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ABSTRACT

Badsar, S.A. and Alibakhshi, M.A., 2009. Dynamic response of an underground tunnel to seismic
waves. Journal of Seismic Exploration, 18: 181-198.

This study investigates the interaction of seismic waves with a cylindrical tunnel cavity
embedded in a semi-infinite poroelastic medium. When seismic waves scatter from an underground
tunnel, the magnitude and location of maximum tangential stresses on the tunnel cavity varies upon
angle, frequency, and kind of the incident wave. The overburden thickness (depth of the tunnel) and
the bulk properties of the surrounding medium also affect the response of such systems to dynamic
excitations. Using Graf’s addition theorem for the cylindrical Hankel functions, the
multiple-scattering between the tunnel wall and the free surface is expressed in form of infinite
series. To model the underground medium, the Biot dynamic model of poroelasticity is employed.

A crossover frequency f, at which the wavelengths become comparable to the size of the
tunnel, the Biot critical frequency, and the crossover frequency at which fluid diffusion length is of
the order of the tunnel size are introduced. Results are discussed at the crossover frequency f,. It
is shown in this paper that neglecting the effect of the free boundary or using equivalent effective
elastic medium approximations may lead to significant errors. A limiting case involving an elastic
halfspace containing a long cylindrical cavity is considered and fair agreement with a previous study
is established.

KEY WORDS: wave-induced damage, earthquake analysis, overburden thickness, poroelasticity,
closed form solution, addition theorem.
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INTRODUCTION

Soil-structure interaction in the underground is a complex phenomenon,
involving (multi) scattering and diffraction of the incident waves from the
structure as well as the ground surface, and propagation of wave energy into the
structure and radiation back into the soil. In this process, the soil, the ground
surface and the structure, all are excited. To reduce the complexity of the
problem, various simplifying assumptions have been made in previous studies,
starting from ignoring the ground surface effect, the equivalent effective elastic
medium approximations of poroelastic soil medium, and the wave nature of the
excitation.

Using the series of Bessel function expansions, Lee et al. (1989) and
Davis (2001) investigated the scattering and diffraction of plane SV-waves by
circular cylindrical canyons and underground circular cylindrical cavities at
various depths in an elastic half space. Using the same method, the scattering
and diffraction of plane (P) waves by a circular canyon with variable
width-to-depth ratio later on studied by Cao and Lee (1990). The dynamic
problem of steady-state oscillations of a half space with different types of
cylindrical inhomogeneities studied by Nazarenko (1991) afterwards. By an
indirect boundary integral solution and based on a two-dimensional Green’s
function for a viscoelastic half-space, Luco and De Barros (1994) investigated
the two-dimensional response of a viscoelastic half-space containing a buried,
unlined, infinitely long cylindrical cavity of circular cross-section. An extensive
critical review of the existing numerical results obtained by other techniques is
also presented in the latter study. Filshtinsky and Bardzokas (2001) considered
the antiplane steady dynamic problem of the theory of elasticity for an isotropic
layer and a half-layer weakened by tunnel cavities of arbitrary cross section
where a radiating monochromatic shear wave (SH-wave) is considered as
loading. Subsequently, Chen et al. (2003) using the complex function method,
constructed the Green’s function of the dynamic stress concentration and
scattering of SH-waves by bi-material structures.

However, the influence of slow waves and the overburden thickness on
the mechanical properties of an underground structure have not been clarified
yet, therefore, in this contribution, the dynamic behavior of a uniformly unlined
tunnel located close to a free surface, subjected to P and SV-waves is
investigated based on a two-dimensional linear elastic wave analysis.

FORMULATION

Before proceeding to analyze the full problem, we shall first review
features of Biot’s dynamic theory of poroelasticity. In the Biot model, the
medium is taken to be a macroscopically homogeneous and isotropic
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two-component solid-fluid system. It is therefore described in terms of averaged
parameters. Denoting the average macroscopic displacement of the solid frame
and the saturating fluid on the elementary macroscopic volume by the vectors
u and U, respectively, the macroscopic stress tensor oy and the mean pore fluid
pressure p, are given by (Bourbie et al., 1987):

a; = (\e — ﬁME)aij + 2pe; p, = M(¢§ — Be) (1)
where

A=Ky — 23,

K = {¢[(1/K) — (1/Kp)] + (I/K) — (1/K,)}
KooK [(1/K) — (1K) + VKJ(I/K) — (UK}
M = VIB — ¢)/K + (¢9)/Kp)] ,
B=1-KJ/K , e = ;+yp2,
f=-Vw=—-¢fc—¢ , e=Vu, e=VU, )

in which w = ¢o(U — u) is the filtration displacement vector, ¢, is the pore
volume fraction (porosity), A; is the first Lamé coefficient for a "closed" system
(i.e., for £ = 0), K; is the bulk modulus of the "closed" system, u is the shear
modulus of the bare skeletal frame, K, is the bulk modulus of the material
constituting the elastic matrix, Ky, is the bulk modulus of the saturating fluid, K,
is the bulk modulus of the dry skeleton (i.e., for the "open" system, p, = 0),
and e;; is the macroscopic strain tensor. Also, the equations of motion governing
the displacements of the solid matrix and interstitial liquid with dissipation taken
into account are written as (Bourbie et al., 1987):

N\ + WVV-u + QVV-U — VXVxXu = pii + p,U + b@a — U) ,

QVV-u + RVVU = pii + p,,U — b — U) , 3)

where

p = (1 = ¢os + b0y

N =N+ ¢M(gy — 26) ,
P11 = P + P, — 2)

Q = ¢M(B — ) , 4)
P12 = ool — o)

R = ¢M ,
P =P — P — 2010 = CuPpoy -
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where p,,, py,, 0y, are effective densities, which describe the combined effects
of viscous and inertial drag, py, is the density of the saturating fluid, and o, is
the tortuosity (structure factor) of the porous medium. The quantity b(w) =
dmF(w)/k is a viscous coupling factor that accounts for the combined effects of
macroscopic frictional dissipation due to finite fluid viscosity (viscous drag
forces) and the interaction between the fluid and solid movements (Allard,
1993), w is the frequency of incident wave, 7 is the saturating fluid viscosity,
and w is the absolute (dc) permeability of a porous medium. According to Allard
(1993), the simplest possible model for F(w) is:

F(w) = [1 — jaloaw)/(nA¢p]” | ()
where A = /(8a.k/¢,) is the viscous characteristic length.

The Helmholtz decomposition allows us to resolve the displacement fields
as superposition of longitudinal and transverse vector components:

u=Vep + VXy ,

U=Vx +Vx0 .

Substituting the above resolutions into Biot’s field equations of motion (3),
we obtain two sets of coupled equations (e ™' dependence suppressed for
simplicity):

Vzd>f,s + k%,sd)f,s = O ’

VY + ki =0, ©)
where k;, k, and k, which designate the complex wave numbers of the fast
compressional, slow compressional, and the elastic shear waves, respectively,
are given as

ki, = [B ¥ +(B* — 4A0)]2A , K = C/lulppw’ + iwb)] @)
where

A

(N + 2wWR — Q* ,
B = w’[p;|R + pp(N + 2p) — 2p,Q] + jwb(\ + 2p + 2Q + R)

C = w2[w2(p11p22 - P%z) + jwob] . (8
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Employing egs. (6) and (7), with some manipulations, the scalar potentials
¢, X, O, and ¥ may be expressed as:

= ¢+ ¢ ,
X = mor t wds
0 = oy , ©)]
where
prs = {01 R = ppQ) — K[\ + 2wR — Q] + iwb(Q + R)}
HKw*(02Q — pR) + jub(Q + R)} . (10)
ay = —(wpy; — iwb)/(w?py, + iwb) . (11)

The problem we will consider has the geometry illustrated in Fig. 1.
Two different cases for incident wave are considered. The incident wave may
be a plane fast compressional wave or a plane vertical shear wave, and has the
form:

d)inc = eik,mricos(ﬁi—a) ; kinc = kf’ki (12)
with i = 1,2 corresponding to the first and second cylinder, respectively, and
o is the angle of incidence. We may specify (12) as a series with known

coefficients, using the plane wave representation in the cylindrical coordinate
system of each cylindrical cavity given by Morse and Feshbach (1953):

Pl = E Q07 (k, r)e™ | Q) = jre-ina QO = Qe kndeose (13)

n=0

where J is the cylindrical Bessel function of the first kind (Abramovitz and
Stegun, 1964) and d is the distance between the axes of the two cylinders. Last,
the field expansions for the fast dilatational wave, the slow dilatational wave,
and the shear wave scattered by each cylindrical cavity in poroelastic medium
may be expressed in the general form:

6 = ) APH, (kr)e ™

n=-o
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=5

6 = ), BUH (kre™

60 = ), COH,(kr)e™ (14)

where H; is the Hankel function of the first kind introduced in order to respect
the radiation condition of Sommerfeld (Abramovitz and Stegun, 1964). The
coefficients A", B{’ and C{’ are unknown complex numbers which must be
determined so as to satisfy boundary conditions on the surface of each cylinder
where i = 1,2 corresponding to the first and the second cylinder, respectively.

Now considering the fundamental field equations in the general cylindrical
coordinate, the solid and the liquid displacement in r- and #-directions in terms
of displacement potentials for a poroelastic medium are written as (Achenbach,
1973):

u, = (d¢/dr) + (1/r)(0y/36) , u, = (1/1)(d¢/30) — (dy/ar) ,

U, = (dx/0r) + (1/r)(008/30) , u, = (1/r)(0x/30) — (86/ar) . (15)
Expressions for the frame and the liquid dilatations can be manipulated to yield:

€ = V'u = V2¢ = Vzd’f + V2¢s = _k%d)f - k§¢s )

e =VU= sz = I‘Lfvz(t)f + #svqus = _Mfk%’¢f - :uskgd)s : (16)

Utilizing egs. (1), (9), (15), and (16), the pore fluid pressure, the radial
and tangential stress components are expressed as:

o, = akio, + aklp, + 2u(du,/or)

p, = Mbki¢, + Mbkis, ,

0, = (W/r)[(0u/30) + r(du,/dr) — u,] ,

g = (\e — BM{) + 2u[(u/r) + (du,/rad)] , (17)
where

agg = — N T GSMI — pe)

by =8 + dplpss — 1) .
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Fig. 1. Problem geometry.
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Expressions for wave propagation potentials in the poroelastic medium
shown in Fig. 1 are obtained by linear superposition of the incident and the
reflected potential as:

v = B0 + 60 + ¢ + 60 + o)

= ¥ IAPH () + BOH,(r) + Q0T (kirle™

n=-—oo

+ Y [A9H,(kr) + BOH,(kr)le™

n=-—oo

Y = ¥O + 0 = Y [COH (kr)le™ + Y, [COH,(kr)le™ ,  (18)

n=-—oo n=-—o

where i,j = 1,2, 1 # j. In eq. (18), the scattered field from each cavity is
expressed in the coordinate system centered at the same cavity. To impose the
boundary conditions on the surface of i-th cavity, the j-th cavity contribution has
to be transformed to the i-th cavity coordinate system. This is accomplished
through the application of the Graf’s addition theorem (Abramovitz and Stegun,
1964) for the cylindrical Hankel functions:

Hn(krj)ei“"l - Z Hn—m(kdji)Jm(kri)e i(n—m)f; +imé; , d >r

m=—oo

19)

where d;; is the distance between the z-axes of the two systems, while 6;; is the
angle between the positive semi-axis x; and d;. Incorporation of the above
addition theorem in eq. (18) allows us to write it in the following form:

(Z)M(ri’oi) = Z [Ar(\i)Hn(kfri) + Br(li)Hn(ksri) + Qr(li)‘]n(kincri)]eme‘

n=—oo
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+3) YAV (A, + BOT (kb Je™

n=-—o0 m=-oo

U0 = Y [COHKole™ + Y, Y [COT (kreJe™ ,  (20)
where
a‘mn = Hm—n(kfd)ei(m_n)e" 9

bmn = I_Im—n(ksd)ei(m—n)eji s
Con = Hm~n(ktd)ei<m_n)0" . (21)

It is requisite that the following boundary conditions on the surface of
each cavity be satisfied:

W =0,
(i) —

Ur(; r=a - 0 ’

37 () = (i)

W lr,=a, = KPp | l ’ (22)

where w, = ¢y(U, — W,) is the filtration velocity and «, characterizes the
permeability of the interface. Applying the boundary conditions (22), after some
manipulations, leads to the linear system of equations:

AX = Binc 5 Binc = BP’BSV (23)
where A is a (12N + 6) by (12N + 6) complex matrix (N is the truncation

number), and X and B;,. are complex vectors. The matrix A and vector B are
defined as:

A = [Txy]6><6 B. = [Qll 21 31 41 51 61 ]T

inc inc inc inc inc inc

where

— ) S 1
T% = [TRlencnxeney > Qe = [Qike Jonensa - 24)
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In the matrix equation, x and y range from 1 to 6 while p and q range
from 1 to N. From this matrix equation, the complex coupled coefficients can
be solved. To express the boundary conditions more conveniently, the following
quantities are introduced:

Kgi)(kf,sr) = sz,s[af,szr(li)(kf,sr) + Z”Zgi)”(kf,sr)] ’

K{'(kr) = Qipn/r)[rkZ{" (kr) — ZOK)]

K{'(k; ;1) = 2in[rk; Z0' (ke 1) — Z90(ke 1))

KPkr) = —n*ZP(kr) + tkZP'(kr) — r’KZ0kr)

Kgi)(kf,sr) = 1w¢0(1 - I‘Lf.s)kf,szr(xi)’(kf,sr) - Ksbe,ssz‘sngi)(kf,sr) >

K{(kr) = wnoolag — DZPkr)r (25)

where Z{" = H{", Z{? = J,. Now, using the above expressions, we may specify
the elements of matrix A and vector B as:

Th = 6, Ki'ka)|i-, (= T if i=2)

Ty = 6, K{"ka)|i., (= T if i=2)

T = 6, KiP(kap|i; (= TEO if i =2) ,
Ti” = amKPk@)| iy (= TV if i =2) ,
Ty = buKP(ka) |y (= T if i =2) ,
T8O = ¢ KP(ka)|i., (= T,(,;‘ﬁ’ if i=2) , 26)

Th = 6, K (k@)|i, (= TEY if i =2) ,

Th = 8K "ka)|i, (= TS if i=2) ,
Th = 6, Kika)|io, (=TS if i =2) ,
To = anKPka) iy (= TS if i =2) ,
Toi = buKPka) oy (= TQ if i=2) ,
Ty = cnKPka)| i, (= TS if i =2) , o



DYNAMIC RESPONSE OF AN UNDERGROUND TUNNEL 191

To = 8, KP(ka) |y (= TS if i=2) ,
ng = 6, K" ka)|i-; (= Tégs) if 1=2) ,
Too = 8, K (ka) |1y (= T if i=2) ,
T = KPkapap |- (= TR if i=2) ,
To = KPKa)bp|ior (= T if i =2) ,
To = K@ka)ew | (= T if i=2) 28)
p (k) = —KP(ka)Qy’ |-, (= Qi if i=2)
l%ll)l(krai) = —KP(ka)Q®|,_, (= 3:,1 ifi=2) .
Qppl(ktai) = —KP(ka)Q?|,_, (= Qf if i=2) . 09)
Qsv, o (k) = —KP(ka)Q |-, (= =2

SVpl(k a) = —KP(ka)Q |-, (= Q5V1 1=12),

Qv k) = —KP(ka)Q| -, (=

—-

=2, (30)

wheren=p —N -1, m=q— N — 1 and 6,, is Kronecker’s symbol. The
variable of interest (i.e., hoop stress) is defined by eq (17). After some
algebraic simplifications this expression may be written in the form:

_ (Inc—P,SV
0ge(13,0,) = Utgonc )

+ 1 APk — 2un?/DH (k) + 2u(k/r)H)(Kr)le ™

n=-—oo

+ CPQuin®/r)[Hy(kr) — rk)Hj(kr)]e

+ BP[(ak? — 2un*/rHH, (k1) + 2u(k/r)H!(k r)]e ™
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+ Y Y APNK — 2un k) + 2u(k/r)I K r)]age ™

n=-—oc0 m=—0o

+ B,ﬁ,j)[(askﬁ - 2I'Ln2/rzl)-]n(ksri) + 2M(ks/ri)Jr,1(ksri)]bmneine'
+ COQun/I k) — rkJikr)lcae™ | (1)

where
oo

0" = ¥ (ak} — 2pm¥edlkir) + 2ue/r)likir) Qe

n=-—o

o

oSV = Y Quin/)[J (kr) — rkJi(kr)IQ0en: (32)

n=-—oo

This completes the necessary background required for the closed form
analysis of a pair of cylindrical cavities. Following the procedure described
above, one can evaluate quantitatively the amplification and reduction of the
stresses during the dynamic P- and SV-waves-tunnel interaction process. Next
we consider some numerical examples.

NUMERICAL RESULTS

The scattered field around an underground tunnel is distorted when the
tunnel is located close to the ground surface. Considering Fig. 1, in order to
model a Tunnel 1 with radius a located close to a flat boundary of a ground
surface, the radius b of Tunnel 2 is set to be sufficiently large. Therefore, in the
analysis, b/a is tended to infinity by setting b/a = 100 (Davis et al., 2001).
Considering practical applications, we set a = 3.5 m. To illustrate the effects
of the ground surface on the stresses around Tunnel 1, the results are compared
to those obtained without considering the flat boundary.

The Biot theory accounts for the dissipation of the propagating waves in
a poroelastic medium and is used to calculate a realistic estimate of the stresses
around Tunnel 1. The input parameter values for water-saturated Ridgefield
sandstone, which are used to characterize the poroelastic medium, are compiled
in Table 1 from Johnson et al. (1994). Moreover, the results are compared to
those obtained for an equivalent elastic medium to illustrate deviation of the
scattering phenomenon in poroelasticity from the classical elastic case. To do
this, we determine the elastic constants for the elastic medium so as to give
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dynamic properties as close as possible to the Biot medium. We accomplish this
by making the elastic compressional wave speed [c, = +/(\. + 2u./p.)] equal
to the Biot fast wave speed; by making the shear wave speed [c; = /(r./p,)] in
the elastic medium equal to that in the Biot medium; and by making the elastic
density equal to the average static density in the Biot medium.

For the current problem and using the values tabulated in Table 1, smaller
than the Biot critical frequency f, = ¢yn/2mpuka = 1.33 X 10° Hz, there are
two other crossover frequencies; first, a frequency f, = 2.3 Hz at which the
wavelengths become comparable to the size of the Tunnel 1 and second, a
frequency where fluid diffusion length is of the order of the diameter of Tunnel
1 f, = kKi/n¢ea> = 0.13 Hz (Gurevich et al., 1998). The latter peak frequencies
depend on the size of the tunnel a and always are much smaller than the Biot
critical frequency. The primary idea of this research is to study the presence of
the boundary of a half space and its effects on the scattered wave field, hence,
a frequency band 0.1 < f < 10 Hz is chosen.

Table 1. Input parameter values used in Biot’s model.

Parameter Water-Saturated Sandstone
%o 0.37

A, 1.58

k (m?) 27.7 x 10712
p, (Kg/m*) 2480

K, (N/m?) 4.99 x 10"
K, (N/m?) 5.24 x 10°
p (N/m?) 3.26 x 10°
oy (Kg/m?) 1000

Ky (N/m?) 2.25 x 10°
7 (Kg/m-sec) 0.1

A (m) 19.4 x 1076




BADSAR & ALIBAKHSHI

194
7
Poroelastic model A,
—— A
6 Equivalent elastic model =x/2 '," b
—— Poroelastic model (h/a=2) 4 % i
=== Equivalent elastic model (h/a=2) yat \‘ l:
g \ !
5 f
= 1
< {
= I
L] I
@ i
- 1
o ]
= Li
o

0
-1 n
10 10 10
T
0=m/4
6 -
g 5 Infinite medium
=
)
=
= S N TR
= o
W
% 3
Z
- Semi-infinite medium
w 2 , L .
1
0
-1 0 1
10 10 10
S (Hz)

Fig. 2. Circumferential stress oy, versus frequency, for wave incidence on an unlined cylindrical
cavity in semi-infinite h/a = 2 (solid and dashed lines) and infinite h/a = oo (circles and triangles)
poroelastic (circles and the solid line) and equivalent elastic (triangles and the dashed line) medium
with incident angle « = 0 for (a) P-wave incidence and 6 = «/2 (b) SV-wave incidence and 6 =

/4.
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Fig. 2 shows the circumferential stress g, on the wall of the tunnel (r=a)
at different frequencies, and for two cases where the incident P- and SV-waves
propagate perpendicularly (¢« = 0) to the free surface, impinging the tunnel
from its bottom. Two different angles § = #/2 and § = w/4 are considered for
P- and SV-wave incident cases. The reason can be explained by a brief look at
Fig. 3, which shows that peaks occur with w/4 lag for the P and the SV
incidence cases.

In Fig. 2, the effects of the slow compressional waves as well as the
effects of the overburden thickness are considered for a tunnel embedded in a
semi-infinite (h/a = 2) and an infinite (h/a = o) poroelastic and equivalent
elastic medium. Fig. 2(a) considers compressional wave incidence on the cavity
and well exhibits the attenuation of the fast compressional wave due to mode
conversion into Biot’s slow wave (Ciz et al., 2006). This attenuation is
significant at frequencies close to the scattering peak frequency where the
wavelengths become comparable to the size of the tunnel (f, = 2.3 Hz), and for
small overburden thicknesses (h/a = 2), where there is multiple-scattering of
waves between Tunnel 1 and the ground surface (Ciz et al., 2006).

In the case of the infinite medium, the difference between the poroelastic
model and the equivalent elastic model is decreased, but still is noticeable.
Therefore, considering the substantial difference between the semi-infinite
poroelastic model and the other models shown in Fig. 2(a), the other models
may result into over estimations.

Fig. 2(b) shows a major difference between infinite and semi-infinite
models. This is mainly because the reflected waves from the free surface reduce
the effect of the incident wave more strongly, so relatively thinner overburden
renders a smaller stress concentration factor particularly at lower frequencies as
the h becomes smaller in comparison with the wavelength. In the other hand at
a constant magnitude of h/a, an increase in frequency, will result in relatively
thicker overburden and greater overall magnitude of hoop stress around the
cavity. Here one should notice this over estimation again which arises from
infinite medium modeling of the problem.

Fig. 3 illustrates the changes of o,, around the wall of Tunnel 1 (r = a)
for P- and SV-wave incidences perpendicularly to the free surface (a« = 0) at
frequencies 1 and 10 Hz. The ratio h/a is equal to 2, and 10 as shown. This
figure reveals that in the low frequency range, a greater value of h/a, i.e.,
relatively thicker overburden, renders a larger value for o,,. The reason is that
the reflected waves downward to the medium from the free surface do not
cancel out the effect of the incident wave as strong as they do in the thinner
overburden case. The latter effect is quite visible in case of the SV-wave
incident.
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Fig. 3. Circumferential stress oy, versus angle, for wave incidence on an unlined cylindrical cavity
in semi-infinite h/a = 2 (the solid line and circles) and h/a = 10 (the dashed line and crosses)
poroelastic (the solid and dashed lines) and equivalent elastic (circles and crosses) medium with
incident angle o = O for frequencies 1 and 10 Hz.

Fig. 3 confirms that while overburden thickness exhibits its effects clearly
in the case of the SV-wave incidence; effects of mode conversion from fast to
slow compressional waves becomes quite visible in the P wave incident case.
Also, in the P-wave incidence case, the figure shows that the location of the
peak values of oy, translates to sidewalls from ceiling and bottom of the tunnel
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as the frequency increases from 1 to 10 Hz. In the case of SV-wave incidence,
the locations of the peak values remain constant at periodic 90 degrees. Finally,
in order to check the overall validity of the work, Fig. 7 of the reference 2 is
regenerated using the elastic approximations in our general MATLAB routine
(Fig. 4).

oS
w
%
E 4 N r'.\‘ ’a \‘ N 'l-“
= . v U \ : ‘\ r )
) ' 1 ! \ ' 1 ! \
e 3 \‘ 1 1 ] ' 1
] \ 1 \
= 1 i i 1 ,' 1 : \
B [] \ I [ 7 1 f \
E 2 < '.r 1 i \\ P \\
s
« ;‘ ‘\ 4 D L4 \‘
B1d /0 L
\I (] \-l

=] ] \ (]
4 W ‘ .

0 T T T T T T Y

0 90 180 270 360
0

Fig. 4. Normalized hoop stress around a tunnel cavity buried in an elastic halfspace, determined by
the current method (solid line) and by the method represented by Davis et al. (2001) (dashed line).

CONCLUSIONS

In this study, the dynamic behavior of a uniformly tunnel situated close
to a free surface is considered based on a two-dimensional linear elastic wave
analysis. Using numerical examples, the effect of the overburden thickness, Biot
slow waves, and multiple-scattering are illustrated for the outlined problem.
From the three existing crossover frequencies f,, f, and f;,, the frequency f, at
which the wavelengths become comparable to the size of the Tunnel 1 is
considered to illustrate the effects of the Biot slow waves and the multiple-
scattering between the tunnel and the ground surface simultaneously.

When a shear vertical incident wave propagates normal to the free
surface, the magnitude of the wave being scattered around the tunnel strongly
depends on the overburden thickness. This effect should be considered when
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using infinite medium approximations rather than a semi-infinite model. The
effects of slow waves are expendable in the case of SV-wave incidence, that is
to say one can use equivalent elastic medium approximations instead of
poroelastic model satisfactorily in the latter case.

A more detailed analysis including the initial static stresses, a more
realistic tunnel configuration and the transient response of the tunnel are needed
in the further study.
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