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ABSTRACT

Ma, Y. and Sava, P., 2009. The effects of multi-scale heterogeneities on wave-equation migration.
Journal of Seismic Exploration, 18: 357-383.

Velocity models used for wavefield-based seismic imaging represent approximations of the
velocity characterizing the area under investigation. We can conceptually decompose the real velocity
model into a background component which can be inferred using conventional velocity analysis
techniques, and into another component encapsulating the model heterogeneities. This unknown
component is responsible for mispositioning of reflection energy which usually takes the form of
imaging artifacts. Model heterogeneity can be described stochastically using, for example, correlated
Gaussian random distributions or fractal distributions. Data simulated for the various distributions
are characterized by spectra with different shapes when analyzed in the log-log domain. For
example, Gaussian distributions are characterized by exponential functions and fractal distributions
are characterized by linear functions with fractional slopes. These properties hold for both data and
migrated images after deconvolution of the source wavelet. On the other hand, the image
heterogeneities induced by model heterogeneities can be considered as noise to be removed by an
image filtering operation. Among many possibilities, filtering with the seislet transform (a wavelet
transform technique) and Gabor-Wigner distribution (a time-frequency analysis technique) are
effective at suppressing noise, although both techniques affect the signal corresponding to the major
geologic structure. Such filtering can be applied at different stages of wave-equation imaging, for
example on data, on the reconstructed wavefields, or on the migrated image. Of all possibilities,
filtering of the reconstructed wavefields is most effective.
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INTRODUCTION

Wave-equation migration consists of two steps (Claerbout, 1985). The
first step represents wavefield reconstruction at every location in the subsurface
from data recorded at the surface using a numeric solution to a wave equation.
The second step consists of extracting reflectivity information from the
reconstructed wavefields using an imaging condition. The accuracy of wavefield
reconstruction, which directly determines the quality of migrated images,
depends on the accuracy of both the velocity model and the wave-equation used
for wavefield reconstruction.

Conventionally, we decompose the earth’s velocity into two models
corresponding to large-scale (low-frequency) and to  small-scale
(high-frequency) components. We refer to the large-scale component as the
velocity model and to the small-scale component as the reflectivity model. The
large-scale component of the model is used for wavefield reconstruction, and
the small-scale component of the model is the object of the imaging condition.
However, real geologic environments do not follow this clear separation of
scales. Evidence from well logs and rock outcrops indicates that a better
description of the subsurface requires heterogeneity at all scales of variation
(Richter-Bernburg, 1987). We refer to this type of models as multi-scale. The
multi-scale variability is usually ignored in imaging. As a consequence, imaging
with smooth models leads to inaccurate wavefield reconstruction and to
corresponding distortions of migrated images.

In this paper, we study the effects of multi-scale heterogeneity on
imaging. First, we analyze various types of heterogeneity, their impact on
seismic data and migrated images and whether this information can be extracted
from data or migrated images. Second, we evaluate techniques designed to
attenuate the artifacts caused by disregarding the mid-scale heterogeneities in the
imaging process. Although not necessarily consistent with geology, the goal here
is to eliminate from the migrated images what is inconsistent with the assumed
bi-modal distribution described in the preceding paragraphs.

In the first part of this paper, we investigate the composition of
multi-scale heterogeneities. Conventionally, velocity heterogeneity is described
as random perturbations superposed on a large-scale background distribution
(Hoshiba, 2000). An alternative description of mid-scale heterogeneities is based
on the fractal character of natural objects, which is documented by many
geological and geophysical observations, e.g., rock fragments, faults,
earthquakes, and well logs (Mandelbrot, 1982; Turcotte, 1997; Dolan et al.,
1998). Fractals posses the property of scale invariance which means that they
are built using self-similarity relations.
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Within our imaging framework, we regard the artifacts caused by the
absence of mid-scale heterogeneities from the models used for imaging as noise
which we attempt to remove from the images. From the wide variety of
techniques that can be employed for noise attenuation, we consider methods
from the wavelet-decomposition family and from the time-frequency analysis
family. Our choice of wavelet-like decomposition is the seislet transform which
is specifically designed for application to seismic data. The seislet transform
decomposes seismic signals to different scales using the dominant slope at every
location (Fomel, 2006). Then, the decomposed data can be truncated to
emphasize the components that are most consistent with our assumption of the
local slopes. Our choice of time-frequency decomposition is similar to the
Wigner distribution functions (WDF) (Wigner, 1932; Ville, 1948), which can
be employed for noise attenuation in seismic migration, e.g., as an
interferometric imaging condition (Sava and Poliannikov, 2008). A similar
approach is adopted by Borcea et al. (2006). Imaging conditions based directly
on WDFs can attenuate significant noise from the reconstructed wavefields, but
have the drawback that they make the phase of output signals ambiguous due to
the quadratic nature of the transformation (Cohen, 1995). To address this
problem, we employ an alternative time-frequency method called Gabor-Wigner
distribution (Pei and Ding, 2007) which does not suffer from that drawback.

MODELS OF HETEROGENEITY

The velocity model of the subsurface cannot be known exactly in a
realistic field experiment, but it can be approximated as the superposition of a
known background velocity and unknown perturbations. Fig. 1(a) shows a
smooth velocity distribution without fine-scale perturbations. The reflectivity
characterizing this smooth background is indistinct, as shown in Fig. 1(b). On
the other hand, stratigraphy can be represented by a blocky model as shown in
Fig. 2(a). The reflectivity in Fig. 2(b) characterizing this model marks the main
reflectors in the subsurface which are the main target of seismic imaging.
Additionally, random fluctuations can be introduced in the velocity model to add
heterogeneity at various scales (Hoshiba, 2000). In the following section, we
discuss different models for subsurface heterogeneity.

Gaussian heterogeneity

Mid-scale velocity heterogeneities can be approximated by random
distributions. Correlated Gaussian random distributions can be constructed by
convolution of uncorrelated random noise n(x) with a Gaussian smoothing
function g(x)

r,(x) = n(x) * gx) . M
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The Gaussian function g(x) is obtained by inverse Fourier transform of

G(k) = e | 2)
where o governs the correlation distance and k represents the wavenumber
associated with variable x. By definition, we can relate the wavenumber k with
the wavelength A by A = 2x/k. Then, we can write

G(\) = e ™™™ | A3)

therefore, by taking the natural logarithm, we obtain
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Fig. 1. (a) A smooth background vertical velocity profile that has no significant local heterogeneity
to generate details in the reflection coefficients, which is shown in (b).
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Fig. 2. (a) A blocky heterogeneity and (b) its resulting reflection-coefficient series in depth.

The interpretation of eq. (4) is that the InG — In\ dependence is
exponential. Furthermore, if we observe random noise with this general
dependence, then we can conclude that the input signal has Gaussian character.
Fig. 3(a) shows an example of correlated Gaussian random noise with 10 m
correlation in depth and Fig. 3(b) shows the associated reflection coefficients.
Fig. 4 shows a 2D example of Gaussian random noise with correlation lengths
in the horizontal and vertical directions of 0.05 km and 0.01 km, respectively.

Fractal heterogeneity

By definition, fractals are quantities characterized by self-similarity
(Mandelbrot, 1982). Fractals are often initiated with a large scale generator
which is repeated iteratively at finer scales. For example, for a generator
function I(x), a self-similar fractal function has the property

I(rx) = 1x)r'* )
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Fig. 3. (a) Gaussian random perturbations with 10 m correlation in depth. (b) The
reflection-coefficient series governed by velocity heterogeneity in (a).

where r is a scaling factor, and Ha is known as the Hausdorff measure which
determines the fractal dimension D = 2 — Ha (Turcotte, 1997).

We can construct stochastic self-similar functions by convolution of
uncorrelated random noise n(x) with a fractal series f(x)

rdx) = n(x) * f(x) . 6)

The fractal series f(x) is obtained by inverse Fourier transform of a
function with the power-law dependence:

Fk) = [k[7 | )

where 3 is related to the fractal dimension D as 8 = 2.5 — D (Turcotte, 1997).
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Fig. 4. 2D Gaussian random perturbation with correlation lengths in the horizontal and vertical
directions of 0.05 km and 0.01 km, respectively.

Replacing the wavenumber k with the wavelength A, we can write

FON = (\V2n)? ®)
therefore, by taking the natural logarithm, we obtain

InF = BIn\ + const . )]

The interpretation of eq. (9) is that the InF — In\ dependence is linear.
Furthermore, if we observe random noise with this general dependence, then we
can conclude that the noise has fractal character. Fig. 5(a) shows an example of
fractal random noise with power law of order 0.5 and Fig. 5(b) shows the
associated reflection coefficients. Fig. 6 shows a 2D example of fractal random
noise with power law of order 0.5.
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Comparison of Gaussian and fractal heterogeneities

Figs. 7(a)-(d) compare log-log spectra of the smooth background velocity
and blocky velocity with correlated Gaussian random and fractal heterogeneities.
Figs. 7(a) and 7(b) are log-log spectra of the smooth and blocky profiles in
Figs. 1(a) and 2(a), respectively. In both spectra, the thick lines represent linear
least-squares fits with the regression function y = o,Xx + «,, and in both cases
the slope of the fit is equal to 1. In contrast, the spatially correlated Gaussian
random distribution shown in Fig. 7(c) and corresponding to Fig. 3(a) matches
an exponential trend, as suggested by eq. (4) and indicated in the figure by the
thick line corresponding to the regression function y = aye > + . Similarly,
the fractal random distribution shown in Fig. 7(d) and corresponding to Fig.
5(a) matches a linear trend, as suggested by eq. (9) and indicated in the figure
by the thick line (Stefani and De, 2001). However, the linear slope is different
from 1 which distinguishes the fractal profile from the blocky one shown in Fig.
7(b). In this case the slope of the log-log fit is 0.5.
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Fig. 5. (a) The fractal perturbations with a order of 0.50, corresponding to the log-log spectrum in
Fig. 7(d). (b) The primary reflection-coefficient series governed by the fractal heterogeneity in (a).
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Fig. 6. Fractal random perturbations in a velocity model with power law of order 8 = 0.5.

DATA VARIABILITY DUE TO MODEL HETEROGENEITY

We consider 1D seismic responses of the reflection coefficients shown in
Figs. 2(b), 3(b) and 5(b). We simulate data by convolution and by
finite-difference modeling. In both cases we use a central frequency f = 20 Hz.
The simulation sampling rates are Az = 10 m and At = 1 ms. Figs. 8(a)-(c)
show the data obtained by convolution and Figs. 9(a)-(c) show the data obtained
by finite-difference modeling.

The main distinction between the two kinds of data modeling is that
convolution represents single interaction of the wavelet with the reflectivity
function, while finite-difference modeling incorporates other physical
phenomena, e.g., multiple scattering. By studying the two types of simulation,
we attempt to understand whether the character of the random fluctuation is
influenced by wave propagation and whether we can recover information about
the random character of the model through direct observations of recorded data.
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Fig. 7. Log-log spectra corresponding to (a) a smooth background velocity, (b) a blocky
perturbation, and (c) a depth-correlated Gaussian random perturbation in log-log spectrum analyses.
Thick lines are least-squares fittings of the log-log spectra. Both the smooth background and blocky
perturbations show a trending slope of about 1. The correlated random noise in (c) gives an
exponential relationship in the log-log graphic. In contrast, (d) shows a fractal power-law example,
which depicts a linear least-squares fit with slope 8 = 0.5.
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Fig. 8. (a)-(c). Synthetic seismic data obtained by convolution of a Ricker wavelet with the reflection
coefficient series shown in Figs. 2(b), 3(b) and 5(b), respectively.
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Fig. 9. Synthetic seismic data obtained by finite-differences modeling in 1-D models characterized
by reflection coefficient series shown in Figs. 2(b), 3(b) and 5(b), respectively.
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Fig. 10 compares log-log spectra of the data displayed in Figs. 9(a)-(b).
The solid, dashed, and dotted lines correspond to data of the blocky, Gaussian,
and fractal velocities, respectively. We can observe that the data for the blocky
model, Fig. 9(a), overlaps the data corresponding to the models with random
variations, Figs. 9(b)-(c), over the entire band of the signals. It is difficult to
determine the parameters of the signal corresponding to the random fluctuations
by simple spectral analysis, or to separate the main reflectors characterizing all
models from events related to the random model fluctuations. Thus, we cannot

design simple frequency/wavenumber filters to reduce the signal caused by the
model random fluctuations.
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Fig. 10. Spectra comparison of data shown in Figs. 9(a)-(c) in a log-log plot. Solid: blocky-model
data in Fig. 9(a); dashed: Gaussian-random data in Fig. 9(b); dotted: fractal-random data in Fig.
9(c).
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From the analysis of the data spectra, it is apparent that the dominant
contributor to the spectrum is the actual signal wavelet. Assuming that the
wavelet is known at least approximately, we can deconvolve the wavelet from

the recorded data and analyze the remaining spectrum to extract information
about the model fluctuations.

Figs. 11(a)-(f) depict the log-log spectra of reflectivities extracted from
data shown in Figs. 8 and 9. The left panels correspond to the data obtained by
convolution, Figs. 8(a)-(c), while the right panels correspond to the data
obtained by finite-differences modeling, Figs. 9(a)-(c). For both types of
modeling, we obtain similar spectra which characterize the types of random
model fluctuation. For example, the spectrum of the blocky model corresponds
to a slope close to 1. The spectrum of the data for the model with Gaussian
variability shows an exponential trend fitted by parameters o; = —70® =
—0.001, which implies that ¢ = 0.01, indicating a correlation length of about
10 m. The spectrum of the data for the model with fractal variability shows a
linear trend fit by parameters o; = 0.51 and o, = 0.49, which are close to the
power order of 0.50, which characterizes the velocity model. These trends are
consistent with the trends obtained by analyzing the spectra of the velocity
model themselves, which indicates that properties of the random component of
the model are preserved in data and can be extracted, assuming that we know
the corresponding wavelet with sufficient accuracy. Table 1 summarizes the
fitting results for the various combinations of heterogeneity and data modeling.

Table 1. Heterogeneity parameters for the blocky, Gaussian, and fractal models. These parameters
are extracted from data shown in Figs. 8 and 9 using least squares fitting.

Model Convolution Finite differences

Blocky o, = 0.91 o, = 3.14 o, = 0.81 a, = 2.61
Gaussian o; = —0.001 o, = 1.83 o; = —0.001 o, = 1.28
Fractal o, = 0.51 o, = 2.85 o, = 0.49 o, = 2.75

IMAGE VARIABILITY DUE TO MODEL HETEROGENEITY

The analysis performed in the preceding section addresses the question
whether we can access information about the model heterogeneity through the
analysis of recorded data. In this section we address an alternative question,
i.e., whether we can access the same information through analysis of migrated
images. For this analysis, we use a portion from a well-log acquired in the field.
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Fig. 11. Extract proofs of heterogeneity from data by deconvolving of the wavelet from the data.
Left: extracted from convolution data; right: extracted from finite-difference modeling data. Top:
extracted blocky information. Middle: extracted Gaussian random information. Bottom: extracted
fractal information. Thick lines are least-square fittings, and coefficients for fitting results are listed
in Table 1.
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In this case, we do not know a-priori the nature of the randomness. Fig. 12(a)
shows the P-wave velocity constructed from well measurements superimposed
on a velocity model obtained as horizontal extension of the well-log.

Fig. 13(a) shows the log-log spectrum of the well-log. The thick straight
line represents the linear least-squares fit applied to the spectrum. The slope is
equal to 1 which is consistent to the fact that the well log is dominated by a
smooth non-constant background component, or put another way, the spectrum
is dominated by a slope inverse proportional with the wavenumber k (Shtatland,
1991). In order to emphasize the heterogeneities present in the model, we first
remove the k™' spectrum. In the k domain, according to the nonlinear
least-squares fitting y = ak™', we estimate the intensity of the k™' component
which corresponds to the background velocity. Because of the linear assumption
of velocity model composition, we can apply a linear operation in the k domain,
i.e., we subtract the nonlinear least-squares fit from the entire spectrum. After
removing the k™' component, we analyze separately the remaining spectrum
shown in Fig. 13(b). The slope of the linear least-squares fit is equal to 0.60
which, as expected, indicates that the model randomness has fractal character.

Fig. 12(b) shows a simulated shot record with a source located at x = 2.0
km, z = 0 km. The zero-offset trace is superimposed on the data. Migration of
the data in a smoothed background velocity produces the image shown in Fig.
12(c). The zero-offset image trace is also superimposed on the image. As for the
preceding example, we analyze the expression of model randomness on image
using the log-log plots of the spectra, after we deconvolve the seismic wavelet
from the image. Fig. 14(a) displays log-log spectra of the zero-offset image
trace. As before, we separate the k™! component obtaining the spectrum shown
in Fig. 14(b). The linear least-squares fit to the image spectrum has a slope of
0.62, which is close to the slope obtained from the direct analysis of the
well-log. Thus, we can conclude that the migrated image indicates the presence
of a model with fractal dimension approximately equal to about 0.60. Fig. 15
shows the dependence of extracted heterogeneity information from image versus
offset. It is apparent that the extracted heterogeneity parameters in the near
offset are more precise than in the far offset.

The procedure discussed here requires knowledge of the source wavelet
to extract heterogeneity parameters from data or migrated images. However,
only the amplitude spectrum matters, therefore we conjecture that we can still
obtain satisfactory results even if small phase errors in our wavelet estimation
exist. Furthermore, the heterogeneity estimation from model, data or image is
a statistical process, which is implemented by using the least-squares fitting
methods. Therefore, minor errors in the frequency content should be tolerable.

Our analysis show that various types of heterogeneity look differently
when analyzed in log-log plots, as illustrated in Figs. 11(a)-(f). Assuming that
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Fig. 12. (a) Well log data of P-wave velocity, extended horizontally to mimic a subsurface velocity
model. (b) Data recorded in a shot-record experiment, with a shot at (x = 2.0 km, z = 0 km) and
receivers on the surface; the zero-offset trace is superimposed on the data. (c) Image of the data Fig.
12(b) using migration with a conventional imaging condition and a smoothed background velocity;
the vertical image trace at x = 2.0 km is superimposed on the image.
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Fig. 13. (a) The log-log spectrum of the well log data. The least squares fitting (thick line) indicates
that the spectrum has a slope of about 1. (b) The remanent spectrum after removing the k'
component from the spectrum shown in (a). The least-squares fitting result (thick line) shows a slope
of 0.60 in (b), suggesting that the heterogeneity in this well log exhibits fractal behavior.
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Fig. 14. (a) The log-log spectrum of the zero-offset image trace. The least squares fitting (thick line)
indicates that the spectrum has a slope of about 1. (b) The remaining spectrum after removing the
k™' component from the spectrum shown in (a). The least-squares fitting result (thick line) shows
a slope of 0.62, which is consistent with the heterogeneity parameter in the well log.
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the subsurface model is a combination of a relatively smooth background plus
a few strong interfaces with a blocky character, we can attempt to infer the

statistics of model heterogeneities currently undetectable by conventional seismic
methodology.

Alternatively, we can consider the effects of mid-scale heterogeneities on
seismic data as noise and attempt to remove them from migrated images. Our
experiments show that conventional denoising methods based on bandwidth
analysis do not have a good chance of success given the overlap between various
components of the model. However, we suggest that it would be helpful to
understand the statistics of this noise before attempting to remove it.
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Fig. 15. The heterogeneity parameter 8 extracted from the image at various horizontal positions.

NOISE ATTENUATION IN SEISMIC IMAGING

Despite the fact that multi-scale heterogeneities are present in the earth,
we normally describe their expression in seismic data as noise and their
expression on migrated images as artifacts. This is simply because we do not
have good procedures to estimate models with such variability and to image
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those data. In this section, we explore the applicability of two kinds of
de-noising procedures: seislet transform (ST) which belongs to the wavelet
transform methods, and Gabor-Winger distribution (GWD) which belongs to the
time-frequency analysis (TFA) methods.

Seislet transform

The seislet transform belongs to the general family of wavelet transform.
By definition, this transformation decomposes the signal to different scales using
the dominant slope at every location (Fomel, 2006). ST can be used for
de-noising by a simple soft thresholding operation in the transformed domain
designed to preserve the locally dominant slopes in the data or image, thus
filtering out perturbations from the dominant slope. Filtering using ST makes

the assumption that the data are correctly described by locally coherent events,
while noise is not.

Gabor-Wigner distribution

TFA methods decompose non-stationary signals as functions of the local
frequency at various times (Cohen, 1995). This type of transformation can be
generalized to multi-dimensional signals, e.g., to seismic data or wavefields.
Wigner distribution functions (WDF) (Wigner, 1932; Ville, 1948) are an
example of TFA method with a quadratic character (Hlawatsch and Boudereaux-
Bartels, 1992). WDFs are effective at suppressing noise from data, but suffer
from the drawback that the phase of their output is ambiguous. To alleviate this
problem, we use an alternative TFA transformation, called the Gabor-Wigner
distribution (GWD) (Pei and Dng, 2007), which has the property that it
attenuates the noise similarly to WDF, but without affecting the phase of the

signal. For the multi-dimensional signal s(x,t), the Gabor-Wigner distribution
is given by

so,0 = sy, | dt, | dxeEnsexn | (10)
=T Ix|=X
where

swh) = | dt, | dx,g0six—,/2).0— 1,/2)]

[t =T |x|<X
s[x+(x,/2),t+(t,/2)] . (1nH
In egs. (10) and (11), g(x,t) = e & W7 g (-wie is a multi-

dimensional Gaussian window with spatial and temporal standard deviations of



376 MA & SAVA

o, and g,, which has the purpose of reducing cross-talk (Choi and Williams,
1989); sw(x,t) is the WDF transform result of s(x,t) the time-space domain; x,
and t, are variables spanning space and time intervals within X and T,
respectively.

Strategies for noise attenuation

Wave-equation imaging for shot-record experiments consists of two steps:
first, simulate the source and receiver wavefields using the background velocity
model; second, apply an imaging condition to extract the reflectivity information
from the reconstructed source and receiver wavefields. A conventional imaging
condition extracts the image as the zero-lag of the cross-correlation between the
reconstructed wavefields

R(y) = | diugy.nudy.n | (12)

where y denotes the image coordinates, uy(y,t) and u(y,t) are the reconstructed
source and receiver wavefields, and R(y) is the extracted image.

Wavefields corresponding to propagation in models with multi-scale
heterogeneity are not properly reconstructed in the subsurface if we use an
approximate blocky model for wavefield reconstruction. Consequently,
fluctuations corresponding to the part of the model that is not accounted for
during extrapolation are present in the wavefields. The question we address here
is whether we can use one of the noise attenuation techniques outlined earlier
to filter out the unwanted component of data. We discuss three possible
strategies corresponding to filtering before wavefield reconstruction (i.e., filter
the data), filtering before the imaging condition (i.e., filter the wavefields), or
filtering after the imaging condition (i.e., filter the image) as shown in Fig. 16.

In workflow (a), the denoising process is directly applied to the recorded
data before wavefield reconstruction. In this case, we attempt to remove from
the data what we consider to be unwanted signal and then follow with a
conventional imaging procedure. This option is advantageous because it operates
on relatively small data volumes, but it has the disadvantage that data are often
complicated with many conflicting dips which makes it difficult to define a
predominant slope at some location and time.

In workflow (b), the denoising process is applied to the reconstructed
wavefields before the application of the imaging condition. This is the strategy
employed by Sava and Poliannikov (2008) in the design of the so-called
interferometric imaging condition based on WDFs. This option is advantageous
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Fig. 16. Workflows with denoising methods ST and GWD operated on (a) data, (b) wavefield, and
(c) image.
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because we take into consideration the redundancy of the entire reconstructed
seismic wavefields to define the locally dominant components, but it has the

disadvantage that it operates on large data volumes making it computationally
expensive.

In workflow (c), the denoising is applied to the migrated image after the
application of the imaging condition. This option is advantageous because we
apply it directly on the final product of the imaging process, thus removing all
types of artifacts that are not locally consistent, and that it is computationally
efficient since it operates on small data volumes. This option is disadvantageous
because it assumes the presence of single dominant events at every location,
which eliminates from consideration geologic structures with sharp truncations.

SYNTHETIC EXAMPLE

We apply the technique proposed in the preceding section to the models
shown in Figs. 17(a)-(c), which are based on the Sigsbee 2A model. The models
are characterized by correlated random Gaussian heterogeneities, Fig. 17(b), and
fractal heterogeneities, Fig. 17(c). The blocky model shown in Fig. 17(a) is
used as a reference.

The goal of this experiment is to evaluate whether the attenuation
techniques described earlier can reduce the noise in the final migrated images.
We simulate data using the models with random fluctuations and image by
reverse-time migration using a smooth version of the background model, Fig.
17(a). In all experiments, we use wavelets with a central frequency f = 20 Hz,
the model is discretized on a grid with Ax = Az = 0.00762 km, and the
perturbations represent 10% of the background model. Figs. 17(d)-(f) show the
simulated data for the velocity models shown in Figs. 17(a)-(c), respectively.

Figs. 18(a)-(c) show the images obtained by migrating the data in Figs.
17(d)-(f) with the smooth background velocity model [a smoothed version of
Fig. 17(a)]. Fig. 18(a) corresponds to modeling and migration using models
without random fluctuations and serves as a reference for all subsequent
migrations. Both images constructed from data corresponding to the random
models, Figs. 18(b) and 18(c), are corrupted with artifacts due to incorrect
wavefield reconstruction in the subsurface. In contrast, Figs. 18(d)-(f) show the
images obtained by migrating the data in Figs. 17(d)-(f) with the same velocity
models where data are acquired. Consider reverse-time migration, which is the
method used in this article. Although wavefields can be better focused if we
back propagate wavefields in the correct velocity with heterogeneity, multiple
scattering caused by multi-scale heterogeneity still remains. Migration based on
Born approximation cannot relocate the multiple scattering in the wavefield.
Therefore, we cannot find significant differences or improvements from Figs.
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18(d)-(f), except for some minor phase and amplitude changes. It is necessary
to remove the multi-scale heterogeneity component from the image to obtain a
clear subsurface structure, which is beneficial to geological interpretation. In the
following paragraphs, we discuss the application of the seislet transform (ST)
and the Gabor-Wigner distribution (GWD) for the three implementation
strategies discussed earlier.

(d) (e) (M

Fig. 17. Sigsbee 2A models: (a) blocky velocity, (b) Gaussian random velocity and (c) fractal
velocity. Finite-difference modeled data for a source located at x = 6.0 km and receivers distributed
along the surface corresponding to (d) the blocky model, (e) the Gaussian random model and (f) the
fractal random model.
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Fig. 18. Panels (a)-(b)-(c) correspond to migrated image with the conventional imaging condition
using the smooth background velocity. Panels (d)-(e)-(f) correspond to migrated image with the
conventional imaging condition using the same velocity model for both modeling and migration.
Left: blocky model; middle: Gaussian random model; right: fractal model.

Figs. 19(a)-(f) correspond to the data simulated with the model
characterized by Gaussian fluctuations, Fig. 17(e). Panels 19(a)-(c) correspond
to de-noising using the ST applied to the data, wavefield and image,
respectively, and panels 19(d)-(f) correspond to de-noising using GWD applied
to the data, wavefield and image, respectively. Likewise, Figs. 20(a)-(f)
correspond to the data simulated with the model characterized by fractal
fluctuations, Fig. 17(f). Panels 20(a)-(c) correspond to de-noising using the ST
applied to the data, wavefield and image, respectively, and panels 20(d)-(f)
correspond to de-noising using GWD applied to the data, wavefield and image,
respectively.

Both ST and GWD used in all three workflows help reduce the random
fluctuations from the migrated images, although none produces images with the
coherence comparable with that of the reference image, Fig. 18(a). This is not
surprising since both de-noising techniques attempt to filter-out information
incorrectly positioned in the subsurface, rather than relocate it. However, it is
apparent that better results are produced when de-noising is applied to the
wavefields, rather than to the data or the image. The main reason for this is that
more coherency exists in the wavefields along the space and time axes. The data
and the image are subsets of the wavefields, therefore these domains are not as
effective at noise suppression. Compared with ST and GWD, WDF can
similarly attenuate the random fluctuations from migrated images. However, the
polarity information of reflectors is made ambiguous by WDF. This ambiguity
will mislead geological interpretation.
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(d) (e) (f)

Fig. 19. Images corresponding to the model with correlated Gaussian random fluctuations. Panels
(a)-(b)-(c) correspond to denoising with ST applied to the data, wavefield and image, respectively.
Panels (d)-(e)-(f) correspond to denoising with GWD applied to the data, wavefield and image,
respectively.

(d) (e) (H

Fig. 20. Images corresponding to the model with fractal velocity fluctuations. Panels (a)-(b)-(c)
correspond to denoising with ST applied to the data, wavefield and image, respectively. Panels
(d)-(e)-(f) correspond to denoising with GWD applied to the data, wavefield and image, respectively.

We can quantify the differences between the various de-noised images and
our benchmark image using the mean squared error (MSE) (Lehmann and
Casella, 2003). The MSE values characterize the dissimilarity between the
de-noised images and the reference and the larger the MSE value, the more
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dissimilar the images. The raw images shown in Figs. 18(b) and 18(c) have a
mean squared error of 0.011 and 0.014, respectively, relative to the benchmark
image shown in Fig. 18(a). Table 2 lists the mean square errors between the
images in Figs. 19(a)-(f) and Figs. 20(a)-(f) relative to the benchmark image.
According to this analysis, the best denoising strategy is to apply either ST or
GWD on the wavefields after wavefield reconstruction but before the imaging
condition, with a slight efficiency advantage for GWD relative to ST.

Table 2. MSEs comparisons of images in Figs. 19 and 20 with the benchmark image in Fig. 18(a).

Figure 19 Figure 20
workflow ST GWD ST GWD
a 0.0100 0.0094 0.0104 0.0112
b 0.0076 0.0066 0.0103 0.0088
c 0.0093 0.0107 0.0133 0.0104
CONCLUSIONS

We compare different types of multi-scale heterogeneities and investigate
whether information about the parameters characterizing such models can be
derived from the images. Assuming that we can estimate the seismic wavelet
with sufficient accuracy, we can isolate reflectivity profiles from both recorded
data and migrated images and extract the media properties. We can identify
models with correlated Gaussian fluctuations by their exponential dependence
in log-log spectra. In contrast, models with fractal fluctuations show, as
predicted by the theory, a linear dependence of the log-log spectra with a
fractional slope. This conclusion holds for both the data and image domains.
Regardless of the type of fluctuations in the model, imaging with approximate
velocity (e.g., blocky models) leaves a distinct random-looking imprint on the
migrated images which may obstruct identification of geologic structures. We
refer to this kind of imprint as noise and attempt to remove it using conventional
statistical procedures. We test the seislet transform (wavelet-like method) and
Gabor-Wigner distributions (time/frequency-like method) to attenuate noise at
different stages of depth migration. The noise attenuation can be applied to the
data before wavefield reconstruction, or to the reconstructed wavefields, or to
the migrated image, after the application of the imaging condition. Of all
possibilities, filtering of the wavefield seems to be the most effective method of
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noise attenuation, although this option is also the costliest. The future study of
this work could be applying the analysis of heterogeneity to design filters that
can differ signal from noise, according to each unique property of the
background velocity and the heterogeneity perturbation.
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