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Abstract

The precise determination of microseismic source locations is one of the core
components of theoretical research in microseismic monitoring technology.
Multi-objective intelligent optimization is an effective approach for microseismic
source positioning, but it faces challenges such as unclear rationality of model
combinations, susceptibility to local optima, and significant variability in positioning
results. To address these issues, four distinct mathematical models for microseismic
source positioning were designed based on the arrival time difference model and
the arrival time difference quotient model. These models were then combined in
pairs to form six different microseismic source positioning model combinations,
which were used as the optimization objective functions for the multi-objective
computational algorithm. A set of microseismic source forward modeling
experiments based on three-dimensional polyhedral array shapes, two sets of
engineering microseismic data validation experiments, and one set of multi-objective
computational method comparison experiments were designed. the multi-objective
grasshopper optimization algorithm (MOGOA) was introduced to solve the six
model combinations and employed in four sets of microseismic source positioning
experiments. Multiple statistical metrics were applied to evaluate the performance
of each model combination. The experimental results indicate that the microseismic
inversion mathematical model combination (TDA, TDA-P1), combined with the
MOGOA algorithm’s multi-objective optimization positioning strategy, can achieve
high microseismic source positioning accuracy under relatively reliable microseismic
event data, and the model calculations are relatively robust. Under microseismic
blasting data, the average positioning error over 100 rounds reached 27.6035 m, with
standard deviation and interquartile range averages of only 3.2114 m and 5.5896 m,
respectively, outperforming other inversion model combinations and similar
multi-objective positioning methods. For microseismic event data with significant
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systematic errors, the microseismic inversion mathematical model combination
(TDA-P1, TDQA-P1) demonstrates superior positioning performance, with an average
positioning error of 151.1915 m over 100 iterations, significantly outperforming other
model combinations. These model combination positioning performance studies
hold practical application value in the field of microseismic monitoring.

Keywords: Microseismic source positioning; Multi-objective optimization; Combination
of inversion mathematical models; Time difference quotient of arrival; Time difference of
arrival; Multi-Objective Grasshopper Optimization Algorithm

1. Introduction

Microseismic source positioning is a core component
of microseismic monitoring technology, crucial for
geological disaster early warning, mine safety monitoring,
and structural stability assessment. Inverse mathematical
models and their solution methods are key components
of microseismic source location research. The rational
selection and combination of mathematical models is an
effective approach to improving positioning accuracy and
stability."® Traditional mathematical models for positioning
primarily include travel time (T'T) models, time difference of
arrival (TDA) models, distance difference models, and time
difference quotient models. Such as the TDA model, derived
from the TT functions of two different points in the same
array, eliminates the P-wave first arrival time parameter and
canrepresent the deviation between observed and theoretical
arrival time differences. While offering advantages such as
physical intuition and rapid convergence, these methods
and their direct variants are extremely sensitive to
velocity model anomalies, resulting in potentially sudden
increases in location errors and instability. To overcome
this limitation, researchers have developed models such
as the time difference quotient of arrival (TDQA). These
mathematically eliminate two physical parameters, wave
velocity and first wave arrival time, and can represent the
consistency of wave velocity factors within a region. This
theoretical advantage eliminates the need for prior velocity
measurements, thus reducing the complexity of solving the
inversion model. However, this can also be affected by errors
in microseismic event arrival time data.'®' Combining
multiple inversion mathematical models or balancing their
characteristics can effectively circumvent the drawbacks of
a single model—TDA relies on precise wave velocity, while
TDQA requires no prior velocity measurements (suitable for
homogeneous media). Optimizing multiple fitness functions
to find the optimal location is a worthy microseismic source
positioning strategy. To enrich our sample of inversion
mathematical models, this paper adds constant offset terms
(such as addition and subtraction of 1) to the TDA and
TDQA models. This approach, by amplifying the arrival

time difference constants, avoids premature iteration
termination. This approach offers a promising avenue for
inversion model improvement, ultimately resulting in the
development of multiple inversion mathematical model
examples.

Multi-objective optimization is an important method
for simultaneously optimizing multiple inversion
mathematical models. Evolving primarily from single-
objective optimization algorithms, it can simultaneously
handle two or more multivariable objective functions.'*!*
With the continuous advancement of heuristic algorithms,
swarm intelligence optimization algorithms, due to their
global search capabilities and advantages in nonlinear
processing, have gradually become the mainstream
method for optimizing earthquake source positioning
models. New biomimetic optimization algorithms, such
as the Grey Wolf Optimizer,'>!¢ the Whale Optimization
Algorithm,"”*® and the Ant Lion Optimization,'** have
demonstrated significant potential in solving high-
dimensional non-convex optimization problems by
simulating the behavior of biological swarms in nature.
Compared with traditional linear model solving methods
(such as Geiger iteration method), these algorithms have
three major advantages: (i) Strong robustness: insensitive
to initial value selection and noise interference; (ii) high
convergence: avoid premature convergence and effectively
jump out of local extreme values; (iii) parallel mechanism:
adapt to the needs of multi-parameter joint inversion.
Multi-objective optimization provides a new idea for
earthquake source positioning by integrating multiple
complementary objective functions. Its core lies in
constructing a Pareto optimal solution set and balancing
the constraints of different mathematical models. Based
on the new single-objective group optimization algorithm,
a multi-objective optimization algorithm is formed,
which can further improve the accuracy and stability of
microseismic source positioning.

To address the above challenges, this paper proposes
an innovative research framework of multi-objective
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grasshopper optimization algorithm (MOGOA)**¢ and
inversion mathematical model combination (TDA, TDQA,
and its variants). Its theoretical breakthroughs are reflected
in three aspects: (i) Multi-objective collaborative mechanism:
constructing six groups of dual-objective optimization models
consisting of any two inversion mathematical models of
TDA, TDQA and its variants to form optimization objectives
with complementary physical meanings. (ii) Algorithm-
model coupling design: The multi-objective extension of
the grasshopper optimization algorithm (MOGOA) is
introduced to give full play to its advantages in global search
mechanism and adaptive step size adjustment, overcoming the
shortcomings of other similar algorithms in the uniformity
of Pareto front distribution. (iii) Multi-group positioning
experiment design: Combining a set of simulated cube sensor
array microseismic event forward data and two sets of
engineering microseismic event data, a microseismic source
positioning comparison experiment based on the MOGOA
model and six sets of mathematical models is designed; finally,
the Second-Generation Non-Dominated Sorting Genetic
Algorithm (NSGA-II)** and the multi-objective particle
swarm optimization algorithm (MOPSO)** are introduced
as the comparison algorithms for solving the multi-objective
optimization model of MOGOA.

In summary, the microseismic source positioning
method proposed in this study, which combines multi-
objective optimization with inversion models, offers a
systematic and robust framework to address the two
major challenges faced by traditional approaches: model
uncertainty and data error. First, unlike traditional
methods that rely on a single physical model, this study
employs a multi-model fusion strategy to leverage the
complementary nature of different objective functions
in physical terms. When velocity models contain errors,
objective functions sensitive to absolute TTs may conflict
with those sensitive to geometric relationships. Our
approach automatically achieves an optimal trade-off
between these competing objectives by seeking Pareto
optimal solutions, significantly enhancing the robustness
of positioning results against model mismatches. When
confronted with noisy initial-arrival data, this framework
adaptively balances the susceptibility of different objective
functions to errors without requiring predefined complex
weighting schemes. This demonstrates greater intelligence
and adaptability compared to traditional weighted least
squares methods. Finally, although intelligent optimization
algorithms are computationally more complex than least
squares, their robust global search capability is essential
for handling complex objective function spaces with
multiple local minima caused by real-world errors. As
demonstrated by parameter analysis, our method exhibits
insensitivity to parameter variations after reaching

performance thresholds, proving its convenience and
stability in practical applications. Therefore, the value of
this research lies not in negating traditional methods, but
in providing a new and effective technical pathway for
high-reliability microseismic positioning in complex, non-
ideal engineering environments.

2. Combination of mathematical models for
microseismic source positioning

Theaccurate selection of mathematical modelsisakey factor
in implementing multi-target high-precision positioning.
Classical mathematical models for microseismic source
positioning can be divided into TT models, arrival time
difference models, arrival time difference quotient models,
or arrival distance difference models. There are many
cases of research on single models. Here, we will combine
the time difference model and the arrival time difference
quotient model to study the combined model and
formulate a mathematical model combination plan based
on this. The basic mathematical formula for microseismic
source positioning is:

L= =)+ + (5 -2) M
L=v-(t,—t,) (I1)
T, =t —t,i%] (1)
Lo=l-1=vT,i#j )

where [ is the spatial distance from the i-th seismic
pickup (x, y, z) to the microseismic source (x,, y,, 2,),
i=1,2,...,m; m is the number of seismic pickups receiving
valid seismic wave signals; v is the seismic wave velocity,
in this case the P-wave velocity; and ¢ is the time of the
artificial explosion or microseismic event.

T, is defined as the difference in arrival time of the
seismic waves recorded by two seismic pickups, T, = £,
with i # j; L, is defined as the difference in spatial distance
between the two seismic pickups and the microseismic
source, L, = [ — [ = v.T, Based on the definitions of the
above key parameters, the following four mathematical
models for microseismic source positioning with different
meanings are established:

£=3 Tk—i] W)

k=1 14

-1 (VD)
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1= i ﬂ_ﬂ] (VID)

M T 2
f.= Z P_ 149 -1 (VII)
P-9=L:p>q Lp q

In the above formulas, f, is the classic arrival time
difference model, which reflects the degree of deviation
between the observed arrival time difference and the
theoretical arrival time difference, denoted as TDA; f, is
based on f, adding 1 to the arithmetic square method and
then subtracting 1 from the square method as a whole to
obtain the absolute value. This deformation can amplify
the amplitude of the time difference deviation value,
avoiding the premature termination of the iteration in the
model solution, and is also conducive to the algorithm to
find a more appropriate local optimal solution, making
the calculation result more credible, denoted as TDA-P1;
f, is the classic arrival time difference quotient model The
inverse form of the model takes the observed time difference
as the numerator of the sub-item and the theoretical arrival
distance as the denominator. It contains the seismic wave
arrival time information of 3 or 4 seismic pickups, reflecting
the degree of difference between the two observed wave
velocity factors (y, = 1/v, and y, = 1/v) calculated using
different seismic pickup combinations, denoted as TDQA.
This model does not require advanced velocity measurement
and is suitable for homogeneous medium environment; f, is
a new model that is deformed based on f,. The principle is
the same as f), denoted as TDQA-P1.

3. Multi-Objective Grasshopper
Optimization Algorithm

3.1. Standard grasshopper optimization algorithm

The grasshopper optimization algorithm (GOA) proposed
in 2017 is a new bionic optimization algorithm that
mimics the cohabitation and migration of grasshopper
larvae and adults. It takes advantage of the differentiated
biological characteristics of grasshopper larvae, which
are slow to move, and adults, which are fast to move. That
is, grasshoppers move slowly in the larval stage and only
move within a small range, while adults have strong hind
legs and are good at long-distance jumping and moving
quickly. This biological learning ability helps to carry out
local search and global optimization at the same time. The
change of grasshopper position is subject to the interaction
force, gravity and wind force in the natural environment.
Therefore, the GOA model calculates the position of the
i-th grasshopper at the t+1 iteration as follows:

X, =8 +G +A, (IX)

In Formula IX, X_ is the position of the i-th grasshopper,
S, is the interaction between the i-th grasshopper and
other grasshoppers, G, is the gravity acting on the i-th
grasshopper, and A, is the wind force acting on the i-th
grasshopper.

N v
8, =Y sdd, (X)
j=1

In Formula X, N is the number of grasshopper
populations, di], is the absolute distance between

grasshopper i and grasshopper j; d. is the unit vector of

j

the distance between grasshopper i and grasshopper j.

s(r) = fe% —e” (XI)

In Formula XI, f is the attraction strength; [ is the
attraction range; and S(.) represents the interaction
force function between grasshopper i and grasshopper
j. Grasshopper experience both repulsive and attractive
forces. When they are too close, repulsion occurs, whereas
when they are too far, attraction arises. The area where
reLocust’s and attraction are balanced is called the comfort
zone. Repulsion can prevent the algorithm from converging
prematurely, ensuring effective exploration.

G =-g, (XII)

In Formula XII, g is the gravitational acceleration
constant; ég is the unit vector pointing to the center of the
Earth.

A =ué, (XIII)

In Formula XIII, u is the drift constant; and e,, is the
unit vector of the wind direction. Because this will cause
the grasshoppers to quickly reach their comfort zone and
the swarm will not converge to a specific location, this
mathematical model cannot be directly used to solve the
optimization problem. Ultimately, it is necessary to ignore
the influence of gravity and ensure that the direction of the
wind force is always toward the optimal grasshopper
position. The final formula for updating the grasshopper
position using the GOA model is:

N —
_ub, ~1b,

273

j=lj#i

xi’d(t+l)=c x
EMOREMODES

x|
4,0

(XIV)
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In Formula XIV, x, [t) is the coordinate value of the
grasshopper individual in the d-th dimension of the
position vector at the t-th iteration; c is the linear dynamic
attenuation coefficient related to the maximum number of
iterations, which affects the grasshopper’s global
optimization or local search ability; ub, and Ib, are the
upper and lower limit thresholds on the d-th dimension of
the grasshopper individual position, respectively; S(.)
represents the interaction force function of grasshopper i
affected by grasshopper j; d, is the absolute distance
between grasshopper i and grasshopper j; and T, is the
coordinate value of the d-th dimension of the optimal
position vector previously obtained by the grasshopper
colony.

3.2. MOGOA

MOGOA is a multi-objective intelligent bionic algorithm
that simulates the differentiated behavioral activities of
locusts across different life stages. Its core concept involves
utilizing long-distance migrating adult locusts to search
the global space, while crawling, feeding nymphs explore
the local space. The hunting actions of individual locusts
depend on the combined effects of intra-population
forces, gravity, and wind force. Optimal solutions are
selected through Pareto dominance and crowding distance
mechanisms. Key differences between MOGOA and
standard GOA include:

(i) Pareto dominance mechanism: Unlike single-objective
methods that directly compare fitness values, in
multi-objective optimization we employ the concept
of “Pareto dominance” to evaluate solutions. After
population initialization and during each iteration, we
assess the quality of all locusts (solutions) using Pareto
dominance relations. A solution not dominated by
any other solution in the population is termed a non-
dominated solution. The collective set of all non-
dominated solutions forms the Pareto frontier for that
iteration.

(ii) External archive maintenance: Since multi-objective
optimization yields a set of solutions (the Pareto
optimal solution set), a dedicated container is
required to store high-quality non-dominated
solutions discovered during iterations. This container
is termed the external archive. During algorithm
execution, newly discovered non-dominated
solutions are continuously compared against
existing solutions in the archive. Based on the Pareto
dominance relationship, old solutions dominated by
new ones are removed from the archive, while new
solutions not dominated by any existing solution are
added.

(iii) Diversity preservation strategy (archive maintenance
and leader selection): This constitutes the most critical

component of MOGOA, ensuring that the final
Pareto solution set not only approximates the true
frontier but also uniformly covers the entire frontier
with excellent distribution. First, when the external
archive is full and solutions must be removed,
we employ “crowding distance” as the metric.
This distance measures how densely a solution is
surrounded by neighboring solutions in the objective
space. A solution with a larger crowding distance
indicates sparser surrounding solutions, making
it more crucial for maintaining frontier diversity.
Second, MOGOA avoids a single global optimum
by selecting a “leader” from the external archive. We
employ a roulette wheel selection method where the
selection probability is proportional to the solution’s
crowding distance—solutions with higher crowding
distances have a greater chance of being chosen as
leaders. This mechanism encourages the locust
population to migrate toward the sparsest and least
explored regions of the current Pareto frontier. It
effectively balances exploitation (searching within
known high-quality regions) and exploration
(seeking new potential solutions), serving as the core
driver for maintaining diversity within the solution
set.

Multi-objective positioning calculations generally use
two or more inversion mathematical models to construct
different fitness functions. The dependent variable of each
function has zero as its theoretical minimum value, and
the independent variables are the parameters to be solved
in the inversion model, which can be P-wave velocity,
approximate three-dimensional coordinates, or the time
of microseismic occurrence. The known parameters are
the three-dimensional coordinates of the microseismic
array measurement points, the true microseismic source
location, and the first arrival time of the seismic wave. The
solution model for multi-objective optimization problems
is generally as follows:

minF ={f,.f,} (XV)
In Formula XV, m=1,2,3,4, n=1,2,3,4,m # n.

Different sources of model combinations directly impact
the effectiveness of microseismic source positioning. For
instance, the TDA model is sensitive to absolute timing
errors but provides better distance constraints; conversely,
the TDQA model is insensitive to absolute timing errors
and wave velocity because it represents a ratio, yet offers
superior directional constraints. Therefore, combining
these two distinct model types theoretically achieves
complementary distance and direction constraints. This
enables more robust solutions than single models or
same-type combinations when initial arrival picking

Volume X Issue X (2025)

doi: 10.36922/JSE025420089


https://dx.doi.org/10.36922/JSE025240016

Journal of Seismic Exploration

MOGOA for microseismic positioning

errors (affecting TDA) or inaccurate velocity models

(impacting both) occur. To test the actual positioning

effectiveness of different model combinations, the four

standalone inversion mathematical models mentioned in
section 1 were paired to construct six combination models
with significantly different physical meanings:

(i) MO-1: Combines the TDA Model f, with the TDA-P1
model f,. This pair exhibits smoothing effects on
pure random noise but may “disagree” under strong
systematic errors, as one minimizes residuals while the
other biases them, leading to Pareto frontier divergence
or convergence failure. Its performance typically falls
short of combinations with complementary models.

(ii) MO-2: Combines the TDA model f, with the TDQA
model f,. When velocity models exhibit global scaling
errors or systematic bias in first-arrival picking, f, may
fail while f, maintains stable geometric constraints.
Together, even with minor absolute positional
shifts, their relative geometric shapes can “pull” the
source back into the correct region, demonstrating
exceptional robustness.

(iii) MO-3: Combines the TDA model f, with the
TDQA-P1 model f,. Building upon the advantages of
the f1& f3 combination, it further enhances resistance
to complex error patterns where “the theoretical TTs
at all stations are systematically overestimated or
underestimated.” This is theoretically a more robust
combination, though it may require additional
iterations to balance the two objectives.

(iv) MO-4: Combines the TDA-P1 model f, with the
TDQA model f,. This combination is highly suitable
for addressing scenarios with overall first-arrival time
shifts (constant delays caused by picker algorithms).
f, compensates for this overall shift, while f, ensures
correct geometry. It may perform exceptionally well
when processing noisy data with constant bias.

(v) MO-5: Combination of the TDA-P1 model f, and
the TDQA-P1 model f,. This is theoretically the
most “aggressive” compensation combination. It
may demonstrate unique advantages when complex
absolute and relative systematic errors coexist in the
data; however, it may also introduce instability due
to over-compensation, with its performance highly
dependent on the actual error distribution.

(vi) MO-6: Combines the TDQA model f, with the
TDQA-P1 model f,. Similar to the f & f, combination,
this pair primarily smooths random noise in the
relative residual domain. Both are highly insensitive
to overall scaling errors in the velocity model but
may sacrifice absolute positioning accuracy. Their
combination allows fine-tuning within the constraints
of relative geometry.

4, Forward and inversion simulation
experiments of microseismic sources

To verify the theoretical effectiveness of the six positioning
mathematical model combinations and the MOGOA
for microseismic source positioning, a set of forward
and inversion simulation experiments were designed.
Three-dimensional polyhedron array data simulation
and first-wave arrival time calculations were performed
on MATLAB 2024b and Windows 10 64-bit systems. The
MOGOA algorithm uses the following preset parameters:
20 search agents (populations), 200 maximum iterations,
3 search target dimensions, 40 grasshopper populations,
a lower search limit of (0 0 0), an upper search limit of
(5000 5000 5000), and 100 positioning experiment cycles.
In this experiment, the seismic wave (P-wave) propagation
speed in the medium is set to 2500 m/s. The earthquake
took place on August 10, 2025, at 14:19:00. The earthquake
location coordinates are uniformly set to (655.1, 349.7,
187.2). The microseismic monitoring array is a three-
dimensional polyhedron (approximately spherical), with
12 detectors evenly distributed on its boundary. The
relevant simulation data are shown in Figure 1 and Table 1.

Figure 1 presents simulated data from a microseismic
monitoring network based on a polyhedral array,
comprising 12 three-dimensional monitoring points (blue
markers) and one real seismic source (red marker). Based
on the coordinates of the monitoring points, wave velocities,
and the location of the seismic source, the first-arrival times
of seismic waves from the real source to each monitoring
point can be calculated in seconds, as detailed in Table 1.

Table 1 presents the three coordinate values and first-
arrival times for 12 monitoring stations. It is evident that

1500

1000 @ Monitoring point

 True epicenter

500

-500

-1000

1500

-1000 R
Y/m -1500 " -1500 X/m

Figure 1. Sensor’s network layout for simulation experiment
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Table 1. Simulation data of microseismic source
forward modeling

Serial Vibration pickup coordinates (m) By

number x y z then (s)
1 1003.213 6 1003.551 3 0.074 2 0.3056
2 1003.153 4 -1003.716 0 0.016 4 0.5639
3 —-1003.345 8 1003.234 8 0.3055 0.7169
4 —1003.168 9 —-1003.190 5 0.2153 0.8593
5 0.156 3 1003.142 1 1003.410 8 0.4934
6 0.1387 1003.035 6 -1003.307 7 0.6030
7 0.069 8 -1003.018 7 1003.053 9 0.6840
8 0.043 2 —-1003.062 9 -1003.071 2 0.7668
9 1003.356 7 0.1102 1003.158 1 0.3814
10 1003.154 7 0.085 6 —-1003.104 6 0.5153
11 —1003.286 5 0.0417 1003.093 5 0.7524
12 —1003.137 4 0.017 4 —-1003.410 7 0.8285

each coordinate value possesses four distinct significant
digits after the decimal point. This feature enhances the
model’'s physical realism and generalization capability,
prevents numerical computation from exhibiting linear
correlation, and consequently improves the performance
and robustness of the optimization algorithm.

Figure 2 shows a box plot of the microseismic source
positioning results based on MOGOA and different
inversion model combinations. The upper and lower
boundary lines of the box in the figure indicate the upper
quartile (Q3) and lower quartile (Q1) of the positioning
results, respectively. The solid line inside the box represents
the median of the positioning result. The red triangle marks
the data identified as outliers by the box plot. The upper
and lower solid horizontal lines outside the box represent
the maximum and minimum values, respectively. Table 2
shows the statistics of the microseismic source positioning
results based on different inversion model combinations
based on three-dimensional polyhedron array simulation
and the MOGOA model. The indicators Mean, IQR, STD,
Best, Worst, Duration, Fit-1, and Fit-2 represent the mean,
interquartile range (IQR), standard deviation (STD),
minimum and maximum of the location error dataset, the
average calculated time for positioning, the final fitness
function mean of Model 1 (the first submodel from the left
in the combination model), and the final fitness function
mean of Model 2, respectively.

From Figure 2 and Table 2, we can see that:

(i) The overall positioning accuracy and robustness of
the MO-6 combination model are far inferior to those
of other inversion mathematical models. The order
of positioning accuracy is MO-1 > MO-3 > MO-5 >

A
250 - A
200 [ AT
=
5
; A
2150 N
(=1
S A
2 A
§ A
3 100 | J
wn

oF A A A A A =
1 1 1 1 1 1
MO-1 MO-2 MO-3 MO-4 MO-5 MO-6
Positioning mathematical model combination

Figure 2. Box plot of microseismic source positioning results based on
Multi-Objective Grasshopper Optimization Algorithm (MOGOA) and
different inversion model combinations

MO-4 > MO-2 > MO-6. The positioning means value
of the 100-round combination of models TDA-P1 and
TDA reached 0.0041 m, with the highest positioning
accuracy. Its performance in the indicators IQR
(0.0014 m) and STD (0.0082 m) was also the most
significant, proving that the solution process of the
MO-1 combination is not only more accurate but also
relatively more robust. The positioning results do not
have a large error in the source approximate solution.

(ii) The positioning effects of the combinations MO-2,
MO-3, MO-4, and MO-5 are generally comparable.
The meaning of their 100-round positioning errors is
all between 0.12 and 0.19m, and the STD values are all
within 0.30 m or less, indicating that the positioning
effect of the above four model combinations is also
high, and they can be used as alternatives or substitutes
for the MO-1 combination model. The specific actual
positioning reliability and accuracy differences need
to be further explored in combination with other
experiments.

(iii) From the fitness function value indicators (Fit 1,
Fit-2), the main reason for the poor statistical
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Table 2. Statistics results of microseismic source positioning based on different inversion model combinations using
three-dimensional polyhedral array simulation and the MOGOA model

Combination Modell Model 2 Statistical values of microseismic source positioning results
Mean (m) STD (m) IQR (m) Best (m)  Worst (m) Duration (s) Fit-1 Fit-2

MO-1 TDA TDA-P1 0.0041 0.0082 0.0014 8.0419e-05 0.0443 2.8347 4.8969¢-10 0.0001
MO-2 TDA TDQA 0.1834 0.2758 0.1898 0.0002 1.3571 3.6136 6.1683e-07 4.6337e-11
MO-3 TDA TDQA-P1 0.1236 0.1626 0.1427 0.0003 0.8512 3.5736 2.3508e-07 0.0001
MO-4 TDA-P1 TDQA 0.1706 0.2806 0.1775 0.0004 1.8587 3.6350 0.0054 3.5629¢-11
MO-5 TDA-P1  TDQA-P1 0.1432 0.2118 0.1666 0.0004 1.0701 3.6471 0.0045 0.0001
MO-6 TDQA TDQA-P1 34.5344 53.0555 34.5673 0.0238 278.98099 4.5234 7.0563e-08 0.0110

Abbreviations: IQR: Interquartile range; MOGOA: Multi-Objective Grasshopper Optimization Algorithm; STD: Standard deviation; TDA: Time

difference of arrival; TDQA: Time difference quotient of arrival.

positioning accuracy and insufficient robustness of
the combination MO-6 in 100 rounds of experiments
is that the optimization effect of the TDQA-P1 model
is not ideal (its Fit-2 value is 0.0001, which is more
than 100 times different from the Fit-2 values of other
combination models, while Fit-1 is not much different
from other combination models). This is related to its
theoretical design of eliminating wave speed as one
of the independent variables of the fitness function,
which makes it lose sufficient physical constraints in
the process of determining the approximate solution
and fall into the local optimum. At the same time,
the design method of adding 1 in the TDQA-P1
mathematical model exacerbates this phenomenon.

After reviewing the statistical data from 100 rounds of
microseismic source positioning results, we proceeded to
present and analyze the specific variations in each round’s
positioning outcomes. This enables a dissection of the
oscillation patterns of the error curves for each combined
model. Figure 3 is a graph showing the microseismic source
positioning results of 100 rounds and six combination
models based on polyhedron array simulation. Figure 4
shows the local approximate dissolution points of six
microseismic source positioning combination models
based on polyhedron array simulation and the MOGOA
model.

From Figures 3 and 4, we can see that:

(i) For a single combination model, the number
of abnormal approximate solutions with large
positioning errors is small compared to the total
approximate solution samples. Many sources
approximate solutions are mainly concentrated near
the true source location (655.1, 349.7, 187.2). Among
them, the approximate solution set of MO-1 is more
concentrated, almost coinciding with the true source
location and being covered by many scattered points.

(ii) As shown in Figure 4, the number of approximate
solutions between the lower limit (654, 349, 186.5)
and the upper limit (656, 350, 187.5) of the spatial
coordinates of the MO-6 combination is very small
and presents a divergent distribution phenomenon.
Many approximate solutions have positioning errors
distributed between 0 and 50 m. The positioning
errors of most source approximate solutions of other
combination models are below 0.5 m.

The successful execution of microseismic source
forward modeling simulations alone is insufficient to
demonstrate the reliability of multi-objective positioning
models. Further validation using microseismic event data
from real-world engineering cases is necessary to achieve
a closed-loop verification process integrating simulation
with empirical testing.

5. Engineering verification
5.1. Microseismic experiment of a deep mining mine

The validation was conducted using microseismic
experimental data from a deep mining mine in China.
A total of 12 microseismic monitoring units were installed
in the mine. The artificial blasting locations were (3500.0,
3520.5, 102.0), the detonation time was 00:00, and the
explosive charge was 2.25 kg. After the successful blast,
nine P-wave arrival times were observed, denoted as T1
to T12, as shown in Table 3. The experimental simulation
used MATLAB 2024B data processing tools and the
corresponding standard function toolbox. The MOGOA
algorithm uses the following preset parameters: 40 swarm
search agents, 200 maximum iterations, 3 search target
dimensions, a lower search limit of (0, 0, 0), an upper
search limit of (5000, 5000, 5000), and 100 positioning
experiment cycles.

Table 4 shows the statistical results of the calculation of
six combined models for microseismic source positioning
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Figure 3. Position-error curves for six microseismic source positioning combination models (MO-1 to MO-6), obtained from 100 rounds of polyhedral-

array simulations

based on the MOGOA model and deep mining
microseismic events. The indicators Mean, IQR, STD, Best,
Worst, Duration, Fit-1, and Fit-2 represent the mean, IQR,
STD, minimum and maximum values of the positioning
error dataset, the average positioning calculation time, the
final fitness function mean of Model 1 (the first submodel

from the left in the combined model), and the final fitness
function mean of Model 2, respectively. Figure 5 shows
a box plot of the calculation results of six combined
models for microseismic source positioning based on the
MOGOA model and deep mining microseismic events.
The upper and lower boundary lines of the boxes in the
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figure represent the upper quartile (Q3) and lower quartile
(Q1) of the positioning results, respectively. The solid line
inside the box represents the median of the positioning
result. Red triangles mark data identified as outliers by
the box plot. The upper and lower solid horizontal lines
outside the box represent the maximum and minimum
values, respectively.

From Figure 5 and Table 4, we can see that:

(@)

The overall positioning accuracy and robustness of
the MO-6, MO-2, and MO-3 combination models are
far inferior to those of other inversion mathematical
models. They are more sensitive to the noise or error of
microseismic data, which seriously restricts the global
search ability of the optimization model. The order
of positioning accuracy is MO-5 > MO-4 > MO-1 >
MO-3 > MO-2 > MO-6. The 100-round combination
positioning mean value of the model TDA-P1 and

Table 3. Microseismic experimental data from SBKC mine

Detector Vibration pickup By then (ms)
coordinates (m)
x y z
T1 4088.2 3548.6 61.6 1093.1
T2 4413.1 3057.4 -2.2 1419.0
T3 4798.0 2904.0 -52.4 1304.1
T4 4280.9 2834.0 -83.9 1224.8
T5 4569.8 2183.0 -199.3 1392.1
T6 3978.4 3774.3 151.4 1086.5
T7 4501.0 2442.5 -147.5 1315.1
T8 3874.6 3352.6 67.1 1013.8
T9 5447.6 3138.9 18.0 1445.7
T10 3656.9 3494.6 97.8 988.5
T11 4970.4 3086.4 -1.2 1341.4
T12 5181.3 2942.3 -21.2 1396.3

(ii)

Z/m

TDQA-P1 combination reached 151.1915 m, which is
the highest positioning accuracy. It also performs best
in terms of the indicators IQR (121.9566 m) and STD
(66.5852 m). This proves that the MO-5 combination
is not only more accurate but also more robust in
solving real engineering blasting data. The positioning
results do not have excessive errors or are judged as
abnormal values by the box plot.

The positioning effects of the MO-1 and MO-4
combinations are similar overall. The mean values of
their 100-round positioning errors are both between
700 and 800 m, and the STD values are also around
1000 m. However, the IQR index of MO-4 (139.1974 m)
is significantly better than that of MO-1 (981.4611 m),
indicating that the comprehensive positioning effect
of the MO-4 combination over 100 rounds is only

® MO-1
® MO-2
® MO-3
© MO-4
® MO-5
© MO-6
H True epicenter

349

349.4

655

349.6
654

350

X/m Y/m

Figure 4. Local approximate dissolution point diagram of six microseismic
source positioning combination models based on polyhedral array
simulation and Multi-Objective Grasshopper Optimization Algorithm
(MOGOA) model

Table 4. Statistical table of calculation results of six microseismic source positioning combination models based on the MOGOA
model and deep mining microseismic events

Combination Modell Model 2 Statistical values of microseismic source positioning results
Mean (m) STD (m) IQR (m) Best (m) Worst (m)  Duration (s) Fit-1 Fit-2

MO-1 TDA TDA-P1 768.4059 844.7945 981.4611 43.8738 3113.6014 4.8336 0.5187  6.3290
MO-2 TDA TDQA 2815.2962 890.1189 152.6145 257.4626 3516.8166 8.4982 0.5766  0.0589
MO-3 TDA TDQA-P1 1584.3049  1228.5779  2828.5199 42.3584 3102.2167 7.3851 0.5280  3.1257
MO-4 TDA-P1  TDQA 726.4571 1262.5554 139.1974 40.4096 3515.7592 7.9982 7.0129  0.0011
MO-5 TDA-P1  TDQA-P1 151.1915 66.5852 121.9566 41.0199 247.2754 7.5293 6.3129  1.3319
MO-6 TDQA TDQA-P1 3509.2749 4.1603 7.9288 3503.0247 3516.7911 11.7089 0.0004  1.4036

Abbreviations: IQR: Interquartile range; MOGOA: Multi-Objective Grasshopper Optimization Algorithm; STD: Standard deviation; TDA: Time
difference of arrival; TDQA: Time difference quotient of arrival.
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limited by the large number of outliers identified by
the box plot. The median and mean of its approximate
solution set are second only to those of the MO-5
combination. It can be used as an alternative or
substitute for the MO-5 combination model. The
specific practical application effect needs to be further
verified in combination with the second engineering
blasting experiment.

(iii) From the perspective of fitness function value
indicators (Fit-1, Fit-2), the statistical positioning
effect of the combination MO-5 in the 100-round
experiment is still possible to be improved. Its Fit-1
and Fit-2 values are 6.3129 and 1.3319, respectively. If
the maximum number of iterations and the population
size of the MOGOA algorithm are increased (such as
500 and 100), the positioning accuracy and robustness
index values of the MO-5 combination model can
be further improved. However, this will reduce the
computational efficiency of the model and greatly
increase the complexity of the process of finding the
optimal approximate solution for the model. This is a
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Figure 5. Box plot of calculation results based on Multi-Objective
Grasshopper Optimization Algorithm (MOGOA) model and six
combination models for microseismic source positioning under deep
mining microseismic events

practical problem that needs to be balanced in specific
applications.

(iv) Ifthe outliers (red triangles in Figure 5) divided by the
box plot are ignored, the median and the 100-round
positioning errors of the combination models MO-4
and MO-5 are very close. This shows that the MOGOA
model, based on the MO-4 combination model, needs
to add an outlier removal module to further improve
the positioning accuracy and robustness of the results.

Figure 6 shows the curves of the calculation results
of the six microseismic source positioning combination
models based on the MOGOA model and deep
mining microseismic events. Figure 7 shows the three-
dimensional scatter plot of the calculation results of the
MO-5 combination model based on the MOGOA model
and deep mining microseismic events.

From Figures 6 and 7, we can see that:

(i) For a single combination model, the positioning
result curves of the combination models MO-1 and
MO-4 have a small number of sudden jumps, and are
disturbed by a small number of large error positioning
results and abnormal approximate solutions, resulting
inalarge overall positioning mean; while the 100-round
positioning error curves of the other four combination
models show a general oscillation phenomenon,
which indicates that the original data of deep mining
microseismic events used in this section may have
large systematic errors from the first wave arrival time
or the measurement point position coordinates, which
makes the MOGOA optimization process unstable and
prone to falling into local optimality.

As shown in Figure 7, the true source coordinates
(3500.0, 3520.5, 102.0) are located outside the spatial
coverage of the monitoring network. To a certain extent,
this increases the difficulty of MOGOA in solving the
source approximation solution. The positioning results
of most model combinations all have high-frequency
oscillation phenomena, which is consistent with the
conclusion found by some researchers that the location
effect of the internal source of the monitoring network
is better than that of the external source.

(ii)

Experiments on locating microseismic events in deep
mining shafts analyzed the performance differences
between MOGOA and multi-group multi-objective
inversion models. However, varying microseismic event
data quality and array configurations also impacted
actual positioning effectiveness. We further incorporated
microseismic events from the Shizhuyuan Mine for a
second engineering case study, thereby strengthening the
evaluation conclusions regarding the applicability of the
core methodology presented herein.
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Figure 6. Position-error variations across 100 experimental cycles for six microseismic source positioning combination models (MO-1 to MO-6). All
models are constructed using the Multi-Objective Grasshopper Optimization Algorithm (MOGOA) approach and tested with microseismic events from

deep-mining environments.

5.2. Microseismic experiments at Shizhuyuan Mine
in Hunan, China

To further verify the comprehensive positioning
performance and application differences between the
six microseismic source combination models and the

MOGOA algorithm, we used microseismic data from the
Shizhuyuan Mine in Hunan, China. The P-wave velocity
was 2500 m/s, and the actual earthquake locations were
(8732.70, 6570.60, 511.30). Eight seismic wave arrival
times were recorded (Table 5). The results of 100 rounds
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of microseismic source positioning experiments are shown
in Figures 8-10 and Table 6. The MOGOA algorithm uses
the following preset parameters: 40 search agents, 200

© MO-5 approximate solution
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Figure 7. Three-dimensional scatter plot of calculation results based on
Multi-Objective Grasshopper Optimization Algorithm (MOGOA) model
and MO-5 combined model under microseismic events in deep mining

Table 5. Microseismic event data from a polymetallic
mine in Shizhuyuan

Serial Detector Vibration pickup By
number coordinates (m) then (ms)
x y z

T1 o# 8761.00 6614.00 522.00 34.90
T2 21# 8737.00 6609.00 565.00 36.60
T3 5# 8666.00 6600.00 520.00 39.30
T4 17# 8668.00 6599.00 565.00 41.10
T5 4# 8641.00 6515.00 520.00 42.30
T6 8# 8691.00 6684.00 520.00 44.50
T7 2# 8721.00 6449.00 520.00 47.80
T8 26# 8702.00 6604.00  647.00 50.00

maximum iterations, 3 search target dimensions, a lower
search limit of (5000, 5000, 0), an upper search limit of
(10000, 10000, 1000), and 100 positioning experiment
cycles.

Table 6 shows the statistical results of the six combined
models for microseismic source positioning based on the
MOGOA model and the microseismic event occurring at
Shizhuyuan Mine. The indicators Mean, IQR, STD, Best,
Worst, Duration, Fit-1, and Fit-2 represent the mean, IQR,
STD, minimum and maximum values of the location error
dataset, the average calculated time for positioning, the
final fitness function mean of Model 1 (the first submodel
from the left in the combined model), and the final fitness
function mean of Model 2, respectively. Figure 8 shows
a box plot of the calculation results of six combined
models for microseismic source positioning based on the
MOGOA model and the microseismic event occurring at
Shizhuyuan Mine. The upper and lower boundary lines
of the boxes in the figure represent the upper quartile
(Q3) and lower quartile (Q1) of the positioning results,
respectively. The solid line inside the box represents the
median of the positioning results. Red triangles mark data
identified as outliers by boxplot. The upper and lower solid
horizontal lines outside the box represent the maximum
and minimum values, respectively.

From Figure 8 and Table 6, we can see that:

(i) In terms of positioning accuracy, the order is:
MO-1 > MO-2 > MO-3 > MO-5 > MO-4 > MO-6.
The positioning Mean value of the 100-round
combination of the TDA and TDA-P1 models reached
27.6035 m, with the highest positioning accuracy. It
also performed best in terms of the indicators IQR
(5.5896 m) and STD (3.2114 m). This proves that the
MO-1 combination has higher accuracy and a more
robust model in the microseismic event occurring
at Shizhuyuan Mine. The positioning results did not
show excessive errors or were judged as outliers by the
boxplot. Combined with the simulation experiments

Table 6. Calculation results of the six microseismic source positioning combination models based on the MOGOA model and

microseismic event occurring at Shizhuyuan mine

Combination Modell Model 2 Statistical values of microseismic source positioning results
Mean (m)  STD (m) IQR (m) Best (m) Worst (m) Duration (s) Fit-1 Fit-2

MO-1 TDA TDA-P1 27.6035 3.2114 5.5896 22.6275 34.8697 2.7545 0.0007 0.2166
MO-2 TDA TDQA 67.8941 79.3381 80.4866 18.8058 571.4571 3.1671 0.0022 0.0098
MO-3 TDA TDQA-P1 71.5070 89.5438 56.4096 15.2813 612.5145 3.1717 0.0025 0.4310
MO-4 TDA-P1  TDQA 261.6697 763.8916 100.3935 31.6485 3743.8654 3.2125 0.3539 0.0197
MO-5 TDA-P1  TDQA-P1 135.1657 347.8769 75.8264 29.9978 2547.7277 3.1662 0.3541 0.2354
MO-6 TDQA TDQA-P1 2286.3621 1662.9977  3195.2378  146.7279 3743.2557 3.4758 3.2518e-05  0.1746

Abbreviation: MOGOA: Multi-Objective Grasshopper Optimization Algorithm.
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Figure 8. Box plot of calculation results based on Multi-Objective
Grasshopper Optimization Algorithm (MOGOA) model and the
six microseismic source positioning combination models for the
microseismic event occurring at Shizhuyuan Mine, Hunan

in Section 3 and the engineering experiments in
Section 4.1, we believe that the MO-1 combination
is suitable for processing microseismic data with
small errors in the position of microseismic array
measurement points and small errors in the first wave
arrival time.

The overall positioning accuracy and robustness of the
MO-6 combination model are far inferior to those of
other inversion mathematical models. In almost all
evaluation indicators, it shows an abnormal state that is
inconsistent with other combination models. Further
analysis of the single mathematical model structure
of the combination shows that since the combination
does not use wave velocity as a parameter value of any
fitness function of MOGOA, and the mathematical
model in the form of quotient can only represent the
relative positioning error, the combination model is
more sensitive to the systematic error of the original
data of microseismic events and is prone to fall into
local optimality, which seriously restricts the global
search ability of the optimization model.

(ii)

(iii) As shown in Figure 8, if all the outliers filtered out
by the box plot (marked as red triangles in Figure 8)
are ignored, the median and mean of the 100-round
positioning errors of MO-2, MO-3, MO-4, and MO-5
are almost the same. This provides us with an idea:
based on MOGOA positioning, combining outlier
elimination methods (such as the 30 criterion, IQR
method, and median absolute deviation method) will
obtain a reliable approximate solution set.

Figure 9 shows the graphs of calculation results of the
six microseismic source positioning combination models
based on the MOGOA model and the microseismic
event occurring at Shizhuyuan Mine. Figure 10 presents
a three-dimensional scatter plot showing some of the
calculation results of five microseismic source positioning
combination models based on the MOGOA model and the
microseismic event occurring at Shizhuyuan Mine.

From Figures 9 and 10, we can see that:
For a single combination model, the positioning
result curves of the MO-2, MO-3, MO-4, and MO-5
combination models only have a small number of
curve jumps and some scattered points far away from
the true source distribution, while the 100-round
positioning error curve of MO-1 is relatively flat (all
between 20 and 40 m). Combined with the statistical
results in Section 4.1, it further shows that the
microseismic data from the Shizhuyuan Mine used
in this section contains less systematic errors and has
little impact on the multi-round positioning effect.
MO-6 continues to have a large-scale curve jump
phenomenon and a divergent distribution behavior far
away from the true source, indicating that this model
is not suitable for microseismic activity monitoring
and related algorithm theory research.

(@)

(ii)

To further elucidate positioning discrepancies among
different combinations, we conducted nonparametric
statistical tests on positioning error results (from 100 trials)
across various model configurations. Given potential non-
normal datadistribution, we employed the Kruskal-Wallis H
test, Dunn’s post-hoc test (for multiple group comparisons),
and Mann-Whitney U test (for two-group comparisons) to
comprehensively assess statistically significant differences
among combinations. Specific experimental details include:
(i) Kruskal-Wallis H test (multiple comparisons)

e Null hypothesis HO: The median positioning
error is the same across all model combinations.
e  Alternative hypothesis H1: At least one model
combination has a different median positioning
error.
(ii) Dunn’s test (post-hoc multiple comparisons):
Conducted only when the Kruskal-Wallis test is
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Figure 9. Graphs of calculation results based on Multi-Objective Grasshopper Optimization Algorithm (MOGOA) model and the six microseismic source
positioning combination models for the microseismic event occurring at Shizhuyuan Mine, Hunan

significant, enabling pairwise comparisons among all comparisons between strongly complementary pairs

combinations. and between strongly complementary and weakly
(iii) Mann-Whitney U  test (key combination complementary combinations.

comparisons): Performed for pairwise comparisons The results of the nonparametric statistical test indicate

of strongly complementary combinations expected to the following: (i) The Kruskal-Wallis test yielded a p-value

exhibit optimal performance. Selection criteria include of 8.0472 x 10 and a mean of 323.6900. Since p < 0.05,
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the null hypothesis is rejected, confirming that at least one
combination exhibits a significant performance difference
compared to the others. (ii) Post-hoc multiple comparisons
(Dunn’s test) results (as shown in Table 7): The p-values
for MO-1 vs. MO-2, MO-1 vs. MO-3, MO-2 vs. MO-3,
and MO-4 vs. MO-5 were 0.8120, 0.0783, 0.9853, and
1.0000, respectively, indicating no significant differences
between the aforementioned paired combinations. (iii) In
Mann-Whitney U test, comparisons of key combinations
yielded p-values of 0.1039, 0.1045, 0, 0, and 0 for MO-2 vs.
MO-3, MO-1 vs. MO-2, MO-2 vs. MO-6, MO-2 vs. MO-5,
and MO-3 vs. MO-4, respectively. These indicate that no
significant differences exist between MO-2 and MO-3 or
MO-1, while MO-2 significantly outperformed MO-6 and
MO-5, and MO-3 significantly outperformed MO-4. (iv)
In summary, based on parameters such as the smallest
coefficient of variation (0.1163) and the smallest mean
positioning error (27.6035), the MO-1 combination
demonstrates the best overall positioning performance.
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Figure 10. Three-dimensional scatter plot of partial results calculated
based on Multi-Objective Grasshopper Optimization Algorithm
(MOGOA) model and five types of microseismic source positioning
combination models for the microseismic event occurring at Shizhuyuan
Mine, Hunan

Table 7. Experimental results of Dunn’s test based on
microseismic source positioning results from Shizhuyuan Mine

Dunn’s test MO-1 MO-2 MO-3 MO-4 MO-5 MO-6
MO-1 1 0.8120  0.0783 0 0 0
MO-2 0.8120 1 0.9853 0 0 0
MO-3 0.0783  0.9853 1 0 0 0
MO-4 0 0 0 1 1.0000 0
MO-5 0 0 0 1.0000 1 0
MO-6 0 0 0 0 0 1

5.3. Comparative experiment on microseismic
source positioning using MOGOA and similar multi-
objective optimization algorithms

To verify the actual effect of MOGOA among similar multi-
objective calculation methods, the microseismic event data
of the Shizhuyuan Mine, which has a small systematic error
in microseismic data, and the MO-1 combination with
excellent positioning performance were uniformly used
as experimental data and multi-objective optimization
mathematical models for comparison of multi-objective
optimization methods. The NSGA-II and the Multi-
Objective Particle Swarm Optimization (MOPSO) were
applied to compare and verify their positioning effects.
Table 8 and Figure 11 show the microseismic source
positioning results under the three multi-objective
optimization models. The other experimental conditions
were the same as the previous experiments: the number
of swarm search agents was 40, the maximum number
of iterations was 200, the search target dimension was
3, the search lower limit was (5000, 5000, 0), the search
upper limit was (10000, 10000, 1000), and the number of
positioning experiment cycles was 100.

Table 8 presents statistical results of microseismic
source positioning after 100 iterations, compared with
similar multi-objective optimization algorithms. Figure 11
shows a boxplot of microseismic source positioning
results from three multi-objective optimization models
based on the microseismic event occurring at Shizhuyuan
Mine. Overall, the MOGOA method, compared to similar
multi-objective calculation methods such as the NSGA-II
method and the MOPSO method, exhibits significantly
superior high-precision positioning (mean = 27.6035 m)
and robust computational performance (STD = 3.2114 m),
despite being inferior to the NSGA-II model in terms
of algorithm computational efficiency (duration =
2.7545 s). It also balances the optimization processes of the
two objective functions in the multi-objective optimization
(Fit-1 and Fit-2 reach 0.0007 and 0.2166, respectively) and
does not exhibit significant outliers that could severely
restrict the practical application of the positioning
algorithm. Therefore, it is a relatively reliable and effective
microseismic source positioning method.

All experiments employed a population size of 40 and a
maximum iteration count of 200 as the primary algorithmic
parameters for MOGOA. The relationship between these
parameter values and positioning performance has not
been clearly elucidated. Therefore, in Section 4.4, we
designed experiments specifically to analyze the impact
of varying multi-objective algorithm parameters on
positioning accuracy.
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Table 8. Statistics of 100 rounds of microseismic source positioning results compared with similar multi-objective optimization
algorithms

Multi-objective Model Statistical values of microseismic source positioning results

optimization methods  Portfolio Mean (m) STD (m) IQR (m) Best (m) Worst (m) Duration (s) Fit-1 Fit-2
NSGA-II MO-1 734.1109 552.4060 505.8955 27.2953 3.1833e+03 0.2874 0.0058 0.6619
MOPSO MO-1 1.1892e+03 499.9879 524.0931 92.8176 4.1645e+03 3.3136 0.0058 0.6709
MOGOA MO-1 27.6035 3.2114 5.5896 22.6275 34.8697 2.7545 0.0007 0.2166

Abbreviations: IQR: Interquartile range; MOGOA: Multi-Objective Grasshopper Optimization Algorithm; MOPSO: Multi-Objective Particle Swarm
Optimization; NSGA-II: Second-generation nondominated sorting genetic algorithm; STD: Standard deviation.
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Figure 11. Box plot of three multi-objective optimization models for microseismic source positioning based on the microseismic event occurring at
Shizhuyuan Mine, Hunan
Abbreviations: MOGOA: Multi-Objective Grasshopper Optimization Algorithm; MOPSO: Multi-Objective Particle Swarm Optimization;

NSGA-II: Second-generation nondominated sorting genetic algorithm.

5.4. Sensitivity analysis of MOGOA parameters

Parameter sensitivity analysis is crucial for evaluating the
robustness of positioning algorithms and guiding practical
applications. To validate the sensitivity of MOGOA
parameters (such as population size and maximum
iteration count) on positioning performance, nine sets
of microseismic source positioning experiments were
designed with varying parameters. The Shizhuyuan Mine
microseismic event data and the MO-1 ensemble were
uniformly adopted as experimental data and the multi-
objective optimization mathematical model for sensitivity
analysis. Table 9 presents the statistical results of MOGOA
microseismic source positioning under varying parameters.
Other experimental conditions included: setting the
number of agents in the population search to five levels
(10, 20, 40, 80, 120); setting the maximum iteration count
to five levels (20, 100, 200, 500, 1000); defining the lower
search bound as (5000, 5000, 0) while the upper search

bound as (10000, 10000, 1000); and setting the positioning
experiment loop count to 20.

Our interpretations based on Table 9 are as follows:
(i) With the maximum iteration count fixed at 200, parameter
configurations exhibit distinct performance thresholds.
When the population size is too small (population size = 10),
the positioningerror reachesashigh as 859.6488 m, attributed
to premature convergence caused by insufficient population
diversity. However, when the population size exceeds 20,
the positioning error stabilizes around 31 m, indicating
that a critical level of diversity has been achieved to ensure
algorithmic performance. (ii) Similarly, with the population
size fixed at 40, when the maximum iterations were below
100 (maximum iterations = 50), the algorithm performed
poorly (error 134.3802 m) due to insufficient convergence
time; performance stabilized when iterations exceeded 100.
(iii) These findings demonstrate the proposed method’s
robust parameter tolerance. Stable and accurate positioning
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Table 9. Statistical table of microseismic source positioning for MOGOA under different parameters

Population Maximum Statistical values of microseismic source positioning results

size iterations Mean (m) STD (m) IQR (m) Best (m) Worst (m) Duration (s) Median (m)
10 200 859.6488 1.0750e+03 1.2744e+03 28.1846 3.4119e+03 0.3577 256.4745
20 200 31.4368 2.2932 3.4162 27.9417 35.8210 0.7592 30.6503
40 200 31.0989 2.0841 3.5635 28.6328 34.9410 2.8058 30.4776
80 200 31.7041 2.4019 4.4000 28.0602 35.2399 10.9193 31.5326
120 200 30.9992 2.1564 2.7094 28.3879 36.7719 24.4511 30.3021
40 50 134.3802 180.4892 175.2767 28.6574 641.0793 0.7172 35.0223
40 100 43.5813 52.3692 4.1199 27.4581 265.7581 1.3974 31.3012
40 500 31.1093 2.3525 4.3755 28.3230 35.1322 7.0539 30.1602
40 1000 323111 2.0417 3.6189 29.0395 34.6590 14.1781 33.2069

Abbreviations: IQR: Interquartile range; MOGOA: Multi-Objective Grasshopper Optimization Algorithm; STD: Standard deviation.

results are achievable as long as parameter configurations
exceed the minimum thresholds (population size >20,
maximum iterations >100). Based on this, population
size = 40 and maximum iterations = 200 were selected as
experimental parameters, balancing performance assurance
with computational efficiency.

6. Conclusion

This paper uses the MOGOA model to examine the
performance differences among six microseismic source
positioning mathematical model combinations and
validates the application and adaptability of the inversion
model combination to three types of microseismic event
data. The performance of MOGOA is then compared with
that of NSGA-II and MOPSO for a similar location. The
following conclusions are drawn:

(i) When microseismic event data errors are minimal,
the MO-1 combination, consisting of the TDA-P1 and
TDA models, exhibits superior microseismic source
positioning performance, demonstrating significant
performance in positioning accuracy, robustness, and
computational efficiency. Applying a multi-objective
intelligent swarm optimization algorithm to the
microseismic source positioning mathematical model
effectively adds constraints to the nonlinear problem,
effectively preventing the optimization process from
prematurely falling into local optima. The MOGOA
and MO-1 model combination is suitable for
processing data from sites with precise array sensor
positions and relatively uniform surface media.

(ii) When microseismic event data errors are large, the
MO-5 combination, consisting of the TDA-P1 and
TDQA-P1 models with a constant offset term, achieves
superior microseismic source positioning performance.
The TDQA-P1 model mathematically eliminates wave
velocity and first wave arrival time, further reducing the

impact of these parameter errors on location. Therefore,
the MOGOA and MO-5 combination is suitable for
processing data from sites with errors in array sensor
positions or inhomogeneous surface media.

(iii) Compared with similar multi-objective algorithms
such as NSGA-II and MOPSO, MOGOA exhibits
significant noise immunity and global search
capabilities, and can be further analyzed and applied in
research on optimal microseismic source positioning
based on inversion mathematical models.

(iv) Parameter sensitivity analysis reveals that the proposed
combination of inversion models provides an effective
search space for the optimization algorithm, enabling
the multi-objective ant colony algorithm to converge
stably under relatively relaxed parameter settings. This
facilitates the practical application of this method in
engineering practice.

(v) This study confirms that determining microseismic
source location is a multi-objective optimization
problem and intelligent algorithms provide a robust
strategy to microseismic source positioning. This
approach does not rely on a single, potentially
inaccurate assumption—whether concerning the
velocity model or data quality. Instead, it naturally
derives an optimal compromise solution insensitive to
various errors through the synergistic and competitive
interaction of multiple models. This endows it with
clear application potential and advantages over
traditional methods in real-world engineering
scenarios where model and data uncertainties exist.

In future research, we will focus on addressing the
challenges of low positioning accuracy and poor model
robustness caused by systematic errors in microseismic
event data. We plan to introduce an adaptive step-size
adjustment mechanism in the MOGOA model, linked
to the fitness function value or the number of iterations,
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to enhance MOGOAs global search capabilities in
inhomogeneous media.
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