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Abstract
In mountainous seismic exploration, complex near-surface environments cause 
strong wave scattering, reducing the signal-to-noise ratio and complicating data 
processing. Therefore, suppressing scattered waves is crucial. To address this issue, 
this study proposes a convolutional autoencoder constrained by local scattered 
wave characteristics to suppress near-surface scattered waves (NSWs) in full-
wavefield seismic data. This method uses the scattered waves predicted by seismic 
interferometry as the network input, and the original seismic records containing 
true scattered waves as the label. Since there are differences in amplitude and phase 
between the predicted scattered waves and the true scattered waves, the network 
introduces local wavefield features of the scattered waves for constraint, and adds a 
smoothness regularization term in the loss function to ensure the continuity of the 
output waveform. After training, the network maps the energy of predicted scattered 
waves into the actual seismic records, thereby accurately extracting scattered waves. 
Finally, by subtracting the network output from the original records, clean data with 
scattered waves removed can be obtained. This method is a self-supervised learning 
strategy and does not require additional clean signal samples. During training, the 
weights of each item in the loss function can be dynamically adjusted to guide the 
network to focus on local scattered-wave features, avoid learning effective wave 
information, and ensure that only scattered-wave components are retained in the 
output. Practical application results show that this method can effectively suppress 
NSWs and improve the signal-to-noise ratio of seismic data.

Keywords: Near-surface scattered waves; Convolutional autoencoder; Interferometry; 
Wavefield characteristics

1. Introduction
When seismic waves propagate underground, variations caused by three-dimensional 
spatial heterogeneity are referred to as scattered waves. In complex regions, especially 
in the near-surface, medium heterogeneity is the greatest. The widespread presence 
of small-scale heterogeneities, strong velocity and density contrasts, and irregular 
interfaces leads to significant impedance contrasts along the wave propagation path, 
thereby generating wave “reflections.” Because these heterogeneities are much smaller in 
scale and more irregular in geometry than subsurface reflecting interfaces, the resulting 
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wavefield response mainly manifests as scattering. These 
scattered waves overlap with the effective waves in time, 
space, and frequency, reducing the signal-to-noise ratio 
(SNR) of seismic data and affecting the accuracy of 
subsequent inversion and imaging. Wu et al.1 pointed 
out that the primary cause of low SNR in seismic data is 
the influence of near-surface scattered waves (NSWs). 
Therefore, suppressing NSWs is a critical step in obtaining 
high-quality seismic data.

Scattered-wave suppression is a complex task that 
involves not only analyzing the properties of scattered 
waves but also developing advanced processing techniques.2 
Traditional filtering methods often remove scattered waves 
at the cost of losing effective waves. Thus, an alternative 
approach—analyzing the characteristics of scattered waves, 
predicting the true scattered wavefield, and subtracting it 
from seismic data—minimizes the impact on effective 
waves and is widely applied in practice. Campman et al.3 
introduced impedance functions to model and suppress 
NSWs. Liu et al.4 estimated and removed scattered waves 
from radial and vertical components using filtering and 
correlation analysis based on transverse component 
assumptions, thereby improving data SNR. Almuhaidib 
and Toksöz5 employed controllable filters to estimate 
spatial variations in noise and used directional non-
linear filters for noise separation. In recent years, seismic 
interferometry has been effectively applied to suppress 
scattered waves. Xu et al.6 provided a detailed discussion 
on NSW characteristics and the principles of scattered-
wave interferometry, enhancing the coherence of scattered 
waves to separate them from true records. Halliday et al.7 
proposed a model-driven seismic interferometry approach, 
using models as inputs to estimate scattered surface 
waves between sources and receivers. Xu et al.8 applied 
an improved source–receiver interferometry method 
to reconstruct NSW fields from pre-stack data and then 
adaptively subtracted the predicted scattered waves using 
matched filtering, effectively suppressing NSWs.

Deep learning, a subfield of machine learning, has been 
the fastest-growing branch in the past decade.9 Deep neural 
networks construct multi-layer networks to represent 
targets at multiple levels, aiming to use hierarchical features 
to capture abstract semantic information from data. Among 
them, convolutional neural networks (CNNs) leverage 
local connectivity and weight sharing to effectively capture 
local features while reducing the number of parameters. In 
recent years, deep neural networks have shown promising 
applications in seismic denoising. Through synthetic and 
real-data demonstrations, deep learning has exhibited 
significant potential in attenuating random noise, 
linear noise, and multiple reflections.10 Yu et al.11 used a 

denoising CNN to suppress surface waves in synthetic data 
and transferred the trained network to real seismic data. 
Liu et al.12 trained a convolutional autoencoder (CAE) 
using synthetic noise and standard induced polarization 
signals to denoise continuous random noise in induced 
polarization signals. Sui et al.13 developed data-adaptive 
dictionaries through deep unfolding dictionary learning 
to construct training networks suitable for different noise 
levels. Li et al.14 designed an automated training data 
generation workflow based on the noise characteristics 
of nodal seismic acquisition systems, achieving superior 
performance in suppressing environmental noise compared 
to traditional methods. In practical seismic denoising, 
obtaining noise-free sample data is challenging. Supervised 
learning often uses traditional denoised data or synthetic 
data as labels, whereas self-supervised and unsupervised 
learning methods eliminate the need for clean labels. As 
a result, deep learning applications in seismic denoising 
are shifting from supervised to self-supervised and 
unsupervised approaches, which better align with seismic 
processing workflows. Song et al.15 employed a CAE for 
unsupervised random noise suppression. Shao et al.16 
applied the Noisy2Noisy framework to remove random 
noise, achieving supervised learning-level denoising 
performance without labeled data. Wu et al.17 proposed 
a self-supervised deep learning approach based on the 
Neighbor2Neighbor framework to suppress random noise. 
For coherent noise suppression, a series of self-supervised 
denoising networks was introduced to remove surface-
related multiples, demonstrating promising results;18-21 Sun 
et al.22 proposed a multi-channel U-Net with multi-mode 
and multi-model capabilities for suppressing multiples; 
Qi et al.23 introduced an interpretable Fast Iterative 
Shrinkage-Thresholding Algorithm Network for adaptive 
multiple suppression. Despite significant progress and 
breakthroughs in seismic denoising using deep learning, 
research and applications targeting NSW suppression 
remain largely unexplored.

In image processing and computer vision, commonly 
used image quality assessment methods are often based 
on error visibility, such as mean-squared error (MSE) and 
Peak SNR. While these methods effectively quantify image 
differences, they fail to accurately reflect human visual 
perception of image quality. To address this, Wang and 
Bovik24 proposed the structural similarity index (SSIM), 
which evaluates image similarity by considering luminance, 
contrast, and structure, thereby aligning more closely 
with human visual perception. SSIM has been widely 
applied in image denoising and reconstruction. In recent 
years, SSIM has also been adopted in seismic denoising, 
seismic interpolation, and velocity modeling. Almadani 
et al.25 used SSIM to evaluate the denoising performance 
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of convolutional sparse coding. Sun and Williamson26 
applied SSIM to assess the advantages of frequency-
constrained neural networks in seismic interpolation. 
Simon et al.27 employed SSIM to evaluate the effectiveness 
of transfer learning in seismic velocity modeling. In this 
study, we modify and extend SSIM to better capture the 
characteristics of seismic wavefields and incorporate it into 
the loss function to enhance network performance.

To more effectively suppress NSWs, this study proposes 
a CAE constrained by local scattered wave characteristics 
(LSC-CAE). This method does not rely on additional clean 
data as labels but instead constructs a self-supervised 
denoising process. The core idea is to predict the scattered-
wave structures, restore their energy to the real-data level, 
and suppress them by subtraction from the full-wavefield 
data. Specifically, NSWs are first predicted using seismic 
interferometry and then used as the input of the CAE; at 
the same time, full-wavefield data containing scattered 
waves are used as labels to guide the network in learning 
the spatial and temporal characteristics of scattered waves. 
To enable effective training, we designed a composite 
loss function composed of MSE, a local scattered-wave 
feature loss, and a waveform-smoothing regularization 
term, thereby encouraging the network to focus on the 
structural and energy features of scattered waves and 
achieve energy matching with real scattered waves. 
Finally, by subtracting the network output from the full-
wavefield data, the denoised seismic record was obtained. 
In addition, to enhance the network’s ability to model 
complex wavefield structures, a multi-head self-attention 
mechanism was introduced in the intermediate layers of 
the CAE to improve the network’s perception of global 
scattered-wave features. Meanwhile, residual structures 
were introduced to accelerate training and enhance 
network stability. Application results on real seismic data 
show that the proposed method can effectively suppress 
scattered waves while preserving the integrity of effective 
waveforms, demonstrating good denoising performance 
and practical value.

2. Methods
2.1. Near-surface interferometry

Seismic interferometry is a wavefield reconstruction 
technique based on wave theory that extracts 
intercorrelation information from seismic data to 
reconstruct seismic wave propagation paths. The 
theoretical foundation of seismic interferometry lies in 
the Green’s function, which allows the cross-correlation of 
wavefields between two points to be reconstructed as the 
seismic response of one point acting as a virtual source 
and the other as a receiver. Schuster28 first introduced 

the concept of seismic wave interferometry in 2001 and 
subsequently conducted a series of studies exploring its 
principles.29-33 Following this, several studies provided 
comprehensive analyses of the principles, advancements, 
and applications of seismic interferometry.34-36 Today, 
seismic interferometry has been widely applied in seismic 
imaging and seismic monitoring, playing a crucial role 
in enhancing subsurface characterization and detecting 
temporal changes in the Earth’s structure.

Under the high-frequency and far-field approximations, 
the source imaging and seismic monitoring, playing a 
crucial Equation (I):37
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Where ω is the angular frequency, ρ and c represent 
density and velocity, * denotes the complex conjugate, 
and G(y1,x1;ω) represents the wavefield generated by 
point source x1 at point y1, and similarly for G(y1,x;ω) and 
G(y,x1;ω).

When intersource interferometry is computed using 
correlation, it introduces wavelet distortion in the frequency 
domain. The amplitude spectrum of the reconstructed 
virtual wavelet becomes the cube of the original wavelet 
spectrum, leading to amplitude distortion and peak-like 
features. Deconvolutional interferometry can effectively 
remove wavelet effects from seismic records. Therefore, 
this study employed the improved source–receiver 
interferometry method[8], expressed as Equation (II):
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We used deconvolution to replace cross-correlation 
calculations, making the reconstructed wavelet closer to 
the original in shape and relative amplitude, and reducing 
nonphysical artifacts and spurious energy generated by 
source interference. Then, a convolution-based shot-
receiver interferometry method compensated for the 
common path between the near-surface scatterers and 
common shot points, restoring the wavefield’s propagation 
characteristics. This procedure effectively suppressed the 
influence of the source wavelet and improved the quality 
of the reconstructed wavefield. Applying this method to 
predict the NSWs in the actual seismic data (Figure 1A), 
a wavefield dominated by scattered-wave energy was 
obtained (Figure 1B).
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2.2. Improved CAE

A CAE is a deep learning model that combines the 
concept of an autoencoder with the characteristics 
of CNNs. It replaces the fully connected layers in 
traditional autoencoders with convolutional and pooling 
layers, enabling the CAE to reduce the dimensionality 
and compress input data with fewer parameters while 
retaining important spatial features. This makes it well-
suited for handling high-dimensional data. The CAE 
consists of an encoder and a decoder. The encoder, 
which includes convolutional and pooling layers, extracts 
invariant features and compresses the input into a latent 
space representation. The decoder uses deconvolutional 
layers to reconstruct the input from the latent-space 
representation. The network architecture is summarized 
in Figure 2.

During training, the CAE adjusted the hyperparameters 
of the convolutional and pooling layers to minimize the 
difference between the reconstructed image (obtained by 
adjusting the hyperparameters) and the original image. 
Ultimately, an optimal basic framework was identified, 
consisting of one convolutional layer, one pooling layer, 
and their corresponding hyperparameters. Additional 
convolutional and pooling layers were then stacked to form 
a large neural network, with a fully connected layer added 
at the end to create a CNN-based architecture. The learning 
process of the CAE is represented as Equation (III):

y = F (x,θ)� (III)

where x and y represent the network’s input and output, 
respectively. θ refers to the parameters that the network 
needs to learn, which include the weights wi and biases bi of 
each convolutional layer in the encoder, and the weights wd 
and biases bd of the deconvolutional layer in the decoder.

For seismic data, deep networks are typically 
required to extract complex waveform features, 
thereby providing a better and more comprehensive 
description of the target. However, when the network 
depth reaches a certain level, increasing it can degrade 
network performance due to the accumulation of errors 
during information transfer. To address this, He et al.38 
proposed a residual structure with identity mapping 
to avoid issues, such as gradient vanishing and model 
degradation, when the network depth increases. The 
residual structure adds the input to the learning result 
before passing it to the next learning unit, enabling 
deep networks to retain the complete information 
from previous layers. The information from identity 
mapping in the previous layer can be viewed as pre-
learned knowledge, so each layer only needs to learn the 
difference between the existing knowledge and the ideal 
model. This can be expressed as Equation (IV):

yi+1 = h(xi)+F(xi,θi)� (IV)

where xi is the input, the output yi+1 is the result of adding 
the identity mapping h(.) and the transformation function 
f(.), where the transformation function may include 
multiple operations, such as convolution, normalization, 
and activation.

In seismic data, signals at different spatiotemporal 
locations may exhibit complex dependencies. Compared 
to the local receptive field of CNNs, the multi-head self-
attention mechanism can directly capture global-scale 
features.39 The core idea of self-attention is to compare each 
element in a sequence with all others and assign weights 
that reflect the degree of correlation between them. To 
further enhance feature extraction, this study employed 
a multi-head self-attention module. Specifically, eight 
independently learned linear projections were used to 

Figure 1. Single-shot record. (A) Full-wavefield data. (B) Interferometric predicted data.
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represent queries, keys, and values in different subspaces. 
The attention of each head was computed in parallel and 
then concatenated to generate the final output. The core 
principle and detailed computational process of the multi-
head self-attention mechanism were as follows:

i)� Project input feature matrix X� �n d elmod  into queries, 
keys, and values.

	 Q=XWQ, K=XWK, V=XWV, where 

W W W RQ K V d del k, , mod� � , dk represents the dimension 

of the Q
K , which is typically set as d d

hk
el= mod , 

where h is the number of attention heads.
ii)	 Dimension splitting: The matrices Q, K, and V were 

split along the feature dimension dk into h independent 
submatrices, each with a dimension of dk:

	 Q=[Q1,Q2,….Qh]
	 K=[K1,K2,….Kh]
	 V=[V1,V2,…. Vh]

iii)	 Multi-head parallel computation: For each submatrix 
triplet (Qi,Ki,Vi), an independent single-head self-
attention operation was performed to obtain h output 
results:
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iv)	 Concatenation: The h output results were concatenated 
along the feature dimension to obtain the output:

Outputconcat = [Output1, Output2,….Outputh]

v)   Then, a linear layer WO
d del el� � mod mod  was applied for 

feature fusion, resulting in the final multi-head self-
attention output:

			   Output = OutputcontactWo

As shown in Figure  3, the proposed network with 
residual connections and a multi-head self-attention 
mechanism is referred to as the residual self-attention 
convolutional autoencoder (RS-CAE). The model adopted 
a U-Net style encoder-decoder framework, where both 
the encoder and decoder consisted of multiple stacked 
residual blocks. A  multi-head self-attention module 
was inserted at the bottleneck layer to enable a more 
comprehensive representation of the global wavefield 
structure. This design enabled the network to capture 
both short- and long-range dependencies, establish long-
distance relationships in higher-order features, and restore 
structural details of the wavefield, thereby enhancing the 
network’s ability to distinguish scattered waves from other 
wavefield components.

The detailed configuration of the proposed RS-CAE is 
listed in Table 1.

2.3. Loss function

2.3.1. Local scattered-wave feature loss

The SSIM was first proposed by Wang et al.40 and was 
used for image denoising and reconstruction. The original 
image information was almost completely recovered 
through a simple point-to-point inverse linear brightness 
transformation, while the structural information of the 
reference image was well preserved. The SSIM primarily 
measures the luminance l(x,x′), contrast c(x,x′), and 
structure s(x,x') of the input data and the output data, and 
the final similarity is a function of these three components, 
expressed as Equation (V):

S(x,x′) = f(l(x,x′),c(x,x′),s(x,x′))� (V)

For seismic data, luminance reflects the difference 
in the mean amplitude between the input and output 

Figure 2. Convolutional autoencoder structure
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data, indicating the consistency of the average energy 
distribution between the two datasets. Contrast measures 
the amplitude differences between the two datasets and 
evaluates whether the output data can preserve the relative 
amplitude variations of the input in the output, using the 
standard deviation as an estimate. Structural similarity 
reflects the differences in seismic waveform and phase 
between the input data and the network output, estimated 
using the value normalized by the standard deviation of 
the signal itself.

During the interferometric process, coherent signals 
are enhanced, resulting in a significant overall energy 
difference between the predicted scattered wave x and the 
real data y. Therefore, directly applying the luminance term 
of SSIM is not suitable for scattered-wave analysis, while the 
relative amplitude and phase differences of the waveform 
are relatively small. Inspired by the SSIM, we defined a 
scattered-wave feature loss that constrained the network 

output’s amplitude and waveform based on the contrast 
and structural differences among the predicted scattered 
waves, the true scattered waves, and the full-wavefield data, 
thereby guiding the network to suppress scattered waves 
without compromising effective waveforms.

The similarity of scattered-wave features is described 
using standard deviation and covariance, with the 
calculation formula as shown in Equation (VI):

S
C
CSS

xx

x x

�
�

� �
�

�

2 2 1
2 2

1

�
� �

� (VI)

Where C1 is a constant to prevent the denominator 
from being zero during the calculation, defined as 
Equation (VII):

C1 = (K1L)2� (VII)

Typically, K1 << 1and taken as 0.001–0.003, L 
representing the range of normalized input data. σx and σx' 

Figure 3. Structure diagram of the improved convolutional encoder
Abbreviations: BN: Batch normalization; ReLU: Rectified linear unit.

Table 1. Parameters of residual‑self‑attention convolutional autoencoder (RS‑CAE)

Module Layer type Kernel size Channels Output size Activation

Encoder block 1‑1 Conv2D+BatchNorm 3×3 1atc 256×256 ReLU

Encoder block 1‑2 Conv2D+BatchNorm 1×1 64→64 256×256 ReLU

Encoder block 2 Conv2D+MaxPool+BatchNorm 3×3/1×1/2×2 64 chN 128×128 ReLU

Encoder block 3 Conv2D+BatchNorm 3×3/1×1 128chNo 128×128 ReLU

Encoder block 4 Conv2D+MaxPool+BatchNorm 3×3/1×1/2×2 128ch56 64×64 ReLU

Bottleneck (attention) Multi‑head self‑attention (eight heads) ‑ 256ads) 64×64 ‑

Decoder block 1‑1 ConvTranspose2D+BatchNorm 3×3 256chNo 128×128 ReLU

Decoder block 1‑2 Conv2D+BatchNorm 3×3/1×1 256chNo 128×128 ReLU

Decoder block 2 Conv2D+BatchNorm 3×3/1×1 256chNo 128×128 ReLU

Decoder block 3 ConvTranspose2D+Conv2D+BatchNorm 3×3/1×1 128chN 256×256 ReLU

Decoder block 4 Conv2D+BatchNorm 1×1 64 ch 256×256 ReLU

Output layer Conv2D 1×1 64 v 256×256 ‑

Abbreviation: ReLU: Rectified linear unit.

https://dx.doi.org/10.36922/JSE025470112
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are the standard deviations of the input and output data, 
defined as Equations (VIII) and (IX):

� �x i x
i

N

N
x�

�
�� ��

�
�

�

�
�

�
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1
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2

� (VIII)
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1
2

1

1
2
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σxx′ is the covariance of x and x′ that reflect the 
covariance of signals in structure, and is used to measure 
the similarity of data in local structure, that is, shape and 
phase. The calculation formula is shown in Equation (X):

� � �xx i x
i

N

i yN
x y�

�

�
�

�� � �� ��1
1 1

� (X)

x′ and y′ represent the mean values of the output 
data and the label data, respectively. SSS evaluates the 
similarity between the network output and the input. The 
training objective is to minimize the difference, so it needs 
to be transformed into a difference value to obtain the 

final local scattered-wave feature loss, which is given by 
Equation  (XI):

LLSC = 1−SSS� (XI)

2.3.2. Smoothing regularization

In 2017, Goodfellow et al.41 stated in the book Deep 
Learning that any modifications that can improve the 
model’s accuracy during testing and enhance the model’s 
generalization ability can be considered regularization. 
The application of regularization terms is achieved by 
adding a penalty term to the model’s loss function to 
enhance the model’s generalization ability, such as L1 and 
L2 regularizations. Unlike the loss function, the added 
regularization term is independent of the label data, 
imposing certain prior knowledge constraints on the data 
to improve the model’s denoising effectiveness. During the 
self-supervised denoising process, coherent scattered noise 
data exhibits good local continuity. Therefore, a smoothing 
regularization term is added to the loss function to constrain 
waveform continuity, using the first derivative differences of 
adjacent points in the network output to measure waveform 
continuity, as shown in Equations (XII) and (XIII):

 Figure 4. Construction of the loss function
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where N and M represent the time dimension and spatial 
dimension, respectively. Equations (XII) and  (XIII) 
represent the squared differences of adjacent points in the 
two dimensions. Combining these two terms yields the 
final smoothing regularization term, as in Equation (XIV):

LS = Losst+Lossx� (XIV)

2.3.3. Composite loss function

The local scattered-wave characteristics loss is combined 
with the MSE loss, and a smoothing regularization term is 
added to guide the network in learning the scattered waves of 
the label data while avoiding excessive attention to effective 

waves, as shown in Figure 4. Specifically, MSE Loss serves as 
the reconstruction loss, minimizing the difference between 
the network output and the label data, ensuring the predicted 
scattered-wave energy closely matches the true values. In 
addition, to ensure that the network focuses on learning 
scattered-wave characteristics and ignores other wavefields, 
including reflected waves, a term LLSC is introduced to 
minimize the structural differences between the network 
output and the input data wavefield. This helps the network 
output retain the waveform and location information of the 
scattered waves. Seismic coherent noise and reflected waves 
differ from random noise, typically exhibiting continuity 
and specific shapes. Deep learning methods are data-driven 
and often lack interpretability in complex workflows, such as 
seismic signal denoising. Therefore, adding a regularization 
term to the loss function ensures the continuity of coherent 
noise wavefields, calculates the network output, and ensures 
the data conforms to wavefield characteristics, standardizing 
the learning process and enhancing the physical rationality 
of the network.

Figure 5. Flow chart of denoising
Abbreviation: RS-CAE: Residual-self-attention convolutional autoencoder.

https://dx.doi.org/10.36922/JSE025470112
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Finally, the expression for the total loss function is as in 
Equation (XV):

L = λ1Lmse+λ2LLSC+λ3Ls� (XV)

where λ1, λ2, and λ3 are the weight coefficients for the 
three types of losses, satisfying the condition: λ1+λ2+λ3=1, 
Lmse is the MSE loss, expressed as Equation (XVI):

L
N

x ymse i
N

i i� � �� ���1
1

2 � (XVI)

2.4. Near-surface scattered-wave suppression

In the process of NSW suppression, seismic interferometry 
reconstructs the predicted scattered-wave data X, whereas 
the original wavefield data Y serves as the network label. 
Using the learning process of CAEs, the loss function L is 
minimized to obtain the true scattered-wave data, which is 
then subtracted from the original data to achieve denoising. 
The specific denoising process is shown in Figure 5. Before 
training, both synthetic and field data were divided into 
training and test sets at an 8:2 ratio, with the latter used 
for final model performance evaluation. Meanwhile, to 
make the model easier to train and converge, it is necessary 
to normalize both the predicted scattered waves and the 
original wavefield data so that their ranges are similar. 
The normalization was applied to single-shot data, and 
due to the large amplitude differences, mean-variance 
normalization was used to process the data, resulting in 
the predicted scattered wave x and label y for the network 
input (Equations [XVII] and [XVIII]):

x
X

�
� �
�

1

1

� (XVII)

y
Y

�
� �
�

2

2

� (XVIII)

where  and σ represent the mean and standard 
deviation of the data, respectively.

To preserve more local waveform characteristics, 
the normalized seismic data were divided into equally-
sized blocks to create a training dataset for the network. 
During the learning process, a dynamic learning rate was 
used, which was reduced by half every 200 iterations. As 
the learning rate decreased, L continuously dropped, 

and when it reached its lowest value and stabilized, it 
indicated that the network learned the feature parameters 
of the input and label data. Finally, the test data were used 
as input to obtain the true NSW, which can be directly 
subtracted from the full-wavefield data. All experiments 
were implemented using PyTorch (Version 2.5.1, Meta 
Platforms, Inc., United States of America) and conducted 
on a workstation equipped with an NVIDIA RTX 4090 
GPU with 16 GB memory.

3. Results and discussion
3.1. Training process

For the model dataset, the training process consisted of 
500 iterations (Table 2). In the early stage, restoring the 
energy of the predicted scattered waves was the primary 
objective. Because there were significant discrepancies 
between the predicted and true scattered waves, 
especially for field data, the loss term associated with 
energy matching was assigned a relatively higher weight 
to ensure that the network prioritized alignment with 
the energy distribution of the original data. After 200 
iterations, the loss decreased and stabilized at 0.1512, 
indicating that the network had successfully learned 
the energy discrepancy between data pairs and had 
compensated for it accordingly. Subsequently, the weight 
of Lmse was gradually reduced, shifting the network’s 
focus from energy recovery to learning the structural 
characteristics of waveforms. However, increasing λ2 may 
lead to a slight reduction in energy-matching accuracy, 
highlighting the need for a trade-off between these two 
aspects.

The training loss curve of the model dataset over 500 
iterations is shown in Figure 6. The loss decreased rapidly 
in the early stage, indicating that the network quickly 
learned the energy features. Around iteration 200, the curve 
began to stabilize, eventually reaching approximately 0.15, 
indicating that the network successfully converged. During 

Table 2. Parameter design of the loss function

Iterations 0–200 201–400 401–500

Parameter (λ1,λ2,λ3) (0.7, 0.25, 0.05) (0.5, 0.4, 0.1) (0.3, 0.5, 0.2)

Lmin 0.1512 0.1704 0.1811 Figure 6. Training loss curve on the model dataset
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training, weight adjustments were applied to balance the 
contributions of different loss components, causing minor 
fluctuations. Overall, the curve demonstrated that the 
network effectively captured both the energy and waveform 
characteristics of the training data.

Figure 7 illustrates the performance of synthetic data at 
different training stages. For comparison, the network was 
trained with λ1 = 1 for 500 iterations, yielding the result as 
shown in Figure  7A. In complex wavefields, the network 
primarily focused on simple energy recovery. When adopting 

Figure 8. Denoising results of synthetic data 1. (A) Original data. (B) Interferometric data. (C) Results after matched filtering. (D) Denoising results of a 
convolutional autoencoder constrained by local scattered wave characteristics (LSC-CAE).

DC

BA

Figure 7. Results of synthetic data processed with different parameters. (A) Results with λ1=1 after 500 iterations. (B) Result with dynamically adjusted 
weights after 300 iterations. (C) Result with dynamically adjusted weights after 500 iterations.

CBA

https://dx.doi.org/10.36922/JSE025470112


Journal of Seismic Exploration Local wavefield-based scattered wave suppression

Volume X Issue X (2026)	 11� doi: 10.36922/JSE025470112

a dynamic parameter adjustment strategy to gradually 
increase λ2 and λ3, as shown in Figure 7B and 7C, the waveform 
characteristics of the test data were better preserved on the 
basis of energy recovery, demonstrating the effectiveness of 
LSC-CAE in suppressing noise in seismic data.

3.2. Application of synthetic data

To validate the effectiveness of the proposed method, LSC-
CAE was applied to synthetic seismic records to suppress 
noise. The simple model consisted of two horizontal layers, 
with a velocity anomaly introduced near the surface to 
generate scattered waves. A total of 70 shot records were 
simulated. The predicted scattered-wave data were obtained 
through interferometric processing. Figure  8A  and B 
shows the original data and the predicted scattered-
wave data that served as the network’s labels and inputs, 
respectively. However, due to the limited aperture effect in 
the simulation, the interferometric processing could not 
entirely eliminate body waves, leaving residual reflection 
signals in the predicted data (black arrow). Figure 8C  and 

D shows the denoised results obtained using matched 
filtering and LSC-CAE, respectively. Compared to matched 
filtering, the network-based denoising not only better 
preserved the reflection signals but also more effectively 
suppressed scattered waves (white arrows). Moreover, 
the computational time for network-based denoising was 
only a few seconds, demonstrating significantly higher 
efficiency than matched filtering.

To further verify the effectiveness of the network-based 
denoising, a more complex undulating surface model was 
constructed for forward modeling, generating 70 synthetic 
shot records. Figure  9A and B shows the original data 
and the predicted scattered-wave data, respectively. In the 
original data, the reflection signals were overwhelmed by 
noise. The interferometric processing results demonstrate 
that surface and scattered waves were well predicted, 
with waveform amplitude and phase closely matching the 
original data, providing high-quality training samples for 
the network.

Figure 9. Denoising results of synthetic data 2. (A) Original data. (B) Interferometric data. (C) Results after matching filtering. (D) Denoising results of a 
convolutional autoencoder constrained by local scattered wave characteristics (LSC-CAE).
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After applying the matched filter for noise suppression 
(Figure 9C), the SNR improved slightly. However, a portion 
of the body waves was attenuated during the filtering process 
(white arrows). When processed using LSC-CAE (Figure 
9D), the body wave energy was effectively restored, the 
SNR was further enhanced, and both waveform continuity 
and phase information were preserved, demonstrating the 
effectiveness of the proposed method.

3.3. Field data application

The synthetic data experiments demonstrated that the 
proposed self-supervised learning approach enabled 
the predicted scattered waves to match the energy of the 
true wavefield. The LSC-CAE was then applied to field 
seismic data following the workflow described in Section 
2.4. Due to the complexity of real seismic data, a larger 
dataset was required to capture the data characteristics 
effectively. Therefore, 60-shot records from mountainous 
terrain were selected as training samples for the network. 
First, shot-receiver interferometry was performed to 
obtain the predicted scattered waves. The 60-shot records 
were then partitioned into 15,000 data pairs, each of size 
256 × 256. These predicted scattered wavefield slices and 
full-wavefield data slices were used as network inputs and 
labels, respectively, for training.

Unlike synthetic data, the predicted scattered waves 
generated during field seismic data processing exhibit 
significant energy differences compared to the full-
wavefield data. Thus, when selecting coefficients in the 
loss function, it was crucial to consider energy recovery 
and maintain a proper balance among the different loss 
components. The denoising results for the first field dataset 
are shown in Figure  10. Figure  10A and F displays the 
original data and the predicted scattered waves. The shot 
data shows typical high-frequency scattering and low-
frequency, large-curvature side NSWs (black arrow in 
Figure 10A). The interferometric results demonstrate that 
structured external interferences and scattered surface 
waves were well predicted without introducing additional 
noise. To comprehensively demonstrate the denoising 
superiority of the LSC-CAE, we compared its denoised 
results (Figure 10B) and the extracted noise (Figure 10G) 
with those obtained from the RS-CAE trained with a 
conventional MSE loss (Figure 10D and 10I), the matched-
filtering method (Figure 10E and 10J), and the CAE using 
a composite loss function (Figure 10C and 10H). The 
results demonstrate that the LSC-CAE produced cleaner 
denoised sections and almost completely suppressed 
the scattered-wave groups (red arrows). In contrast, the 
conventional CAE and matched filtering approach failed 
to recover the predicted noise to its original amplitude, 

Figure 10. Denoising results of field data 1. (A) Original data. (B) LSC-CAE denoising result (dynamic parameter adjustment strategy). (C) CAE denoising 
result (dynamic parameter adjustment strategy). (D) LSC-CAE denoising result (λ1=1). (E) Matched filtering result. (F) Interferometric data. (G) Noise 
removed by the LSC-CAE. (H) Noise removed by the CAE. (I) Noise removed by the LSC-CAE (λ1=1). (J) Noise removed by matched filtering
Abbreviations: CAE: Convolutional autoencoder; LSC: Local scattered wave.
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leaving significant scattered-wave energy in their denoised 
outputs. Moreover, when only the traditional MSE loss 
was used (λ1=1), the network tended to focus primarily 
on amplitude restoration while neglecting the underlying 
structural characteristics of the waveforms, ultimately 
limiting its denoising performance.

For the second field dataset (Figure 11), the data 
denoised by the LSC-CAE (Figure 11B and 11G) showed 
a more pronounced attenuation of surface-wave energy 
compared with the CAE using only a dynamic loss function 
(Figure 11C and 11H), the LSC-CAE with λ1=1 (Figure 

11D and 11I), and the matched filter (Figure 11E and 11J). 
Since the scattered-wave energy in field data primarily 
originates from surface waves, this result indicates that, 
in addition to effectively suppressing large-curvature low-
frequency scattering, the LSC-CAE performed better in 
complex scenarios where multiple scattered waves were 
superimposed. Furthermore, the regular interference near 
trace 500 was also effectively suppressed.

A spectral analysis was performed on the surface wave 
region to evaluate the capability of different denoising 
methods in suppressing NSWs. The surface wave energy 
was mainly concentrated in the 10-30 Hz frequency range, 
with a peak at 20 Hz. As shown in Figure 12, the RS-CAE 
method achieved the best performance, reducing the peak 
amplitude from 320 to 190, corresponding to a denoising 
rate of approximately 40%. The CAE method with local 
wavefield feature constraints performed moderately, 
while the network trained with only MSE (λ1=1) failed to 
effectively suppress the surface-wave noise. These results 
indicate that the RS-CAE network, incorporating residual 
structures and self-attention mechanisms along with local 
wavefield characteristic constraints, exhibited a significant 
advantage in NSW suppression.

Both synthetic and field data examples demonstrated 
that introducing the local scattered-wave characteristics 

Figure 11. Denoising results of field data 2. (A) Original data. (B) LSC-CAE denoising result (dynamic parameter adjustment strategy). (C) CAE denoising 
result (dynamic parameter adjustment strategy). (D) LSC-CAE denoising result (λ1=1). (E) Matched filtering result. (F) Interferometric data. (G) Noise 
removed by the LSC-CAE. (H) Noise removed by the CAE. (I) Noise removed by the LSC-CAE (λ1=1). (J) Noise removed by matched filtering
Abbreviations: CAE: Convolutional autoencoder; LSC: Local scattered wave.
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Figure  12. Spectral analysis of the surface wave region after denoising 
using different methods
Abbreviations: CAE: Convolutional autoencoder; RS-CAE: Residual-self-
attention convolutional autoencoder; MSE: Mean squared error.
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loss enhances the network’s ability to extract features 
in complex wavefields. During the training process, the 
weights of Lmse, LLSC, and LS were dynamically adjusted in 
phases to meet the learning objectives of each stage. This 
strategy guided the network to gradually balance energy-
related features and waveform structural characteristics 
while maintaining training stability.

4. Conclusion
We proposed a self-supervised deep learning strategy that 
eliminated the need for additional clean sample data as labels. 
During dataset preparation, seismic interferometry was 
utilized to predict noise from the original noisy data, generating 
high-quality training samples for the network. Throughout 
the network training process, a local scattered-wave feature 
loss term and regularization terms were integrated with the 
conventional MSE, allowing the network to autonomously 
focus on waveform characteristics. A  dynamic adjustment 
strategy was employed to control the network’s feature 
extraction priorities at different stages, ultimately enabling the 
model to learn both energy discrepancies and the waveform 
characteristics of scattered waves.

Traditional matched filters, relying on fixed parameters, 
often struggle to achieve satisfactory results in complex 
survey areas, whereas a trained network can adaptively 
handle varying noise conditions, providing stable 
denoising performance. Although network training can be 
time-consuming, once completed, inference is extremely 
fast, with a single-shot gather taking less than a second, 
substantially improving overall efficiency. During training, 
only a small portion of data from each survey area or model 
is needed to satisfy the network’s sample requirements. 
Tests on both synthetic and field seismic data show 
that incorporating local scattered-wave characteristic 
constraints enables the network to effectively achieve the 
intended denoising objectives.
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