JOURNAL OF SEISMIC EXPLORATION 18, 119-133 (2009) 119

REDUCING THE PRESSURE ON DATA ACQUISITION AND
PROCESSING:
II - DATA-DRIVEN COMPRESSION USING CONIC CODING

LUC T. IKELLE and IOAN STURZU

CASP Project, Department of Geology and Geophysics, Texas A&M University, College Station,
Texas 77843-3115, U.S.A.

(Received September 25, 2008; accepted December 13, 2008)

ABSTRACT

Ikelle, L.T. and Sturzu, I., 2009. Reducing the pressure on data acquisition and processing: II -
Data-driven compression using conic coding. Journal of Seismic Exploration, 18: 119-133.

We here propose a compression method that we characterize as data-driven compression
because it is based on transforms which are data-dependent instead of generic mathematical
transforms like wavelet transforms. Furthermore, our data-driven compression can be used in
cascaded form with existing arithmetic data-compression methods (that is, a data-driven compression
followed by an arithmetic data-compression method) because our data-compression method is based
on accuracy, whereas arithmetic data-compression methods are based on precision. Such a cascade
application of compression techniques can increase the compression ratio to 100:1 or more.

KEY WORDS: data compression, matrix factorization, data acquisition, data processing,
multiplicative update rules.

INTRODUCTION

The goal of data compression is to shrink the computer space needed to
store a dataset. Modern seismic-data acquisition and processing techniques
involve the use of datasets whose sizes can range into the terabytes. The storage
and handling of these datasets are significant components of the cost of data
acquisition and processing. Despite the rapid increase in available disk storage

0963-0651/09/$5.00 © 2009 Geophysical Press Ltd.

120 IKELLE & STURZU

at ever-lower costs, manipulation of very large datasets on the order of terabytes
remains a formidable problem in many E&P organizations. Hence it is important
to develop compression methods which allow us to reduce the storage size of
these datasets. Yet the literature on seismic-data-compression methods is quite
limited. Here are the classical examples: Spanias et al. (1991), Luo and Schuster
(1992), Bosman and Reiter (1993), Donoho et al. (1995), and Tage et al.
(2004).

One of the reasons often cited for the limitations of investigations of
seismic data compression is that early developments have produced
disappointing compression ratios, generally less than 10:1*. Moreover, these
developments are based on generic mathematical transforms such as wavelet
transforms or cosine transforms, which do not take into account the specific
characteristics of seismic data. Therefore, short of creating new transforms,
very little progress can be made in data compression.

We here propose a compression method that we characterize as
data-driven because it is based on transforms which are data-dependent instead
of on generic mathematical transforms such as wavelet transforms. Furthermore,
data-driven compression can be used in cascaded form with existing arithmetic
data-compression methods (that is, a data-driven compression followed by an
arithmetic data-compression method) because our data-compression method is
based on accuracy, whereas the arithmetic data-compression methods are based
on precision. Such a cascade application of compression techniques can increase
the compression ratio to 100:1 or more.

Before we immerse ourselves in the construction of data-driven transforms
(i.e., transforms which vary with the data under consideration) needed in the
development of data-driven compression, let us look at how such transforms can
help us in our compression process. Consider a dataset, Y(x,,t,x,), where x, and
X, describe the receiver points and shot points, respectively, and t describes the
arrival times of seismic events. Suppose that we can describe this dataset as a
linear superposition of some features that can be extracted from the same
dataset. If we denote these features by the functions y;(t), then we can write our
data as follows:

M
Y(x,6X) = Y, a(X X)) (1)

i=1

* The data-compression ratio is the ratio between the size of the uncompressed data and the size of

the compressed data. Thus, for a 20-terabyte dataset compressed to 2 terabytes, we have a
compression ratio of 10:1 (which is often written "ten to one").

DATA-DRIVEN COMPRESSION 121

where a;(x,,x,) are stochastic coefficients. When the M functions (t) are taken
as a set, they constitute a dictionary. Individually, they are known as basis
functions, atoms, or elements of the dictionary.

Suppose now that we have a dataset which has 1,000 source points,320
receiver points for each shot point, and 625 samples per receiver (i.e., each
trace has 625 samples). The number of datapoints is K = 625 x 1000 X 320.
If we assume that the number of basis functions needed to describe this dataset
is M = 625, then we need K = 625 X 625 + (625 X 1,000 X 320) datapoints
to describe the decomposed data, with 625 X 625 datapoints for the dictionary
and 625 X 1,000 x 320 for the stochastic coefficients. In other words, we need
more storage for the decomposed data than for the original data. Fortunately,
we need only 40 basis functions, on average, to describe a seismic trace (i.e.,
a source and receiver pair). The others are almost zero. Thus we need fewer
than K’ points [with K> < 625X 625 + (40 X 1,000 X 320)] to describe the
decomposed data. That means that we can achieve a compression rate of 15:1
or more. If we apply an additional arithmetic compression to store the
coefficients a,(x,,X;), we can increase the compression rate even more.

DATA-DRIVEN TRANSFORM

The basic idea for constructing the basis functions y,(t) is to consider them
as small parts of Y(x,,t,X,) in such a way that the sum of their parts allows us
to reconstruct any trace of Y(x,t,x,). To achieve the sum of their parts, we
assume that the coefficients a,(x,,x,) are always nonnegative. This nonnegative
constraint ensures that the decomposition in (1) is purely additive (no
subtraction is allowed). Why do we need this constraint? As we see in the
numerical example, this constraint allows us to increase the sparsity of
coefficients a;(x,,X,) - that is, to increase the number of near-zero coefficients
and thus increase the compression ratio.

The mathematics for computing ¥;(t) can be formulated as follows. We
start by randomly extracting N traces from a number of gathers of Y(x,,t,x;) that
are representative of the characteristics of this dataset. For example, in a
300-gather dataset, we can take one in every six gathers to form a set of 50
gathers that is representative of the data. We can then randomly extract N traces
from this set. The number N is generally very large - about 10,000 or more.
We group these N traces into an L X N matrix that we denote D. We also
describe the basis functions y,(t) and a,(x,,x,) into matrix forms. The basis
functions are described as an L X M matrix, which we denote ¥, and the
coefficients a,(x,,X,) as an M X N matrix, which we denote A. So in matrix
form, (1) becomes

D = YA , 2)

122 IKELLE & STURZU

where D is known but ¥ and A are unknowns.

Our next task is to reconstruct ¥ and A. We propose to obtain these two
matrices as a minimization with the following objective function:

M

L N
EAY) = D - YA, =Y YDy — X ViwAml® » 3)
/=1 n=1 m

with the nonnegative constraint that the elements of A are always
nonnegative. The elements of the matrices of D, A, and ¥ are denoted here as
D,,, A, and v, respectively. Note also that an additional constraint is needed
in (3) because the objective function can always be decreased by simply scaling
up A and correspondingly scaling down V. Basically, setting ¥ := ¥ and A
:= (I/a)A (with & > 0) does not alter (3). The choice for this additional
constraint is to arbitrarily fix the norms of the columns of ¥ (e.g., ||, = 1
for all /, where , is the /-th column of V).

We can actually turn the optimization in (3) into a nonnegative matrix
factorization problem (Lee and Seung, 1999) by rewriting the input matrix D as
a nonnegative matrix. This reorganization consists of constructing two new
matrices, D™ and D™, whose elements are only positive. The elements of D* are
defined as D}, = max{D,,0} for all / and n, while the elements of D~ are
defined as D7, = max{—D,,,0}. The new input data matrix is

D=[D" D] . “4)

So we now have a data matrix of size (2L) X N instead of L X N. This
implies that the size of the matrix containing the basis vectors will also increase
in size from L X M to (2L) X M. We denote the new matrix of the basis
vectors as V. It can also be written as

Vo= [V ¥, &)
and the matrix containing the actual basis vectors can be obtained as

Y=v¥" —-¥ . (6)

Note that the size of A is unchanged. We can rewrite the minimization problem
in (1) as follows:

EAY) = |[D - YA[, , (7)

subject to the constraints ¥,, > 0, A, = 0, and | ¢,| = 1, where ¢, is the

DATA-DRIVEN COMPRESSION 123

I-th column of ¥. The minimization problem in (7) for ¥ and A can be solved
by using, for example, an iterative gradient-descent method. Each iteration has
essentially two sequential updates: (i) we update A while holding ¥ fixed:

and (ii) we update ¥ while holding A fixed:
\i’lm < \iflm + /'le[(r)AT)lm - (‘PTAAT)Im] ’ (9)

where 7., and p,, are stepsizes. The symbol <« again means that the term on the
right-hand side is computed and then substituted in A, for eq. (8) and in ¥,
for eq. (9). In the gradient-descent updates, as in (8) and (9), the stepsizes are
constant. Lee and Seung (1999) have proposed to select stepsizes which are not
constants. They defined these stepsizes as follows:

Non = Amn/(‘i’T‘i’A)mn} ’ and Kim = \illm(‘i,AAT)lm . (10)

By substituting these expressions of the stepsizes in (8) and (9), we obtain the
following new update rules:

Apn < Apn(¥'D),,/(FFA)

and (11
¥, < ¥, (DA"), /(FAA"),, ,

which are generally known as the multiplicative rules. The multiplicative rules
are more attractive for numerical implementation than the gradient rules in (8)
and (9) because they are extremely simple to implement, as we can see in the
Matlab code in Table 1a, and they do not require any stepsize input. Moreover,
our experience suggests that the method with multiplicative-rule updates
converges significantly quite faster than gradient methods.

EXAMPLES OF NONNEGATIVE CODING AND DECODING

Let us look at a numerical example. Using finite-difference modeling, we
have created a 320-shot-gather dataset, with each shot having 320 receivers.
Fig. 1 shows one of these shot gathers. The number of samples per trace is 625
(i.e., L = 625). We have selected a total of 50 shots as representative of this
dataset by taking one in six shot gathers. From these 50 shot gathers, we have
extracted N = 10,000 traces to form the data matrix D of size 1,250 x 10,000.
We then use the Matlab code in Table 1a to obtain the dictionary described in
Fig. 2, with M = 625. Fig. 2a shows the dictionary in the order it is output

124 IKELLE & STURZU

from the Matlab code. For clarity, we have displayed only one of four basis
functions. We have even limited the number of basis functions to 10 in Fig. 2b
to provide more insight into the wavelets which characterize basis functions.
Notice that the basis functions are very sparse and repetitive, albeit with time
shifts. Thus they can also be compressed if necessary.

In Fig. 2c we have sorted the basis functions in Fig. 2a with respect to
the position of their main pulses. We can see a clear trend which covers the
entire length of any given trace of our data. Our experience shows that this
dictionary has enough information to describe any seismic trace of our datasets.

4.75 Receiver position (km) 0.75 4.75 Receiver position (km) 0.75

(a)

(b) (d)

Fig. 1. (a) A shot gather of a 2D dataset before the compression process. Note that this shot gather
is not included in the 50 shot gathers used in the construction of the dictionary in Fig. 2. (b) The
reconstructed data using the dictionary described in Fig. 2. (c) The difference between Fig. la and
Fig. 1b at the same scale as Fig. 1a. (d) The stochastic coefficients used in the reconstruction of Fig.
Ib. The coefficients are in the same order as the dictionary in Fig. 2c.

DATA-DRIVEN COMPRESSION 125

(@)
il
I \
mi]
> /\f‘\—
2 Il
st J—
g I v
@ \|
= |
(b) § f‘}jr‘i ﬁ
B
@[: |
|
‘\ s
I\
|
0.6 ‘ ‘ ‘ ‘ Time (‘s) ‘ ‘ ‘ 2.4
(©)

0.5 Time (s) 24

Fig. 2. Dictionary obtained by using 50 gathers of a 320-shot-gather dataset. We have taken one in
six shot gathers. From these 50 shot gathers, we have extracted N = 10,000 traces. The other
parameters used in the construction of the dictionary are L = M = 625. (a) The dictionary in the
order it is output from the Matlab code. We have displayed only one of four basis functions. (b) The

first 10 basis functions of the dictionary. (c) The dictionary sorted as a function of the position of
their main pulses.

126

IKELLE & STURZU

Table 1(a). A Matlab code for constructing the dictionary when working on a trace-by-trace basis.

function [A,S] = main(data,samples)
% INPUT
%data seismic data
% samples total number of traces to be used

% OUTPUT
%A dictionary
%S coefficients of the choosen traces

[nshots,nrecvs,nt]=size(data);
nx=1; rdim=nx*nt;

Z = sampdata(data, samples,nt,nshots);
X = [Z+abs(Z); abs(Z)-2]/2;

niter = 150; sources = nt*nx;
[A,S] = sparc(X, sources, niter);

function X = sampdata(data,samples,nt,nsh);
% INPUT nt nr. of samples in a trace

% nsh nr. of shots

% OUTPUT X patches organized as
column vectors

nsmp = floor(samples/nsh);

% Initialize the matrix to hold the traces
X = zeros(nt,nsmp*nsh); smpn = 1;
fori=1:nsh

% Load a single-shot image

| = squeeze(data(i,:,:));

sizex = size(l,2); sizey = size(l,1);
posy = floor(rand(1,nsmp)*sizey)+1;
for j=1:nsmp

X(:,smpn) = (I(posy(1,),:)); smpn=smpn+1;

end
end

function [A,S]= sparc(X,sources,niter);
% INPUT:
% X non-negative patches as column vectors

[dims, samples] = size(X);

% Initializing

A = abs(randn(dims,sources));

A =A./(ones(dims,1)*sqrt(sum(A.A2)));

S = abs(randn(sources,samples));

S =S./(sqrt(sum(S.”22,2))*ones(1,samples));

% Loop
iter = 0; while iter < niter
obj = sum(sum((X-A*S).A2))/samples;

% Update S and A with multiplicative steps
S = S.*¥(A™*X)./(A*A*S);
A= AF(X*S')./(A*S*S");

% Normalize columns of A (and scale rows of S
correspondingly)

scaling = sgrt(sum(A.”2));

A =A./(ones(size(A,1),1)*scaling);

S =S.*(scaling'*ones(1,size(S,2)));

iter = iter+1;
end

snr=sum(sum((X).A2))/sum(sum((X-A*S).A2));
['final global SNRis ',num2str(snr)]

Let us turn to the reconstruction of the gathers using the dictionary in Fig.
2. The Matlab code for this reconstruction is identical to the one in Table la.
We simply have to eliminate the update rule over ¥, which is no longer needed,
and add ¥ as input. Fig. 3 shows the results of reconstruction for a shot gather
not included in the 50 shot gathers used in the construction of our dictionary.
By looking at the difference between the original and reconstructed data, we can
see that the reconstruction is quite accurate. Similar results with an offset gather

are shown in Fig. 4.

Fig. 5 shows the contributions of various basis vectors to the
reconstruction of the data in Figs. 1b and 3b. We can see that traces which
require 100 elements of the dictionary are rare. We estimated that we need, on
average, just 40 elements for the reconstruction in Figs. 1b and 3b.

127

DATA-DRIVEN COMPRESSION

4.75 Receiverposition (km) 0.75 4.75 Receiver position (km) 0.75

(@)

(b)

Time (.s)

2.5

Fig. 3. (a) A zero-offset gather of a 2D dataset before the compression process. (b) The
reconstructed data using the dictionary described in Fig. 2. (c) The difference between Fig. 3a and
Fig. 3b at the same scale as Fig. 3a. (d) The stochastic coefficients used in the reconstruction of Fig.
3b. The coefficients are in the same order as the dictionary in Fig. 2c.

A DATA-DRIVEN TRANSFORM WITH ARBITRARY WINDOW SIDES

So far we have constructed our dictionary on a trace-by-trace basis.
Actually, one can adapt the algorithm in Table 1b for any M, traces X M, data
windows as long as the window size is small enough that we can extract a large
number of windows from the data to construct an adequate dictionary of the
data. However, we did not find this approach useful for data compression for
reasons that we will point out later. However, we still describe this approach
here because it may be useful for other seismic applications.

128 IKELLE & STURZU

—h
o

E 90 -5
o
= 80 -10
S
.0:, - - =15
- 60
‘s - {-20
n 50
s : - 1-25
dé 40|
0 |

20 =35

-
o

-40

50 100 150 200 250 300 Normalized
Receiver index amplitude (dB)

Fig. 4. The contributions of various basis vectors used in the reconstruction of the data in Fig. 1b.
The horizontal axis of this plot describes the receiver points, and the vertical axis represents the
index of the basis vector. The color describes the contributions of various basis vectors. For each
receiver, only the first significant 100 basis vectors from the 625 basis vectors are shown.

0 50 100 150 200 250 0 30 100 150 200 250

(a) (b)

Fig. 5. A dictionary obtained using 10 gathers of a 320-shot-gather dataset. We have taken one of
every six shot gathers from the first 60 shot gathers of this 2D dataset. From these 10 shot gathers,
we have extracted N = 10,000 windows of one trace X 250 time samples. The other parameters
used in the construction of the dictionary are L = M = 250. (a) The dictionary in the random order
in which it is obtained from the Matlab code. (b) The dictionary sorted as a function of the position
of the main pulses of the basis functions.

DATA-DRIVEN COMPRESSION 129
Table 1(b). A Matlab code for constructing the dictionary when working on a window-by-window

basis.

i = mainpatch(dat |
function [A,S] = mainpatch(data,samples) nsmp = floor(samples/nsh);

% INPUT
9 ismic dat
fadata ceismic gata % Initialize the matrix to hold the traces
% samples total number of traces to be used *
o .) . X = zeros(nt*nx,nsmp*nsh); smpn = 1;
%nx, nt dimensions of the window for i=1:nsh
% OUTPUT o .
o 7 % Load a single-shot image
7oA dictionary | = squeeze(data(i,:,:));
%S coefficients of the choosen traces =54 il

) izex = size(1,2); sizey = size(l,1);
[nshots,nrecvs,nt]=size(data); sizex = size{l,2); sizey = size(,1)

=y ¥t
rdim=nx*nt; posx = floor(rand(1,3*nsmp)*(sizex-nt-2))+1;

posy = floor(rand(1,3*nsmp)*(sizey-nx-1))+1;
iter=1;
for j=1:3*nsmp
nor=norm(l(posy(1,j):posy(1,j)+nx-...
1,posx(1,j):posx(1,j)+nt-1));
if nor>1
X(:,smpn) = reshape((I(posy(1,j):posy(1,j)+nx-...
1,posx(1,j):posx(1,j)+nt-1)),nx*nt,1);
smpn=smpn+1; iter=iter+1;

Z = sampdatapatch(data, samples,nt,nshots);
X = [Z+abs(Z); abs(2)-Z]/2;

niter = 1000; sources = nt*nx;
delta=0.05
[A,S] = sparc(X, sources, niter, delta);

function X =
sampdataptch(data,samples,nx,nt,nsh);

end
% INPUT if iter>nsmp; break; end
%nt nr. of samples in a trace end
% nsh nr. of shots end
% OUTPUT
% X patches as column vectors end

Computationally, the starting point is to select about 50 or so multishot
gathers which are representative of the multishot dataset that we are dealing
with. From these gathers, we randomly select a large number of M, traces X
M; data windows. We will represent data in each window as an M-dimensional
(with M = M, * M) vector that we denote d, = [d,,, d,, ..., d.,,]", where n
indicates the window under consideration. The index n varies from 1 to N, with
N being the number of M windows extracted from the 50 gathers. So we can
also represent the basic functions as M-dimensional vectors. We denote these
vectors as ¥, = [y, ¥ops oo tl/Mp]T. Thus the dictionary can now be described
as an M X M matrix:

¥ = [¢1|¢2||‘/’M] . (12)

We can group the data vectors d, into an M X N matrix that we will
denote D, and similarly, the stochastic cocfficients can be grouped into an M X
N matrix that we denote A. We arrive again at eq. (2) by replacing L by M.

130 IKELLE & STURZU

The Matlab code in Table 1b can also be used for reconstructing ¥ and A. Let
us now look at an example of data reconstruction using windows of one trace
X 250 time samples. We considered 10 of the 50 shot gathers used in Fig. 1.
We extracted 10,000 windows of the input shot gathers. The data in each
window were thus represented by a 2 X 250-dimensional vector, as described
earlier. The size of the resulting data matrix is 500 X 10,000. We then ran the
Matlab code in Table 1b. The columns of the matrix ¥, which constitute our
basis functions, are shown in Fig. 5. We can see that events in each window
resemble those of the actual data, thus confirming that the nonnegative matrix
factorization allows us to reconstruct parts of the original data.

4.75 Receiver position (km) 0.75 4.75 Receiver position (km) 0.75
R e A A i LPLA - R T DO

i . — |'|' |
' AR ERA

O
Time (s)

(d)

Fig. 6. (a) A shot gather of a 2D dataset before the compression process. (b) The reconstructed data
using the dictionary described in Fig. 5.(c) The difference between Fig. 6a and Fig. 6b at the same
scale as Fig. 6a. (d) The average of stochastic coefficients used in the reconstruction of Fig. 6b. The
coefficients are in the same order as the dictionary in Fig. 5b.

DATA-DRIVEN COMPRESSION 131

Let us now turn to the reconstruction. We have displayed in Fig. 6 the
shot gather that we wish to reconstruct. We started by decomposing this shot
gather into 10,000 overlapping windows of one trace X 250 time samples. The
overlapping between windows is necessary to avoid the numerical-edge effects
associated with the fact that several windows are needed here to reconstruct a
seismic trace. At the given data point, this overlapping allows us to average the
reconstructed results associated with different windows. Hence, the edge effects
are hardly visible in the reconstructed data because of these averages, as we can
see in Fig. 6b. Clearly, the reconstructed results are satisfactory. It is difficult
to tell reconstructed gathers from the original gathers with only the naked eye.
The idea of working with the windows of the data instead of traces is not
attractive for data compression because it requires a large number of
overlapping windows to avoid edge effects, as a large number of windows
implies a large number of coefficients for reconstructing the data. For example,
when working on a trace-by-trace basis, we need at most a matrix of 625 X 320
(including the zero values) to store the stochastic coefficients for one shot
gather. With a window of one trace X 250 time samples, we need a matrix of
250 x 10,000 (including the zero values) to store the stochastic coefficients of
the same shot gather. In other words, the larger numbers of windows needed to
store stochastic coefficients rendered the option of using the data-driven
transform described here less attractive when working on a window-by-window
basis instead of a trace-by-trace basis. Yet we have included the window option
of this transform here because it may turn out to be useful in other seismic
applications. Note that one can also construct windows with more than one
trace. For example, we constructed a dictionary with square windows of 20
traces X 20 time samples, as illustrated in Fig. 7. Basically, we extracted
10,000 windows of the input shot gathers. The data in each window were thus
represented by a 2 X 20 X 20-dimensional vector, as described earlier. The
size of the resulting data matrix is 800 X 10,000. We then ran the Matlab code
in Table 1b to obtain the dictionary in Fig. 7. Note that we obtained the results
in Fig. 7 as follows. We first constructed ¥ using the code in Table 1. We then
used eq. (6) to obtain the matrix ¥ of the basis vectors. Finally, we transformed
each column of ¥ into square windows, which are displayed in Fig. 7. We can
see that the events in each window resemble those of the actual data, thus
confirming that the nonnegative matrix factorization allows us to reconstruct
parts of the original data.

COMPRESSION RATIO

To increase the compression rate, we propose to combine several
compression techniques, namely acquisition-driven, data-driven, and arithmetic
compression. In Ikelle (2009) we described how the concept of multishooting
can be used to collect compression. The basic idea of multishooting is that

seismic waves can be g eeeeeee d from severa 1 locations simultaneous ly (or near ly

simul Iy by d ing small time dlybw n the shoo gp nts)
d f gl ce locatlon at a time, as is ¢ ly the Thus
f shot gat h acqui d simulta y are equivalent to mp i
f41lel llh compre dbymlh g q
driven compression. If we h pply th d a-driv mpress ion to mu 1 h
data, even wit h mp on of, say, 10: 1 we alre dy 401
M over, the same dic ary can be used to ¢ mp h l a 3D
vey which may be adjac t to th line used to ¢ h dic y U ing
hm tic compression for the f y 3:1, we alre d b e 100:1.

. ;; ggg RENEEE

;%%%%ﬁ%%% AR IRy
NiESuSnNEs
WWW%MWWW
R s iy

MMW%W@ e

TR SEIRTAR
SN SO

WWW%WW%M%
RO MRS

dataset. We have taken one of

DATA-DRIVEN COMPRESSION 133

CONCLUSIONS

We have described data-driven compression based on a data-driven
transform. Besides the additional increase in compression ratio, the technique
offers petroleum seismologists a new framework for investigating data
compression. The dictionary of these new transforms is driven by seismic data
rather than an arbitrary mathematical dictionary.

ACKNOWLEDGMENTS

We would like to thank the sponsors of the CASP Project for their
comments and suggestions during the review process.

REFERENCES

Bosman, C. and Reiter, E., 1993. Seismic data compression using wavelet transforms. Expanded
Abstr., 63th Ann. Internat. SEG Mtg., Washington D.C.: 1261-1264.

Donoho, P.L., Eagrs, R.A. and Villasenor, J.D., 1995. High performance seismic trace
compression. Expanded Abstr., 65th Ann. Internat. SEG Mtg., Houston: 160-163.

Ikelle, L.T., 2009. Coding and Decoding: Seismic Data. Elsevier Science Publishers, Amsterdam
(in press).

Lee, D.D. and Seung, H.S., 1999. Learning the parts of objects by non-negative matrix
factorization. Nature, 401: 788-791.

Luo, Y. and Schuster, G.T., 1992. Wavelet packet transform and data compression. Expanded
Abstr., 62th Ann. Internat. SEG Mtg., New Orleans: 1187-1190.

Spanias, A.S., Jonsson, S. and Stearns, S.D., 1991. Transform methods for seismic data
compression. IEEE Transact. Geosci. Remote Sens., 29: 407-416.

Tage, R., Ramstad, T.A. and Amundsen, L., 2004. Optimization of sub-band coding method for
seismic data compression. Geophys. Prosp., 52: 359-378.

