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ABSTRACT

Broadhead, M.K., 2009. Predictive deconvolution from the point of view of kriging. Journal of
Seismic Exploration, 18: 239-247.

We review the geostatistical method of simple kriging and consider its application to the
predictive deconvolution problem in seismology. We find that when kriging is applied to the 1D
time-series prediction problem, it can be used to obtain the usual Wiener-Levinson system of
equations that are normally arrived at with the methods of stationary time-series analysis. The
kriging weights can then be interpreted in terms of the prediction filter coefficients. This connection
between predictive decon and geostatistics does not appear to be known. Perhaps a better
understanding and exploitation of this type of connection can lead to productive synergies between
signal processing and geostatistics.
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INTRODUCTION

Geostatistics is well known for its usefulness in the oil industry for
wireline borehole and seismic data integration in order to populate reservoir
simulation models with porosity and permeability. Less well known is that
geostatistical methods can be used for signal processing. The application of
kriging to image processing, for example, is discussed by Ruiz-Alzola et al.
(2005). In the reflection seismic world, geostatistical methods have been
hybridized successfully with seismic inversion in several schemes (Dubrule,
2003). A recent advance in this area is due to Hansen et al. (2006), who extend
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the geostatistical methodology of sequential simulation to linear and weakly
nonlinear inverse problems. In addition, some investigators have applied
geostatistical methods to seismic data filtering (Piazza et al., 1997).

In this paper, we explore the kriging interpretation of one particular
inverse problem that arises in geophysical signal analysis, namely, the linear
prediction of time series as applied to the deconvolution problem. Predictive
deconvolution (also called prediction error filtering) finds widespread application
in exploration geophysics for multiple attenuation and resolution enhancement.
It is based on the theory of stationary time series analysis developed by both
Kolmogrov and Wiener, and further extended by Levinson, Robinson, Treitel
and others (Robinson and Treitel, 2000). In predictive decon, a prediction filter
is designed from the autocorrelation function using the Wiener-Levinson linear
system of equations, and then a prediction error filter is formed and applied to
the data.

We apply the method of simple kriging to the linear prediction filter
design problem for a 1D time series. We find that we can obtain the
Wiener-Levinson linear system of equations where the kriging weights can be
interpreted in terms of the prediction filter coefficients. This result is interesting
in that it reveals an unexpected connection between geostatistics and signal
processing. This realization can be immediately exploited by anyone
understanding either of these subjects in order to gain insight into (and perhaps,
new ideas about) the other subject.

SIMPLE KRIGING THEORY

Kriging (named in honor of South African mining engineer Daniel
Gerhardus Krige) refers to a set of statistical tools that were developed largely
by Matheron (1963), which in turn was based on earlier work by Krige (1951).
This subject has been thoroughly covered elsewhere (Goovaerts, 1997) and
hence we present only a brief review for completeness and for establishing
notation. Kriging refers to a collection of techniques for spatial interpolation of
a set of data values Z(u;), where a least-squares regression approach is central
to all of the particular methods (u; is the position vector for the i-th data point).
Also common to all kriging methods is a random function model for the data,
where Z(u) is decomposed into a residual component, R(u), and a trend
component, m(u), where

Z(u) = R(u) + m(u) . (1)

R(u) is treated as a stationary random variable with zero mean. The expected
value of Z(u) is given by the trend, i.e.,



PREDICTIVE DECONVOLUTION 241

E{Z(w)} = m(u) . 2

We concentrate on a particular form of kriging called "simple kriging",
where the surface trend m(u) is taken to be a constant, m, which is assumed to
be known. Then, the linear estimator of some value Z, (e.g., porosity, depth,
mineral concentration) to be interpolated at spatial location u is given by

n(u)

Zi@) = m + Y AXwR@,) | 3)

i=1

which constitutes an unbiased estimator. Note, the subscript or superscript SK
refers to simple kriging and n(u) is the number of data points in some
neighborhood about the point of investigation. The kriging weights, AS¥, are
found by minimizing the variance expression given by

oi(u) = Var[Zg(u) — Z(w)] , C))
which leads to the linear system to be solved, namely

n(u)

LN Cw, — u) = Cu; — u) )
i=1

where i = 1, . . . ,n. The quantity C represents the covariance function, which,
under the assumption of stationarity, is only a function of coordinate separation
(or lag), h. The stationary expression for covariance is given by

C(h) = E{ZW)Z(u + h)} — E{ZW)}E{Z(u + h)} . (6)

Note that h is a vector with magnitude h. The case where C depends only on
h is termed "isotropic". In geostatistics, C is often indirectly estimated using the
semivariogram v, which is given by

2y(h) = E{[Z(w) — Z(u + )’} . O]
The covariance function can then be recovered from the semivariogram using
y(h) = CO) — C(h) . (8)

However, this detour through the variogram, while traditional, is unnecessary.
One can directly compute the covariance function. Also, in geostatistics the
empirical covariance (or variogram) is not typically used directly in the kriging
equations, but rather, an analytical representation is fitted to the empirical result
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and used instead. This step would be, of course, omitted in our application to
predictive deconvolution, where the use of the empirical covariance is made.

Now, let us adapt the covariance function to the time series case. If u is
replaced with time, t, and h is replaced with time lag 7, and E{Z(u)} = 0 (zero
mean) and Z is stationary, then C(h) becomes

C(r) = r(r) = E{Z®)Z(t + 1} , ©)]

which is well known as the autocorrelation function r(r) (Robinson, 1976).
Then, using eq. (8), the connection between the semi-variogram and the
autocorrelation function is given by

(1) = 1(0) — (7). (10)

SIMPLE KRIGING APPLIED TO 1D TIME SERIES PREDICTION

Let’s make the notation above more explicit by writing out the matrix
form of the linear system, where we use a simple 3 X 3 case without loss of
generality. We will only explicitly treat the unit time step prediction problem.
The generalization of our treatment below to an arbitrary prediction distance is
straightforward. Then, for the isotropic case Equation (5) becomes

CO) Cchy) Clhy) | | M) Chy)
Chy) CO) Clhy) | [ MNw| =| Chy| , (11)
C(h;) Cthy)  C(0) As(u) C(hy)

where h; = |u; — w| and h, = |u, — u|. Now, let us assume that our data to

be interpolated or extrapolated (seismic reflection amplitudes) are in the form
of an N point time series on a uniform grid, i.e.,

Z = {Z(t),2(t), . . . Z(ts-D)} (12)
where t; = t; + iAt and At is the sample rate. Then, we wish to cast the

following unit time step prediction problem in terms of our geostatistical
notation,

Z'(t) = NB)Z(t) + NL)Z(M) + MB)Z(E) (13)
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The kriging weights are then given by

CO Cl CZ )\O(tB) C3
c, C, C NG L =] G, (14)
C2 Cl CO )\2(t3) Cl

where C; = C(iAt) fori = 0, . . . ,3. Note that we already have a data value

measured at t; , so our purpose in predicting it is different than is usual for
geostatistical application. In the seismic case, we are actually interested in the
prediction errors,

PE = Z(t) — Z'(t) , (15)

which is taken as an estimate of reflectivity. Note that the time we are
predicting is still tied to all of the previous data points. Hence, when we
advance in time, more data become available for use (since we are restricting
ourselves to pure prediction). Hence, our kriging system could grow in size on
the next time step for prediction, or

& GGl o]
C, G C G A (ty) G,
= ) (16)
C2 C] C() C1 )\2(1:4) CZ
Lca C G Co_ | 7\3(t4)_ i Cx_
where
Z'(ty) = N(t)Z(t) + NE)Z(t) + NM(E)Z(L) + N(t)Z(L) (17)

However, because we have many data points located on an uniformly
sampled grid and are assuming stationarity, we can choose to decouple the
kriging weights from time by leaving the matrix size fixed. This is done to be

in accordance with how linear prediction is usually done. Then, the interpolator
becomes

Z*(tn) = )\Oz(tn—3) + )\lz(tn—Z) + )\ZZ(tn~1) ’ (18)
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for fixed weights (see Figs. 1 and 2). Note that these choices are not prescribed
or required by geostatistical theory, but are reasonable, and are done in order
to assure we arrive at the Wiener-Levinson equations. This is why we can only
claim that kriging can be used to arrive at that result, not that there is a strong
equivalence between predictive decon and kriging. Now, recognizing that the
covariance function on a uniform time grid is essentially the autocorrelation
function for a zero mean random process, we can rewrite eq. (14) as

I I I No I3
r, r, I Nl=|1| . (19)
r, 1, I N I

*
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Fig. 1. Typical spatial data interpolation template. Black circles are measured data locations. Pink
circles represent the desired grid. The red circle is the point under present consideration.
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Using elementary row and column operations, we can rewrite this as

b I, LN I,
I, I, | N|[=]1n] . (20)
T || A I3

z =’1121+’1222+ZGZ3
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Fig. 2. Kriging template adapted to the prediction filter problem.
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Letting f, = A5, f;, = \,, and f, = A;, we then have

b I, 5,||f I,
ot n||fi|=|n|. 21
r, , | |f I,

This last result is known in time-series analysis as the Wiener-Levinson
Equations (Robinson and Treitel, 1980) for linear prediction in the special case
of predicting one time sample into the future, where the length M filter f is
called a prediction filter. In general,

r r
I 0 Ip—y fy I
I, f, I,
= ; (22)
I, :
v I Ty J fr- I'v
and the predicted time series is given by
Z°(t,) = fZ(t,) + . + fy2Z(t i) + Ty Z(t )
= M-1Z(t) + o+ NZ(Goms) T NZ(t ) (23)

where we have identified the kriging weights as being related to the prediction
filter in the following manner,

f7 =N, 1=0,.M — L (24)

We see that, in this case, linear prediction filtering and kriging are the
time reverse of one another. Both methods lead to the same result when applied
to the prediction problem for a uniformly sampled time series. This analysis can
easily be extended to the case where the prediction distance is greater than
unity. Finally, the usual prediction error filter is formed before applying to the
data. For a prediction distance of « samples, this would be written as

fPE[l,O,...,O,——'fo,...,_fM_l] s (25)

where there are o« — 1 zeros.
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CONCLUSIONS

We have shown that linear prediction theory and simple kriging (assuming
certain reasonable choices) both lead to the Wiener-Levinson equations for the
prediction filter in the 1D time series case. This connection between two
seemingly disparate subjects gives one the ability to use their intuition and
experience with one subject for a better understanding of the other. As well, it
might foster more cross-disciplinary research between the two fields.
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