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Abstract
Fault identification is a critical step in seismic data interpretation. Traditional fault 
identification methods rely heavily on manual interpretation, which is inefficient 
and significantly influenced by subjective factors. This paper proposes a fault 
identification algorithm based on a Residual U-Net–curvelet hybrid framework. 
By introducing residual learning strategies and applying batch normalization and 
skip connection techniques, the generalization ability and convergence speed of 
the network are enhanced, thereby improving the accuracy and efficiency of fault 
identification. Results from field data processing demonstrate that this method 
achieves high identification accuracy under complex geological structures and low 
signal-to-noise ratio conditions, providing reliable fault identification results for 
efficient seismic data interpretation.

Keywords: Fault identification and enhancement; Deep learning; Residual U-Net; 
Random noise suppression

1. Introduction
Fault identification is a critical aspect of seismic data interpretation, particularly in oil 
and gas exploration and development. Accurate fault identification holds significant 
importance for structural interpretation, reservoir prediction, and analysis of 
hydrocarbon migration pathways.

However, traditional fault identification methods rely heavily on the experience 
of interpreters and use seismic attributes or structural features for recognition, which 
are labor-intensive, highly subjective, and sensitive to noise. These limitations make 
it difficult to meet the demands of detailed interpretation, particularly in complex 
geological settings or in seismic data with low signal-to-noise ratios (SNR), where the 
ability to identify small faults is often inadequate. Therefore, achieving automated, rapid, 
and high-precision fault identification has become an urgent research problem.

With the advancement of seismic-attribute technology, fault-identification methods 
include attribute-based classifiers, such as coherence cubes,1,2 variance cubes,3 curvature 
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attributes,4,5 the C3-coherence technique,2 and fault-
likelihood measures;6,7 fault-enhancement approaches, 
such as ant tracking,8 structure-oriented filtering,9 and 
optimal surface voting;10 as well as hybrid workflows that 
combine variance cubes with high-definition ant tracking. 
However, these approaches are highly dependent on data 
quality: While they can be effective in shallow sections, 
their performance degrades for deep, low-quality seismic 
data and in structurally complex or heavily faulted 
areas, where inferred fault continuity is poor, and the 
solutions are strongly non-unique, often diminishing their 
interpretational value.

In recent years, with the rapid development of artificial 
intelligence (AI) technology, the application of AI to 
achieve automatic, fast, and accurate fault identification—
overcoming the subjective influence of manual 
interpretation—has gradually become an important 
research direction in the field of oil and gas geophysical 
exploration and development.

Early studies primarily adopted relatively simple 
architectures, such as AlexNet and VGGNet,11 but 
their accuracy in fault identification was limited. Later, 
researchers introduced residual network (ResNet)-based 
models12—by leveraging residual learning to mitigate 
deep-network degradation and vanishing gradients, these 
models improved fault-detection accuracy. Nevertheless, 
such approaches are constrained by fixed input-size 
requirements and a bias toward local feature extraction, 
resulting in poorer performance for small-scale faults. Wu 
et al.13 employed a convolutional neural network for fault 
identification and subsequently constructed anisotropic 
Gaussian functions to estimate the fracture dip and 
azimuthal extent. However, because the model is trained 
on local image patches and extracts features only within 
small-scale neighborhoods, its computational efficiency is 
significantly limited.

Fully convolutional neural networks achieved the 
first end-to-end breakthrough in image recognition.14 
U-Net15,16 introduced an architectural innovation that 
couples multi-scale feature extraction in the encoder with 
precise localization in a symmetric decoder and, via skip 
connections, enables cross-level fusion of shallow details 
and deep semantic features,17 thereby markedly improving 
fault-identification accuracy. Moreover, integrating U-Net 
with ResNet to form residual U-Net (ResU-Net) increases 
network depth and further enhances fault-detection 
performance.18 Unlike the classical U-Net—which adopts 
a symmetric encoder–decoder built from convolution–
batch normalization–rectified linear unit (ReLU) stacks 
and conveys spatial details via skip connections—the 
residual U-Net introduces residual blocks within each 

stage. While preserving U-Net’s original skip connections 
and precise localization capability, it significantly improves 
gradient flow and feature reuse, making the network easier 
to deepen and more stable to train. Consequently, it is more 
robust under low-SNR and complex structural settings: It 
converges faster, is more sensitive to weak/narrow faults, 
reduces false positives, and improves generalization and 
fault identification/detection accuracy.

To further reduce the subjectivity of manual fault 
identification and enhance the accuracy of identifying 
micro-faults, this study develops a fault detection model 
utilizing a ResU-Net architecture–curvelet hybrid 
framework, designed to learn the complex non-linear 
mapping between seismic amplitude data and fault 
probability distributions. In addition, fault information 
is enhanced using multi-scale component extraction and 
curvelet domain filtering techniques, thereby providing 
a solid foundation for subsequent interpretation and 
analysis.

2. Fault identification based on residual 
U-Net
2.1. Residual learning strategy for fault 
identification

By employing a residual U-Net, the sample space formed 
by fault-related seismic data is explored to construct a 
fault identification model that characterizes the mapping 
between seismic data and faults. In the fault identification 
task, the ResU-Net is trained with a hybrid loss function 
that combines cross-entropy and the Dice coefficient, and 
the evaluation metric is identification accuracy.

Compared to traditional fault-identification methods 
based on the U-Net convolutional neural network, the 
ResU-Net-based method not only adopts a different 
network architecture but also incorporates an improved 
loss function. The mathematical expression of the 
combined loss function is as follows:

ˆ2
Di

ˆ
ce

y y
y y

× ×
=

+
∑

∑ ∑ � (I)

( ) ( )1ˆ log 1 log 1ˆ ˆ Dice
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Where L̂  represents the combined loss function, y 
denotes the fault labels of the true data, and ŷ  represents 
the predicted faults.

From a theoretical standpoint, the hybrid loss (cross-
entropy/binary cross-entropy [BCE] + Dice coefficient) 
combines probability calibration with set-overlap 
optimization. BCE treats segmentation as per-pixel 
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log-likelihood maximization, yielding well-calibrated 
probabilities and sharp boundaries; because the Dice 
coefficient is normalized by the sizes of the foreground and 
the prediction, it is inherently robust to the class imbalance 
between thin fault traces and the vast background. Adding 
BCE provides stable, non-vanishing gradients in the early 
stage of training (when predictions are near zero) and helps 
prevent foreground over-expansion, thereby improving 
the precision–recall trade-off. In addition, in the ResU-
Net-based fault-identification method, the neural network 
uses a sigmoid activation at the output layer and ReLU 
activations in the hidden layers.

2.2. Architecture of residual U-Net

This study employed the U-Net main structure, combined 
with batch normalization and residual learning concepts, 
to construct the ResU-Net, as shown in Figure  1. The 
network consists of four layers of upsampling and four 
layers of downsampling, each containing convolutional 
operations and batch normalization layers. The specific 
structural parameters vary slightly at different depths of 
the network. Each convolutional layer is immediately 
followed by batch normalization to optimize network 
performance and accelerate convergence. To maintain 
dimensional consistency between input and output tensors 
throughout the architecture, zero-padding is implemented 
in each convolutional layer to ensure that the input and 
output data dimensions remain the same.

The ResU-Net implements the residual learning 
strategy by adding an identity mapping (shown as “identity 
mapping” in Figure 1) between the input and output layers. 
In addition, to ensure rapid network convergence and 
avoid potential numerical issues, amplitude normalization 
is applied, scaling the seismic record amplitudes to the 

range [0, 1]. Consequently, the output layer of the neural 
network employs the sigmoid activation function, whose 
value range is [0, 1], with its mathematical expression 
provided in Equation (III). Furthermore, we applied a 
morphological dilation algorithm when creating the fault 
labels to make the fault locations more prominent, thereby 
improving the neural network’s training efficiency. For the 
remaining layers, the ReLU activation function is used, 
and its mathematical expression is given in Equation (IV). 
The loss function L̂  of the ResU-Net is described in 
Equation (II), and the optimizer chosen is the adaptive 
gradient algorithm (Adagrad), which prevents oscillation 
during the later stages of training by adaptively reducing 
the learning rate.

S x
e x( ) �

� �

1
1

� (III)
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x x
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In the ResU-Net structure, each upsampling or 
downsampling stage is treated as a separate module. Skip 
connections link encoder and decoder modules that share 
the same spatial resolution, enabling direct transfer of 
corresponding feature maps. By channeling input image 
characteristics directly into the upsampling pathway, this 
structure enables precise spatial information transfer 
across network levels, thereby aiding in information 
reconstruction and accelerating convergence speed. 
The residual connections bridging input and output 
layers fundamentally modify the network’s optimization 
objective, transitioning the learning paradigm from direct 
label prediction to residual mapping. This architectural 

Figure 1. Residual U-Net structure
Abbreviations: BN: Batch normalization; Conv2D: 2D convolutional layer.
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innovation significantly enhances model performance by 
reducing the network’s reliance on direct label fitting. As 
a result, the network captures more fault-related features, 
improving its generalization performance and mitigating 
overfitting.

We evaluated the computational complexity of the 
ResU-Net, as shown in Figure  1—input: 1 × 256 × 256; 
channel progression: 1→8→16→32→64→32→16→8; each 
stage uses a residual block with two 3×3 convolutions 
followed by batch normalization; the decoder adopts 
bilinear upsampling and concatenates with encoder 
features. Based on standard formulas, the model contains 
approximately 0.20 M parameters (including batch 
normalization), with FP32 weights requiring about 0.8 MB, 
and it requires approximately 0.69 GFLOPs per forward 
pass per sample. Training uses the Adagrad optimizer; the 
parameter-related memory footprint is approximately four 
times the weight size (including weights, gradients, and 
optimizer statistics), totaling approximately 3.2 MB. Under 
FP32 with a batch size of B = 4, activation maps dominate 
memory usage at 35 ivatB; when framework caches and 
intermediate tensors are included, the peak training 
memory typically reaches 50ach0 MB. Overall, complexity 
scales approximately as O(HW) with input resolution and 
grows roughly linearly with channel width and depth, while 
residual shortcuts and bilinear upsampling introduce only 
negligible additional overhead.

The ResU-Net deep neural network, whose core 
structure relies on skip connections between the encoder 
and decoder, utilizes cropped seismic profiles as inputs 
and their corresponding interpreted fault images as 
labels. During the training phase, the model parameters 
undergo optimization, yielding a pre-trained network 
that subsequently performs comprehensive fault detection 
across all seismic profiles. Subsequently, the fault images 
undergo vectorization processing, which involves 

extracting a list of fault points (xi, ti), describing the fault 
location information based on the amplitude values of the 
sample points in the image. Here, i is the breakpoint index, 
xi and ti represent the spatial coordinates and travel time of 
the i-th breakpoint (where 1≤i≤I), and I denotes the total 
number of fault points.

To clarify the configuration of the neural network, 
Table  1 presents the detailed parameter settings of the 
ResU-Net used in this study, including the kernel size, 
number of channels, stride, and activation function for 
each layer. The network consists of four downsampling and 
four upsampling modules, each comprising convolutional 
operations followed by batch normalization. Skip 
connections are incorporated between corresponding 
encoder and decoder layers to enhance the reconstruction 
capability of fault structures. To maintain consistent input 
and output dimensions, all convolutional layers adopt 
zero-padding (padding = “same”). In addition, residual 
connections are introduced to improve the stability and 
generalization ability of the model.

The process of fault identification based on the migrated 
data volume is described as follows: First, a ResU-Net deep 
neural network, as shown in Figure 1, is constructed, and 
a sample set is generated using the partial seismic profile 
and the corresponding interpreted fault image depicted 
in Figure 2, after which the neural network is trained. The 
number of training iterations was set to 5,000, and the 
Adagrad optimizer was used. A  subset of 2,000  samples 
was randomly selected from the sample set and used for 
training. All experiments in this study were implemented 
using the PyTorch framework.

At this stage, the correlation between the predicted 
fault probabilities and the reference labels exceeds 80%, 
indicating effective fault identification with a compact 
network architecture and good computational efficiency. 
The correlation versus iteration curve is shown in Figure 3.

Table 1. Network structure parameters

Module 
number

Kernel 
size

Convolution 
depth

Activation 
function

Normalization 
method

Skip 
connection

Up/downsampling Image size

1 3×3 1 ReLU BN 9 Downsampling 256×256

2 8 ReLU 8 Downsampling 128×128

3 16 ReLU 7 Downsampling 64×64

4 32 ReLU 6 Downsampling 32×32

5 64 ReLU None None 16×16

6 32 ReLU 4 Upsampling 32×32

7 16 ReLU 3 Upsampling 64×64

8 8 ReLU 2 Upsampling 128×128

9 1 Sigmoid 1 Upsampling 256×256

Abbreviations: BN: Batch normalization; ReLU: Rectified linear unit.
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3. Fault enhancement method based on multi-
scale component extraction and filtering
During the acquisition process, seismic data are inevitably 
affected by factors, such as sensor sensitivity. The presence 

of noise and quantization errors during analog-to-digital 
conversion typically yields a diminished SNR. In seismic 
data processing, the limited spatial resolution of migration 
imaging methods and the difficulty of accurately positioning 
fault reflections often lead to “blurred fault points and 

Figure 3. Correlation curve

Figure 2. Example of input and output of the sample set for neural network training
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overlapping wavelets” in the migrated profiles. These issues 
significantly increase the difficulty of fault identification.

Directional filtering and edge-preserving filtering are 
commonly used techniques in image enhancement. The 
physical process involves smoothing the image using 
filters aligned with the local direction of the image, 
suppressing noise, and enhancing the continuity along 
the texture lines. The role of edge-preserving filtering is 
to protect the image edges during the filtering process, 
preventing edge information from becoming blurred due 
to filtering. These methods have been introduced into 
seismic data optimization, where directional filtering 
enhances the SNR and continuity of seismic wavelets. 
In addition, edge-preserving filtering preserves fault 
information, avoiding the blurring of faults caused by 
smoothing using data points on both sides of the fault. 
However, fundamentally, these methods belong to fault-
preserving optimization techniques and cannot truly 
improve the imaging quality of fault structures. Therefore, 
they exhibit significant limitations in fault enhancement 
processing.

To address this issue, this study proposes a fault 
enhancement method based on multi-scale component 
extraction and filtering. The approach combines fault 
identification based on ResU-Net, calculation of fault 
enhancement filtering factors, and fault enhancement 
of multi-scale component data. It not only improves the 
accuracy of fault identification but also achieves high-
precision fault enhancement processing for the imaging 
data volume, laying a solid foundation for subsequent 
interpretation and analysis.

3.1. Random noise suppression based on curvelet 
transform

The curvelet transform is composed of anisotropic 
curve-like basis elements, which can sparsely represent 
seismic data features. By applying thresholding to the 
coefficients in the curvelet domain, random noise 
can be effectively suppressed. This processing step 
significantly improves the SNR, making fault structures 
in the data more distinct. The curvelet transform is 
defined as the inner product between the seismic 
profile s(x,t) and the curvelet function ϕi,j,k (x,t), and 
can be expressed as:

c j l s s x t x t dxdtj l x t j l( , , ) , , ,, , , , ,k � � � � � ��� �k k � (V)

Where ⋅ ⋅,  represents the inner product, ϕj,l,k (x) denotes 
the curvelet basis function at scale j, direction l, and position 
k, and c(j,l,k) represents the curvelet coefficients obtained 
from the curvelet transform.

Among the obtained curvelet coefficients c(j,l,k), a 
small number of large-amplitude coefficients represent 
the effective signal, while the majority of smaller-value 
coefficients indicate noise interference. Therefore, 
by zeroing out the smaller-amplitude coefficients 
and transforming back to the time–space domain, 
noise suppression can be achieved. By comparing the 
coefficients point by point, the maximum value cmax 
in c(j,l,k) is obtained. Given a threshold parameter λ 
(where 0<λ<cmax), let:

�� � �
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Where λ represents the threshold parameter.

To avoid damaging the effective signal, λ is generally 
chosen within the range λ∈[0.01cmax,0.1cmax].

The curvelet transform is a reversible mathematical 
transformation. Using the curvelet coefficients c′ (j,l,k), the 
noise-eliminated profile data s′ (x,t) can be reconstructed, 
expressed as:

�� � � �� � � ��s x t x tc j l k j l k
j l k

, ,, , , ,
, ,

� � (VII)

3.2. Fault information recovery in the migrated 
section

After attenuating random noise using the curvelet 
transform, fault information in the data is often 
compromised. To address this, it is necessary to restore 
the fault information based on the extracted breakpoint 
list (xi,ti). Since faults are large-angle structures, an 
interpolation method along the x-direction is employed to 
ensure a natural transition in the processed results. Let the 
interpolation width be ∆x; then, the weighting factor for 
restoring fault information can be calculated as:

f x t x
x x x x x

x x x
i

i i

i

,
,
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�
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��

1

1
�

�

�
� (VIII)

Where f (x,ti) represents the weighting factor for fault 
information recovery.

The fault recovery result is obtained by performing a 
weighted summation of the filtered data and the original 
data using the weighting factor f (x,ti).

s x t s x t f x t s x t f x ti i i i i, , , , ,� � � � � � � ��� �� � �� � � �1 � (IX)

Where s x ti,� � represents the fault recovery result 
specifically for the breakpoint (xi,ti). By applying the 
weighted processing of Equation (IX) to all fault points in 
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the breakpoint list (xi,ti), the final fault recovery profile 
s x t,� �  is obtained.

3.3. Fault enhancement based on multi-scale 
components

Building on the multi-scale property of the curvelet 
transform, the profile data are further decomposed by 
scale. Let s x tn ,� �  denote the component obtained at scale 
n by retaining the corresponding curvelet coefficients and 
performing the inverse transform based on Equation (VII).

By setting the scale factor gn (where 0 ≤ gn ≤ 1) related to 
scale n, the filtering factor for the breakpoint list (xi,ti) can 
be defined as follows:

f x t
g

x
x x x x x

x x x
n i

n

n
i i n

i n

,
,

,
� � �

�
�

� � �

� �

�

�
�

�
�

1
1

1
�

�

�
	 (X)

Where fn (x,ti) represents the filtering factor for fault 
enhancement.

By applying the filtering factor fn (x,ti) to the profile 
component s x tn ,� � at scale n, fault-enhancement filtering 
can be performed, resulting in:

 � � � � � � � �s x t s x t f x tn i n i n i, , , � (XI)

Where � � �s x tn i,  represents the fault enhancement 
result specifically for the breakpoint (xi,ti). By applying the 
weighted processing of Equation (XII) to all fault points in 
the breakpoint list (xi,ti), the final processed result � � �s x tn ,  
is obtained.

By synthesizing the multi-scale component data of 
fault enhancement into a single profile, the final fault 
enhancement result is obtained, expressed as:

 �� � � � � �
�
�s x t s x tn
n

N

, ,
1

� (XII)

Where �� �s x t,  represents the fault-enhanced profile 
obtained after multi-scale component extraction and 
filtering.

Figure 4. Input of the sample set (neural network inputs)

Figure 5. Output of the sample set, with the black lines indicating the fault area
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Figure 6. Example seismic profile used for fault prediction (neural network inputs)

Figure 8. Fault skeleton image extracted via multi-scale analysis in the curvelet domain, with the black lines indicating the fault skeleton

Figure 7. Predicted fault probability image based on the input profile shown in Figure 6
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Figure 10. Imaging profile
Abbreviation: TWT: Two-way travel time.

4. Effect analysis
4.1. Fault identification effect analysis of work area 
data

To assess performance on field data, a structural area in the 
East China Sea was employed as a case study. The imaging 
profiles and manually picked faults in this area were 
cropped into 256 × 256 patches to construct the sample 
set for training and evaluation (representative samples are 
shown in Figures 4 and 5).

A training dataset comprising 2,000  samples was 
randomly selected from the original sample set. After 

training and fine-tuning the neural network parameters, 
the optimized pre-trained model was applied to detect 
faults in the migrated section data of the target work area. 
The input seismic profiles and the corresponding fault 
predictions are illustrated in Figures 6 and 7, respectively.

Subsequently, fault skeleton extraction based on multi-
scale analysis in the curvelet domain was performed on 
the fault probability image, resulting in the fault skeleton 
image as shown in Figure 8. To obtain the spatial location 
information of fault development, digital extraction based on 
contour tracing technology was implemented, as illustrated 
by the colored curves on the profile shown in Figure 9.

Figure 9. Fault spatial location information extracted via contour tracing technology, with the colored lines indicating the fault traces
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Figure 11. Imaging profile with manually picked fault curves
Abbreviation: TWT: Two-way travel time.

For clarity, Figures 10-12 present the imaging profile, the 
manually picked fault curves, and the overlaid fault curves, 
respectively. A comparison shows that the main faults in 
the original profile have been effectively identified, and the 
fault curves picked by the proposed method are generally 

consistent with the manually picked ones in the vicinity 
of the fault structures, demonstrating the effectiveness 
of the method. Our method achieved an accuracy of 
97.63%, an F1 score of 93.24%, and an intersection over 
union of 80.64%. Overall, most metrics achieved the 

Figure 12. Imaging profile with loaded fault curves
Abbreviation: TWT: Two-way travel time.
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Figure 13. The original migrated section with unclear fault structures
Abbreviation: TWT: Two-way travel time.

Figure 14. Identified fault image
Abbreviation: TWT: Two-way travel time.
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Figure 16. Example of a denoised profile obtained using the curvelet transform
Abbreviation: TWT: Two-way travel time.

Figure 15. Image of breakpoint list describing fault skeleton information
Abbreviation: TWT: Two-way travel time.
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Figure 17. Denoised profile with restored fault information
Abbreviation: TWT: Two-way travel time.

Figure 18. Migrated the section of each scale component
Abbreviation: TWT: Two-way travel time.
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Figure 19. Fault enhancement results for each scale component profile
Abbreviation: TWT: Two-way travel time.

Figure 20. Migrated section after fault enhancement
Abbreviation: TWT: Two-way travel time.
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best performance among the compared methods, further 
demonstrating the reliability of the proposed approach.

To demonstrate the generalization performance of the 
trained neural network, we applied it to another work 
area for fault identification. The original migrated seismic 
section of the new work area, where the fault structures are 
not clearly visible, is shown in Figure 13. Using the trained 
neural network for identification, the resulting fault image 
is shown in Figure 14. Finally, the fault image was vectorized 
to obtain a profile describing the fault skeleton, as shown in 
Figure 15, for subsequent interpretation and analysis. The 
curves in the profile accurately indicate the spatial locations 
of fault development, demonstrating that our trained neural 
network has strong generalization capabilities.

4.2. Fault enhancement effect analysis of work area 
data

Based on Equation (5), the migrated section (Figure 13) 
was transformed into the curvelet domain. By setting the 
threshold parameter, the curvelet coefficients with values 
smaller than 0.1 were set to zero. Then, using Equation (7), 
the filtered result was transformed back to the time–space 
domain, resulting in the migrated section with attenuated 
random noise, as shown in Figure 16.

For the denoised migrated section shown in Figure 16, 
the fault information was restored based on the extracted 
breakpoint list (Figure  15) using Equations (VIII) and 
(IX). The resulting profile is shown in Figure  17, where 
the discontinuities associated with the fault events are 
enhanced to a certain extent.

The denoised profile shown in Figure  17 was used, 
with the number of scales and directions for the curvelet 
transform set to 3 and 16, respectively. Using Equation (XI), 
it was transformed into the curvelet domain. Subsequently, 
a single-scale component inverse transform was performed 
on the curvelet-domain records for scale indices n = 1,2, 
or 3, resulting in the scale-component profiles shown in 
Figure 18. Through analysis, it can be observed that as the 
scale index n increases, the resolution of the component 
profiles improves, while the continuity of the faults 
gradually decreases.

For the migrated section of the three scale components 
shown in Figure  18, let g1, g2, and g3 be 0, 0, and 0.5, 
respectively, and ∆x1, ∆x2, and ∆x3 be 225  m, 187.5  m, 
and 150  m, respectively. Based on Equation (XI), the 
corresponding filtering factors were calculated. These 
factors were then used to perform fault-enhancement 
processing, and the resulting profiles are shown in 
Figure  19. Overall, as the scale index n increases, the 
degree of fault filtering gradually decreases, achieving fault 
enhancement while preserving information.

The profile component data processed with 
differentiated parameters, as shown in Figure  19, were 
merged into a single migrated section. The resulting 
profile is shown in Figure  20. Compared to the original 
profile (Figure  13), the faults are significantly enhanced, 
providing a solid foundation for subsequent interpretation 
and analysis.

5. Conclusion
Our present focus is to demonstrate the feasibility and 
practical effectiveness of this U-Net–curvelet hybrid 
framework. The findings demonstrate that the hybrid 
framework effectively suppresses random noise and 
enhances the clarity of fault information, thereby further 
improving fault-identification accuracy. Applications 
to field data demonstrate that the method performs 
excellently under complex structural settings and low 
SNR conditions, enabling efficient and accurate fault 
identification, significantly improving fault imaging, and 
providing a reliable automated solution for seismic data 
interpretation.

However, direct quantitative comparisons with more 
complex architectures, such as U-Net–transformer models 
(e.g., MCA-SCUNet) were not conducted in this study. 
Nonetheless, we fully agree that further benchmarking 
with transformer-based models would provide valuable 
insight, and we consider this a key direction for future 
research. Future research should further optimize 
the network structure and explore more methods for 
integrating seismic attributes to address more complex 
geological conditions and exploration needs. Although 
the hybrid framework performs robustly on field data, 
challenges remain under very low SNR conditions: strong 
random/coherent noise tends to trigger false positives 
and obscure weak faults. Moreover, this method can be 
extended to the identification and enhancement of other 
geological features, further enhancing its applicability and 
practicality in geophysical exploration.

Acknowledgments
None.

Funding
This research is jointly funded by the National Natural 
Science Foundation of China (U23B20158) and the 
Major Science and Technology Project of China National 
Offshore Oil Corporation (CNOOC) during the “14th Five-
Year Plan” (KJGG2022-0104).

Conflict of interest
The authors declare no conflict of interest.

https://dx.doi.org/10.36922/JSE025360067


Journal of Seismic Exploration Residual U-Net for seismic fault identification

Volume X Issue X (2026)	 16� doi: 10.36922/JSE025360067 

Author contributions
Conceptualization: All authors
Formal analysis: Jianhua Wang, Cong Niu, Yandong Wang, 

Yun Ling, Di Wang 
Investigation: Jianhua Wang, Cong Niu, Yandong Wang, 

Yun Ling, Di Wang 
Methodology: Jianhua Wang, Cong Niu, Yandong Wang, 

Yun Ling, Di Wang 
Writing–original draft: Jianhua Wang, Cong Niu, Yandong 

Wang 
Writing–review & editing: All authors

Availability of data
All data generated and analyzed during this study are 
included in this published article.

References
1.	 Marfurt KJ, Kirlin RL, Farmer SL, et al. 3-D seismic attributes 

using a semblance-based coherency algorithm. Geophysics. 
1998;63(4):1150.

	 doi: 10.1190/1.1444415

2.	 Gersztenkorn A, Marfurt KJ. Eigenstructure-based 
coherence computations as an aid to 3-D structural and 
stratigraphic mapping. Geophysics. 1999;64(5):1468-1479.

	 doi: 10.1190/1.1444651

3.	 Li X, Yang P, Yan H, et al. Identification of minor fault 
and its applications on the development of offshore 
oil fields. Comput Techn Geophys Geochem Explor. 
2014;36(2):222-227.

4.	 Roberts A. Curvature attributes and their application to 3D 
interpreted horizons. First Break. 2001;19(2):85-100.

	 doi: 10.1046/j.0263-5046.2001.00142.x

5.	 Al-Dossary S, Marfurt KJ. 3D volumetric multispectral 
estimates of reflector curvature and rotation. Geophysics. 
2006;71(5):P41-P51.

	 doi: 10.1190/1.2242449

6.	 Hale D. Methods to compute fault images, extract fault 
surfaces, and estimate fault throws from 3D seismic images. 
Geophysics. 2013;78(2):O33-O43.

	 doi: 10.1190/geo2012-0331.1

7.	 Wu X, Hale D. 3D seismic image processing for faults. 
Geophysics. 2016;81(2):IM1-IM11.

8.	 Pedersen SI, Randen, T, Sønneland L, et al. Automatic Fault 
Extraction using Artificial Ants. In: SEG Technical Program 

Expanded Abstracts 2002, SEG-2002-0512. Salt Lake City: 
SEG; 2002.

9.	 Lavialle O, Pop S, Germain C, et al. Seismic fault preserving 
diffusion. J Appl Geophys. 2007;61(2):132-141.

	 doi: 10.1016/j.jappgeo.2006.06.002

10.	 Wu X, Fomel S. Automatic fault interpretation with optimal 
surface voting. Geophysics. 2018;83(5):O67-O82.

	 doi: 10.1190/geo2018-0115.1

11.	 Chen G, Liu Y. Research progress of automatic fault 
recognition based on artificial intelligence. Prog Geophys. 
2021;36(1):119-131.

12.	 He K, Zhang X, Ren S, Sun J. Deep Residual Learning for 
Image Recognition. In: 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR); 2016. IEEE. 
p. 770-778.

	 doi: 10.1109/CVPR.2016.90

13.	 Wu X, Shi Y, Fomel S, et al. Convolutional Neural Networks 
for Fault Interpretation in Seismic Images. In: 2018 SEG 
International Exposition and Annual Meeting. Anaheim: 
SEG, 2018.

14.	 Long J, Shelhamer E, Darrell T. Fully convolutional networks 
for semantic segmentation. In: 2015 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). IEEE; 
2015. p. 3431-3440.

	 doi: 10.1109/cvpr.2015.7298965

15.	 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional 
Networks for Biomedical image Segmentation[C]//
Medical Image Computing and Computer-Assisted 
Intervention  -  MICCAI 2015. Cham: Springer, 2015. 
p. 234-241.

	 doi: 10.1007/978-3-319-24574-4_28.

16.	 Wu X, Liang L, Shi Y, et al. FaultSeg3D: Using synthetic 
data sets to train an end-to-end convolutional neural 
network for 3D seismic fault segmentation. Geophysics. 
2019;84(3):IM35-IM45.

	 doi: 10.1190/geo2018-0646.1

17.	 Zhao M, Zhao Y, Shen D, Wang J, Dai X. High-resolution 
processing of seismic data using adaptive attention mechanism 
U-net. Oil Geophys Prospect. 2024;59(4):675-683.

	 doi: 10.13810/j.cnki.issn.1000-7210.2024.04.003

18.	 He T, Liu NH, Wu BY, et al. ResU-net based three-
dimensional fault identification method and application. 
Chin J Eng Math. 2023;40(1):1-19.

	 doi: 10.3969/j.issn.1005-3085.2023.01.001

https://dx.doi.org/10.36922/JSE025360067
http://dx.doi.org/10.1190/1.1444415.
http://dx.doi.org/10.1190/1.1444651
http://dx.doi.org/10.1046/j.0263-5046.2001.00142.x
http://dx.doi.org/10.1190/1.2242449
http://dx.doi.org/10.1190/geo2012-0331.1
http://dx.doi.org/10.1016/j.jappgeo.2006.06.002
http://dx.doi.org/10.1190/geo2018-0115.1
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/cvpr.2015.7298965
http://dx.doi.org/10.1007/978-3-319-24574-4_28.
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1007/s11770-025-1309-6
http://dx.doi.org/10.13810/j.cnki.issn.1000-7210.2024.04.003
http://dx.doi.org/10.3969/j.issn.1005-3085.2023.01.001

