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Abstract

Fault identification is a critical step in seismic data interpretation. Traditional fault
identification methods rely heavily on manual interpretation, which is inefficient
and significantly influenced by subjective factors. This paper proposes a fault
identification algorithm based on a Residual U-Net-curvelet hybrid framework.
By introducing residual learning strategies and applying batch normalization and
skip connection techniques, the generalization ability and convergence speed of
the network are enhanced, thereby improving the accuracy and efficiency of fault
identification. Results from field data processing demonstrate that this method
achieves high identification accuracy under complex geological structures and low
signal-to-noise ratio conditions, providing reliable fault identification results for
efficient seismic data interpretation.

Keywords: Fault identification and enhancement; Deep learning; Residual U-Net;
Random noise suppression

1. Introduction

Fault identification is a critical aspect of seismic data interpretation, particularly in oil
and gas exploration and development. Accurate fault identification holds significant
importance for structural interpretation, reservoir prediction, and analysis of
hydrocarbon migration pathways.

However, traditional fault identification methods rely heavily on the experience
of interpreters and use seismic attributes or structural features for recognition, which
are labor-intensive, highly subjective, and sensitive to noise. These limitations make
it difficult to meet the demands of detailed interpretation, particularly in complex
geological settings or in seismic data with low signal-to-noise ratios (SNR), where the
ability to identify small faults is often inadequate. Therefore, achieving automated, rapid,
and high-precision fault identification has become an urgent research problem.

With the advancement of seismic-attribute technology, fault-identification methods
include attribute-based classifiers, such as coherence cubes,' variance cubes,® curvature
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attributes,** the C3-coherence technique,> and fault-
likelihood measures;*” fault-enhancement approaches,
such as ant tracking,® structure-oriented filtering,” and
optimal surface voting;'® as well as hybrid workflows that
combine variance cubes with high-definition ant tracking.
However, these approaches are highly dependent on data
quality: While they can be effective in shallow sections,
their performance degrades for deep, low-quality seismic
data and in structurally complex or heavily faulted
areas, where inferred fault continuity is poor, and the
solutions are strongly non-unique, often diminishing their
interpretational value.

In recent years, with the rapid development of artificial
intelligence (AI) technology, the application of Al to
achieve automatic, fast, and accurate fault identification—
overcoming the subjective influence of manual
interpretation—has gradually become an important
research direction in the field of oil and gas geophysical
exploration and development.

Early studies primarily adopted relatively simple
architectures, such as AlexNet and VGGNet,'"" but
their accuracy in fault identification was limited. Later,
researchers introduced residual network (ResNet)-based
models”—by leveraging residual learning to mitigate
deep-network degradation and vanishing gradients, these
models improved fault-detection accuracy. Nevertheless,
such approaches are constrained by fixed input-size
requirements and a bias toward local feature extraction,
resulting in poorer performance for small-scale faults. Wu
et al.” employed a convolutional neural network for fault
identification and subsequently constructed anisotropic
Gaussian functions to estimate the fracture dip and
azimuthal extent. However, because the model is trained
on local image patches and extracts features only within
small-scale neighborhoods, its computational efficiency is
significantly limited.

Fully convolutional neural networks achieved the
first end-to-end breakthrough in image recognition.'*
U-Net'>'® introduced an architectural innovation that
couples multi-scale feature extraction in the encoder with
precise localization in a symmetric decoder and, via skip
connections, enables cross-level fusion of shallow details
and deep semantic features,'” thereby markedly improving
fault-identification accuracy. Moreover, integrating U-Net
with ResNet to form residual U-Net (ResU-Net) increases
network depth and further enhances fault-detection
performance.'® Unlike the classical U-Net—which adopts
a symmetric encoder-decoder built from convolution-
batch normalization-rectified linear unit (ReLU) stacks
and conveys spatial details via skip connections—the
residual U-Net introduces residual blocks within each

stage. While preserving U-Net’s original skip connections
and precise localization capability, it significantly improves
gradient flow and feature reuse, making the network easier
to deepen and more stable to train. Consequently, it is more
robust under low-SNR and complex structural settings: It
converges faster, is more sensitive to weak/narrow faults,
reduces false positives, and improves generalization and
fault identification/detection accuracy.

To further reduce the subjectivity of manual fault
identification and enhance the accuracy of identifying
micro-faults, this study develops a fault detection model
utilizing a ResU-Net architecture-curvelet hybrid
framework, designed to learn the complex non-linear
mapping between seismic amplitude data and fault
probability distributions. In addition, fault information
is enhanced using multi-scale component extraction and
curvelet domain filtering techniques, thereby providing
a solid foundation for subsequent interpretation and
analysis.

2. Fault identification based on residual
U-Net

2.1. Residual learning strategy for fault
identification

By employing a residual U-Net, the sample space formed
by fault-related seismic data is explored to construct a
fault identification model that characterizes the mapping
between seismic data and faults. In the fault identification
task, the ResU-Net is trained with a hybrid loss function
that combines cross-entropy and the Dice coeflicient, and
the evaluation metric is identification accuracy.

Compared to traditional fault-identification methods
based on the U-Net convolutional neural network, the
ResU-Net-based method not only adopts a different
network architecture but also incorporates an improved
loss function. The mathematical expression of the
combined loss function is as follows:

o 2x) yxy

Dice = ===+ I
Z)’+ZJ’ D

.1 ) \ .

= _E[ylogy+(1—y)log(l—y)J — Dice (I1)

Where L represents the combined loss function, y
denotes the fault labels of the true data, and y represents
the predicted faults.

From a theoretical standpoint, the hybrid loss (cross-
entropy/binary cross-entropy [BCE] + Dice coefficient)
combines probability calibration with set-overlap
optimization. BCE treats segmentation as per-pixel
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log-likelihood maximization, yielding well-calibrated
probabilities and sharp boundaries; because the Dice
coefficient is normalized by the sizes of the foreground and
the prediction, it is inherently robust to the class imbalance
between thin fault traces and the vast background. Adding
BCE provides stable, non-vanishing gradients in the early
stage of training (when predictions are near zero) and helps
prevent foreground over-expansion, thereby improving
the precision-recall trade-off. In addition, in the ResU-
Net-based fault-identification method, the neural network
uses a sigmoid activation at the output layer and ReLU
activations in the hidden layers.

2.2. Architecture of residual U-Net

This study employed the U-Net main structure, combined
with batch normalization and residual learning concepts,
to construct the ResU-Net, as shown in Figure 1. The
network consists of four layers of upsampling and four
layers of downsampling, each containing convolutional
operations and batch normalization layers. The specific
structural parameters vary slightly at different depths of
the network. Each convolutional layer is immediately
followed by batch normalization to optimize network
performance and accelerate convergence. To maintain
dimensional consistency between input and output tensors
throughout the architecture, zero-padding is implemented
in each convolutional layer to ensure that the input and
output data dimensions remain the same.

The ResU-Net implements the residual learning
strategy by adding an identity mapping (shown as “identity
mapping” in Figure 1) between the input and output layers.
In addition, to ensure rapid network convergence and
avoid potential numerical issues, amplitude normalization
is applied, scaling the seismic record amplitudes to the

256x256

Figure 1. Residual U-Net structure
Abbreviations: BN: Batch normalization; Conv2D: 2D convolutional layer.

range [0, 1]. Consequently, the output layer of the neural
network employs the sigmoid activation function, whose
value range is [0, 1], with its mathematical expression
provided in Equation (III). Furthermore, we applied a
morphological dilation algorithm when creating the fault
labels to make the fault locations more prominent, thereby
improving the neural network’ training efficiency. For the
remaining layers, the ReLU activation function is used,
and its mathematical expression is given in Equation (IV).

The loss function L of the ResU-Net is described in
Equation (II), and the optimizer chosen is the adaptive
gradient algorithm (Adagrad), which prevents oscillation
during the later stages of training by adaptively reducing
the learning rate.

S(x) = —— (1)
1+e”

Rix) < X x>0 v

(x)= 0 <0 (Iv)

In the ResU-Net structure, each upsampling or
downsampling stage is treated as a separate module. Skip
connections link encoder and decoder modules that share
the same spatial resolution, enabling direct transfer of
corresponding feature maps. By channeling input image
characteristics directly into the upsampling pathway, this
structure enables precise spatial information transfer
across network levels, thereby aiding in information
reconstruction and accelerating convergence speed.
The residual connections bridging input and output
layers fundamentally modify the network’s optimization
objective, transitioning the learning paradigm from direct
label prediction to residual mapping. This architectural

256x256

Output
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innovation significantly enhances model performance by
reducing the network’s reliance on direct label fitting. As
a result, the network captures more fault-related features,
improving its generalization performance and mitigating
overfitting.

We evaluated the computational complexity of the
ResU-Net, as shown in Figure 1—input: 1 x 256 X 256;
channel progression: 1->8>16>32>64->32>16->8; each
stage uses a residual block with two 3x3 convolutions
followed by batch normalization; the decoder adopts
bilinear upsampling and concatenates with encoder
features. Based on standard formulas, the model contains
approximately 0.20 M parameters (including batch
normalization), with FP32 weights requiring about 0.8 MB,
and it requires approximately 0.69 GFLOPs per forward
pass per sample. Training uses the Adagrad optimizer; the
parameter-related memory footprint is approximately four
times the weight size (including weights, gradients, and
optimizer statistics), totaling approximately 3.2 MB. Under
FP32 with a batch size of B = 4, activation maps dominate
memory usage at 35 ivatB; when framework caches and
intermediate tensors are included, the peak training
memory typically reaches 50ach0 MB. Overall, complexity
scales approximately as O(HW) with input resolution and
grows roughly linearly with channel width and depth, while
residual shortcuts and bilinear upsampling introduce only
negligible additional overhead.

The ResU-Net deep neural network, whose core
structure relies on skip connections between the encoder
and decoder, utilizes cropped seismic profiles as inputs
and their corresponding interpreted fault images as
labels. During the training phase, the model parameters
undergo optimization, yielding a pre-trained network
that subsequently performs comprehensive fault detection
across all seismic profiles. Subsequently, the fault images

extracting a list of fault points (x, t), describing the fault
location information based on the amplitude values of the
sample points in the image. Here, i is the breakpoint index,
x,and t, represent the spatial coordinates and travel time of
the i-th breakpoint (where 1<i<I), and I denotes the total
number of fault points.

To clarify the configuration of the neural network,
Table 1 presents the detailed parameter settings of the
ResU-Net used in this study, including the kernel size,
number of channels, stride, and activation function for
each layer. The network consists of four downsampling and
four upsampling modules, each comprising convolutional
operations followed by batch normalization. Skip
connections are incorporated between corresponding
encoder and decoder layers to enhance the reconstruction
capability of fault structures. To maintain consistent input
and output dimensions, all convolutional layers adopt
zero-padding (padding = “same”). In addition, residual
connections are introduced to improve the stability and
generalization ability of the model.

The process of fault identification based on the migrated
data volume is described as follows: First, a ResU-Net deep
neural network, as shown in Figure 1, is constructed, and
a sample set is generated using the partial seismic profile
and the corresponding interpreted fault image depicted
in Figure 2, after which the neural network is trained. The
number of training iterations was set to 5,000, and the
Adagrad optimizer was used. A subset of 2,000 samples
was randomly selected from the sample set and used for
training. All experiments in this study were implemented
using the PyTorch framework.

At this stage, the correlation between the predicted
fault probabilities and the reference labels exceeds 80%,
indicating effective fault identification with a compact
network architecture and good computational efficiency.

undergo vectorization processing, which involves The correlation versus iteration curve is shown in Figure 3.
Table 1. Network structure parameters

Module Kernel Convolution Activation Normalization Skip Up/downsampling Image size
number size depth function method connection

1 3x3 1 ReLU BN 9 Downsampling 256x256
2 8 ReLU 8 Downsampling 128x128
3 16 ReLU 7 Downsampling 64x64

4 32 ReLU 6 Downsampling 32x32

5 64 ReLU None None 16x16

6 32 RelLU 4 Upsampling 32x32

7 16 ReLU 3 Upsampling 64x64

8 8 ReLU 2 Upsampling 128x128
9 1 Sigmoid 1 Upsampling 256x256

Abbreviations: BN: Batch normalization; ReLU: Rectified linear unit.
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Figure 2. Example of input and output of the sample set for neural network training
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3. Fault enhancement method based on multi- of noise and quantization errors during analog-to-digital

scale component extraction and filtering conversion typlcally }rle}ds a dlmlnlshed SNR. In seismic
data processing, the limited spatial resolution of migration

During the acquisition process, seismic data are inevitably imaging methods and the difficulty of accurately positioning
affected by factors, such as sensor sensitivity. The presence fault reflections often lead to “blurred fault points and
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overlapping wavelets” in the migrated profiles. These issues
significantly increase the difficulty of fault identification.

Directional filtering and edge-preserving filtering are
commonly used techniques in image enhancement. The
physical process involves smoothing the image using
filters aligned with the local direction of the image,
suppressing noise, and enhancing the continuity along
the texture lines. The role of edge-preserving filtering is
to protect the image edges during the filtering process,
preventing edge information from becoming blurred due
to filtering. These methods have been introduced into
seismic data optimization, where directional filtering
enhances the SNR and continuity of seismic wavelets.
In addition, edge-preserving filtering preserves fault
information, avoiding the blurring of faults caused by
smoothing using data points on both sides of the fault.
However, fundamentally, these methods belong to fault-
preserving optimization techniques and cannot truly
improve the imaging quality of fault structures. Therefore,
they exhibit significant limitations in fault enhancement
processing.

To address this issue, this study proposes a fault
enhancement method based on multi-scale component
extraction and filtering. The approach combines fault
identification based on ResU-Net, calculation of fault
enhancement filtering factors, and fault enhancement
of multi-scale component data. It not only improves the
accuracy of fault identification but also achieves high-
precision fault enhancement processing for the imaging
data volume, laying a solid foundation for subsequent
interpretation and analysis.

3.1. Random noise suppression based on curvelet
transform

The curvelet transform is composed of anisotropic
curve-like basis elements, which can sparsely represent
seismic data features. By applying thresholding to the
coefficients in the curvelet domain, random noise
can be effectively suppressed. This processing step
significantly improves the SNR, making fault structures
in the data more distinct. The curvelet transform is
defined as the inner product between the seismic
profile s(x,t) and the curvelet function (/)i,j,k (x,t), and
can be expressed as:

c(j,Lk)= <s,(pj,l’k > = J.x’ts(x,t)(pj’l,k (x,t)dxdt V)

Where <-, > represents the inner product, ¢, (x) denotes
the curvelet basis function at scale j, direction [, and position
k, and c(j,L.k) represents the curvelet coefficients obtained
from the curvelet transform.

Among the obtained curvelet coefficients c(j,l,k), a
small number of large-amplitude coefficients represent
the effective signal, while the majority of smaller-value
coefficients indicate noise interference. Therefore,
by zeroing out the smaller-amplitude coefficients
and transforming back to the time-space domain,
noise suppression can be achieved. By comparing the
coefficients point by point, the maximum value ¢
in ¢(j,l,k) is obtained. Given a threshold parameter A
(where 0<A<c, ), let:

i,Lk), Lk) > A
(k)] OHH) je(ibk)

(VI)
0, lc(joLk)[ <2
Where A represents the threshold parameter.

To avoid damaging the effective signal, A is generally
chosen within the range \€[0.01¢__,0.1c

mux] :

The curvelet transform is a reversible mathematical
transformation. Using the curvelet coefficients ¢’ (j,k), the
noise-eliminated profile data s’ (x,t) can be reconstructed,
expressed as:

s'(x,t): Zc'(j,l,k)(p}.),vk (x,t) (VII)

jbk

3.2. Fault information recovery in the migrated
section

After attenuating random noise using the curvelet
transform, fault information in the data is often
compromised. To address this, it is necessary to restore
the fault information based on the extracted breakpoint
list (x,t). Since faults are large-angle structures, an
interpolation method along the x-direction is employed to
ensure a natural transition in the processed results. Let the
interpolation width be Ax; then, the weighting factor for
restoring fault information can be calculated as:

1
f(x,t,.)= E|x—xi|, |x—xi|<Ax
L |x—xi|2Ax

(VIID)

Where f (x,t) represents the weighting factor for fault
information recovery.

The fault recovery result is obtained by performing a
weighted summation of the filtered data and the original
data using the weighting factor f (x,t).

§(x,ti ) = s(x,ti )[1 —f(x,ti )] + s'(x,ti )f(x,ti ) (IX)
Where s (x,ti ) represents the fault recovery result

specifically for the breakpoint (x,t). By applying the
weighted processing of Equation (IX) to all fault points in
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the breakpoint list (x,t), the final fault recovery profile
s (x,t) is obtained.

3.3. Fault enhancement based on multi-scale
components

Building on the multi-scale property of the curvelet
transform, the profile data are further decomposed by
scale. Let s, (x,t) denote the component obtained at scale
n by retaining the corresponding curvelet coefficients and
performing theinverse transformbased on Equation (VII).

By setting the scale factor g (where 0 < g <1) related to
scale n, the filtering factor for the breakpoint list (x,t) can
be defined as follows:

I_I_gn
fn(‘x’ti): Axﬂ

1)

x—xi|, |x—xi|<Axn

(X)
|x - xi| 2 Ax,

Where f (x,t) represents the filtering factor for fault
enhancement.

By applying the filtering factor f, (x,t) to the profile
component §, (x,t) at scale n, fault-enhancement filtering
can be performed, resulting in:

s (x,t,. ) =35, (x,ti )fn (x,ti)

Where s/ (x,t . ) represents the fault enhancement
result specifically for the breakpoint (x,t). By applying the
weighted processing of Equation (XII) to all fault points in
the breakpoint list (x,t), the final processed result s, (x,t)
is obtained.

(XI)

By synthesizing the multi-scale component data of
fault enhancement into a single profile, the final fault
enhancement result is obtained, expressed as:

§’(x,t):g§;(x,t)

(XII)

Where §'(x,t) represents the fault-enhanced profile
obtained after multi-scale component extraction and
filtering.
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Figure 4. Input of the sample set (neural network inputs)
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Figure 5. Output of the sample set, with the black lines indicating the fault area
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Figure 7. Predicted fault probability image based on the input profile shown in Figure 6
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Figure 8. Fault skeleton image extracted via multi-scale analysis in the curvelet domain, with the black lines indicating the fault skeleton
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Figure 9. Fault spatial location information extracted via contour tracing technology, with the colored lines indicating the fault traces
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Figure 10. Imaging profile
Abbreviation: TWT: Two-way travel time.

4. Effect analysis

4.1. Fault identification effect analysis of work area
data

To assess performance on field data, a structural area in the
East China Sea was employed as a case study. The imaging
profiles and manually picked faults in this area were
cropped into 256 x 256 patches to construct the sample
set for training and evaluation (representative samples are
shown in Figures 4 and 5).

A training dataset comprising 2,000 samples was
randomly selected from the original sample set. After

Length(m)
6,200

training and fine-tuning the neural network parameters,
the optimized pre-trained model was applied to detect
faults in the migrated section data of the target work area.
The input seismic profiles and the corresponding fault
predictions are illustrated in Figures 6 and 7, respectively.

Subsequently, fault skeleton extraction based on multi-
scale analysis in the curvelet domain was performed on
the fault probability image, resulting in the fault skeleton
image as shown in Figure 8. To obtain the spatial location
information of fault development, digital extraction based on
contour tracing technology was implemented, as illustrated
by the colored curves on the profile shown in Figure 9.
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Abbreviation: TWT: Two-way travel time.
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For clarity, Figures 10-12 present the imaging profile, the
manually picked fault curves, and the overlaid fault curves,
respectively. A comparison shows that the main faults in
the original profile have been effectively identified, and the
fault curves picked by the proposed method are generally

00

58;00 59100 OOIOO 61100
e —

—

\w = -
e g
e —— T
—

—

consistent with the manually picked ones in the vicinity
of the fault structures, demonstrating the effectiveness
of the method. Our method achieved an accuracy of
97.63%, an F1 score of 93.24%, and an intersection over
union of 80.64%. Overall, most metrics achieved the
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Figure 15. Image of breakpoint list describing fault skeleton information

Abbreviation: TWT: Two-way travel time.
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Figure 16. Example of a denoised profile obtained using the curvelet transform

Abbreviation: TWT: Two-way travel time.
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Figure 17. Denoised profile with restored fault information

Abbreviation: TWT: Two-way travel time.
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Figure 18. Migrated the section of each scale component

Abbreviation: TWT: Two-way travel time.
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Figure 19. Fault enhancement results for each scale component profile
Abbreviation: TWT: Two-way travel time.
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Figure 20. Migrated section after fault enhancement
Abbreviation: TWT: Two-way travel time.
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best performance among the compared methods, further
demonstrating the reliability of the proposed approach.

To demonstrate the generalization performance of the
trained neural network, we applied it to another work
area for fault identification. The original migrated seismic
section of the new work area, where the fault structures are
not clearly visible, is shown in Figure 13. Using the trained
neural network for identification, the resulting fault image
is shown in Figure 14. Finally, the fault image was vectorized
to obtain a profile describing the fault skeleton, as shown in
Figure 15, for subsequent interpretation and analysis. The
curves in the profile accurately indicate the spatial locations
of fault development, demonstrating that our trained neural
network has strong generalization capabilities.

4.2. Fault enhancement effect analysis of work area
data

Based on Equation (5), the migrated section (Figure 13)
was transformed into the curvelet domain. By setting the
threshold parameter, the curvelet coefficients with values
smaller than 0.1 were set to zero. Then, using Equation (7),
the filtered result was transformed back to the time-space
domain, resulting in the migrated section with attenuated
random noise, as shown in Figure 16.

For the denoised migrated section shown in Figure 16,
the fault information was restored based on the extracted
breakpoint list (Figure 15) using Equations (VIII) and
(IX). The resulting profile is shown in Figure 17, where
the discontinuities associated with the fault events are
enhanced to a certain extent.

The denoised profile shown in Figure 17 was used,
with the number of scales and directions for the curvelet
transform set to 3 and 16, respectively. Using Equation (XI),
it was transformed into the curvelet domain. Subsequently,
a single-scale component inverse transform was performed
on the curvelet-domain records for scale indices n = 1,2,
or 3, resulting in the scale-component profiles shown in
Figure 18. Through analysis, it can be observed that as the
scale index 7 increases, the resolution of the component
profiles improves, while the continuity of the faults
gradually decreases.

For the migrated section of the three scale components
shown in Figure 18, let g, g, and g, be 0, 0, and 0.5,
respectively, and Ax, Ax,, and Ax, be 225 m, 187.5 m,
and 150 m, respectively. Based on Equation (XI), the
corresponding filtering factors were calculated. These
factors were then used to perform fault-enhancement
processing, and the resulting profiles are shown in
Figure 19. Overall, as the scale index n increases, the
degree of fault filtering gradually decreases, achieving fault
enhancement while preserving information.

The profile component data processed with
differentiated parameters, as shown in Figure 19, were
merged into a single migrated section. The resulting
profile is shown in Figure 20. Compared to the original
profile (Figure 13), the faults are significantly enhanced,
providing a solid foundation for subsequent interpretation
and analysis.

5. Conclusion

Our present focus is to demonstrate the feasibility and
practical effectiveness of this U-Net-curvelet hybrid
framework. The findings demonstrate that the hybrid
framework effectively suppresses random noise and
enhances the clarity of fault information, thereby further
improving fault-identification accuracy. Applications
to field data demonstrate that the method performs
excellently under complex structural settings and low
SNR conditions, enabling efficient and accurate fault
identification, significantly improving fault imaging, and
providing a reliable automated solution for seismic data
interpretation.

However, direct quantitative comparisons with more
complex architectures, such as U-Net-transformer models
(e.g., MCA-SCUNet) were not conducted in this study.
Nonetheless, we fully agree that further benchmarking
with transformer-based models would provide valuable
insight, and we consider this a key direction for future
research. Future research should further optimize
the network structure and explore more methods for
integrating seismic attributes to address more complex
geological conditions and exploration needs. Although
the hybrid framework performs robustly on field data,
challenges remain under very low SNR conditions: strong
random/coherent noise tends to trigger false positives
and obscure weak faults. Moreover, this method can be
extended to the identification and enhancement of other
geological features, further enhancing its applicability and
practicality in geophysical exploration.
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