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ABSTRACT

Sun, B., Ma, J., Chauris, H. and Yang, H., 2009. Solving wave equations in the curvelet domain:
a multi-scale and multi-directional approach. Journal of Seismic Exploration, 18: 385-399.

Seismic imaging is a key step in seismic exploration to retrieve the earth properties from
seismic measurements at the surface. One needs to properly model the response of the earth by
solving the wave equation. We present how curvelets can be used in that respect. Curvelets can be
seen from the geophysical point of view as the representation of local plane waves. The unknown
pressure, solution of the wave equation, is decomposed in the curvelet domain. We derive the new
associated equation for the curvelet coefficients and show how to solve it. In this paper, we focus
on a simple homogeneous model to illustrate the feasibility of the curvelet-based method. This is a
first step towards the modeling in more complex models. In particular, we express the derivative of
the wave field in the curvelet domain. The simulation results show that our algorithm can give a
multi-scale and multi-directional view of the wave propagation. A potential application is to model
the wave motion in some specific directions. We also discuss the current limitations of this approach,
in particular the extension to more complex models.

KEYWORDS: curvelets, wavelets, numerical simulation, wave equation, multi-scale,
multi-directional, adaptive.

INTRODUCTION

In the context of seismic oil and gas exploration, numerical simulation of
the wave equation is the key factor to establish the link between the earth
properties and the observed data at the surface. Among several traditional
methods for the wave field simulation, the finite difference method (Alford et
al., 1974; Alterman and Karal, 1968; Kelly et al., 1976) is the most popular.
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It uses values on several grid points to estimate the derivative at a particular
location. Its advantage relies on the relatively easy programming and high speed
calculation. The pseudospectral method (Fornberg, 1989; Gazdag, 1981; Kosloff
and Baysal, 1982) have also been proved to be an efficient method. Compared
to low-order finite difference, the pseudospectral method provides more accurate
result as it uses all grid point values to estimate the derivatives. Beyond these
two methods, the finite element method (Lysmer and Draker, 1972; Meyer,
1992) is based on the variational principle while the boundary element method
(Carrer et al., 2008; Funato and Fukui, 1999) is based on the integral principle.
Both methods have good performance in stability and convergence, and can deal
with complicated boundary conditions. However, these two methods are
generally memory- and time-consuming.

In the past, the mentioned methods have been improved in terms of speed
and accuracy. We focus here on a different aspect, related to multi-scale and
multi-direction analysis. Wavelet schemes (Carrer et al., 2008; Kelly et al.,
1976) provide a multi-scale solution where the basis elements are relatively well
localized in the time and frequency domains, with a large number of
applications in data processing (Antoine et al., 2004; Daubechies, 1992).
Combined with other methods, wavelets can be used to solve the wave equation
(Hong and Kennett, 2002a; Hong and Kennett, 2002b; Ma et al., 2001). The
numerical algorithms have a number of advantages: the differential operator can
be directly computed in the wavelet domain with high speed and accuracy; by
setting threshold values in the wavelet domain, significant coefficients can be
selected to reduce the calculations and the memory requirement; it is also
possible to derive the wave field corresponding to certain scales without
calculating the whole wave field.

Compared to wavelets, curvelets appears to be more suitable for solving
hyperbolic problems (Candés and Demanet, 2005; Candés and Donoho, 2003).
Curvelets (Candés and Donoho, 2000, 2004, 2005) were recently introduced in
the field of applied harmonic analysis and have a number of applications on
seismic processing (Lin and Herrmann, 2007; Herrmann et al., 2008; Ma et al.,
2007; Ma and Plonka, 2009a, 2009b). They provide a multi-direction analysis
and allow a sparse representation of smooth objects containing smooth
discontinuities (i.e., twice continuously differentiable). Curvelets preserve the
same time-frequency localization property as for wavelets and at the same time,
with their elongated support in the Fourier domain, curvelets become
directional.

Compared to the Fourier and wavelet analysis, the curvelet decomposition
(Candés and Demanet, 2005; Candes and Donobo, 2003) theoretically provides
an optimally sparse representation of the wave propagator. For example,
Demanet (2006) uses curvelet-like wave atoms to solve the wave equation. His
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algorithm is based on the sparsity of the matrix representation of Green’s
function. In his paper, the curvelets are used as basic functions and the
derivatives are calculated through them. Because of lack of explicit expressions
of the curvelets in the time domain, the derivative is computed numerically in
the frequency domain, raising the computation aspect. Andersson et al. (2008)
developed a method based on the Volterra equation (high frequency
approximation) and considers the rigid motion of the curvelet along the ray. The
wave operator is decomposed into individual scale using para-differential
decomposition. The Hamilton flow at a given scale determines the motion of the
curvelets. As for curvelet-based migration (Chauris and Nguyen, 2008; Douma
and de Hoop, 2007), that focuses on the action of the migration operator on the
curvelets, only the first-order approximation of the distorted curvelet is
predicted. Moreover, the location of the discrete curvelets is not necessarily on
the original grid, requiring some interpolation procedure (Chauris and Nguyen,
2008). Ma et al. (2007) introduced the curvelet transform into AMR (adaptive
mesh refinement) to estimate the local error of the wave field so as to update the
grid. This method suffers from the lack of analytical expression in space of the
current curvelet transform.

In order to get a multi-scale and multi-direction analysis of the wave
propagation, and for calculation efficiency, we solve the wave equation directly
in the curvelet coefficient domain. In this paper, we show how to express the
derivative of a function in the curvelet domain. The curvelet decomposition is
coupled to the Finite Difference scheme, providing a multi-scale and
multi-direction analysis of the wave field.

The outline of the paper is as follows. First, we explain the curvelet
construction and the main properties of curvelets. Then, we show how to solve
the wave equation in the curvelet domain for homogeneous models, including
numerical examples. Finally, we discuss the current limitations of the approach.

CURVELETS

In this section, we give a brief introduction of the curvelet transform.

First we define the continuous curvelet transform (Candes and Donoho, 2004;
Candes et al., 2005).

In the two-dimensional space R?, define the spatial variable x = (x,,X,)
and its counterpart w =(w,,w,) in the frequency domain or alternatively the polar
coordinates r = +/(w] + w}) and 6 = arctan(w,/w,). We first start with a pair of
window functions W(r) and V(t), called the "radial window" and "angular
window". These window functions are both smooth, non-negative and
real-valued, with W taking positive real arguments and supported on r €
(1/2,2) and V taking real arguments and supported on t € [—1,1]. Both obey
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the admissibility conditions:

' Z W3(2r) = 1,r € (3/4,3/2) (1)

j=—o

Y VAt - =1t € (=1/2,172) . )

|=—o

For j = j,, we define the filter U; in the frequency domain by
U(r,0) = 27*WQ2 Inv@Eie2r) 3)

where [j/2] denotes the integer part of j/2. The support of U; is a polar
"wedge".

The waveform ¢;(x) is defined by its Fourier transform ¢,(w) = Uj(w)
where Uj(w) is defined in the polar coordinate system by eq. (3). All the
curvelets at scale 27 are obtained by rotations and translations of ¢;. Given the
equispaced sequence of rotation angles 6, = 27w-27U2-[ with [ = 0,1,...20% so
0 < 6, = 27 and the sequence of translation parameters k = (k,,k,) € Z%.
Note the spacing between angles is scale-dependent. We define curvelets at scale
271, orientation 6, and position x? = R~ (k,;277k,-277?) [Let b denote
(k1'2>j’k2'2_j/2)]-

?(X) = ¢[Rg (x — xJN] = ¢Ryx — b) )

where R, is the rotation by 6, radians and R7j its inverse,

cosf,  sinf,
R, = . Ry = RTo, =R_ (5)
—sinf, cosf,

The curvelet family forms a tight frames: we can expand a function f&
L2(R?) as a series of curvelets:

f= Z <f 0> ek > (6)

JLk

where C;,, denotes the curvelet coefficient or scalar product <f,¢;,, >
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Cox = <Fo> = | X xdx )

R2

According to the Plancherel’s theorem, we can express the inner product
as the integral over the frequency domain.

Coux = /217 | H(@)oy, (@)do
= /2] | Hw)U R, we <> dw ®)

The phase shift in the frequency domain corresponds to a shift in the
spatial domain. We introduce the low-pass window W, obeying

[Wo|2 + ) (W2 =1, )

>
and define coarse scale curvelets as
@ik (x) = @i (x — 2_Jok) , (10)
¢, @ =272 ")) | (11)
The curvelets associated to the coarse scale curvelets are non directional.

The curvelet transform consists of two parts: the fine scale directional elements
(®5.010 P> iolk ? the coarse scale isotropic curvelets (@, k-

At least two existing codes are available (Candes et al., 2005; Ma et al.,
2007) for practical applications, respectively based on the USFFT and wrapping.
We introduce the USFFT. In the continuous-time definition, the window U;is
defined over the dyadic corona {2’ < r < 2!} and the angle {—727 < ¢
< 727”2 These are not especially well-suited for Cartesian arrays. We
introduce the equivalents: "Cartesian coronae" based on concentric squares,
instead of circles, and shears instead of rotations.

The Cartesian analog to the "radial window (W));,, would be a window
of the form

Wi = V@, - ) , (12)
where @ is defined as the product of low-pass one dimensional windows

®(w) = 27w )p2 wy) . (13)
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The function ¢ obeys 0 < ¢ < 1, might be equal to 1 on [—1/2,1/2], and
vanishes outside of [—2,2]. One can check that

Byw)? + Y, Wiw) = 1 . (14)

i>0
The V; functions are defined as

V(@) = VQ"wy/w) . (15)
We can define the "Cartesian" frequency window:

U, (@) = W, (@)Vj() . (16)
It is clear that U, isolates frequency near the wedge {(w;,w,) : 2 < w, < 27,
—2717 < w,lw, < 2777}, We introduce the equispaced slopes tanf, = [-2072],
[ = =27 . 202 — 1202 and define

U, (@)= Wi(@)VSyw) , (17)

where S, is the shear matrix,

1 0
Sy = . (18)
—tanf, 1

The angles 6, are not equispaced here but the slopes are. After completion
by symmetry around the origin and rotation by + /2 radians, the ﬁj,, define the
Cartesian analog to the family Uj(R, w) as mentioned before. The digital
coronization suggests Cartesion curvelets of the form

ian(x) = 279[S, (x — Sy b)]
where b takes on the discrete values b = (b;,b,) = (k,;"27,k,277?). The new

expression of the curvelet coefficient is

Cj,t.k

§ @08, we St da (19)

§ 1S, WU @e<>dw . (20)
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For a discretized version of f on a Cartesian array f[t;,;,],0 < t,,t; < n,
where f[n,,n,] denotes its 2D discrete Fourier transform

n-1

f[n,,n,) = flt,,t,]e” 270 T 2 <), <n/2 (1)
2

t,5,=0

where f[n,,n,] = f(27rn1,21rn2). Assume that Gj[nl,nz] is supported on some
rectangle of length L, ; and width L,

Po={mn,n)n,<n <n,+L;n,<n<n,+L, 23
where (n, ,,n,,) is the index of the pixel at the bottom-left of the rectangle.

Because of the parabolic scaling, L, ; is bout 2’ and L, | is about 2. With these
notations, the Fast Discrete Curvelet Transform (FDCT) via USFFT evaluates

2 r i2m(kn,/L, ;+kony/L
Cj.l,k = Z f[nl’n2 — nltanel]Uj[nl,nz]el w(kn /Ly j+kon, 2)) , (24)
n,n, €P,

We summarize the FDCT via USFFT as follows:

1. Apply the 2D FFT and obtain Fourier samples f{n,,n,],
—n/2<n;,n, <n/2.

2. For each scale and angle pair (j,1), resample (or interpolate) to obtain
sampled values f[n,,n, — n;tanf] for n;,n, € P;.

3. Multiply the interpolated object f with the parabolic window Uj, obtain
f,[n;,n,] = f[n;,n, — nytand,|Uj[n,,n,]).

4. Apply the inverse 2D FFT to each fj, to get the discrete coefficients C; ;.
Fig. 1 gives the spatial and frequency view of a specific curvelet. Ma and

Plonka (2007) presented a periodic curvelet transform. For more details on
curvelets and recent applications, we refer to reviewal papers (Ma and Plonka,

2009a, 2009b).

SOLVING THE WAVE EQUATION IN THE CURVELET DOMAIN

The main objective is to solve the wave equation in the curvelet domain.
The simplest form corresponds to the 2D constant density scalar wave equation.

d%u(t,x)a/t* = a’Au(t,x), u(t,x)|_o = u;(x), ou(t,x)/at|,-o = uy(x), (25)
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where u(x,t) is the pressure field, a is the constant wave speed, x denotes
(X;,X,), and A, the Laplace operator (8%/9x?) + (3%/0x3). We give a detailed
description of our new method. It is based on the transposition of the finite
difference method in the curvelet domain. We first address how to estimate the
spatial derivatives, specifically the Laplacian acting on the pressure u. Our ideas
are inspired by the pseudospectral method that establishes a relationship between
the Fourier transform of a function and its derivatives. We derive a similar
relationship, leading to a new expression of the wave equation in the curvelet
domain in the case of homogeneous models. Let us define the curvelet functions
in the frequency domain ¢, ,,(w) as

gbj,l,k(w) = Oj(so[w)ei<selb,w> ) (26)

By construction, the curvelet coefficients associated to u or to its
Laplacian are defined by

Cox = (/2T | 0@, (@) do | @7
2= e | FTawg, () do . 28)

Fig. 1. Spatial and frequency view of a curvelet.
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The basic properties of the Fourier Transform (FT) about the derivative give
FT(3/0t") = (iw)"f(w) , 29)
so that
2= —l/QR § [0@)d @) do . (30)

We exploit the specific form for ¢;,, and perform a change of variables
from S w to w, yielding to

Cu = /207 | 8; 0T (we'<**> do | 31)
2= —[em | S5, (@)]*S5, 0 Uj(w)e'<**> dw , (32)

= —[1/@m7] § (ol/cost,+wi—2wwtan,)'S; G Uwe > dw . (33)

We observe that C§ , is composed of three parts, Cy , C¢, Ci, :

C2 = [1/Q2mcost)!] | —wli(w)e <> dw | (34)
ci = [Uer] | —wliwe e do | 35)
2, = 2an/2m? | wwiwe < do . (36)

Consider eq. (34), the integral part can be seen as the inverse Fourier
transform of —w?li(w). We thus obtain

Ci = (1/cos?0)(8°C; ,/0b}) (37)
Cﬁz = aZCJ‘I,k/abz 5 (38)
Cﬁlkz = _2tan0[ (aZCL[’k/ablab2) . (39)

We now get an expression for the wave equation in the curvelet domain
0°C; /0t = a’[(1/cos’0)(0°C; /b)) + (9°C;,,/ab3)

We can use the central difference method or pseudo-spectrum method to
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calculate the coefficients. Of course, any efficient methods for solving partial
differential equations can be used theoretically.

NUMERICAL SIMULATION AND DISCUSSION

In this section, we present the numerical simulation in an homogeneous

velocity model. We include a source term p(x,t) = 8(x — x,)f(t) where f is a
Ricker wavelet.

0%u/dt = a’[(Q*u/ax}) + (0%u/dxD)] + p(x.t) (41)
ut,x)|,—p = u(x), Au(t,x)/dt]|,_, = uy(x).
The complete form of the wave equation in the curvelet domain is given by
d°C; /ot = a’[(1 + tan’§)(6°C;,,/abD) + (0°C; ,,/9b3)
— 2tanf(0%/C;,,/db,db))] + C?, f(t) , (42)
where C?,, denotes the curvelet transform of function 6(x — x,).

We use explicit finite difference method and pseudospectral method to
solve eq. (42). The calculation process is as follows:

1. Select the number of scales and directions used in curvelet transform and
accordingly create the discrete grids in the curvelet domain. Note that the
spatial and time steps are scale dependent.

2. Solve eq. (42) using numerical method in the curvelet domain. High
accuracy numerical method is recommended for the estimation of the
derivatives.

3. Apply the inverse curvelet transform to the final calculated curvelet
coefficients C; ;. We can also apply the curvelet transform to the data for

some specific scales and directions to get a multi-scale and multi-direction
view.

In our example, the grid size for u is 256 X 256, and the step size 10 m.
The medium velocity is 1500 m/s and the main frequency of the ricker is 30 Hz.
The curvelet transform is applied by the wrapping method and we have coarse
scale, detailed scale and fine scale. For coarse scale, the time step is 0.1 ms.
In the coarse domain, the equation is solved by central difference method and
in the detailed and fine scale, pseudospectral method is used for high accuracy.
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Fig. 2 displays the snapshots of the wave field at the time t = 2.0 s in the
coarse and detail scale. Fig. 3 shows the snapshots of every direction in the
detail scale. For individual snapshots, we only use the coefficients in one
direction and then apply the inverse curvelet transform. As the figure shows, the
total wavefield is composed of the waves in different directions.

Fig. 2. Snapshot of the wave field in the coarse and detail scale.

Fig. 3. Snapshot of the wave field in the detail scale for eight different directions.
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Fig. 4 shows that the wave field evolves in certain scale and direction.
From top-bottom and right to left, the corresponding time starts from 10 ms,
every 10 ms until 160 ms. We can see how the curvelet evolves in the spatial
domain. At first, the wave field is composed of several curvelets, and then such
curvelets appears to split and gradually form the wave front.

Numerical results acclaim the advantages of our method: first,we can get
a multi-scale analysis of the wave motion as for wavelets. By comparison, the
wave field can propagate in the coarse, detailed and fine scale, it appears that
the energy is much focused in the coarse scale. On the other hand, we can also
obtain a multi-directional analysis of the wave motion. Using the curvelets, we

Fig. 4. Evolution of the wave field in the detail scale, from 10 ms every 10 ms until 160 ms.
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have a multi-direction view of the wave propagation as the petal-like image in
Fig. 3. This has a potential application for wave modeling in certain direction,
because we can ignore unimportant directions and this will sufficiently reduce
the computation time and storage space.

In the section on curvelets, we have presented the derivatives of arbitrary
functions in the curvelet domain. We can easily extend the strategy to other
linear partial differential equations with constant coefficients. For example, the
2D homogeneous elastic wave equation in the curvelet domain is:

P@CY 1, /08 = (N + WI(E°CY,, /b)) — tand(3°C},,/ab) + (3C,,/3b,dby)]

+ ul(1 + @an0)(9*CY,/ab}) + (3°Ct,,/8b3) — 2tanf(3°CY,,/ab,dby)] , (43)

p(9°C} /08 = (N + w)[(8°C},,/b}) — tanf(3°CY,,/ab}) + (3*CY,,/3b,db,)]
+ pl(1 + tan’§)(8°CY ,,/db) + (3°C},,/0b3) — 2tand(3°C},,/db,dby)] , (44)
where A, p are the Lamé constants, p the density. C},,, C},, represent the
curvelet transform of the displacement u and v.

For heterogeneous media, following the principle of section on curvelets,

the Laplacian of the pressure field u can be decomposed into a sum of curvelets

(3 terms). If a depends on x, then we must calculate the following coefficients

aj,l.k.m,n,q:

8 emng = ) 20000000 (X)X @5)

and the wave equation in the curvelet domain changes to

0°C; /0t = Z {8 1magl(1 + tan’0)(0°C;,,/3b) + (3°C;;,/0b3)

m.n,q

— 2tan,(3°C, ,,/3b,3b,]} . (46)

Calculation of eq. (45) would be a key issue in numerical simulation of
heterogeneous model. This would be included in our future research.
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CONCLUSION

This paper is a first attempt towards solving the wave equation in the
curvelet domain. We have derived an expression for homogeneous velocity
models. For the extension to more complex models, the expression obtained
here of the spatial derivatives in the curvelet domain remains true. More work
is however needed to establish the final formulation.
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