit‑2

NSGA‑Ⅱ MO‑1 734.1109 552.4060 505.8955 27.2953 3.1833e+03 0.2874 0.0058 0.6619

MOPSO MO‑1 1.1892e+03 499.9879 524.0931 92.8176 4.1645e+03 3.3136 0.0058 0.6709

MOGOA MO‑1 27.6035 3.2114 5.5896 22.6275 34.8697 2.7545 0.0007 0.2166

Abbreviations: IQR: Interquartile range; MOGOA: Multi‑Objective Grasshopper Optimization Algorithm; MOPSO: Multi‑Objective Particle Swarm 
Optimization; NSGA‑II: Second‑generation nondominated sorting genetic algorithm; STD: Standard deviation.

Figure  11. Box plot of three multi-objective optimization models for microseismic source positioning based on the microseismic event occurring at 
Shizhuyuan Mine, Hunan
Abbreviations: MOGOA: Multi-Objective Grasshopper Optimization Algorithm; MOPSO: Multi-Objective Particle Swarm Optimization; 
NSGA-II: Second-generation nondominated sorting genetic algorithm.
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results are achievable as long as parameter configurations 
exceed the minimum thresholds (population size ≥20, 
maximum iterations ≥100). Based on this, population 
size = 40 and maximum iterations = 200 were selected as 
experimental parameters, balancing performance assurance 
with computational efficiency.

6. Conclusion
This paper uses the MOGOA model to examine the 
performance differences among six microseismic source 
positioning mathematical model combinations and 
validates the application and adaptability of the inversion 
model combination to three types of microseismic event 
data. The performance of MOGOA is then compared with 
that of NSGA-II and MOPSO for a similar location. The 
following conclusions are drawn:
(i)	 When microseismic event data errors are minimal, 

the MO-1 combination, consisting of the TDA-P1 and 
TDA models, exhibits superior microseismic source 
positioning performance, demonstrating significant 
performance in positioning accuracy, robustness, and 
computational efficiency. Applying a multi-objective 
intelligent swarm optimization algorithm to the 
microseismic source positioning mathematical model 
effectively adds constraints to the nonlinear problem, 
effectively preventing the optimization process from 
prematurely falling into local optima. The MOGOA 
and MO-1 model combination is suitable for 
processing data from sites with precise array sensor 
positions and relatively uniform surface media.

(ii)	 When microseismic event data errors are large, the 
MO-5 combination, consisting of the TDA-P1 and 
TDQA-P1 models with a constant offset term, achieves 
superior microseismic source positioning performance. 
The TDQA-P1 model mathematically eliminates wave 
velocity and first wave arrival time, further reducing the 

impact of these parameter errors on location. Therefore, 
the MOGOA and MO-5 combination is suitable for 
processing data from sites with errors in array sensor 
positions or inhomogeneous surface media.

(iii)	Compared with similar multi-objective algorithms 
such as NSGA-II and MOPSO, MOGOA exhibits 
significant noise immunity and global search 
capabilities, and can be further analyzed and applied in 
research on optimal microseismic source positioning 
based on inversion mathematical models.

(iv)	 Parameter sensitivity analysis reveals that the proposed 
combination of inversion models provides an effective 
search space for the optimization algorithm, enabling 
the multi-objective ant colony algorithm to converge 
stably under relatively relaxed parameter settings. This 
facilitates the practical application of this method in 
engineering practice.

(v)	 This study confirms that determining microseismic 
source location is a multi-objective optimization 
problem and intelligent algorithms provide a robust 
strategy to microseismic source positioning. This 
approach does not rely on a single, potentially 
inaccurate assumption—whether concerning the 
velocity model or data quality. Instead, it naturally 
derives an optimal compromise solution insensitive to 
various errors through the synergistic and competitive 
interaction of multiple models. This endows it with 
clear application potential and advantages over 
traditional methods in real-world engineering 
scenarios where model and data uncertainties exist.

In future research, we will focus on addressing the 
challenges of low positioning accuracy and poor model 
robustness caused by systematic errors in microseismic 
event data. We plan to introduce an adaptive step-size 
adjustment mechanism in the MOGOA model, linked 
to the fitness function value or the number of iterations, 

Table 9. Statistical table of microseismic source positioning for MOGOA under different parameters

Population 
size

Maximum 
iterations

Statistical values of microseismic source positioning results

Mean (m) STD (m) IQR (m) Best (m) Worst (m) Duration (s) Median (m)

10 200 859.6488 1.0750e+03 1.2744e+03 28.1846 3.4119e+03 0.3577 256.4745

20 200 31.4368 2.2932 3.4162 27.9417 35.8210 0.7592 30.6503

40 200 31.0989 2.0841 3.5635 28.6328 34.9410 2.8058 30.4776

80 200 31.7041 2.4019 4.4000 28.0602 35.2399 10.9193 31.5326

120 200 30.9992 2.1564 2.7094 28.3879 36.7719 24.4511 30.3021

40 50 134.3802 180.4892 175.2767 28.6574 641.0793 0.7172 35.0223

40 100 43.5813 52.3692 4.1199 27.4581 265.7581 1.3974 31.3012

40 500 31.1093 2.3525 4.3755 28.3230 35.1322 7.0539 30.1602

40 1000 32.3111 2.0417 3.6189 29.0395 34.6590 14.1781 33.2069

Abbreviations: IQR: Interquartile range; MOGOA: Multi‑Objective Grasshopper Optimization Algorithm; STD: Standard deviation.
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to enhance MOGOA’s global search capabilities in 
inhomogeneous media.
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