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ABSTRACT

Bakhtiari, M.R., Riahi, M.A. and Tingdahl, K., 2009. Minor fault detection by integration of
seismic attributes in an oil reservoir. Journal of Seismic Exploration, 18: 289-304.

Seismic section can often help detect the exact location and movement of minor faults, but
sometimes the poor quality of the data makes that impossible. It is well known that the existence of
minor faults and fractures in an oil reservoir play an important role in increasing its productivity.
The minor faults may cut the cap rock and cause the oil to leak from the reservoir. So, before
making any decisions for drilling in an oil field it is very important to know the exact locations of
minor faults. In order to detect minor faults, a single seismic attribute is usually applied, but the
results are not satisfactory. In this paper, for minor fault detection, we introduce a method based on
a combination of seismic attributes in a Neural Network system. Firstly, different attributes like
energy, similarity, dip variance, polar dip and polar dip angle with different time gates were applied
on a seismic section. Then to combine these attributes together and apply them, a workflow was
constructed, in which an artificial neural network system was designed, the above-mentioned
attributes were introduced to the system and hand-picked faults were input to the ANN system.
When the training of the system completes, the ANN estimates an output cube that indicates the
faults location. The obtained results based on this study showed that using a combination of attributes

in the ANN system is more reliable than applying a single attribute to locate the minor faults in an
oil reservoir.

KEYWORDS: minor fault, oil reservoir, seismic attributes, neural network system,
output cube.
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INTRODUCTION

In a conventional seismic interpretation project, usually for fault picking
purposes, a direct fault picking method is applied. In this method the interpreter
will look for the fault on the seismic section based on similarity among the
layers. Faults are therefore located either by hand, i.e. by drawing a few lines
on the final plot of a seismic line, or by using interpretation software. Some of
the recent interpretation methods have provided seismic attribute calculation for
fault detection. Such methods are incapable of tracing subtle faults. In fault
detection, based on attribute study, coherency or variance cube attributes are
usually applied. This type of study provides very good results while the data are
of good quality. If the data are not of good quality or a major fault is not
present on the seismic section, the application of single attribute will not be
adequate.

In order to overcome the above shortcomings in fault detection, we have
attempted to use an Artificial Neural Network (ANN) system as transfer
function. In this approach, the interpreter indicates some places on the seismic
section that have a high probability of being faults, he will then input these data
to the ANN system. When training of the system completes, the ANN estimates
an output cube that highlights the fault locations. In a single attribute study, the
applied attribute must be powerful, but in the ANN approach there is no
limitation in application of certain attributes for fault detection. In the ANN
method, the only condition that has to be taken into account is that different
weights should be considered for different attributes in fault location detection.

To achieve a good result, we have designed a proper ANN system by
examining different types of attributes with different weights that has led to an
output cube in-which we can indicate the faults.

GEOLOGY OF THE STUDY AREA

This study is focused on the Ab-Teymur anticline. The Ab-Teymur
structure is a gentle NW-SE trending anticline formed in response to a NE
compression during the Zagros orogeny. The neighboring Mansuri and
Susangerd anticlines are located in SE and NW of the Ab-Teymur field
respectively with a small lateral offset. These anticlines are the three outermost
structures of the Zagros folded belt located far from the Zagros suture zone.

There is a transition from the Zagros trends to the Arabian N-S structures.
The Ab-Teymur anticline is located on the northeastern edge of this transition
zone. The eastward extent of the Arabian plate structures prior to the Zagros
folding is uncertain; however it is likely that an N-S grain underlies structures
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such as Ab-Teymur and Mansuri. This may have controlled early structural
features, sedimentation and fracture trends.

The results of this study are based on seismic data acquired from the
Ab-Teymur anticline located at 15 Km south of Ahwaz in southern Iran. The
Ab-Teymur structure is a simple anticline which appears to be unfaulted at the
Bangestan and Asmari levels but in the Gachsaran level, it shows some faulted
zones.

In this study, we have specifically focused on minor faults in Gachsaran,
which is the cap rock of the reservoir. It is therefore very important for us to
know how these faults have extended in the cap rock.

The seismic survey was made by NIOC from 1999 until 2001 in an area
of 420 km®. The bin size is 25 by 25 and the foldage 24.

Both source and receiver intervals are 50 meters and the recording length
is 7 seconds. The sampling rate of the seismic data is 2 ms and the source of
seismic energy is dynamite in the severe topography whilst vibroseis has been
used for the gentle topography. Fig. 1 shows the Ab-Teymur anticline location
map and its stratigraphy column.

(A) (B)

Fig. 1. Ab-Teymur anticline location map (A) and the stratigraphy column (B).
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SINGLE ATTRIBUTE STUDY

To verify the ability of a multi attribute study via a single attribute,
firstly, we have applied single attribute and then we examined several attributes
like energy, similarity, dip variance, polar dip and polar dip angle on a seismic
section. Meanwhile, the combination of attributes that we have considered for
our ANN system are Curvature, Dip, Energy (with different time gates),
Similarity, Spectral Decomposition, Instantaneous Frequency, Instantaneous
Phase, Instantaneous Amplitude, Instantaneous Bandwidth and Instantaneous
Cosine of Phase.

The cube environment that we have chosen for this study is between inline
1200 - 1300 and cross line 300 - 500 with a time interval between 1200 - 1600
milliseconds. The inline that we have used for our calculations is the line
number 1250 and then the ANN system has made calculations on all parts of
this cube.

The seismic section that we have used for fault location detection is shown
in Fig. 2. The probable locations of faults are manually picked and marked by
violet dots and non fault areas are marked by green dots.

Time (s)

0.2

0.4

300 400 Cross line No. 500

Fig. 2. The seismic section of inline 1250 selected from the cube, between 1200 to 1600 ms TWT.
The probable locations of faults are detected based on direct picking method and marked by violet
dots. Non fault areas are marked by green dots. The horizontal axis indicates cross-line number.
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Energy

Energy is a measure of textural uniformity in an image. Energy is low
when all elements in the grey-level co-occurrence matrices (West et al., 2002;
Gao, 2003) are equal. It is useful for highlighting geometry and continuity. This
attribute calculates the squared sum of the sample values in the specified time
gate divided by the number of samples in the same time gate. It reads:

E = [ZA%]/n . (1)

Fig. 3 shows the results obtained after application of the energy attribute
on the seismic section shown in Fig. 2, with four different time gates.

Time (s) Time (s)

300 400 500 300 400
(A) (B)
Time (s)

500

©) (D)

Fig. 3. Energy attribute applied on the same seismic section shown in Fig. 2 with four different time
gates: (A) (—32, 32) ms, (B) (—40, 40) ms, (C) (—52, 52) ms, and (D) (—80, 80) ms. Panel D
shows the fault locations more clearly than the other panels do.
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Similarity

Similarity is a type of "coherency" that expresses how much two or more
trace segments look alike. Measuring local similarity between two seismic
images is useful for seismic monitoring, registration of multi component data,
and analysis of velocities and amplitudes (Fomel, 2007). A similarity of one
means the trace segments are identical in waveform and amplitude. A similarity
of zero means they are completely non-similar. The similarity attribute is
defined by the following equations (Tingdahl and de Rooij, 2005):
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where d, is the sampling interval, and t,, t, are the intervals of the time gate, x,,
y, and X, y, are the two trace positions that have to be compared, and f(t,x,y)
is just the amplitude value in a cube (Tingdahl and de Rooij, 2005). Fig. 4
shows a schematic diagram for the calculation of similarity attributes.

Fig. 5 shows the results obtained after application of the similarity
attribute on the seismic section shown in Fig. (2), with different time gates. The
specifications of the similarity attributes used in Fig. 5 is presented in Table 1.



MINOR FAULT DETECTION 295

Croastine

LY (hi)y @1

I o
R ) S P
" e @ B

S = i

Fig. 4. Schematic diagram for computing similarity attributes of each point using the surrounding
points.

Inlimve

Time (s) Time (s) Time (s)

300 (D) #00

0 Time (s

300 400
(G)

500

Fig. 5. The results of similarity attribute with different time gates applied on seismic inline 1250.
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Table 1. The specifications of the similarity attributes used in Fig. 4. NS = No Steering, FS = Full
Steering and min = minimum similarity in output.

Panel Time Gate Lateral position Other settings
A (—40,40) (=1,0)(1,0) NS min
B (-32,-32) (=1,0)(1,0) NS min
C (—32,32) (—=1,0)(1,0) FS min
D (—60,60) (—1,0)(1,0) FS min
E (—40,40) (-1,2)(1,-2) NS min
F (—40,40) (—=1,—-D(1.,1) NS min
G (—60,60) (-1,2)(1,-2) NS min
H (—32,32) Step out 1 FS min

Dip Variance

The variance of the dip is calculated in a small sub-volume around the
evaluation point. This attribute picks up chaotic reflection patterns. The
multi-attribute neural network is based on an object detection method developed
by Meldahl et al., (1999). Around the fault location, the dip changes rapidly and
for this reason the statistical value of dip changes clearly. Therefore, one of the
best attributes that indicates faults is dip variance. This attribute is expressed
mathematically by the following formula (Tingdahl and de Rooij, 2005).

X, Y. b
var(p) = [U(=1] Y, Y. Y [px+ay+B8,t+n — pl2 , (1)

B=-x a=-y, r=-a

where

X Ys b
b=/ Y, Y Y [pxtay+Bittr) , 2)

B=~x, a=-y, 7=-2a

where n is the total number of terms in triple summation, x, and y, are the
maximum trace stepout and a and b are the relative start and stop time of
window or upper and lower limits of the cube and p is the dip value (Tingdahl
and de Rooij, 2005). Fig. 6 shows the results obtained after application of the
dip variance attribute on inline 1250, shown in Fig. 2, with three different time
gates.
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Fig. 6. The results of the dip variance attribute with three different time gates and different settings
applied on seismic inline 1250.

Table 2. The specifications of the dip variance attributes used in Fig. 5.

Panel Time Gate Lateral Position
A (—16,16) Step out 6
B (—24,24) Step out 2
C (—60,60) Step out 1

Polar dip and Polar dip Angle

Polar dip attribute converts the input orthogonal dips (inline and cross line
dip) to true dip (Meldahl et al., 1999). The dip is measured from the horizontal
and if the range of the dip is more than zero, this attribute has the maximum
value on the faults plane because normally the dip of fault plane is more than
the other sides. Polar dip angle returns the true dip from the apparent dip. Fig.
7 shows the results obtained after the application of the polar dip and polar dip
angle attributes on inline 1250, shown in Fig. 2.

A comparison between the outputs obtained from the application of the
above-mentioned single attributes shows that none of them are convenient for
detecting fault location.
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Fig. 7. Polar Dip (A) and Polar dip angle (B) attributes applied on inline 1250. These panels show
the extensional faults above the anticline.

It is clear that the above mentioned attributes have their drawbacks as well
as their advantages in fault imaging; it means that some attributes are more
powerful in fault detection than others but it does not mean that the other
attributes not applied here are incapable of fault detection.

In the following section, we introduce a special method based on a
combination of different attributes in an integrated approach for fault detection
using a neural network system.

THE NEURAL NETWORK RESULTS

The neural network system considers an artificial model like the human
brain. The smallest element of a network is like a cell. To make different
layers, these cells are connected together. Fig. 8 shows a sketch of a neural
network system with an input layer a hidden (middle) layer and an output layer.
We usually deal with input and output layers only. To begin with, we used the
hand-picked faults on inline 1250 (marked by green dots on Fig. 2) as well as
the output of each single attribute on the same line as training input data to the
neural network system. Then the neural network scheme was performed. The
outputs of the ANN system were two cubes of data, one belonging to the fault
cube and the other belonging to the non fault cube. In the ANN approach there
is no limitation in the application of certain attributes for fault detection. In the
ANN method, the only condition that has to be taken into account is that
different weights should be considered for different attributes in fault location
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detection. Fig. 9, shows a real neural network window that contains input
attributes (right) and matching curve percentage (left), the matching curve
percentage was nearly 85% which is a very good matching value.

Fig. 8. A multilayer artificial neural network system that contains an input layer (left), a hidden
layer (middle) and an output layer (right) (Tingdahl and de Rooij, 2005).
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Fig. 9. A real neural network window that contains input attributes (right) and an average match
graph (left). The average match is nearly 85%, implying a very good correlation between real
seismic data and the output of the neural network system.
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Neural network calculations produced two output cubes in the output
layer. The first cube is a "Fault Cube" and the second one is a "Non Fault
Cube" which are shown in Figs. 10 and 11, respectively. The fault cube and
non fault cube show that the inline 1250 cuts through 3 time slices at 100 ms,
200 ms and 300 ms. To investigate the variation of fault orientation, Fig. 12
shows these time slices: a = 100 ms, b = 200 ms and ¢ = 300 ms chosen from
the fault cube. The panels A, B and C are close-ups of these time slices.

Fig. 10. The fault cube produced by the neural network system. The vertical section is inline 1250
and a, b and c are horizontal time slices at 100 ms, 200 ms and 300 ms, respectively.

Fig. 11. The non fault cube produced by the neural network system. The vertical section is inline
1250 and a, b and ¢ are time slices at 100 ms, 200 ms and 300 ms, respectively.
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Fig. 12. Three different time slices above the fault cube. (A) 100 ms, (B) 200 ms and (C) 300 ms.
The variation of fault orientation can be investigated by these time slices.
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Fig. 13A shows inline 1250 on the fault cube where the faulted area is
highlighted by gray and the non fault areas are in yellow.

To verify the superiority of the ANN procedure an attempt was made to
compare the ANN fault prediction (Fig. 13A) with the fault prediction from
conventional attributes like spectral decomposition (Fig. 13B) and coherency
attribute (Fig. 13C). As it can be seen from this figure, the result obtained from
the neural network (Fig. 13A) has better revealed the faulted areas than the
other attributes in Figs. 13B and 13C.
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Fig. 13. (A) Inline 1250 on the fault cube. The faulted area is shown in gray and the non faulted
areas are in yellow. (B) is the result from spectral decomposition for the same inline and (C) is the
Coherency attribute result for the same inline. It can be seen that the fault cube (A) shows the
fractured area clearer than the other attribute results.
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Fig. 14 shows inline 1250 on the non fault cube. Here, the non faulted
area is indicated by gray color and the faulted areas are in yellow. Comparison
between inline 1250 and fault cube (Fig. 13A) shows that we can obviously
detect the faulted areas clearly and with less uncertainty than the direct
observation (Fig. 2).

Time (s)
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Fig. 14. Inline 1250 on the non fault cube, the non faulted area is indicated by gray and the faulted
areas are in yellow.

CONCLUSION

There are several methods such as: single attribute study and direct
manual fault picking for determining the location of minor faults. If the data
quality is poor or a subtle fault is present on the seismic section, application of
these approaches is inadequate. In order to overcome the related shortcomings,
we have attempted to use the Artificial Neural Network (ANN) system as a
transfer function. In this approach, the interpreter will select some places on the
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seismic section that have high probability of being faults, the selected data are
then input to the ANN system. When training of the system completes, the
ANN system estimates an output cube that highlights the fault locations. In the
single attribute study, application of a powerful attribute is necessary but in the
ANN approach there is no limitation on the application of certain attributes for
fault detection and the only condition that has to be taken into account is that

different weights should be considered for different attributes in detecting fault
location.

The integration of the seismic attribute method could define the location
of minor faults in the cap rock more clearly than traditional methods of fault
interpretation by manual picking or applying single attributes. This method is

very useful for reservoir simulation and planning for oil production in other
commercial seismic software.
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