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ABSTRACT

Eftekharifar, M., Riahi, M.A. and Kharrat, R., 2009. Integration of Gustafson-Kessel algorithm and

Kohonen’s self-organizing maps for unsupervised clustering of seismic attributes. Journal of Seismic
Exploration, 18: 315-328.

The goal of different methods for clustering of seismic attributes has been to analyze the
discrimination ability of the chosen set of attributes. Kohonen clustering networks or Kohonen’s self
organizing maps are well known for cluster analysis (unsupervised learning). This class of algorithms
is a set of heuristic procedures that suffers from some major problems.

In this paper we propose the use of an unsupervised method by integrating the fuzzy c-means
clustering and Gustafson-Kessel algorithms into the learning rate and updating strategies of the
Kohonen clustering network. Using a new fuzzy calibration method, the different attribute classes
are calibrated to lithology classes and the appropriate attributes and classes are determined. In this
paper we propose a robust clustering algorithm which can be quality-controlled by using fuzzy
modeling. That means using the clustering results, the available but limited log data is rebuilt after
clustering to see the performance of the clustering technique. Classification and modeling results
tested on a real data set show reasonable accuracy when compared to well logs.

KEYWORDS: unsupervised clustering, Kohonen’s self-organizing maps (SOM), fuzzy self-
organizing maps, fuzzy logic, Gustafson-Kessel algorithm, complex seismic

attributes, reservoir characterization, inversion.
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INTRODUCTION

The effectiveness of the interpretive use of seismic attributes depends on
the discrimination ability of a set of seismic attributes. For determining different
lithologies from seismic data, some attributes may be necessary; a few may be
sufficient. This could be determined by experimenting with logical combinations
of various mixtures of attributes (Taner, 1997). In cases where well logs or
lithological columns are available, feed-forward fully connected neural networks
may be trained in a supervised manner. In cases where insufficient well
information is available, one must use an unsupervised methodology to cluster
the data and check to see if it will have any relation to our experience based
interpretation. In our case, the data is the computed set of complex attributes.
The user selects a set of attributes to be used in clustering or in classification.
There are several unsupervised clustering methods that may be applied to this
problem. Thus far, Kohonen’s self-organizing maps (Kohonen, 1989) have been
applied for this purpose (Taner, 1997).

Fuzzy logic is a very powerful tool, when information regarding the
uncertainty of estimation is desired. It deals with membership functions, and
each data point plays a role in the classification of the entire dataset. It means
despite other crisp classification methods that, even very small probabilities will
be taken into account.

Clustering techniques try to assess the interaction among patterns by
organizing the patterns into clusters such that patterns of a cluster are more
similar to each other than they are to patterns of different clusters (Tsao et al.,
1992). Treatments of many classical approaches to this kind of problem have
been proposed by several researchers (Kohonen, 1989; Bezdek, 1981; Duda and
Hart, 1973; Tou and Gonzalez, 1974; Hartigan, 1975; Dubes and Jain, 1988).
Kohonen’s algorithm has become timely in recent years because of the
widespread interest in the applications of neural network (Pao, 1989). However,
Kohonen’s self organizing maps or KCN suffer from several problems (Tsao et
al. 1992):

1. KCNs are heuristic procedures, therefore termination of clustering
procedure is not based on optimizing any model of the process or its data.

2. Weight vectors usually depend on the input data sequence (the order of
feeding the data).

3. Different initial conditions will yield different results.
4. Several parameters of the KCN algorithms, like learning rate and the size

of the updating neighborhood, must be different from one data set to
another to obtain good results.
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It is widely accepted that KCN clustering is closely related to the c-Means
(CM) algorithms (Lippman, 1987). But the question is that what "closely
related" really means. Since CM algorithms are optimization procedures,
integration of fuzzy c-means and KCN is one way to address several problems
of Kohonen’s clustering networks (Tsao et al., 1992). This was first considered
by Huntsberger and Ajjimarangsee (1989).

In Fuzzy Kohonen Clustering Network (FKCN) algorithm, the ideas of
fuzzy membership values for learning rates, the parallelism of fuzzy c-means,
and the structure and update rules of KCNs are used simultaneously. FKCN or
F-SOM is self-organizing, since the size of the update neighborhood is
automatically adjusted during learning, and FKCN usually terminates in such a
way that the fuzzy c-means objective function is approximately minimized (Tsao
et al. 1992). FKCN is non-sequential, meaning that it is independent of the
sequence in which the data are input to the algorithm. The neighborhood
constraint of Kohonen’s clustering network can be embedded in the learning rate
strategy of FKCN (Tsao et al., 1992).

METHODOLOGY

The inputs to this method are sonic log data from one well and a set of
complex seismic attributes obtained from the raw seismic data. We input these
attributes to the clustering network, and then based on the clustering results and
calibration information, attempt to estimate the log data. Before doing the
clustering, the input data should be preprocessed. The results of calibration and
consequently of modeling depend greatly on the quality of the well to seismic
tie. This implies that extracting a proper wavelet is of crucial importance. In this
study, each attribute is chosen to vary in one dimension (in depth along the
well). This method of choosing the data has some advantages. First, the data
size becomes as small as possible. Therefore, computation time will be greatly
reduced. The main seismic attributes used in this study were envelope, first
derivative of amplitude, second derivative, quadrature trace and instantaneous
frequency.

Before clustering the data, in order to avoid the curse of dimensionality,
it is important to perform a Principal Component Analysis (PCA). PCA is useful
for studying multi dimensional data, for example, in reducing the effective
dimensionality of a data set. PCA has been used for multi-attribute analysis
(Taner, 2002). The PCA process determines an orthogonal set of axes that lie
in the directions of largest, second largest, and so on down to the smallest
variance in the data volume. PCA is of crucial importance because it allows one
to recognize the most valuable part of the data. It avoids overtraining, and
decrease computation time by reducing the size of data. PCA determines the
directions in which the data has most variations and replaces the axes of present
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data with new axes which are in the direction of the maximum variance. Then
those directions that the data variation has minimum values, can be ignored
(usually they keep those axes that contain 95% of the original data). In order to
avoid the dominance of some of the attributes, all input data should be
normalized so that their mean equals zero and root mean square (RMS) of all
the data is equal to one (RMS = 1).

Gustafson-Kessel Algorithm (G-K)

The fuzzy c-means (FCM) algorithm is a fuzzified version of the classical
k-means algorithm. The minimized loss functions of the two algorithms are
almost identical. The difference is that in FCM, a membership function or
degree is introduced (u) which defines the degree by which a data sample
belongs to a specific class. Therefore sum of all membership degrees of a data
sample is equal to one.

N
1= Y ulud - el , (1)
j=1 i=1
with
C
Ywm=1, )
j=1
where j = 1,...,K or C is the number of clusters and i = 1,...,N is the

dimension of the input data (number of attributes).

The variable v controls the fuzziness of the clustering. It means that the
smaller v, the sharper the boundaries of the clusters. One should find a
compromise between the number of clusters and the fuzziness parameter v.
Depending on the size of the data, the variable v can vary but usually values
between 1.5-1.8 yield reasonable results.

The Gustafson-Kessel algorithm (Gustafson, 1979; Babuska, 1996;
Hoppner et al., 1997) is the extended version of the c-means clustering
algorithm. Here each cluster possesses its individual distance measure L.
Furthermore, not only the cluster centers ¢; (centroids), but also the norm

matrices L; are subject to minimization of the loss function (1).

The distance of the data sample / from cluster center j is given by (Nelles,
2001):
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where [ = 1,...,M is the number of data points, j = 1,...,K or C is the number
of clusters and i = 1,...,N is the dimension of the input data (number of
attributes).

The norm matrices can be calculated by (Nelles, 2001):

L =Fj', )
where
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One difficulty is that the Euclidian distance of the data sample / from
cluster center j (3) and consequently the loss function (1) can be reduced simply
by making the determinant of E; small. To prevent this effect, the norm matrices
or the fuzzy covariance matrices must be normalized. Typically, the determinant
of the norm matrices is constrained to a user defined constant:

det(T) =v; . ®)
Therefore the norm matrices are defined as:
I, = Fy'[vdet(F)I'"™ . ®

With N being the dimensionality of the input space (number of attributes,
used). By this normalization the volume of the clusters will be restricted to
equal v;. Thus, the Gustafson-Kessel algorithm searches for clusters with given,
and equal, volumes if no prior information is available. If prior knowledge
about the expected cluster volumes is available, the v; can be chosen individually
for each cluster.
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Fuzzy Self Organizing Maps (FSOM)

The unsupervised clustering method used in this paper is a kind of
Fuzzy-Self Organizing Map (FSOM) in which the Gustafson-Kessel algorithm
is integrated in the learning rate and updating strategies of the Kohonen Self
Organizing Maps. Tsao et al. (1992) introduced a FSOM method by combining
the FCM clustering in the learning rate and updating strategies of the SOM and
showed the superiority of this method with respect compared to the SOM. Also,
Hu et al. (2004) show that F-SOM (FCM + SOM) is much more efficient than
the SOM and vector quantization in both speed and accuracy.

In this method, eq. (10) is devised for updating the centers of clusters
instead of eq. (7)

M M
cyt + 1) = cy() + ;ﬂ7j<t)-[u,i ~ ¢0)] /;um) . (10)

This will solve the problem of label dependency in SOM (in FSOM
scheme, during each iteration, the whole data is scanned. In SOM, data samples
are fed one by one, in a random manner and if we do clustering n times, we
will get n different results. This means that the clustering algorithm depends on
the order by which the data samples are fed into the clustering network (label
dependency). In addition, we use the G-K algorithm instead of FCM and the
performance of these two methods will be compared. In the G-K algorithm, the

volume of the clusters are controlled by L;. This algorithm can be summarized
as follows:

Step 1. Randomize the initial values of the weight vectors.

Step 2. Input all samples.

Step 3. Calculate the Euclidean distances from each sample u, to all output
eurons (D) using eq. (3).

Step 4. Compute the membership degrees of each data sample to all neurons pu.

Step 5. Adjust the weights of each neuron according to the computed member-
ships using eq. (10).

Step 6. Determine the stability condition of the clustering network (since the
data has been normalized, ¢ should have a small value of about 0.01 to
0.001.

max{|c;(t + 1) — c;(t)|} < ¢
1 <i<N

1<j=<K
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The process of clustering schematically is equivalent to perturbing and
fitting a polygon (like the one in Fig. 1) and moving the centers so as to
minimize the objective function and obtain a new arrangement which best
clusters the data (like the one shown in Fig. 2).

The membership degrees of the data points to each class are shown in
Fig. 3. The horizontal axis shows the number of the class or cluster (in this Fig.
16 classes), and the vertical axis shows the number of the data points with
increasing depth (about 550 data points). The color bar shows the membership
degrees ranging from zero to one (dark blue and dark red represent zero and
one respectively). In other words, if you imagine a horizontal line in this Fig.
and add all values (membership degrees) up, you will get the result equal to
one. This is equivalent to saying that the sum of membership degrees of a data
point to different classes is equal to unity.

Fuzzy Calibration

The unsupervised clustering methods seek an organization in the dataset
and form relational organized clusters. However, these clusters may or may not
have any physical analogues in the real world. In order to relate these clusters
to the real world, we have to develop some form of calibration method that not
only defines the relationship between the clusters and real world physical
properties, but also provides us with an estimate of the validity of these
relationships. With the development of a calibrated relationship, the whole
dataset can be classified. Taner (2000) proposed a method for doing such a
calibration. A fuzzy calibration procedure is proposed in order to quality-control
the clustering performance. To do such a calibration, the log data should be
classified using fuzzy logic as well. This kind of calibration is done using the
IF-THEN fuzzy rules and Mamdani Implications (Wang, 1996). Mamdani

implications are the most widely used implications applied in the fuzzy systems
and fuzzy control.

For connective "and" we use fuzzy intersections. We let x and y be
linguistic variables in the physical domains U and V and, A and B be fuzzy sets
in U and V, respectively. Then the compound fuzzy proposition

xis A and y is B
is interpreted as the fuzzy relation A N B in U X V with membership function

Bans(X,y) = tlua(X),us(y)] (11

where t:[0,1] X[0,1]-[0,1] is any t-norm.
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Fig. 1. The network to be fitted to the data.
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Fig. 2. The network after training.
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Fig. 3. Membership degrees which indicate the degree by which the data points (each data point is
a set of attributes) belong to each class (The horizontal axis shows the number of the class or cluster
and the vertical axis shows the number of the data points with increasing depth).

If we use the algebraic product for the t-norm in (11), then the fuzzy
proposition:

P: IF xis ATHEN yis B

is a fuzzy relation in U X V with the membership function:

BUp = pa X pg - (12)

In terms of geophysics, this rule can be expressed as: IF the attributes set
belongs to the class A THEN the log value belongs to the class B. Therefore,
according to egs. (11) and (12), the greater value of u, means the greater
similarity between A and B. To make it more clear, suppose we want to cluster
our data set (seismic attributes) into 16 different classes. In order to do the
calibration we should classify the desired output data (log data or lithology) into
the same number of classes as seismic attributes. We are trying to find out
which seismic attribute class corresponds to which log value or lithology class.
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In order to do this we multiply the membership degrees of input data points to
one specific class with the membership degrees of output data points to all
classes. In other word, if we have for example 500 data points (500 vectors that
each of them has a length equal to the number of the attributes we are using),
and we want to have 16 clusters, after fuzzy clustering we will have a matrix
of the size 500 X 16. We will have the same matrix for output or log data. That
means we will have 16 log value classes for 500 log value data points. To better
understand these matrices, take an element a(280,13) from the clustered input
data. This element shows the degree by which the 280-th input data sample
which is a vector of size 5 for example, (5 is the number of the attributes),
belongs to the 13-th cluster. We have the same definition for the matrix of the
log values after clustering. Now, to find the best candidate among 16 log class
values which corresponds to the first class of attributes, we multiply the column
one a(i,1) of the input matrix with all 16 columns of the output or log matrix
b(i,1),b(1,2),...b(1,16), (element by element). Therefore we get 16 columns. If
we add up all elements in one column, we will get 16 numbers. The biggest
number among these 16 numbers shows the greatest similarity between the first
class of input data with the corresponding output class. That means if for
example we get the greatest value by multiplying the first column of input
matrix with the 7-th column of the output matrix, then the first class of the
attributes is equivalent to the 7th class in the log classes. We do the same
procedure for the second, third,... input classes.

Having the calibration results (fuzzy rules), and using the membership
functions obtained by F-SOM clustering, one can do fuzzy modeling. This can
be thought of as a weighted averaging operation, or Kriging, in geostatistics in
which the unknown value is estimated using all other data points. Every log
sample is calculated by addition of the log class values, which are weighted by
their corresponding membership degrees. In fact this can be considered as QC
for this method where we rebuild the well log by using clusters we made. The
result of modeling, using the F-SOM (FCM +SOM) is shown in Fig. 4, and the
result obtained by F-SOM (G-K+SOM) is shown in Fig. 5, where the modeled
log (blue) and the actual log (red) are compared. The process is depicted in
flowchart form in Fig. 5. The correlation between real (actual) log values and
the modeled log values (calculated by weighted averaging) indicate that
clustering by G-K+SOM yields better results than FCM +SOM (Correlation
Coefficient for G-K+SOM: 54% and for FCM +SOM: 36%).

CONCLUSIONS

In this paper, a fuzzy Kohonen clustering network (FKCN) algorithm,
based on the integration of Gustafson-Kessel (G-K) and Kohonen’s clustering

network (KCN), is proposed. This algorithm addresses some intrinsic problems
of KCN.
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Fig. 4. The modeled log using fuzzy modeling and F-SOM (C-Means), in blue and the real log in
red (Correlation Coefficient: 36%).

C-Means algorithms are optimization procedures, but KCN is not.
Therefore, integration of G-K and KCN is one way to address several problems
of KCNs. The proposed method is a robust clustering technique which can be
quality-controlled, using fuzzy modeling. That means using the clustering
results, the available but limited log data is rebuilt after clustering to see the
performance of the clustering technique. Using a number of complex seismic
attributes and a limited log data (single well), log properties can be extrapolated
throughout the 3D seismic cube. The data selection strategy used in this paper
makes the proposed method a very fast tool for clustering. Classification and
modeling results tested on a real data set show reasonable accuracy when
compared to well logs.
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Fig. 5. The modeled log using fuzzy modeling and F-SOM (G-K), in blue and the real log in red
(Correlation Coefficient: 54%).
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