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ABSTRACT

Chang, H. and McMechan, G.A., 2009. Synthetic data tests of 3D full-wavefield inversion for
P-wave anisotropic parameter estimation in flat layered VTI, HTI and orthorhombic media. Journal
of Seismic Exploration, 18: 249-270.

Full-wavefield inversion is developed to estimate the P-wave anisotropic parameters for VTI,
HTI and orthorhombic media. With full-wavefield inversion, both the traveltime and amplitude
information are utilized simultaneously. The unknowns are velocities in three orthogonal directions,
the azimuth of the fast horizontal velocity, and the thickness of each anisotropic layer. This
parameterization assumes elliptical anisotropy, and hence limits the inversion to near offset data. A
linearized (conjugate gradient) inversion is performed, in layer stripping mode, for parameters of
overlapping pairs of layers; conventional isotropic NMO provides adequate starting models. All
layers are inverted as if they were orthorhombic; the inversion results reveal the actual anisotropic
symmetry that is present in each layer.

The inversion is illustrated by application to synthetic data for a four-layer model containing
three anisotropic symmetries (VTI, HTI and orthorhombic). Unlike traveltime-based
estimations, full-wavefield inversion can recover anisotropic parameters using only surface survey
P-wave data; most of the inverted parameters have errors less than two percent for noise-free data.
Noise contamination leads to increasing errors with increasing depth. The standard deviations of the
parameter estimates are reduced, and the azimuthal coverage is improved as the number of sources
increases. The inversion results for a layer are most satisfactory when constraints provided by
reflections from both upper and lower interfaces are available. Correlation analysis between the
parameters reveals a strong positive correlation between depth and vertical velocity in all media, and
a strong correlations between fracture orientation and horizontal velocities in HTI and orthorhombic
media.
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This approach provides an alternative to the usual use of traveltimes only for anisotropic
parameter estimation. It sets the stage for extending full waveform inversion to elastic, non-elliptical,
anisotropic models with more complicated geometries and symmetries.

KEYWORDS: 3D, anisotropy, full-wave, inversion.

INTRODUCTION

Anisotropic velocity models are becoming more widespread because the
assumption of isotropy is strongly violated in some common geological settings.
Shales typically exhibit transverse isotropy with a vertical symmetry axis (VTI),
for which isotropic velocity analysis usually generates the wrong vertical
velocity, which results in the wrong depth, or fuzzy images during migration
(Thomsen, 2002). Another example of anisotropy is a vertically fractured
reservoir, which can be modeled as an HTI or orthorhombic medium. HTI is
transverse isotropy with a horizontal symmetry axis; an orthorhombic medium
physically represents a set of parallel vertical fractures embedded in a VTI
background, or two orthogonal fracture sets in an isotropic background, or two
identical fracture sets with arbitrary angle (Tsvankin, 1997a). By assuming that
an HTT or orthorhombic medium is isotropic, we ignore the fracture density and
orientation, both of which are important for reservoir characterization.

Thomsen (1986) describes TI media in terms of the vertical P- and S-
velocities (Vp, and V) and three dimensionless anisotropic parameters (e, § and
7v), rather than the fundamental elastic moduli. This parameterization was
generalized by Tsvankin (1997a) for orthorhombic media, by using two vertical
velocities (Vp, and V), seven dimensionless anisotropic parameters [e(1), €(2),
6(1), 6(2), 6(3), (1) and +y(2)], and the azimuth of the symmetry axis.
Understanding of anisotropy is advanced by this intuitive notation. Today, given
a complete set of parameters, forward modeling and migration are both feasible;
it is the determination of the anisotropic parameters that remains the most
difficult task for any anisotropic data processing (Thomsen, 2002).
Full-wavefield inversion is one option that can potentially address this issue.

Extensive research has been devoted to estimation of Thomsen’s and
Tsvankin’s anisotropic parameters, with a focus on VTI, HTI and orthorhombic
media (Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995; Tsvankin,
1997b; Grechka and Tsvankin, 1999; Al-Dajani and Alkhalifah, 2000; Le Stunff
et al., 2001; Grechka et al., 2002, 2005). Most current methods are based on
traveltime information of P, or of P-SV converted, waves. For example,
non-hyperbolic moveout can be used to estimate anisotropic parameters from
wide aperture reflection time data using (Alkhalifah and Tsvankin, 1995)
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t'(x) = g1 + (x/tgVpumo)
= 29[x/tgVpnmol /{1 + (1 +20)[x/t;Venmol’}] (1)

where t, and t, are two-way traveltimes for offsets x and O respectively, Vonmo
is the P-wave NMO velocity, and 7 is a function of € and §:

n= (e — &/ + 26 . )

For VTI and orthorhombic media, surface survey P-wave reflection times
are sufficient to recover Vpyyo and 7 [egs. (1) and (2)] (which are the only
anisotropic parameters needed for time processing). However, if the reflectors
are flat, or even mildly dipping, surface survey P-wave data are not enough to
estimate the complete anisotropic parameterization [Vy, €(1), €(2), 8(1), 6(2),
and 6(3)] in the depth domain. P-wave traveltime inversion can not handle the
trade-off between the vertical velocity and the anisotropic parameters in VTI or
orthorhombic media, if additional constraints (provided by multiple-source
illumination of dipping or curved interfaces, or by P-SV converted waves) are
not available (Alkhalifah and Tsvankin, 1995; Grechka and Tsvankin, 1999;
Tsvankin and Grechka, 2000; Le Stunff et al., 2001; Grechka et al., 2002,
2005). However, the anisotropic parameters for an HTI medium can be
successfully recovered using only the normal moveout information from wide
azimuth surface survey P-wave data (Al-Dajani and Alkhalifah, 2000).

In this paper, we illustrate full-wavefield inversion to estimate depth
domain anisotropic parameters for VTI, HTI and orthorhombic media. Unlike
any previous methods used for anisotropic parameter estimation, we utilize both
the travel time and the amplitude information simultaneously. The extra
constraints provided by fitting the amplitudes enable the recovery of the
anisotropic parameters using only surface survey P-wave data; no reflections
from dipping or curved interfaces are required. The shape of the reflectors adds
complexity to the inversion, so only flat layer models are used in this initial
demonstration of feasibility. Instead of Tsvankin’s parameterization to define
each anisotropic layer, we use velocities in three orthogonal directions, the
orientation of the fast horizontal velocity, and the depth to the bottom of the
layer. Tsvankin’s parameters can be calculated from our parameterization; their
relationships are given in the following section.

The assumption of elliptical anisotropy which, although is not physically
rigorous and cannot be observed in the field, is not critical when only near
offset data are used (Tsvankin and Thomsen, 1994). This paper contains the first
attempt to apply full-wavefield inversion to anisotropic parameter estimation,
through which we can 1) for the first time, determine vertical velocity and
anisotropic parameters simultaneously for a horizontally layered VTI or
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orthorhombic models using only P-wave surface survey data, and 2) provide a
new approach to estimation of anisotropic parameters for HTI and orthorhombic
media.

The efficiency and simplicity of full-wavefield inversion has previously
been demonstrated in isotropic models with complicated geometries (Xu and
McMechan, 1995), and for viscoelastic parameter estimation in 1D layered
models (Martinez and McMechan, 1991; Tiwari and McMechan, 2007). The
linearized scheme used in this paper is the simplest form of wavefrom inversion,
and requires that the starting parameters to be sufficiently close to the correct
values that the difference between the times in the predicted and the observed
data are within a half wavelength (Mora, 1989). The synthetic data tests below
show that linearized inversion is adequate for anisotropic parameter estimation;
thus, more complicated (non-linear) inversions were not attempted.

In the following sections, we first introduce the methodology of
full-wavefield inversion, and then apply it to data for a flat-layered model
containing three anisotropic (VTI, HTI and orthorhombic) layers overlying an
isotropic halfspace. Through this synthetic example we show, not only that the
anisotropic parameters can be estimated correctly, but also that an adequate
starting velocity model can be obtained from conventional methods for isotropic
media. Noise-contaminated data are also inverted and the parameter correlations
are analyzed with singular value decomposition.

METHODOLOGY

In linearized inversion, it is assumed that the required parameter updates
are locally linearly proportional to the misfit between the calculated and
observed wavefields. The validity of the linear assumption will be demonstrated
numerically in the synthetic tests below.

First we input the starting model parameters, which are estimated a priori
by conventional methods, in this case, isotropic normal moveout (NMO)
analysis. Then we calculate the objective function O, which is the summed
squared amplitude of the residual wavefield;

N
0 =) (Aob—Apr)? , 3)

i=1

where Apr is the predicted data, Aob is the observed data, and N is the total
number of time samples. Next, through linearized inversion, updated parameters
are calculated and used in the next iteration until O is minimized.
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Linearized inversion

The linearized inversion solves the system of linear equations

AX =B , @
where
i - S -
0s,/0x, 0s,/0x, - 08s,/0%, Ax, Sy
0s,/0X, 0s,/0%, - 0s,/0%, AX. S,
A= , X = , B= . (5)
[ 08,/0%;  98,/0%, -+ 3s,/0X, | Ax, Sim

In eq. (5), n is the total number of model parameters and m is the total
number of time samples. The n elements Ax, to Ax, in vector X are the n
unknown parameter updates that are to be solved for. B is an m-element vector;
each element in B is the amplitude difference between the predicted and the
observed data at the corresponding time sample. A is the m X n Jacobian
matrix, which contains the partial derivatives of the amplitude s; (for i = 1, m)
with respect to the model parameter x; (for j = 1, n). The Jacobian matrix A
is calculated using finite differencing by perturbing each of the n parameters
with an infinitesmal change, followed by modeling for the n perturbed models.

With the calculated matrix A and vector B, we use conjugate gradients to
solve the linear eq. (4) for parameter updates X. In the examples below, we
invert for nine parameters at a time; n = 9 and vector X has nine elements.

Modeling and model parameterization

The core of the inversion is the modeling program, which simulates the
seismic response of an anisotropic model. It is based on a 3D anisotropic scalar
wave equation implemented numerically by finite differencing (Dong and
McMechan, 1991). The scalar wave equation limits the modeling, and hence the
inversion, to P (or to SH) waves.

The program uses a 3D flat-layered velocity model. Each layer is defined
by five parameters:
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1. P-wave velocities in three orthogonal directions. There are the fast and
the slow horizontal velocities (V4o and V) and the vertical velocity Vy,.

2. The angle o between the fast horizontal velocity and the global horizontal
x-axis. This parameter does not have any physical meaning for VTI or
isotropic media, since the velocity does not change horizontally. However,
for HTI and orthorhombic media, « is interpreted as the fracture
orientation, since the fast horizontal P-wave travels parallel to the
fractures.

3. The depth to the bottom of the layer.

A three-medium model and its parameters are shown in Fig. 1. Fig. la
has two equal horizontal velocities, and a smaller vertical velocity; this is a VTI
medium, with stratified thin layers. The angle o does not have any physical
meaning in VTI media and is arbitrarily set to zero. Fig. 1b has three different
velocities along three orthogonal directions; « is 29°. This is an orthorhombic
medium, with a fracture set with « = 29° embedded in a VTI background. Fig.
lc has the vertical velocity equal to the fast horizontal velocity, and a second
slower horizontal velocity; « is 60°. This is an HTI medium; physically it
represents a vertical fracture set embedded at « = 60° in an isotropic
background. This parameterization has five parameters for each layer; the
relative values of the parameters determine the actual type of anisotropy.

By defining the anisotropy with three P-wave velocities instead of the
elastic tensor, we assume the anisotropy to be elliptical. In terms of Tsvankin’s
(1997) parameterization for P-wave propagation in an orthorhombic medium (e,
€, 0, 6, and 05), the elliptical assumption corresponds to ¢, = 8, and ¢, = §,;
the S-wave parameters v, and vy, are not relevant for this model and so are not
included. The equivalent Tsvankin parameters can be calculated from our
parameterization using

m
Il

0, = (Voor — VPO)/VPO >
€& = 0, = (Vgos — Vp)/ Vg

‘33 = (Vor — V9os)/V9os . (6)

The Tsvankin anisotropic parameters for the three-layer model are shown
at the right side of Fig. 1.
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Fig. 1. The anatomy of a three-medium model; (a) is VTI, (b) is orthorhombic and (c) is HTI. The
velocity orientations are denoted by the arrows and their values are labeled. The equivalent Tsvankin
anisotropic parameters (at right) are calculated from our parameterization.

SYNTHETIC EXAMPLE

We apply the inversion to data from a model consisting of four flat layers
(Fig. 2). The properties of the upper three layers are defined in Fig. 1. Since
this is a flat-layer model, the inversion needs only one common shot gather as
input, provided that the azimuthal aperture is sufficient. We simulate the
observed data using the same modeling program that is used in the inversion.
An explosive source with a Ricker wavelet with 12 Hz dominant frequency is
located at (x, y, z) = (30,30,40) m. The receivers are on a 2D rectangular grid
at the same depth as the source, and offsets in both x- and y-directions vary
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from 0 to 1000 m. The receiver spacing is 10 m in both x and y directions;
boundary conditions are absorbing on the sides and bottom, and a free surface
on the top of the grid.

Estimating the starting parameters

For inversion, it is important to show how an adequate starting model can
be built. The conventional isotropic NMO procedure is used to estimate the
starting model parameters (Fig. 3a). We perform isotropic NMO analysis and
Dix differentiation on two common shot line gathers [which are equivalent to
common midpoint (CMP) gathers for flat layers], parallel to the x and y axis
directions, respectively, to obtain approximate, apparent, directionally-dependent
interval velocity functions. The results from these two orthogonal CMP lines are
equal for VTI or isotropic layers, but different for HTI or orthorhombic layers.
For the first (VTI) layer, the NMO result is isotropic with the wrong vertical
velocity, because the estimated P-wave NMO velocity Voyyuo = Vo X V/(1+26)
(Tsvankin and Thomsen, 1994).

s */
0.
VTI
o 450
~
l Orthorhombic
1030.
800.
HTI
950. @\/
Isotropic 3.5 km/s N
1030. 0.
0. 1030.

x(m) —»

Fig. 2. Correct velocity model for the synthetic example. Details of the top three layers are shown
in Fig. 1.
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For the second (orthorhombic) layer (Fig. 3b), we get two different
apparent velocity profiles in two directions (3.03 km/s along x and 2.87 km/s
along y, denoted by the dashed arrows). Based on the NMO results, the simplest
scenario we can assume for the second layer is that it is HTI with a fracture set
parallel to the x direction; thus, the starting vertical velocity is set to be equal
to the fast horizontal velocity (3.03 km/s).

Similarly, we can set the starting model for the third layer to be HTI with
a fracture set parallel to the y direction (Fig. 3c). The dashed lines and arrows
in Fig. 3b and c represent the starting model, while the solid lines and arrows
are the correct values; all the parameters in the starting model have
approximate, but incorrect values. For this flat-layered model, depths can be
estimated from the isotropic NMO velocities as well; these depths will be
incorrect because of the incorrect vertical velocities.

b)  1000.

a
) Two CMP gathers
(along X and Y)

v Vpgos = 2.87
Isotropic NMO E
> Vpgor = 3.11
Ve =2.65
{ 0. a=29 Vpgos = 2.81

’ 0. x(m) —» 1000.

( Dix differentiation 2nd Jayer: Orthorhombic

c) 1000.[ 1i.o
d RN Vpoor = Vpo=1.97
SINEEY
Depth=Vrms* T0 SR
‘ i ’ T Viem a7
- é é é é Vegor = Vpo=2.03
E S
v - Do
‘ Starting velocity model ] ;\/P905=1 8
0. L_iiii o= 60’
0. 1000.

x(m) —»
3 layer: HTI
Fig. 3. The estimation of the starting model. (a) is the flow chart for the procedure; (b) and (c) show

the correct model (the solid lines) and the starting model (the dashed lines) for layers 2 and 3,
respectively.
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Since the fourth layer is an isotropic half space, its parameters can not be
estimated from NMO times alone. The starting model built from isotropic NMO
guarantees that the simulated synthetic data have the correct travel times for the
near offsets, so that cycle skipping can be avoided and the linear inversion can
iterate toward the correct solution (Mora, 1989). We arbitrarily use the correct
layer properties for the starting model of the fourth layer, and allow them to
change as iterations proceed.

Layer stripping

Since each layer is defined by five parameters, the four-layer model has
nineteen parameters in total. To reduce the number of unknowns at each
iteration, layer stripping is used. By dividing the parameter estimation process
into three separate inversions (denoted 1 to 3), the number of parameters is
reduced from nineteen to nine in each inversion. Each inversion estimates the
parameters of two adjacent layers; five parameters from the upper layer (Vgp,
Voos, Vo, depth, and o) and four parameters from the lower layer (Vgor, Vgos,
Vi, and «). Both layers have two horizontal, and one vertical velocity, and the
angle o, but the bottom of the lower layer does not have a defined depth.
Inversion 1 estimates the parameters of layers 1 and 2, inversion 2 estimates
those of layers 2 and 3, and so forth. This is the layer stripping strategy, by
which the number of unknowns is limited to a minimum while still being able
to solve for complicated models.

Inversion results
Inversion 1: Layers 1 and 2

Following the layer stripping strategy, we invert for layers 1 and 2 first.
The starting model contains an isotropic first layer and an HTI second layer,
which are obtained from isotropic NMO analysis. Since the correct model has
four layers, and the first two are VTI and orthorhombic respectively (Fig. 2),
the residual data between the starting and the correct models has the direct wave
D and three reflections (R1, R2 and R3) from the three boundaries (Fig. 4a).
If the parameters of layers 1 and 2 converge to the correct values, D and R1
should disappear while R2 and R3 should remain as constant residuals. Fig. 4
shows data extracted, from the 3D residual volume, along the representative 2D
line at y = 1000 m at four different iterations. The direct wave D disappears
after two iterations, but R1 is not entirely accounted for, even after seven
iterations. As a result, after inversion 1, we expect the first layer to be well
estimated while there is still error for the second layer. Fig. 5 shows the
summed squared amplitude of the residual wavefield as a function of iteration
number for layers 1 and 2; the noise-free residual is the solid line, which has
a sharp drop at the first iteration, because the residual of inversion 1 is
dominated by the direct wave.
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Fig. 4. Representative 2D slices at y = 1000 m extracted from the 3D residual volume before, and
at different iterations of, inversion 1. (a) is the original residual before the inversion, (b) is the
residual after two iterations, (c) is after five iterations, and (d) is after seven iterations. The direct
wave D disappears after two iterations; the amplitude of R1 is reduced dramatically after seven
iterations while R2 and R3 remain constant throughout the inversion.
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Fig. 5. Summed squared amplitude of the residual wavefield as a function of iteration number for
inversion 1. Iteration 0 has the residual before the inversion. Residuals of the noise-free and lower
noise level data are denoted by the solid and dashed lines, respectively.

The results from inversion 1 are in Tables 1 and 2. The layer 1 result is
final, and all of its parameters converge to the correct values after seven
iterations (Table 1). However, the parameters of the second layer still have
errors (Table 2), which is consistent with the observed R1 residuals in Fig. 4.
The less accurate result for layer 2 can be attributed to a lack of constraints.
The traveltime and amplitude of D and the traveltime of R1 can uniquely
determine the layer 1 properties, whereas the amplitude of R1 alone, which is
the only observation that is affected by the layer 2 parameters, is not enough to
recover the layer 2 parameters when layer 1 is also part of the inversion. This
behavior also occurs in the next two inversions. The upper layer of each pair
is always constrained by two reflections (from its top and bottom), whereas the
lower layer properties contribute to only one. This is why layer stripping is
used; the lower layer of one inversion is the upper layer of the next inversion,
and so on. We expect to see better results for the second layer after inversion
2, for which the intermediate result in Table 2 are the starting parameters.
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Table 1. Inversion result for layer 1 from inversion 1. This is also the final result for layer 1; all
the parameters converge to the correct values. Tsvankin’s anisotropic parameters e and & are

calculated from our parameterization using eqs. (6).

Layer 1 Veoor  Vpoos  Vpo o Depth e =6 € =230 63

km/s km/s km/s ° m

Starting Model 2.30 2.30 230 0. 520 0. 0. 0.

Inversion Result  2.30 2.30 2.00 0. 450 0.15 0.15 0.

Correct Model 2.30 230 2.00 O 450 0.15 0.15 0.

Table 2. Inversion result for layer 2 from inversion 1. This interim result will be the starting
parameters for inversion 2. Tsvankin’s anisotropic parameters e and 6 are calculated from our

parameterization using eqs. (6).

Layer 2 Vpoor Vpoos Vpo o Depth e =061 e=0 &

km/s km/s km/s ° m

Starting Model 3.03 287 3.03 0. N/A 0. -0.05  0.05

Inversion Result  3.13 277 257 34. NJ/A 0.22 0.08 0.13

Correct Model 3.11 2.81 265 29. N/A 0.17 0.06 0.11

Table 3. Inversion result for layer 2 from inversion 2. This is also the final result for the second
layer. Tsvankin’s anisotropic parameters e and é are calculated from our parameterization using eqs.

(6).

I

Layer 2 Veoor  Vpoos Veo a Depth € =6 e =108 6

km/s km/s km/s ° m

Starting Model  3.13 277 257 34. 790 0.22 0.08 0.13

Inversion Result  3.11 2.79 2.67 29. 800 0.16 0.04 0.11

Correct Model 3.11 281 265 29. 800 0.17 0.06 0.11
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Inversion 2: Layers 2 and 3

In inversion 2, parameters of layers 2 and 3 are inverted by fitting R1 and
R2. The starting model has three flat layers; the results in Table 2 are the
starting parameters of layer 2 and the NMO interval velocity results are the
starting parameters for layer 3. The parameters of layer 1 are fixed throughout
the inversion. And indeed, we get a better result for layer 2 after five iterations
(Table 3), compared to those from inversion 1 (Table 2). We do not show the
result for layer 3, because it is an intermediate result, which again serves as the
starting model for the next inversion.

Inversion 3: Layers 3 and 4

The objective of inversion 3 is to estimate the parameters of layers 3 and
4 by fitting R2 and R3. Fig. 6 shows the 2D slice at y = 1000 m from the 3D
residual volume, before and after inversion 2. The residuals for R2 and R3
decrease as iterations proceed (Fig. 6). After four iterations, all the residuals are

a) X (m) b) X (m)
0.0 500. 1000. 0.0 500. 1000.
0.0
0.351
o
€ 0.70-
£
z) R2
3

!
s L ﬁm T ?

Fig. 6. Representative 2D slices at y = 1000 m extracted from the 3D residual volume at the start
and end of inversion 2. () is the original residual before the inversion, and (b) is the residual after
four iterations; (b) is minimal as expected.
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mostly accounted for. Fig. 6b shows the residual wavefield between the
observed data and the data simulated for the final inverted velocity model; it is
minimal as expected, which indicates the successful recovery of the parameters.

Final results for layers 1 to 4

The final results for all four layers are in Table 4 (for both noise-free and
noisy data). The estimated values of angle « of layers 1 and 4 in Table 4 have
no physical meanings because the two estimated horizontal velocities are equal
(which indicates these layers are VTI or isotropic). Compared to the correct
model, the 19 parameters from the noise-free inversion results are all well fitted,
and have an error less than 2%, except for the fracture angle « of layer 3,
which has a 5% error. Layer 4 is fitted surprisingly well, considering that it is
an isotropic half space, and is constrained only by the reflection from its top.
The anisotropic/isotropic symmetries can be correctly identified from the
inverted parameters.

To try to reduce the errors in inversion 2 (for layers 2 and 3), we used
the inverted parameters from Table 4 as starting values, and repeated inversion
2 for all four layers; the results were not improved, thus the values in Table 4
are accepted as the solution. This synthetic test example shows that the layer
stripping inversion can reasonably recover all the anisotropic parameters using
only P-wave surface survey data.

Parameter correlation analysis

At the end of each inversion, we perform a singular value decomposition
to get the correlations between each of the nine model parameters. Figs. 7a-c
are the correlation plots for inversions 1 to 3, respectively; each parameter
correlates perfectly with itself, hence the unit diagonal elements. The depth and
vertical velocity of each layer are strongly positively correlated, indicated by the
orange and dark red colors; this observation is consistent throughout the panels.
Since each of the four layers has a different anisotropic symmetry, each has
different correlation relationships between parameters. However, the
orthorhombic and HTT layers (2 and 3) show strong correlations between the
angle o and the horizontal velocities Vpgor, Vpggs, Whereas the VTI and isotropic
layers (1 and 4) do not. Also, at the end of inversion 2 (Fig. 7b), the layer 3
vertical velocity and the angle o have a positive correlation; at the end of
inversion 3 (Fig. 7c) (after adding the depth parameter to the third layer), the
vertical velocity is almost entirely correlated with its depth, and no longer shows
any correlation with the angle . So the information from the upper reflector
alone is ambiguous, and adding constraints from the lower reflector can change
the correlation relationship and improve reliability within a layer.
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Table 4. Inversion results for all four layers. The four values (without brackets) for each layer for
each parameter are, from top to bottom, the correct model, the noise-free inversion, the low noise
(S/N = 7.6) inversion, and the high noise (S/N = 3.8) inversion results. The values in the brackets
are the standard deviations of the corresponding inversion results in the same column, on the line
immediately above. The angle (o) estimated for layers 1 and 4 from the noise-free data has no
meaningful interpretation as the equality of Vper and Ve shows that the layers are either VTI or

isotropic.
Vpoor Vpgos Vpo a Depth
km/s km/s km/s ° m
Layer 1 2.3 2.3 2.0 0 450
2.3 2.3 2.0 86 450
2.3009 2.2997 1.9998 84 450.0
(0.0005) (0.0006) (0.0004) (26) (0.1)
2.3017 2.2997 1.9971 84 450.0
(0.0010) (0.0008) (0.0007) (38) (0.2)
Layer 2 3.11 2.81 2.65 29 800
3.11 2.79 2.67 29 800
single shot/four shots ~ 3.1165/3.0927  2.8257/2.7726  2.6664/2.6774  26/27  800.0/800.0
(0.0029/0.0024)  (0.0069/0.0046) (0.0038/0.0028)  (1/1)  (0.6/0.5)
single shot/four shots ~ 3.1160/3.1207  2.9060/2.8037  2.6574/2.6860  26/30  800.0/800.0
(0.0058/0.0064)  (0.0124/0.0095) (0.0069/0.0048)  (3/2)  (1.0/0.8)
Layer 3 2.03 1.83 2.03 60 950
2.04 1.86 2.01 63 950
single shot/four shots ~ 2.0723/2.0762 1.8364/1.8674 2.0047/2.0117 66/67  950.0/950.0
(0.0148/0.0132)  (0.0150/0.0197) (0.0033/0.0037)  (5/5)  (0.2/0.3)
single shot/four shots ~ 1.8790/1.9885  1.8268/1.8301  2.0338/2.0041  34/74  960.0/950.0
(0.0378/0.0328)  (0.0615/0.0225) (0.0082/0.0069) (14/17)  (0.6/0.5)
Layer 4 3.50 3.50 3.50 0 N/A
3.53 3.53 3.52 2
single shot/four shots ~ 3.5649/3.5319  3.3987/3.5170  3.5008/3.5324  81/87
(0.0563/0.0391)  (0.0556/0.0343)  (0.0306/0.0219) (83/74)
single shot/four shots ~ 3.5001/3.5378  3.4332/3.4757  3.5770/3.5469  3/5

(0.1116/0.0854)

(0.1247/0.0918)

(0.0582/0.0440)

(90/86)
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Fig. 7. The correlation and the resolution matrices. The nine anisotropic parameters within each
correlation and resolution matrix, from top to bottom and from left to right, are Vg, Vs, Vi,
depth, and o for the upper layer, and Vg, Vg, Ve, and o for the lower layer. (a)-(c) are the
correlation matrices for inversions 1 to 3; (d)-(f) are the resolution matrices for inversions 1 to 3,
respectively.

Figs. 7d-f are the parameter resolution matrices for inversions 1 to 3. The
diagonal elements are all very close to unity because the linear systems are all
over-determined [m > n in eq. (5)]. The unit resolution matrices in Fig. 7d-f
do not necessarily mean that the parameters are all well resolved; since the
lower layers are not well fitted, the unity diagonal elements are primarily
indicators of over-determined systems.

Noisy data

In addition to the noise-free data, two noisy datasets with different signal
to noise ratios are also inverted. Fig. 8a is the noise-free data slice at y =
1000m, which is the line of receivers farthest from the source. Figs. 8b and 8c
are the same slice with Gaussian noise with S/N ratios of 7.6 and 3.8,
respectively. R1 and R3 are both visible at the lower noise level, but R3 is less
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evident at the higher noise level. Fig. 9 shows the frequency content of both the
original and the noisy data for S/N = 7.6. The original signal has a peak
frequency of 12 Hz, while the noisy data has a peak frequency of 16 Hz. The
frequency contents of the signal and noise overlap from 0 to 30 Hz, so the noise
can not be easily removed with a frequency filter.

Table 4 shows the inversion results for the noise-free dataset and the two
noisy datasets. Layer 1 parameters can be accurately recovered even at the
higher noise level. During the inversion, only coherent data (the reflections) are
fitted; the non-coherent noise tends to remain in the residuals (Xu et al., 1995).
In Fig. 5, the shape of the residual curve of the noisy data resembles that of the
noise-free data; the vertical separation between the two curves corresponds to
the summed squared amplitude of the noise, and so becomes asymptotically
constant with increasing iterations.

For layer 2, the inversion results from data for a single noisy shot (S/N
= 7.6) have less than 5% error, except for angle o which has a 10% error
(Table 4); the single shot results correctly indicate that the symmetry of layer
2 is orthorhombic. Starting from the third layer, the single shot results at the
higher noise level are no longer reliable; there is a 43% error for the angle
estimation, and layer 3 is indicated to be orthorhombic instead of HTI.
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Fig. 8. Representative 2D slices at y = 1000 m extracted from the original and the noisy 3D data
volumes. (a) is from the original noise-free seismic data; (b) is from the low noise data (with S/N
= 7.6); (c) is from the high noise data (with S/N = 3.8).
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Fig. 9. Frequency content of the noisy data (with S/N of 7.6), and of the original (noise-free)
seismic data. The solid line is the spectrum of the original data; it has a peak frequency of 12 Hz.
The dashed line is the noisy data; its peak frequency is 16 Hz. Most of the energy is in the noise,
because it is distributed throughout the time window, but the signal occurs only in narrow time
ranges.

To reduce the uncertainties of the results from the noisy data, three more
sources are added to the inversion; the four sources are located, one on each of
the four grid corners, each with different noise having the same signal to noise
ratio. Each source provides different parameter estimates that are averaged for
the final solution. With multiple sources, the results are improved for every
layer that has an error; especially for layers 3 and 4 (Table 4). The
improvement is not surprising because the effect of averaging from four shots
is similar to stacking; noise is reduced and better signal to noise ratio is
obtained. Also, multiple sources provide more complete azimuthal coverage,
which add independent, directionally-dependent, observations, and hence
constraints, to the inversion.



268 CHANG & MCMECHAN

The standard deviations of the inverted parameters for the noisy data are
shown in brackets in Table 4. The standard deviations increase with depth,
indicating the results are less reliable for the deeper layers. Since angle « has
no physical meaning for the VTI and isotropic layers (1 and 4), their standard
deviations are all large. The errors in the results are introduced by the errors in
the data, so the standard deviations from the higher noise level (S/N = 7.6) are
approximately two times of those from the lower noise level (S/N = 3.8). The
poorly estimated parameters (such as the angle « of layer 3), have higher
standard deviations at the higher noise level. Using multiple sources improves
the results (layers 3 and 4) and reduces the corresponding standard deviations.

DISCUSSION

This is the first attempt to demonstrate the feasibility of full-wavefield
inversion for anisotropic parameter estimation. The results are encouraging and
suggest further research before application to field data, with focus on, but not
limited to, the following areas:

1. Extension to non-elliptical anisotropy. The elliptical assumption
over-simplifies the anisotropic problem; in terms of traveltime, it is not critical
at the near offsets, but is increasingly inaccurate as offset increases (Tsvankin
and Thomsen, 1994). Consider the following hybrid process to combine the
present inversion program with non-hyperbolic moveout at far offsets (Grechka
and Tsvankin, 1999) to solve for non-elliptical anisotropy. With VTI as an
example, we can accomplish this in two steps; first, with full-wavefield
inversion and near offset data, Vp0, 6 and depth can be determined (assuming
e = 0, so n = 0). Then, with non-hyperbolic moveout [eq. (1)] and far offset
data, n can be determined (Alkhalifah and Tsvankin, 1995). Since 7 is a
combination of € and 6 [eq. (2)], € can then be calculated from 5 and 6. This
idea needs to be tested; a theoretical question is the unknown influence of the
elliptical assumption on the reflection coefficient for the near offsets. This is an
immediate extension with no modifications needed to the current inversion
program. Alternatively, the modeling could be modified to eliminate the
elliptical assumption, to invert for € and & directly using data from all offsets.

2. Extension to non-flat layers. Inversion of non-flat layered anisotropic
models means more parameters in the inversion, which not only complicates the
inverse problem, but also makes it more difficult to estimate the starting
parameters (since there will be horizontal heterogeneity). For dipping layers,
data from multiple sources have to be used to solve for the geometry
coefficients. Since the present modeling program (and hence the inversion
program) has the capacity for non-flat layers, this extension is straightforward
in terms of software modifications. However, the influence of the extra layer
shape parameters is unknown and has to be evaluated.
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3. Extension to elastic inversion. Elastic anisotropy is more realistic and
automatically eliminates the elliptical assumption, which is very appealing and
is the longer term goal of anisotropic inversion. This extension involves
replacement of the present modeling program with a 3D 3C elastic modeling
program. The preferred parameterization will be Tsvankin’s anisotropic
parameters (because the notation is intuitive in terms of their influence on
seismic responses), from which the elastic tensor can be calculated and used in
the elastic modeling.

The computation cost depends on the model size and total number of time
steps. For the synthetic example (with model size 103 X 103 x 103, and 1000
time steps), the run time for each (9 parameter) iteration for each shot is 3.7
minutes, using ten 2.2 GHz Opteron cluster CPUs.

CONCLUSIONS

Synthetic test examples show that full wavefield inversion can estimate all
the anisotropic parameters, from P-wave surface survey data only, in a realistic
number of iterations (5-7) for each layer pair. This capability is new; it is not
possible if only traveltime data are used. The present version of the program is
limited to flat-layer elliptically anisotropic models, but can solve for VTI, HTI
and orthorhombic symmetries. Conventional isotropic NMO analysis can
provide an adequate starting model for the linearized inversion. Although the
inversion is capable of solving multiple-layer models, and layer stripping is a
practical strategy, errors accumulate for the deeper layers. A reliable inversion
for a layer needs amplitude constraints from both its top and bottom interfaces.
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