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ABSTRACT

Jin, L., Stoffa, P.L., Sen, M.K., Seif, R.K. and Sena, A., 2009. Pilot point parameterization in
stochastic inversion for reservoir properties using time-lapse seismic and production data. Journal
of Seismic Exploration, 18: 1-20.

Joint inversion of flow and seismic data for reservoir parameters is a challenging task in that
these disparate datasets are sensitive to different physics and model resolutions for the forward
problem. The inverse problem is highly non-linear introducing additional complexity. To overcome
some of these challenges we have developed a global optimization method based on very fast
simulated annealing (VFSA) and a pilot point based model parameterization scheme. Reservoir
simulation is used to create the saturation and pressure distribution with time. The simulation results
are converted to seismic properties using an appropriate rock physics model. Seismic modeling is
used to create the seismic response. The objective function is defined as a weighted sum of data
misfit and prior model misfit and VFSA is used to derive optimal model parameters. Our results
from synthetic examples reveal that the VFSA optimization scheme is robust and pilot point model
parameterization is able to obtain reasonable descriptions of the reservoir. We further propose a
probability based pilot point parameterization, where prior knowledge is used to compute the
probability to draw the pilot points. In this way, the model parameters can be reduced further. To
incorporate the small scale heterogeneity, we combine the pilot point based inversion method with
sequential Gaussian simulation to create stochastic models.
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INTRODUCTION

Knowledge of the distribution of reservoir parameters (porosity,
permeability) is essential for prediction of future oil production, estimation of
bypassed oil locations, and optimization of reservoir management.
Conventionally, reservoir engineers often perform history matching manually
with only production and well test data available to constrain the reservoir
model. With the introduction of time-lapse seismic surveying as additional data,
history matching has entered into a new era (Huang, 2001; Dong, 2005). The
forward modeling in seismic history matching includes both reservoir simulation
and seismic modeling. With conventional gradient based optimization, it is
difficult to obtain global optimum results (Sen and Stoffa, 1996). In this paper,
we use a stochastic optimization method called VFSA (Ingber, 1989, 1993) to
integrate both time-lapse seismic and production data in reservoir history
matching.

A reservoir model is described by flow properties for a large number of
fine grid cells. Directly perturbing all the parameters to search for an optimal
set is time consuming and prone to non-uniqueness. This can be addressed by
using a functional representation for the model parameters where the coefficients
at only a few sparse locations need be determined. Care must be taken to avoid
any bias by brute force application of functional representation. Zonation
(Jacquard and Jain, 1965) and SVD (Verly and Oliver, 1994) are common ways
to reduce the number of model parameters. In addition, wavelets (Sahni and
Horne, 2006; Jin et al., 2007) and the pilot point method (de Marsily et al.,
1984) have also been used in seismic history matching (Stephen and MacBeth,
2006; Jin et al., 2007). In this paper, we investigate the pilot point
parameterization method. However the details of implementation vary
significantly in our application. For example, VFSA is used to find the positions
of and values at the pilot points and we also propose a probability based pilot
point parameterization. We further propose the combination of pilot point based
inversion with stochastic modeling to create stochastic models honoring both
time-lapse seismic and well production data, which can be used to quantify the
uncertainty of reservoir model and prediction.

In this study, we choose the porosity distribution as the unknown
parameter. The permeability distribution is computed from porosity using an
empirical relationship. The method could also be generalized to invert for both
porosity and permeability.

ALGORITHM

The workflow of our approach is shown in Fig. 1. The initial reservoir
model is generally constructed by interpolation of well data. To test the
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inversion method, we choose our initial model at random from a pre-defined
search space. For this workflow, reservoir simulation, rock physics conversion
and seismic modeling are used to create synthetic data. The data include
time-lapse seismic and production data. Porosity and permeability are input to
the reservoir simulator to compute saturation and pressure changes with time.
A rock-physics model (Mavko et al., 1998; Hoversten et al., 2003) is used to
convert the reservoir properties to seismic properties. The seismic response is
computed using a convolutional model depicting post-stack data. Our objective
function consists of two parts: (1) data misfit and (2) model misfit that

incorporates a priori information (eq. 1):
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Fig. 1. A flow chart describing stochastic inversion using time-lapse seismic and production.
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There are two important issues for this workflow: the choice of
optimization method and the parameterization of the model. For the optimization
method, we use VFSA (very fast simulated annealing) (Ingber, 1989, 1993),
which uses a Cauchy-like distribution to perturb model parameters. Previous
research (Sen and Stoffa, 1991, 1995, 1996) has shown that it has advantages
over other global optimization methods, such as genetic algorithms (GA) (Stoffa
and Sen, 1992; Sen and Stoffa, 1992).

Suitable parameterization can reduce the number of model parameters and
enable efficient updating. We investigated wavelets and a pilot point
representation to describe the model space. In this paper, we focus on the pilot
point method because this representation is more efficient for our inversion
purposes (Jin et al., 2007). In the following sections, we will describe the
methods we developed using pilot points, probability based pilot points, and the
combination of pilot point and Sequential Gaussian Simulation.

Pilot point parameterizaton

The pilot points are selected at locations where the reservoir parameters
are estimated or perturbed. Then, Kriging interpolation is used to compute all
the reservoir parameters or their perturbations at the grid points. This method
has been used in the groundwater inverse problem (Ramarao et al., 1995) and
also the inverse problems in petroleum engineering (Bissell et al., 1997). Bissell
et al. (1997) summarized a six step pilot point method which is based on local
optimization to update the values at the pilot points. Their six step pilot point
method is as follows:

1. A geostatistical realization of the selected reservoir property is generated.
There are two constrains placed upon the realization. One (vertical) is
based on the properties in the wells. The other (horizontal) is assumed
based on a prior variogram of the reservoir properties;

2. The second step is to select a group of pilot points. The pilot points are
at specific grid locations. They can be chosen arbitrary or based on the
spatial variability of the reservoir parameters;

3. Then a reservoir simulator is used to model the production period;
4. The fourth step is to compute the objective function and the derivatives
of the objective function with respect to the reservoir properties at the

pilot points;

5. The fifth step is to use the derivatives to calculate new values for the
properties at the pilot points, within the prescribed prior limits;
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6. The last step is to update the properties at the pilot points and generate a
new geostatistical realization.

The Kriging interpolation is the basis of the pilot point method. For
detailed theory, readers can refer to Mohan and Godofredo (2002). [Here, we
use the source code from GSLIB (Deutsch and Journel, 1998)].

There are two difficulties in this conventional pilot point method. One is
how to choose the locations of the pilot points. The other is how to compute the
derivative of the objective function with respect to the reservoir properties at the
pilot points. We address these two problems by combing Kriging and VEFSA to
form a new pilot point method. The workflow of this new pilot point method is
as follows:

1. A group of pilot points are selected stochastically as are the values of the
reservoir parameters at these positions;

2. The reservoir parameters at every grid point are interpolated using the
values at the pilot points using Kriging interpolation;

3. Reservoir simulation and then seismic modeling are performed and
compared to the observed data to compute the objective function;

4. VFSA is used to perturb the positions and values at the pilot points. Go
back to (2).

Thus our algorithm is different from a typical procedure. First, we use
VFSA as the optimization method instead of the local optimization based on
derivatives. The second difference is that we can perturb not just the reservoir
parameters at the pilot points but also the positions of the pilot points, thereby
increasing the flexibility of the technique. (We could also perturb the variogram
parameters if only estimates of these are available, which may help to reduce
uncertainty).

The number of pilot points can also be perturbed. However in this paper,
we fix the variogram model and set the number of pilot points to a constant. To
test the feasibility of VFSA to optimize our pilot point parameterization and also
test the sensitivity to the number of pilot points, we use the algorithm described
in Fig. 2. Fig. 3 shows the results with different numbers of pilot points. The
result with 20 pilot points is surprising reasonable but low frequency. The result
with 30 pilot points still cannot honor small-scale heterogeneity. Among the
three results, 50 pilot points gave the best result. Consequently, 50 pilot points
are used in our later experiments.
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Fig. 2. Flow chart of VFSA optimized pilot point method used in the feasibility study and sensitivity
analysis of the number of pilot point.
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Fig. 3. Pilot point parameterization modeling test. (a) real porosity; (b) representation with 20 pilot
points; (c) representation with 30 pilot points: (d) representation with 50 pilot points.
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Fig. 4. Pilot point with grid constraints. (a) real porosity; (b) schematic figure of grid definition and
pilot points, each pilot point is confined in a cell of the grid ; (c) result without grid constraint; (d)
result with grid constraint.

To speed up convergence, a method using grid constraints was applied.
The basic idea is shown in Fig. 4. A coarse grid is used to limit the search
space for the position of each pilot point (restricting each one to a given cell of
the coarse grid). The results obtained using this grid constraint improves the
accuracy of estimated models compared with the ones obtained without grid
constraints (Fig. 4).

Probability based pilot point parameterization

The pilot points are where we want to estimate or perturb reservoir
parameters before using Kriging interpolation onto the computational grid.
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Proper location of the pilot point is essential to capture the spatial variability and
in our case to speed convergence of the algorithm. From our studies, we find
that the pilot point positions are best located where the changes of reservoir
porosity occur. Based on this observation, we compute the gradient and variance
from the mean of the model parameter and then construct a probability for pilot
points and then draw samples based on this probability field. The procedure is
shown in Fig. 5.

Let be the spatial gradient field of a reservoir model parameter and be this
variance of this reservoir parameter with respect to its mean model. In a real
case, these values must be estimated from prior information. For example, for
porosity seismic data can be used as the prior information, and for permeability
time-lapse seismic data can be used as the prior information.

The next step is to normalize the gradient field and variance, so that their
values will range be between 0 and 1. We use these normalized images as two
components of the probability field for the pilot points. We then combine these
two components using the following equation,

P = w,Grad,, + w,var,, , 2)

where P is the final probability, and w,,w, are the combining weights which
determine each component’s relative importance. Then we can draw the pilot
points based on this probability (the procedure used is shown in the Appendix).
The idea behind our choice of total spatial gradient and variance is to try to
locate the pilot points where most changes are occurring.

Compute probability from prior knowledge

h 4
Combine the probability

Draw the pilot points based on the
computed probability

Y

Input the positions of pilot points to
stochastic inversion loop to optimize
the values

Fig. 5. Flowchart of improved pilot point parameterization based on probability.
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In the following, we show an example using the probability based pilot
point method. The prior information is derived from the true model. Fig. 6
shows the procedure used to compute the probability. Using the combined
probability, the pilot points are first drawn. Then, we input the positions of the
pilot points to the stochastic optimization (VFSA). The objective function is
defined as the difference between the true model and the computed model. Here
only the values of the reservoir model parameter at the pilot points are
optimized using VFSA. The results are shown in Fig. 7. Where, a comparison
is made between uniformly distributed pilot points and the probability based
pilot point procedure. Using the same number of pilot points, the result with
equispaced pilot points is shown in Fig. 7(c) and that of probability based
method is shown in Fig. 10(d) compared with the true model [Fig. 6(a)]. The
probability based pilot points give a more accurate result in terms of the small
scale heterogeneity and a better estimate of the shape of the reservoir than the
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Fig. 6. Computed probability for drawing pilot points. (a) The true porosity model (from SPE 10
reservoir model); (b) Computed probability based on gradient; (c) Probability based on value
variance; (d) Combined probability field.
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Fig. 7. Pilot points and final inverted models. (a) Pilot points on the even grid; (a) Pilot points
drawing from probability field shown in Fig. 6 (d); (c) The inverted porosity model with the pilot
points positions shown in (a) as input; (d) The inverted porosity model with the pilot points positions
shown in (b) as input.

equispaced pilot point result. This method also reduces the reservoir model
parameters greatly compared with perturbing the positions of pilot points as part
of VFSA application. So it speeds convergence for large models.

Combination of pilot point and stochastic modeling

The pilot point method uses Kriging for the interpolation method. The

result is a smooth model. To incorporate the small scale heterogeneity of the
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reservoir, a two-stage inversion method is used here. In the first stage, the
positions and values of the pilot points are obtained which honor both the
time-lapse seismic data and well production data. Then, we input the result of
the VFSA derived pilot points to a stochastic modeling algorithm. Using these
stochastic models, the uncertainty in the reservoir parameter estimate can be
analyzed. The sequential Gaussian simulation (SGS) (Deutsch and Journel,
1998), which assumes a Gaussian distribution and uses the Kriging variance as
the variance for the random residual, is used as the stochastic modeling method
for its simplicity and efficiency.

EXAMPLES

A 2D model is used to test the feasibility of our pilot point based VFSA
inversion method for reservoir parameters using both time-lapse seismic and
well production data. We demonstrate our method using synthetic data for a
reservoir model that is a part of SPE 10th model (Christie and Blunt, 2001).
There are four wells, one injector and three producers; the simulation interval
is 200 days. In our first example, the model parameters include the positions
and values of the pilot points. Here we perturb the positions of the pilot points
using the coarse grid constraint. Three experiments were performed using
different data sets: (1) well data alone, (2) seismic data alone and (3) both
seismic and well data. Fig. 8 shows the inversion results for these experiments.
Fig. 9 shows the well performance. We note that if only well data are used, the
matching of the well performance is very good but the spatial distribution of the
reservoir model cannot be mapped correctly (Jin et al., 2007). When seismic

data are added, the spatial description of the reservoir model parameters is
improved.

Then, we input the VFSA derived pilot points which honor both the
time-lapse seismic and well production data to Sequential Gaussian Simulation.
Fifty stochastic models are created. Four of them are shown in Fig. 10. The
stochastic models show both similarities and differences. These models provide
the data to implement an uncertainty analysis for the estimation of reservoir
parameters. The well performances for these fifty models are shown in Fig. 11.
Note that the true well performance is inside the region spanned by the well
performances of these fifty models, therefore, they provide a range (uncertainty
estimate) of flow rate forecasts.

The second example is to test the application of probability based pilot
point method. The porosity model and well geometry are the same as those in
the first example. Based on the prior information, the probability of the pilot
point is computed [Fig. 6(d)]. 100 pilot points are drawn from this probability
field, which are shown in Fig. 7(b). Then, we input the positions of the pilot
points to the VFSA based stochastic inversion to perturb only the porosity
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values at the locations of the pilot points. The inversion results are shown in
Fig. 12. The result using well [Fig. 12(b)] data alone does not match the spatial
distribution of the true reservoir model. The result obtained with both seismic
and well data are far superior [Fig. 12(d)].

Finally, we test our methods with a 3D model. It is also a subset of the
SPE 10th model. In this model, the reservoir is composed of five distinct and
heterogeneous layers. We parameterized this model using a regular grid of pilot
points for simplicity and then use the workflow shown in Fig. 1. Fig. 12 shows
the true model and inverted result for every layer. The inversion results match
the true model well indicating that the proposed pilot point method is working
for this 3D model. Then, we input the locations and values of the pilot points,
which honor the time-lapse seismic data and well production data, to the
sequential Gaussian simulation creating multiple realizations. Fig. 13 shows the
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Fig. 8. Results of pilot point based inversion. (a) real porosity; (b) result using only well data; (c)
result using only time-lapse seismic data; (d) result using both well and time-lapse seismic data.
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results. 50 realizations are created but only 2 of them are shown. The similar
areas correspond to areas with less uncertainty, whereas the areas with the
greatest differences are where greater uncertainties exist in the reservoir model.
A non-regular grid and the new probability based pilot points for a 3D model
are a straightforward extension of the work presented in the previous sections,
but are not presented here.

0.5

2000 0 days 2000

(a) (b)
(b)

days

Fig. 9. Well performance comparison of different experiments. (a) cumulative water production; (b)
cumulative oil production.

CONCLUSION

We have developed a stochastic inversion method using time-lapse seismic
and production data. VFSA is used as the optimization method. To reduce the
number of model parameters, several pilot point based parameterization methods
were investigated. To solve the key problem of pilot point parameterization, that
is how to choose the optimal locations for the pilot points, we used two
methods: First we used a coarse grid constraint and VFSA to derive the optimal
locations of the pilot points within each coarse grid block. Then we developed
a probability based pilot point parameterization method, where we choose the
locations of the pilot points using prior information. To include the small scale
heterogeneity of the reservoir, a two-stage inversion method was presented in
this paper. The pilot point based inversion and sequential Gaussian simulation
were combined to create the stochastic models that honor both the time-lapse
seismic and well production data. These models can then be used to evaluate the
uncertainty in the reservoir model parameter estimate due to fine scale
heterogeneity not captured by the original optimization.
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Fig. 10. Four realizations of SGS. (a) realization 1; (b) realization 2 ; (c) realization 3 ; (d)
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APPENDIX

The procedure to draw the pilot point based on the computed probability

(1) Set the number of pilot point n, the minimum probability for acceptance
P, the minimum distance between two pilot points D,,,

2) m=0
Loopm < n
Draw a pair of random number X, Y, il the range of x and y grids
Draw a random number p, in [0 1], P, = P(X,ew»Ynew)
Loop over accepted pilot point, find the shortest path D
IfP,, > P,and P, > P,and D, > D,
Accept the new position

new

m=m + 1
End
Go to (2)

(3) Output the positions of pilot point.





