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Convolutional autoencoder with local wavefield
characteristic constraint for suppressing near-
surface seismic scattered waves

Daling Hou(?, Jixiang Xu*{2, and Meng Li

Institute of Oil and Gas Geophysics, Research Institute of Petroleum Exploration and Development,
Beijing, China

Abstract

In mountainous seismic exploration, complex near-surface environments cause
strong wave scattering, reducing the signal-to-noise ratio and complicating data
processing. Therefore, suppressing scattered waves is crucial. To address this issue,
this study proposes a convolutional autoencoder constrained by local scattered
wave characteristics to suppress near-surface scattered waves (NSWs) in full-
wavefield seismic data. This method uses the scattered waves predicted by seismic
interferometry as the network input, and the original seismic records containing
true scattered waves as the label. Since there are differences in amplitude and phase
between the predicted scattered waves and the true scattered waves, the network
introduces local wavefield features of the scattered waves for constraint, and adds a
smoothness regularization term in the loss function to ensure the continuity of the
output waveform. After training, the network maps the energy of predicted scattered
waves into the actual seismic records, thereby accurately extracting scattered waves.
Finally, by subtracting the network output from the original records, clean data with
scattered waves removed can be obtained. This method is a self-supervised learning
strategy and does not require additional clean signal samples. During training, the
weights of each item in the loss function can be dynamically adjusted to guide the
network to focus on local scattered-wave features, avoid learning effective wave
information, and ensure that only scattered-wave components are retained in the
output. Practical application results show that this method can effectively suppress
NSWs and improve the signal-to-noise ratio of seismic data.

Keywords: Near-surface scattered waves; Convolutional autoencoder; Interferometry;
Wavefield characteristics

1. Introduction

When seismic waves propagate underground, variations caused by three-dimensional
spatial heterogeneity are referred to as scattered waves. In complex regions, especially
in the near-surface, medium heterogeneity is the greatest. The widespread presence
of small-scale heterogeneities, strong velocity and density contrasts, and irregular
interfaces leads to significant impedance contrasts along the wave propagation path,
thereby generating wave “reflections.” Because these heterogeneities are much smaller in
scale and more irregular in geometry than subsurface reflecting interfaces, the resulting
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wavefield response mainly manifests as scattering. These
scattered waves overlap with the effective waves in time,
space, and frequency, reducing the signal-to-noise ratio
(SNR) of seismic data and affecting the accuracy of
subsequent inversion and imaging. Wu et al.' pointed
out that the primary cause of low SNR in seismic data is
the influence of near-surface scattered waves (NSWs).
Therefore, suppressing NSWs is a critical step in obtaining
high-quality seismic data.

Scattered-wave suppression is a complex task that
involves not only analyzing the properties of scattered
waves but also developing advanced processing techniques.?
Traditional filtering methods often remove scattered waves
at the cost of losing effective waves. Thus, an alternative
approach—analyzing the characteristics of scattered waves,
predicting the true scattered wavefield, and subtracting it
from seismic data—minimizes the impact on effective
waves and is widely applied in practice. Campman et al.’
introduced impedance functions to model and suppress
NSWs. Liu et al.* estimated and removed scattered waves
from radial and vertical components using filtering and
correlation analysis based on transverse component
assumptions, thereby improving data SNR. Almuhaidib
and Toksoz®> employed controllable filters to estimate
spatial variations in noise and used directional non-
linear filters for noise separation. In recent years, seismic
interferometry has been effectively applied to suppress
scattered waves. Xu et al.® provided a detailed discussion
on NSW characteristics and the principles of scattered-
wave interferometry, enhancing the coherence of scattered
waves to separate them from true records. Halliday et al.”
proposed a model-driven seismic interferometry approach,
using models as inputs to estimate scattered surface
waves between sources and receivers. Xu et al.® applied
an improved source-receiver interferometry method
to reconstruct NSW fields from pre-stack data and then
adaptively subtracted the predicted scattered waves using
matched filtering, effectively suppressing NSWss.

Deep learning, a subfield of machine learning, has been
the fastest-growing branch in the past decade.’ Deep neural
networks construct multi-layer networks to represent
targets at multiple levels, aiming to use hierarchical features
to capture abstract semantic information from data. Among
them, convolutional neural networks (CNNs) leverage
local connectivity and weight sharing to effectively capture
local features while reducing the number of parameters. In
recent years, deep neural networks have shown promising
applications in seismic denoising. Through synthetic and
real-data demonstrations, deep learning has exhibited
significant potential in attenuating random noise,
linear noise, and multiple reflections.” Yu et al'' used a

denoising CNN to suppress surface waves in synthetic data
and transferred the trained network to real seismic data.
Liu et al? trained a convolutional autoencoder (CAE)
using synthetic noise and standard induced polarization
signals to denoise continuous random noise in induced
polarization signals. Sui et al.” developed data-adaptive
dictionaries through deep unfolding dictionary learning
to construct training networks suitable for different noise
levels. Li et al.'* designed an automated training data
generation workflow based on the noise characteristics
of nodal seismic acquisition systems, achieving superior
performance in suppressing environmental noise compared
to traditional methods. In practical seismic denoising,
obtaining noise-free sample data is challenging. Supervised
learning often uses traditional denoised data or synthetic
data as labels, whereas self-supervised and unsupervised
learning methods eliminate the need for clean labels. As
a result, deep learning applications in seismic denoising
are shifting from supervised to self-supervised and
unsupervised approaches, which better align with seismic
processing workflows. Song et al."> employed a CAE for
unsupervised random noise suppression. Shao et al.'¢
applied the Noisy2Noisy framework to remove random
noise, achieving supervised learning-level denoising
performance without labeled data. Wu et al.”” proposed
a self-supervised deep learning approach based on the
Neighbor2Neighbor framework to suppress random noise.
For coherent noise suppression, a series of self-supervised
denoising networks was introduced to remove surface-
related multiples, demonstrating promising results;'**' Sun
et al.? proposed a multi-channel U-Net with multi-mode
and multi-model capabilities for suppressing multiples;
Qi et al® introduced an interpretable Fast Iterative
Shrinkage-Thresholding Algorithm Network for adaptive
multiple suppression. Despite significant progress and
breakthroughs in seismic denoising using deep learning,
research and applications targeting NSW suppression
remain largely unexplored.

In image processing and computer vision, commonly
used image quality assessment methods are often based
on error visibility, such as mean-squared error (MSE) and
Peak SNR. While these methods effectively quantify image
differences, they fail to accurately reflect human visual
perception of image quality. To address this, Wang and
Bovik* proposed the structural similarity index (SSIM),
which evaluates image similarity by considering luminance,
contrast, and structure, thereby aligning more closely
with human visual perception. SSIM has been widely
applied in image denoising and reconstruction. In recent
years, SSIM has also been adopted in seismic denoising,
seismic interpolation, and velocity modeling. Almadani
et al.® used SSIM to evaluate the denoising performance
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of convolutional sparse coding. Sun and Williamson®
applied SSIM to assess the advantages of frequency-
constrained neural networks in seismic interpolation.
Simon et al.”” employed SSIM to evaluate the effectiveness
of transfer learning in seismic velocity modeling. In this
study, we modify and extend SSIM to better capture the
characteristics of seismic wavefields and incorporate it into
the loss function to enhance network performance.

To more effectively suppress NSWs, this study proposes
a CAE constrained by local scattered wave characteristics
(LSC-CAE). This method does not rely on additional clean
data as labels but instead constructs a self-supervised
denoising process. The core idea is to predict the scattered-
wave structures, restore their energy to the real-data level,
and suppress them by subtraction from the full-wavefield
data. Specifically, NSWs are first predicted using seismic
interferometry and then used as the input of the CAE; at
the same time, full-wavefield data containing scattered
waves are used as labels to guide the network in learning
the spatial and temporal characteristics of scattered waves.
To enable effective training, we designed a composite
loss function composed of MSE, a local scattered-wave
feature loss, and a waveform-smoothing regularization
term, thereby encouraging the network to focus on the
structural and energy features of scattered waves and
achieve energy matching with real scattered waves.
Finally, by subtracting the network output from the full-
wavefield data, the denoised seismic record was obtained.
In addition, to enhance the network’s ability to model
complex wavefield structures, a multi-head self-attention
mechanism was introduced in the intermediate layers of
the CAE to improve the network’s perception of global
scattered-wave features. Meanwhile, residual structures
were introduced to accelerate training and enhance
network stability. Application results on real seismic data
show that the proposed method can effectively suppress
scattered waves while preserving the integrity of effective
waveforms, demonstrating good denoising performance
and practical value.

2. Methods
2.1. Near-surface interferometry

Seismic interferometry is a wavefield reconstruction
technique based on wave theory that extracts
intercorrelation information from seismic data to
reconstruct seismic wave propagation paths. The
theoretical foundation of seismic interferometry lies in
the Green’s function, which allows the cross-correlation of
wavefields between two points to be reconstructed as the
seismic response of one point acting as a virtual source
and the other as a receiver. Schuster® first introduced

the concept of seismic wave interferometry in 2001 and
subsequently conducted a series of studies exploring its
principles.®* Following this, several studies provided
comprehensive analyses of the principles, advancements,
and applications of seismic interferometry.***¢ Today,
seismic interferometry has been widely applied in seismic
imaging and seismic monitoring, playing a crucial role
in enhancing subsurface characterization and detecting
temporal changes in the Earth’s structure.

Under the high-frequency and far-field approximations,
the source imaging and seismic monitoring, playing a
crucial Equation (I):*

G(7,>%,30) + G (7, %,30) ¥ — %
(po)
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Where o is the angular frequency, p and ¢ represent
density and velocity, * denotes the complex conjugate,
and G(y,x;w) represents the wavefield generated by
point source x, at point y,, and similarly for G(y ,x;®) and
G(y,x ;).

When intersource interferometry is computed using
correlation, itintroduces wavelet distortion in the frequency
domain. The amplitude spectrum of the reconstructed
virtual wavelet becomes the cube of the original wavelet
spectrum, leading to amplitude distortion and peak-like
features. Deconvolutional interferometry can effectively
remove wavelet effects from seismic records. Therefore,
this study employed the improved source-receiver
interferometry method[8], expressed as Equation (II):

G(y,,x%;0)+G (y,,x;0) =

4
X
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S

We used deconvolution to replace cross-correlation
calculations, making the reconstructed wavelet closer to
the original in shape and relative amplitude, and reducing
nonphysical artifacts and spurious energy generated by
source interference. Then, a convolution-based shot-
receiver interferometry method compensated for the
common path between the near-surface scatterers and
common shot points, restoring the wavefield’s propagation
characteristics. This procedure effectively suppressed the
influence of the source wavelet and improved the quality
of the reconstructed wavefield. Applying this method to
predict the NSWs in the actual seismic data (Figure 1A),
a wavefield dominated by scattered-wave energy was
obtained (Figure 1B).
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Figure 1. Single-shot record. (A) Full-wavefield data. (B) Interferometric predicted data.

2.2. Improved CAE

A CAE is a deep learning model that combines the
concept of an autoencoder with the characteristics
of CNNs. It replaces the fully connected layers in
traditional autoencoders with convolutional and pooling
layers, enabling the CAE to reduce the dimensionality
and compress input data with fewer parameters while
retaining important spatial features. This makes it well-
suited for handling high-dimensional data. The CAE
consists of an encoder and a decoder. The encoder,
which includes convolutional and pooling layers, extracts
invariant features and compresses the input into a latent
space representation. The decoder uses deconvolutional
layers to reconstruct the input from the latent-space
representation. The network architecture is summarized
in Figure 2.

During training, the CAE adjusted the hyperparameters
of the convolutional and pooling layers to minimize the
difference between the reconstructed image (obtained by
adjusting the hyperparameters) and the original image.
Ultimately, an optimal basic framework was identified,
consisting of one convolutional layer, one pooling layer,
and their corresponding hyperparameters. Additional
convolutional and pooling layers were then stacked to form
a large neural network, with a fully connected layer added
at the end to create a CNN-based architecture. The learning
process of the CAE is represented as Equation (III):

y=F(x,0) (111)

where x and y represent the network’s input and output,
respectively. 0 refers to the parameters that the network
needs to learn, which include the weights w, and biases b, of
each convolutional layer in the encoder, and the weights w,
and biases b, of the deconvolutional layer in the decoder.

For seismic data, deep networks are typically
required to extract complex waveform features,
thereby providing a better and more comprehensive
description of the target. However, when the network
depth reaches a certain level, increasing it can degrade
network performance due to the accumulation of errors
during information transfer. To address this, He et al.*®
proposed a residual structure with identity mapping
to avoid issues, such as gradient vanishing and model
degradation, when the network depth increases. The
residual structure adds the input to the learning result
before passing it to the next learning unit, enabling
deep networks to retain the complete information
from previous layers. The information from identity
mapping in the previous layer can be viewed as pre-
learned knowledge, so each layer only needs to learn the
difference between the existing knowledge and the ideal
model. This can be expressed as Equation (IV):

V.., = h(x)+F(x,0,) (Iv)

where x, is the input, the output y,  is the result of adding
the identity mapping h(.) and the transformation function
f.), where the transformation function may include
multiple operations, such as convolution, normalization,
and activation.

In seismic data, signals at different spatiotemporal
locations may exhibit complex dependencies. Compared
to the local receptive field of CNNs, the multi-head self-
attention mechanism can directly capture global-scale
features.”” The core idea of self-attention is to compare each
element in a sequence with all others and assign weights
that reflect the degree of correlation between them. To
further enhance feature extraction, this study employed
a multi-head self-attention module. Specifically, eight
independently learned linear projections were used to
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Figure 2. Convolutional autoencoder structure

represent queries, keys, and values in different subspaces.
The attention of each head was computed in parallel and
then concatenated to generate the final output. The core
principle and detailed computational process of the multi-
head self-attention mechanism were as follows:

i) Project input feature matrix X € R into queries,
keys, and values.
Q=XW2, K=XW¥K,

V=XWYV, where

WOWS WY g R | d, represents the dimension

of the % , which is typically set as d, =d’“°del/h ,

where £ is the number of attention heads.

ii) Dimension splitting: The matrices Q, K, and V were
split along the feature dimension d, into & independent
submatrices, each with a dimension of dk:

Q=[Q,Q,....Q)]
K=[KK,...K,]
V=[V, V... V]

iii) Multi-head parallel computation: For each submatrix
triplet (Q,K,V), an independent single-head self-
attention operation was performed to obtain / output
results:

K.
Output, = Soft max QK V,i=12,....h
Ji

iv) Concatenation: The h output results were concatenated
along the feature dimension to obtain the output:

Output

concat

= [Output, Output, Output,]

Arnod el *dim

v) 'Then, a linear layer W, e R *44 was applied for

feature fusion, resulting in the final multi-head self-
attention output:

Output = Output W

contact " o

As shown in Figure 3, the proposed network with
residual connections and a multi-head self-attention
mechanism is referred to as the residual self-attention
convolutional autoencoder (RS-CAE). The model adopted
a U-Net style encoder-decoder framework, where both
the encoder and decoder consisted of multiple stacked
residual blocks. A multi-head self-attention module
was inserted at the bottleneck layer to enable a more
comprehensive representation of the global wavefield
structure. This design enabled the network to capture
both short- and long-range dependencies, establish long-
distance relationships in higher-order features, and restore
structural details of the wavefield, thereby enhancing the
network’s ability to distinguish scattered waves from other
wavefield components.

The detailed configuration of the proposed RS-CAE is
listed in Table 1.

2.3. Loss function
2.3.1. Local scattered-wave feature loss

The SSIM was first proposed by Wang et al.* and was
used for image denoising and reconstruction. The original
image information was almost completely recovered
through a simple point-to-point inverse linear brightness
transformation, while the structural information of the
reference image was well preserved. The SSIM primarily
measures the luminance I(x,x'), contrast c(x,x’), and
structure s(x,x") of the input data and the output data, and
the final similarity is a function of these three components,
expressed as Equation (V):

S(xx") = fll(x,x"),c(x,x"),5(x,x")) (V)

For seismic data, luminance reflects the difference
in the mean amplitude between the input and output
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Figure 3. Structure diagram of the improved convolutional encoder
Abbreviations: BN: Batch normalization; ReLU: Rectified linear unit.

Table 1. Parameters of residual-self-attention convolutional autoencoder (RS-CAE)

Module Layer type Kernel size Channels Output size Activation
Encoder block 1-1 Conv2D+BatchNorm 3x3 latc 256x256 ReLU
Encoder block 1-2 Conv2D+BatchNorm 1x1 64->64 256x256 ReLU
Encoder block 2 Conv2D+MaxPool+BatchNorm 3x3/1x1/2x2 64 chN 128x128 ReLU
Encoder block 3 Conv2D+BatchNorm 3x3/1x1 128chNo 128x128 ReLU
Encoder block 4 Conv2D+MaxPool+BatchNorm 3x3/1x1/2x2 128ch56 64x64 ReLU
Bottleneck (attention) ~ Multi-head self-attention (eight heads) - 256ads) 64x64 -
Decoder block 1-1 ConvTranspose2D+BatchNorm 3x3 256chNo 128x128 ReLU
Decoder block 1-2 Conv2D+BatchNorm 3x3/1x1 256¢hNo 128x128 ReLU
Decoder block 2 Conv2D+BatchNorm 3x3/1x1 256¢chNo 128x128 ReLU
Decoder block 3 ConvTranspose2D+Conv2D+BatchNorm 3x3/1x1 128chN 256x256 ReLU
Decoder block 4 Conv2D+BatchNorm 1x1 64 ch 256x256 ReLU
Output layer Conv2D 1x1 64v 256x256

Abbreviation: ReLU: Rectified linear unit.

data, indicating the consistency of the average energy
distribution between the two datasets. Contrast measures
the amplitude differences between the two datasets and
evaluates whether the output data can preserve the relative
amplitude variations of the input in the output, using the
standard deviation as an estimate. Structural similarity
reflects the differences in seismic waveform and phase
between the input data and the network output, estimated
using the value normalized by the standard deviation of
the signal itself.

During the interferometric process, coherent signals
are enhanced, resulting in a significant overall energy
difference between the predicted scattered wave x and the
real data y. Therefore, directly applying the luminance term
of SSIM is not suitable for scattered-wave analysis, while the
relative amplitude and phase differences of the waveform
are relatively small. Inspired by the SSIM, we defined a
scattered-wave feature loss that constrained the network

output’s amplitude and waveform based on the contrast
and structural differences among the predicted scattered
waves, the true scattered waves, and the full-wavefield data,
thereby guiding the network to suppress scattered waves
without compromising effective waveforms.

The similarity of scattered-wave features is described
using standard deviation and covariance, with the
calculation formula as shown in Equation (VI):

20 . +2C,

=0 (VI)

ST 2 2
o, +o.+C

Where C, is a constant to prevent the denominator
from being zero during the calculation, defined as
Equation (VII):

C = (K,L) (VID)

Typically, K, << land taken as 0.001-0.003, L
representing the range of normalized input data. 6 _and o,
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Figure 4. Construction of the loss function

are the standard deviations of the input and output data,
defined as Equations (VIII) and (IX):

0| =

- 2
o, = (EZ(’C" -u,) j (VIID)

i=1

1
N 2

1 ' 2
- —[EZ(xi ) ] (1%

i=1

o is the covariance of x and x' that reflect the
covariance of signals in structure, and is used to measure
the similarity of data in local structure, that is, shape and

phase. The calculation formula is shown in Equation (X):

T zﬁ :]1 (xi - ,ux)<}/,- - ‘uY) X)

M, and u, represent the mean values of the output
data and the label data, respectively. S, evaluates the
similarity between the network output and the input. The
training objective is to minimize the difference, so it needs
to be transformed into a difference value to obtain the

final local scattered-wave feature loss, which is given by
Equation (XI):

L.=1-S (XI)
2.3.2. Smoothing regularization

In 2017, Goodfellow et al* stated in the book Deep
Learning that any modifications that can improve the
model’s accuracy during testing and enhance the model’s
generalization ability can be considered regularization.
The application of regularization terms is achieved by
adding a penalty term to the model’s loss function to
enhance the model’s generalization ability, such as L, and
L, regularizations. Unlike the loss function, the added
regularization term is independent of the label data,
imposing certain prior knowledge constraints on the data
to improve the model’s denoising effectiveness. During the
self-supervised denoising process, coherent scattered noise
data exhibits good local continuity. Therefore, a smoothing
regularization term is added to the loss function to constrain
waveform continuity, using the first derivative differences of
adjacent points in the network output to measure waveform
continuity, as shown in Equations (XII) and (XIII):
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2

(u(i+1,7)—u(i.f))

M=

>

i=1 j

Loss, = (XII)

z [~

2

Loss, (XTII)

ii(u(i,j+l)—u(i,j))

i=l j=1

s

where Nand M represent the time dimension and spatial
dimension, respectively. Equations (XII) and (XIII)
represent the squared differences of adjacent points in the
two dimensions. Combining these two terms yields the
final smoothing regularization term, as in Equation (XIV):

Ly = Loss+Loss, (XIV)

2.3.3. Composite loss function

The local scattered-wave characteristics loss is combined
with the MSE loss, and a smoothing regularization term is
added to guide the network in learning the scattered waves of
the label data while avoiding excessive attention to effective

waves, as shown in Figure 4. Specifically, MSE Loss serves as
the reconstruction loss, minimizing the difference between
the network output and the label data, ensuring the predicted
scattered-wave energy closely matches the true values. In
addition, to ensure that the network focuses on learning
scattered-wave characteristics and ignores other wavefields,
including reflected waves, a term L . is introduced to
minimize the structural differences between the network
output and the input data wavefield. This helps the network
output retain the waveform and location information of the
scattered waves. Seismic coherent noise and reflected waves
differ from random noise, typically exhibiting continuity
and specific shapes. Deep learning methods are data-driven
and often lack interpretability in complex workflows, such as
seismic signal denoising. Therefore, adding a regularization
term to the loss function ensures the continuity of coherent
noise wavefields, calculates the network output, and ensures
the data conforms to wavefield characteristics, standardizing
the learning process and enhancing the physical rationality
of the network.

Seismic
i Predict near-surface
_ : interferometry [
Full-wave field data p—————> scattered waves
v ‘
Label Input
[ |
RS-CAE
v L(G)min
€

Trained RS-CAE

|

True near-surface
scattered waves

+

Data without near surface
scattered wave

Figure 5. Flow chart of denoising
Abbreviation: RS-CAE: Residual-self-attention convolutional autoencoder.
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Finally, the expression for the total loss function is as in
Equation (XV):

L=2L +AL +\L (XV)

277LSC

where 1, 4, and 4, are the weight coefficients for the
three types of losses, satisfying the condition: 4 +4,+4,=1,
L, is the MSE loss, expressed as Equation (XVI):

1 '
Lmse = NZ :\il (xi - yi )2 (XVI)

2.4. Near-surface scattered-wave suppression

In the process of NSW suppression, seismic interferometry
reconstructs the predicted scattered-wave data X, whereas
the original wavefield data Y serves as the network label.
Using the learning process of CAEs, the loss function L is
minimized to obtain the true scattered-wave data, which is
then subtracted from the original data to achieve denoising.
The specific denoising process is shown in Figure 5. Before
training, both synthetic and field data were divided into
training and test sets at an 8:2 ratio, with the latter used
for final model performance evaluation. Meanwhile, to
make the model easier to train and converge, it is necessary
to normalize both the predicted scattered waves and the
original wavefield data so that their ranges are similar.
The normalization was applied to single-shot data, and
due to the large amplitude differences, mean-variance
normalization was used to process the data, resulting in
the predicted scattered wave x and label y for the network
input (Equations [XVII] and [XVIII]):

X —_
x=2"H (XVII)

y="-=2 (XVIII)

where u and o represent the mean and standard
deviation of the data, respectively.

To preserve more local waveform characteristics,
the normalized seismic data were divided into equally-
sized blocks to create a training dataset for the network.
During the learning process, a dynamic learning rate was
used, which was reduced by half every 200 iterations. As
the learning rate decreased, L continuously dropped,

Table 2. Parameter design of the loss function

Iterations 0-200 201-400 401-500
Parameter (A,1,4,)  (0.7,0.25,0.05)  (0.5,0.4,0.1)  (0.3,0.5,0.2)
0.1512 0.1704 0.1811

‘min

and when it reached its lowest value and stabilized, it
indicated that the network learned the feature parameters
of the input and label data. Finally, the test data were used
as input to obtain the true NSW, which can be directly
subtracted from the full-wavefield data. All experiments
were implemented using PyTorch (Version 2.5.1, Meta
Platforms, Inc., United States of America) and conducted
on a workstation equipped with an NVIDIA RTX 4090
GPU with 16 GB memory.

3. Results and discussion
3.1. Training process

For the model dataset, the training process consisted of
500 iterations (Table 2). In the early stage, restoring the
energy of the predicted scattered waves was the primary
objective. Because there were significant discrepancies
between the predicted and true scattered waves,
especially for field data, the loss term associated with
energy matching was assigned a relatively higher weight
to ensure that the network prioritized alignment with
the energy distribution of the original data. After 200
iterations, the loss decreased and stabilized at 0.1512,
indicating that the network had successfully learned
the energy discrepancy between data pairs and had
compensated for it accordingly. Subsequently, the weight
of L ~ was gradually reduced, shifting the network’s
focus from energy recovery to learning the structural
characteristics of waveforms. However, increasing 4, may
lead to a slight reduction in energy-matching accuracy,
highlighting the need for a trade-off between these two
aspects.

The training loss curve of the model dataset over 500
iterations is shown in Figure 6. The loss decreased rapidly
in the early stage, indicating that the network quickly
learned the energy features. Around iteration 200, the curve
began to stabilize, eventually reaching approximately 0.15,
indicating that the network successfully converged. During

Loss
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o 50 100 150 200 250 300 350 400 450 500
Iteration

Figure 6. Training loss curve on the model dataset
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training, weight adjustments were applied to balance the Figure 7 illustrates the performance of synthetic data at
contributions of different loss components, causing minor different training stages. For comparison, the network was
fluctuations. Overall, the curve demonstrated that the trained with 2, = 1 for 500 iterations, yielding the result as
network effectively captured both the energy and waveform shown in Figure 7A. In complex wavefields, the network
characteristics of the training data. primarily focused on simple energy recovery. When adopting
A,

300

200

100

-100

-200

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Trace number Trace number Trace number

Figure 7. Results of synthetic data processed with different parameters. (A) Results with A =1 after 500 iterations. (B) Result with dynamically adjusted
weights after 300 iterations. (C) Result with dynamically adjusted weights after 500 iterations.
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Figure 8. Denoising results of synthetic data 1. (A) Original data. (B) Interferometric data. (C) Results after matched filtering. (D) Denoising results of a
convolutional autoencoder constrained by local scattered wave characteristics (LSC-CAE).
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a dynamic parameter adjustment strategy to gradually
increase 4, and 4,, as shown in Figure 7B and 7C, the waveform
characteristics of the test data were better preserved on the
basis of energy recovery, demonstrating the effectiveness of
LSC-CAE in suppressing noise in seismic data.

3.2. Application of synthetic data

To validate the effectiveness of the proposed method, LSC-
CAE was applied to synthetic seismic records to suppress
noise. The simple model consisted of two horizontal layers,
with a velocity anomaly introduced near the surface to
generate scattered waves. A total of 70 shot records were
simulated. The predicted scattered-wave data were obtained
through interferometric processing. Figure 8A and B
shows the original data and the predicted scattered-
wave data that served as the network’s labels and inputs,
respectively. However, due to the limited aperture effect in
the simulation, the interferometric processing could not
entirely eliminate body waves, leaving residual reflection
signals in the predicted data (black arrow). Figure 8C and

--400
--300
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-100

100
200
300
400

0 200 400 600 800

--130

--100

--70

0 200

400 600
Trace number

800

D shows the denoised results obtained using matched
filtering and LSC-CAE, respectively. Compared to matched
filtering, the network-based denoising not only better
preserved the reflection signals but also more effectively
suppressed scattered waves (white arrows). Moreover,
the computational time for network-based denoising was
only a few seconds, demonstrating significantly higher
efficiency than matched filtering.

To further verify the effectiveness of the network-based
denoising, a more complex undulating surface model was
constructed for forward modeling, generating 70 synthetic
shot records. Figure 9A and B shows the original data
and the predicted scattered-wave data, respectively. In the
original data, the reflection signals were overwhelmed by
noise. The interferometric processing results demonstrate
that surface and scattered waves were well predicted,
with waveform amplitude and phase closely matching the
original data, providing high-quality training samples for
the network.

400 600

800

0 200 400

600
Trace number

800

Figure 9. Denoising results of synthetic data 2. (A) Original data. (B) Interferometric data. (C) Results after matching filtering. (D) Denoising results of a
convolutional autoencoder constrained by local scattered wave characteristics (LSC-CAE).
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After applying the matched filter for noise suppression
(Figure 9C), the SNR improved slightly. However, a portion
of thebody waves was attenuated during the filtering process
(white arrows). When processed using LSC-CAE (Figure
9D), the body wave energy was effectively restored, the
SNR was further enhanced, and both waveform continuity
and phase information were preserved, demonstrating the
effectiveness of the proposed method.

3.3. Field data application

The synthetic data experiments demonstrated that the
proposed self-supervised learning approach enabled
the predicted scattered waves to match the energy of the
true wavefield. The LSC-CAE was then applied to field
seismic data following the workflow described in Section
2.4. Due to the complexity of real seismic data, a larger
dataset was required to capture the data characteristics
effectively. Therefore, 60-shot records from mountainous
terrain were selected as training samples for the network.
First, shot-receiver interferometry was performed to
obtain the predicted scattered waves. The 60-shot records
were then partitioned into 15,000 data pairs, each of size
256 x 256. These predicted scattered wavefield slices and
full-wavefield data slices were used as network inputs and
labels, respectively, for training.

A B Cc

Time (s)
Time (s)

0 100 200 300 0 100 200 300 0 100
Trace number

200
Trace number

Unlike synthetic data, the predicted scattered waves
generated during field seismic data processing exhibit
significant energy differences compared to the full-
wavefield data. Thus, when selecting coeflicients in the
loss function, it was crucial to consider energy recovery
and maintain a proper balance among the different loss
components. The denoising results for the first field dataset
are shown in Figure 10. Figure 10A and F displays the
original data and the predicted scattered waves. The shot
data shows typical high-frequency scattering and low-
frequency, large-curvature side NSWs (black arrow in
Figure 10A). The interferometric results demonstrate that
structured external interferences and scattered surface
waves were well predicted without introducing additional
noise. To comprehensively demonstrate the denoising
superiority of the LSC-CAE, we compared its denoised
results (Figure 10B) and the extracted noise (Figure 10G)
with those obtained from the RS-CAE trained with a
conventional MSE loss (Figure 10D and 10I), the matched-
filtering method (Figure 10E and 10J), and the CAE using
a composite loss function (Figure 10C and 10H). The
results demonstrate that the LSC-CAE produced cleaner
denoised sections and almost completely suppressed
the scattered-wave groups (red arrows). In contrast, the
conventional CAE and matched filtering approach failed
to recover the predicted noise to its original amplitude,
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Figure 10. Denoising results of field data 1. (A) Original data. (B) LSC-CAE denoising result (dynamic parameter adjustment strategy). (C) CAE denoising
result (dynamic parameter adjustment strategy). (D) LSC-CAE denoising result (4,=1). (E) Matched filtering result. (F) Interferometric data. (G) Noise
removed by the LSC-CAE. (H) Noise removed by the CAE. (I) Noise removed by the LSC-CAE (4,=1). (J) Noise removed by matched filtering

Abbreviations: CAE: Convolutional autoencoder; LSC: Local scattered wave.
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Figure 11. Denoising results of field data 2. (A) Original data. (B) LSC-CAE denoising result (dynamic parameter adjustment strategy). (C) CAE denoising
result (dynamic parameter adjustment strategy). (D) LSC-CAE denoising result (4,=1). (E) Matched filtering result. (F) Interferometric data. (G) Noise
removed by the LSC-CAE. (H) Noise removed by the CAE. (I) Noise removed by the LSC-CAE (4 =1). (J) Noise removed by matched filtering

Abbreviations: CAE: Convolutional autoencoder; LSC: Local scattered wave.
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Figure 12. Spectral analysis of the surface wave region after denoising
using different methods

Abbreviations: CAE: Convolutional autoencoder; RS-CAE: Residual-self-
attention convolutional autoencoder; MSE: Mean squared error.

leaving significant scattered-wave energy in their denoised
outputs. Moreover, when only the traditional MSE loss
was used (A,=1), the network tended to focus primarily
on amplitude restoration while neglecting the underlying
structural characteristics of the waveforms, ultimately
limiting its denoising performance.

For the second field dataset (Figure 11), the data
denoised by the LSC-CAE (Figure 11B and 11G) showed
a more pronounced attenuation of surface-wave energy
compared with the CAE using only a dynamic loss function
(Figure 11C and 11H), the LSC-CAE with A\ =1 (Figure

11D and 11I), and the matched filter (Figure 11E and 11J).
Since the scattered-wave energy in field data primarily
originates from surface waves, this result indicates that,
in addition to effectively suppressing large-curvature low-
frequency scattering, the LSC-CAE performed better in
complex scenarios where multiple scattered waves were
superimposed. Furthermore, the regular interference near
trace 500 was also effectively suppressed.

A spectral analysis was performed on the surface wave
region to evaluate the capability of different denoising
methods in suppressing NSWs. The surface wave energy
was mainly concentrated in the 10-30 Hz frequency range,
with a peak at 20 Hz. As shown in Figure 12, the RS-CAE
method achieved the best performance, reducing the peak
amplitude from 320 to 190, corresponding to a denoising
rate of approximately 40%. The CAE method with local
wavefield feature constraints performed moderately,
while the network trained with only MSE (4,=1) failed to
effectively suppress the surface-wave noise. These results
indicate that the RS-CAE network, incorporating residual
structures and self-attention mechanisms along with local
wavefield characteristic constraints, exhibited a significant
advantage in NSW suppression.

Both synthetic and field data examples demonstrated
that introducing the local scattered-wave characteristics
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loss enhances the networks ability to extract features
in complex wavefields. During the training process, the
weights of L, L, and L, were dynamically adjusted in
phases to meet the learning objectives of each stage. This
strategy guided the network to gradually balance energy-
related features and waveform structural characteristics

while maintaining training stability.

4, Conclusion

We proposed a self-supervised deep learning strategy that
eliminated the need for additional clean sample data as labels.
During dataset preparation, seismic interferometry was
utilized to predict noise from the original noisy data, generating
high-quality training samples for the network. Throughout
the network training process, a local scattered-wave feature
loss term and regularization terms were integrated with the
conventional MSE, allowing the network to autonomously
focus on waveform characteristics. A dynamic adjustment
strategy was employed to control the networKs feature
extraction priorities at different stages, ultimately enabling the
model to learn both energy discrepancies and the waveform
characteristics of scattered waves.

Traditional matched filters, relying on fixed parameters,
often struggle to achieve satisfactory results in complex
survey areas, whereas a trained network can adaptively
handle varying noise conditions, providing stable
denoising performance. Although network training can be
time-consuming, once completed, inference is extremely
fast, with a single-shot gather taking less than a second,
substantially improving overall efficiency. During training,
only a small portion of data from each survey area or model
is needed to satisfy the network’s sample requirements.
Tests on both synthetic and field seismic data show
that incorporating local scattered-wave characteristic
constraints enables the network to effectively achieve the
intended denoising objectives.
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