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ABSTRACT

Santos, E.T.F., Harris, J.M., Bassrei, A. and Costa, J.C., 2009. Trigonal meshes in diffraction
tomography with optimum regularization: an application for carbon sequestration monitoring. Journal
of Seismic Exploration, 18: 135-156.

Diffraction tomography is an inversion technique that provides the reconstruction of a
subsurface velocity field from scattered acoustic field data. High-resolution imaging conventionally
requires estimation of a large number of parameters. A trigonal mesh is applied in the study
described in this paper, in order to strongly reduce the number of parameters. Thus, instead of a
velocity-estimate for each cell in a regular grid, the velocity is estimated only at triangle vertices,
which act as control points for the interpolation of velocity field within each triangle. Regularization
is required to avoid sharp artifacts due to trigonal elements. A synthetic model is adopted to test the
feasibility of the proposed method for reservoir monitoring.

KEY WORDS: inverse problems, diffraction tomography, regularization, trigonal meshes,
CO, sequestration.
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INTRODUCTION

Tomography techniques have been successfully applied in different areas
such as geophysics, medicine and engineering. The underlying principle of
tomography is to estimate medium properties based on its projections. In
geophysical applications, two main classes of tomographic methods exist:
traveltime and waveform tomography. Traveltime tomography uses only
traveltimes between different source/receiver pairs in order to estimate the
velocity field of a probed region. On the other hand, waveform tomography uses
the full waveform to estimate the velocity field. Other medium properties may
be estimated as well, e.g., attenuation and velocity anisotropy.

We adopted a particular approach to waveform tomography called
diffraction tomography, which uses a first order Born approximation to model
the scattered acoustic field. The scattered field is the difference between the
measured data and the acoustic field in a known reference velocity field ¢™(r).
Under this assumption, the scattered field is linearly related to perturbations in
the reference velocity field. The reflected pressure field is the input for the
inversion procedure, that estimates the two-dimensional velocity field c*(r).

The projection theorem (Devaney, 1984; Harris, 1987, Wu and Toksoz,
1987) provides a direct solution to diffraction tomography. Alternatively, using
the matrix formulation (Thompson et al., 1994; Reiter and Rodi, 1996; Rocha
Filho et al., 1996), the linear system that models scattering phenomena can be
solved using numerical methods (Santos et al., 2006). The main advantages of
the matrix formulation are to allow arbitrary survey geometry and the possibility
of better conditioning of the inverse problem using a priori information. The
matrix approach was successfully applied before to diffraction tomography using
a regular grid (Santos et al., 2006; Santos and Bassrei, 2007). Its main
disadvantage is the cost in terms of computation time when compared with
projection methods.

The estimation of the velocity field from measured data using the matrix
approach requires the solution of a system. As other inversion techniques
applied in geophysics, it is ill-posed. Small perturbations in measured data may
result in strong variations in the estimated parameters. It is necessary to
introduce additional a priori information or constraints to reach realistic
solutions. Regularization may provide such information to improve conditioning
through smoothness constraints. Tomographic imaging algorithms may require
smoothness along vertical direction or more often along the horizontal direction,
which might be associated to layering found in many geological situations.

Model parameterization using trigonal meshes has been extensively studied
in traveltime tomography (Ajo-Franklin et al., 2006). On the other hand, model
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parameterization in diffraction tomography requires a more careful approach,
due to the complex nature of the scattering phenomena to be modeled. We
propose the use of a linear operator T that maps a trigonal mesh into a regular
grid, strongly reducing the number of parameters to be estimated. This mapping
approach simplifies the use of trigonal meshes for model parameterization in
diffraction tomography. Moreover, conventional techniques applied to a regular
grid maps directly into trigonal meshes. Thus, any conventional technique for
inversion of a regular grid can be applied to trigonal meshes using this
formulation. It does not require the specific modeling of triangular elements
scattering. It also makes the proposed approach a framework much more
flexible than conventional mesh methods, since it does not require explicit
reformulation of regularization and display methods, only requiring an additional
linear operator for mapping.

The introduction of regularization in the matrix approach requires a
trade-off between data fitness and model smoothness. This balance is achieved
by a scalar well-known as the regularization parameter (Hansen, 1992; Hansen,
1998). We tested two approaches to estimate an optimum value for this
parameter, the L-curve and the ©-curve criteria. To solve the regularized
diffraction tomography, we apply SVD - Singular Value Decomposition
(Lanczos, 1961). This provides an additional possibility to improve the
conditioning since the instability of the solution is determined by very small
singular values. A complementary approach to regularization is truncate singular
values below a certain threshold. The proposed method was applied to a
feasibility study of monitoring CO, injection in a reservoir using diffraction
tomography. The use of trigonal meshes, regularization and optimum strategies
for the determination of the regularization parameter were successfully applied
to image velocity anomalies produced by CO,.

LINEAR INVERSION TECHNIQUES

Consider a modeling process where the input of a given system is
described by certain parameters contained in vector m and the output is
described as Am(= d) which is a linear transformation on m. If the vector d
describes the observed output of the system, the problem is to compute the
parameters m in order to minimize in some sense, the difference between the
observed d and the prescribed output of the system Am. If we measure this
difference through the norm | |, our task is to find the value of m which
minimizes

lAm — 4, , (1)

where the M X N matrix A and the data vector d with M elements are provided
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to the problem. This is called a least-squares problem, which can be formally
stated as follows. Considering the basic relationship

d=Am , 2)
we wish to minimize the error using the following objective function:

é(m) = (d — Am)"(d — Am) . 3)

The estimated solution, also called least-squares solution, is

m* = (ATA)"'ATd . )

If the matrix ATA is singular we can use the following objective function
based on the work of Levenberg (1944) and Marquardt (1963):

d(m) = (d — Am)"*(d — Am) + \m"m .

The estimated solution, also called damped least-squares (DLS) solution,

m*™ = (ATA + \)'ATd . 6)

Generalized inverse (GI) is frequently used in the inversion of geophysical
data and its respective solution has the minimum norm. In this case the objective
function to be minimized is

ém) = m™m + t'-(d — Am) , (7
where t is the vector of Lagrange multipliers. Its minimization yields
m™ = AT(AAT)"'d . ®)

The concept of GI was developed by Moore and independently by Penrose
(1955). Consider an M X N matrix A. If: (i) AATA = A, (ii) ATAAT = AY,
(iii) (AA*)T = AA", and (iv) (A*A)T = A*A, then the N X M matrix A" is
unique. The GI is usually calculated using the singular value decomposition
(SVD) (Lanczos, 1961). A rectangular M X N matrix A with rank k can be
decomposed as A = ULV", where U is the M X M matrix which contains the
orthonormalized eigenvectors of AAT, V is the N X N matrix which contains
the orthonormalized eigenvectors of ATA and L is the M X N diagonal matrix
which contains the singular values of A, written in the decreasing order, that is,
0, =0, = ... = ¢g,. The GIA* isa N X M matrix given by A* = VL*UT,
where E£* is the N X M diagonal matrix which contains the reciprocals of the
non-zero singular values of A, so that
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REGULARIZATION BY DERIVATIVE MATRICES

Least-squares solutions very often do not provide good results. In these
situations one can apply regularization or smoothing to improve the conditioning
of matrix A. This greatly reduces the instability in the least-squares estimate
m*, hopefully the resulting smoothed image is not too far from the correct
model m (Titterington, 1985). The concept of regularization was introduced by
Tikhonov in 1963 in order to improve the quality of the inversion. This theory
was studied by many researchers, and we use the Twomey (1963) approach. See
Bassrei and Rodi (1993) about the names and history in regularization theory.
Consider the following objective function:

®(m) = \(ODm)'Dm + (d — Am)'(d — Am) , (10)

where N is the regularization parameter and D, is the [-th order derivative
matrix. If ®(m)/dm = 0, then the estimated model is given by

m* = (ATA + AD;/D)"'ATd . (12)

Notice that if N = 0 we obtain the standard least-squares, and the least-squares
is said to be damped if D§D, = I. If D is the first derivative matrix then the
regularization is called to be first order and so on. Each 2D model is scanned
line by line to be represented by a single vector. It simplifies the form of the

discrete derivative matrix, which resembles a regular pattern. The matrices
D, [M — 1) X N] and D, [M — 2) X N] are:
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0 -1 0 0 0 0

0 0 0 0 0 -1 1 0

0 0O 0 0 0 0 ~—1 1

and
-2 1 0
0 1 =2
D, =| : - . as

0 0 0 0 1 -2 1 0

0 o 0 o0 0 1 -2 1

DIFFRACTION TOMOGRAPHY MODELING VIA BORN APPROXIMATION
The constant-density acoustic wave equation is given by
V3U(r,t) = [1/c3(r)][8*U(r,t)/0t%] (15)

where U(r,t) is the solution, the total pressure field, and c(r) is the acoustic
velocity of the medium. Considering that the solution can be written as U(r,w,t)

= e“P(r,w), which represents a harmonic dependence with time, we obtain the
Helmbholtz equation:

V2 + KP(r,w) = 0 , (16)

where the two-dimensional wavenumber is given by k = k(r,w) = (k2 + k).
The conditions for the imaging are that the medium is acoustic and 2D, and the
propagation of the incident pressure field is within a limited area A(r'), the
background, with constant velocity c,.The object function is defined as

O(r) = 1 — [cg/c’(n)] , 17)
and represents the perturbation of the velocity in each point in relation to c,.

Redefining the wavenumber as function of O(r), and substituting it in the
Helmholtz equation, we obtain
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[V? + K]Ps = kOm)[Py + Pg] (18)

where Py is the incident pressure field, Py is the scattered pressure field and k,
is the homogeneous wavenumber, given by k, = w/c,. Eq. (18) is a differential
equation with the following integral solution, known as Lippmann-Schwinger
equation (Lo and Inderwiesen, 1994):

Py(r) = —k§ S O)G(r|r)[Po(r’) + Pg(r’)ldr’ . (19)

A(r')

In the inverse scattering procedure, we consider that the scattered pressure
field is known at the domain boundary, the object function is the unknown
function, and the integral above becomes an integral equation. The equation (19)
is non-linear and its linearization is achieved, for example, via the first order
Born approximation, which is only valid for the weak scattering of the incident
pressure field. The total pressure field is Pi(r) = Py(r) + Pg(r) and Py(r) <

Po(r), so that we have P(r) = Py(r). Thus we obtain a linear relation between
O(r) and Pg(r):

Pyr) = —k | Or)G@|r)Pu(r)dr (20)

A(r')

We represent the incident pressure field by a source in rg through Green’s
function:

Po(r’) = G(rg|r’) , Q1)

and the scattered pressure field in A(r) is registered by a receptor in rg:

Py(rs.re) = —k | O0")Grg!r') Gerglr) dr’ . (22)

A(r')

The discretization of the above expression leads to the linear relation d
= Am, which has to be inverted in order to recover O(r). In this work, the

inversion is performed using SVD with regularization, which we described
earlier.

TRIGONAL MESHES

We propose the use of trigonal meshes for diffraction tomography in order
to reduce the number of parameters to be estimated. However, we also want to
keep the simple formulation of the tomographic matrix and regularization for



142 SANTOS, HARRIS, BASSREI & COSTA

conventional regular grids. Thus, we derived a different formulation for the use
of trigonal meshes that allows mapping between triangle vertices and a regular
grid. This approach can be used as a general framework to solve linear inverse
problems for different areas using triangles instead of rectangular cells as basic
elements, with minimal impact on original problem formulation.

The key concept is to describe each cell of a regular grid as a linear
combination of control node-values at triangle vertices, considering the
respective triangle that covers each region of regular grid. Thus, a linear
operator T may be explicitly defined to map the control nodes of a trigonal
mesh into any regular grid. The algorithm that computes matrix T has the
following steps:

For each mesh triangle:

* identify its three vertices to compute three respective vertex weights based
on the relative position of interior cells of this triangle;

¢ compute three weights for each node of the regular grid within the current
triangle using barycentric coordinates interpolation;

* store these weights into the matrix T which allows to compute each node
value of the regular grid as a linear combination of values at the nodes of
the trigonal mesh.

The interpolation using barycentric coordinates is based on the areas of
three imaginary triangles formed by lines between triangle vertices and an
interior point as can be seen in Fig. 1 (Bottema, 1982). These three areas are
used as a measurement of influence of each control node vertex onto an interior
point, resulting in three respective weights for each discretized interior point.
Considering v, v, and v, as the control values at respective positions r,, r, and
r; corresponding to vertexes of each triangle, the weights for each interior point
at position r using barycentric interpolation are given by:

wir) = [(r — 1) X (r; = r)el/[r, —r) X r; —r)el ,  (23)

wy(r) = [(r — 1) X (r; —r)el/fr, —r) X (r; —r)e] , (24
and

wi(r) = [(r —r) X (r; = r)el/[r; —r) X (r, —r)el , (25

where e; is the unitary vector (0,0,1). This leads to the following expression that
maps node-control values from a trigonal mesh onto a regular grid cell value
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O(r) for each triangle:

3
o) = ), wimw(r) . (26)

The matrix T performs the mapping of a trigonal mesh to an arbitrary
point r using respective triangles that covers its different regions. Thus,
node-control values at triangle vertices can be mapped into a regular grid using
the following forward mapping expression:

o="Tv . 27)

The object function O(r) is discretized into regular grid cell values vector
0. From a simple regular grid formulation for linear problems:

p=Wo , (28

where p is the data vector and o is the parameter vector, one may use the
following expression for trigonal meshes:

p=WTv . (29)

I

I I;

Fig. 1. Structure of the trigonal element.
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For linear inverse problems, this expression can be applied to estimate
trigonal mesh control node values from data vector:

v=WTD'p ,

where the superscripted plus symbol means pseudo-inverse computed using
SVD. The same expression can be rewritten for the least-squares formulation:

v = [(WDIWDI*(WD'p . (30)

The following equivalent regularized system can be obtained:

Tv = : €2V

where D is a numerical first-derivative matrix. After the parameter estimation,
the resulting trigonal mesh control values can be easily displayed as a regular
grid using forward mapping of linear operator T, as described earlier.

NUMERICAL SIMULATION

We considered a true model with 50 X 50 = 2,500 cells, which can be
seen in Fig. 2. Each cell has the size of 3 X 3 m. The acquisition geometry was
the conventional seismic reflection survey, where sources and receivers are
located at the top of the model. The background medium velocity is 4,000 m/s.
There is a negative velocity contrast caused by CO, injection that causes a minus
2% contrast. This model represents injected CO, at bottom level which escaped
through a leak due to a fault, forming an upper plume, an important situation
to be detected for safety assessment. In each configuration there are 15 sources
and 15 receivers, in such a way that the data set has 225 data points. But since
we separated the complex numbers into real and imaginary parts, we have in
fact 450 points of information, making the tomographic matrix rectangular (450
X 2,500). Since there are more parameters to be estimated than available
information, this matrix is underdetermined and would not provide a reasonable
parameter estimation for such resolution. We applied the proposed trigonal mesh
mapping to reduce the number of parameters to be estimated. Fig. 3 shows an
ideal estimated model using triangles for forward mapping from the true model.
This estimate is used as reference for comparison purposes, since it is the best
possible reconstruction of the true model shown in Fig. 2, using a regular
trigonal mesh. The meshes were generated using function calls to a Matlab
toolbox called Distmesh (Persson and Strang, 2004).
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Fig. 2. True model and the seismic reflection profile acquisition geometry.
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Fig. 3. Trigonal mapping of the true model (reference true model).
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Fig. 4 shows a regular trigonal mesh with 199 vertices that act as control
nodes, strongly reducing the number of parameters to be estimated. Using the
proposed forward mapping for trigonal meshes, the tomographic matrix
dimensions now become 450 X 199, which leads to an overdetermined system,
allowing a more feasible parameter estimation using diffraction tomography.
Fig. 5 shows the resulting noise-free inversion for this regular trigonal mesh,
using second order regularization and A = 0.10. The choice of N\ was based on
a trial and error procedure. The leakage is well-delineated although one can
notice a light blur in the right region of the model, around the coordinates (x,y)
= (120,75) meters.

In order to evaluate the regular trigonal mesh approach we also employed
the standard methodology for parametrization, which is the application of a
regular rectangular mesh. Fig. 6 shows the estimated model where one can see
many artifacts in the region 120 < x < 150 meters for the whole depth and the
plume itself is not well defined. This result was obtained using second order
regularization (A = 0.15) and with noise-free data. Also with regular
rectangular meshes one can have an overdetermined system. For example, using

0

50

Depth (m)

100

150

0 50 100 150
Offset (m)

Fig. 4. Regular trigonal mesh using 199 vertices.
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400 rectangles (20 X 20), which means a model with much less resolution, but
with the same number of data points, we obtained the estimated model that can
be seen in Fig. 7. Now there are less artifacts but the plume itself lost its
structure. We can see that these two images (Figs. 6 and 7) are very different.
This is due to a lack of resolution in the model parameters. Comparing the
result with the regular trigonal mesh (Fig. 5) with the underdetermined regular
rectangular one (Fig. 6), we verify that the image in Fig. 5 defines much better
the heterogeneity edges and displays much less artifacts.

An adaptive mesh is shown in Fig. 8, refining the mesh at the contours
of negative contrast, resulting into 351 vertices, which still leads to an
overdetermined system. This adaptive mesh can be generated based on reservoir
flow simulation prediction. It is obtained by generation of smaller triangles at
regions with fast velocity variations and bigger triangles at nearly homogeneous
regions. The velocity variation is measured by the numerical spatial gradient of
velocity and mapped into finer or coarser meshes depending on respective
region characteristics. Fig. 9 shows, for this new mesh, the noise-free inversion
without regularization. From this result, the need for some regularization
procedure is obvious. Fig. 10 shows the noise-free inversion obtained for this
adaptive mesh, using second order regularization with A = 0.10, again based
on a trial and error procedure. The leakage is well delineated, although there is
a light blur around (x,y) = (120, 75) meters.

0
3990
3980
50 3970
E 3960
oy
B
[44]
a] 3950
100 43940
43930
- 413920
150 =
0 50 100 150
Offset (m)

Fig. 5. Estimated noise-free model with second order regularization (A = 0.15) using a regular
trigonal mesh.
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Fig. 6. Estimated noise-free model with second order regularization (A = 0.15) using a regular
rectangular mesh with 2,500 rectangles.
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Fig. 7. Estimated noise-free model with second order regularization (A = 0.15) using a regular
rectangular mesh with 2,500 rectangles.
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Fig. 8. Adaptive trigonal mesh using 351 vertices.

In order to increase the effectiveness of the regularization technique, we
used the L-curve for the search of the optimum regularization parameter. An
illustrative L-curve is shown in Fig. 11. The error between the calculated data
and the observed one is represented in the horizontal axis, that is, |e] = [ d*
— d| = [|Am* — d**|. In the vertical axis one has the derivative matrix
multiplied by the estimated solution. In other words, that is the amount of
regularization and it is expressed by |D,m**|, where n is the regularization
order. The regularization parameter is expressed by A, and for each estimated
solution m*' there is a different N. The L-curve knee represents a trade-off
between smoother solutions with higher errors and rougher solutions with
smaller errors. The knee detection at the L-curve is an heuristic criterion to
select the most appropriate solution. A number of different definitions have been
proposed for the best estimation of the L-curve corner (Belge et al., 2002;
Kilmer and O’Leary, 2001; Hansen, 1992, 1998). Considering this curve
approximately L-shaped, one can find its knee searching the maximum curvature
point (Hansen, 1992; Hansen and O’Leary, 1993). Although, secondary
inflexions may occur, which may result in the wrong detection of the best
regularization parameter. Thus, the automatic method of knee detection may
lead sometimes to inadequate regularization parameters. Due to this problem,
sometimes it is necessary to select the best regularization parameter by visual
inspection of the L-curve and a manual detection of its knee. Belge at al. (2002)
adopted the point closest to the origin of L-curve graph as an estimation of the
L-curve corner. It works fine when the curve is clearly L-shaped, but it may fail
when the inflexion at knee significantly differs from a straight angle because
another points outside knee may be closer to the origin.
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Fig. 9. Estimated noise-free model without regularization using an adaptive trigonal mesh.
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Fig. 10. Estimated noise-free model with second order regularization (A = 0.10) using an adaptive
trigonal mesh.



TRIGONAL MESHES IN TOMOGRAPHY 151
A
1D, ml|
n 2

selected

smaller errors

®
2
\.\ smoother solutions
-
° °
3
4 5 ’

>
llell,

Fig. 11. Illustrative L-curve: the curve inflexion provides the optimum regularization parameter.

The L-curve for this example using second order regularization can be
seen in Fig. 12. We added 10% peak-to-peak Gaussian noise in the values of the
scattered pressure field. This is a typical example where the L-curve does not
resemble the shape of letter "L". By visual inspection we selected the best
regularization parameter as A = 0.06064. Using this A we calculated the
reconstructed tomogram displayed in Fig. 13. The leakage is again well
delineated, although there is a light blur around (x,y) = (120, 75) meters.

We also used the ©-curve, proposed by Santos et al. (2006) and Santos
and Bassrei (2007). It is based on a curve representing the cosine of angles
between adjacent segments of the L-curve discrete representation, as can be seen
in Fig. 14. Where the curve is locally straight, the angle tends to zero, leading
the cosine of this angle to one. Near the L-curve corner, the angle tends to be
greater than its neighbors, leading the cosine to values below one. Thus, smaller
values of cosine are associated with inflexions of the curve, which lead us to
inspect the minima of the ©-curve in order to find the corner of L-curve and
consequently the best regularization parameter. The method developed to select
the best regularization parameter is based on the detection of the first local
minimum of the ©-curve. This minimum is automatically detected where the
first derivative is close to zero and the second derivative is positive, adopting
thresholds due to the discretization and arithmetic computer precision. Thus, the
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Fig. 12. L-curve for second order regularization and 10% peak-to-peak noise. The numbers
represent different values for \.
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Fig. 13. Estimated model from 10% noise-data with second order regularization using an adaptive
trigonal mesh. Optimum regularization parameter (A = 0.06064) provided from the L-curve shown
in Fig. 12.
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Fig. 14. Illustrative scheme for the construction of ©-curve.

first occurrence of minimum at the ©-curve is associated with the corner of
L-curve, which is related to the optimal regularization parameter. Further
inflexions of the L-curve are associated to local minima of the ©-curve and may
also be inspected when the L-curve is not "L-shaped". This feature of the
O-curve is important to improve the robust detection of the regularization
parameter. In general one can conclude that the ©-curve automatic criterion is
more robust than the search for maximum curvature of the L-curve (Santos et
al., 2006; Santos and Bassrei, 2007).

The O-curve for the leakage example using second order regularization
is shown in Fig. 15, where it can be seen that the optimum regularization
parameter is A = 0.10741. This is the case when the L-curve is not "L-shaped".
The first minimum is the global one and the second, which was selected, is the
local one. Again we added 10% peak-to-peak Gaussian noise in the values of
the scattered pressure field. Using this A we reconstructed the tomogram
displayed in Fig. 16. This image is very close to the tomograms shown in Fig.
10 and Fig. 13.The advantage here is the fact that the ©-curve provides the
optimum parameter in a more visible form when compared to the L-curve.
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Fig. 15. ©-curve for second order regularization and 10% peak-to-peak noise. The numbers
represent different values for A.
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Fig. 16. Estimated model from 10% noise-data with second order regularization using an adaptive
trigonal mesh. Optimum regularization parameter (A = 0.10741) provided from the ©-curve shown
in Fig. 15.
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The adaptive trigonal mesh has as its main advantage a higher level of
detail close to the contours of injected CO,. Since it uses different sizes of
triangles causing different uncertainties in the results, some stretched triangles
between coarse and fine mesh regions may introduce artifacts that can be
minimized through the use of regularization.

CONCLUSIONS

Trigonal meshes strongly reduce the number of parameters to be
estimated. Problems that were originally underdetermined can be reformulated
as overdetermined without the drastic decrease of resolution required for regular
grids under similar circumstances. We show through a synthetic model inversion
how trigonal meshes reduce the number of parameters and how a conventional
regular grid method can be easily adapted to use triangular elements instead of
uniform sized cells. This forward mapping can be used as a general framework
for improvement of many existing regular grid algorithms minimizing the impact
onto the original formulation. The proposed method also provides a simple
inverse mapping for visualization purposes of a trigonal mesh. The synthetic
model was properly recovered using a small survey for regularized diffraction
tomography applied to a regular and an adaptive trigonal mesh. Both meshing
approaches successfully detected the target, an important feature for reservoir
monitoring.
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